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ABSTRACT 

Many studies have determined the concentration of trace elements in river sediments in 

Brazil. Notwithstanding, mercury assessments are scarce, especially because of exclusive 

extraction techniques and expensive analysis techniques. Still, this element is known for 

its toxicity, persistence, and bioaccumulation, making its presence in the environment an 

important factor for biota and human health. For this reason, the objective of this study 

was to determine the mercury concentration in the sediment of the Pelotas River basin, 

located on the border of the states of Santa Catarina and Rio Grande do Sul. The sediment 

was collected at eight locations of the Pelotas basin and, after drying, the mercury was 

quantified by atomic absorption spectrometry based on the Zeeman-background 

correction, coupled to a pyrolysis reactor. The mercury concentrations in the sediments of 

the Pelotas River varied from 40.5 ng g-1 to 62.0 ng g-1 and presented a positive 

correlation with the fraction of silt and clay. The concentrations of mercury found in 

sediments of the Pelotas River basin have a low probability of negatively affecting the 

biota. Nonetheless, given the persistence and bioaccumulation potential of this element, 

the aforementioned region needs further studies to quantify the risks it may cause on the 

local biota and human health.  

 
 

INTRODUCTION 

During the last few years, research in the field of 

sedimentology has been focused on sediment production, 

quantification, and transportation (Sousa et al., 2012; 

Vanzela et al., 2014; Cerquetani & Martins Filho, 2006). 

Additionally, studies have concentrated on the impacts of 

contaminated sediments on the environment, especially 

because sediment is considered the main fixator and carrier 

element in aquatic environments (Pejman et al., 2015; 

Cembranel et al., 2017a). Among the main contaminants, 

mercury (Hg) has received special attention because of its 

high toxicity, environmental persistence, and 

bioaccumulation potential, which negatively affects 

humans and environments worldwide (Kim et al., 2016). 

Countless human activities contribute to increase 

Hg concentrations in the environment, including coal-

based thermoelectric plants, incineration of organic 

products, gold mining, industrial manufacturing processes 

of organochlorine products, caustic soda, batteries, 

thermometers, fluorescent light bulbs, and their disposal, 

along with the production of drugs and fungicides (Kim et 

al., 2016). As an illustration, when Hg based pesticides are 

applied to crops, these areas are considered major sources 

of Hg to watercourses and groundwater.  

In aquatic environments, microorganisms can 

transform Hg into methylmercury (CH3Hg), considered 

even more toxic than the original element. Consequently, 

this substance accumulates in the tissue of aquatic animals 

in higher quantities than those found in the environment. 

The toxic effect of Hg on humans and other living 

organisms depend on factors such as chemical form, 

environmental concentration, exposure routes, and 

vulnerability of the exposed organisms (Kim et al., 2016). 

In humans, elevated concentrations of Hg can cause 

neurological, nephrological, immunologic, cardiac, and 

reproductive disturbances, along with genetic problems 

and reduction of cognitive functions (Oliveira et al., 2013; 

Gibb & O’leary, 2014).  

Several studies have already determined the 

concentrations of trace elements in river sediments in 

Brazil, notably Melo et al. (2012), Santos et al. (2013), 

Botero et al. (2014), and Voigt et al. (2016). Nevertheless, 
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studies involving Hg are scarce, especially because of the 

complex technical requirements of exclusive extraction 

and the high costs of analyses (Franklin et al., 2012). Some 

of the noteworthy studies are: Siqueira & Aprile (2012); 

Hortellani et al., (2013); Almeida et al., (2014); Araujo et 

al. (2015); Remor et al. (2015); Rocha et al., (2015); and 

Sahoo et al. (2015). 

The Pelotas River basin is a very fragile area, 

known for its high hydroelectric and industrial potential 

and intense agricultural activities. Looking to improve the 

quality of this environment and to prevent its exposure to 

highly dangerous chemical agents, environmental 

diagnoses are performed in order to propose management 

measures and to remediate areas already contaminated or 

with high contamination risks. Overall, this study aimed to 

determine the concentrations of Hg in the sediment of the 

Pelotas River basin.  

 

MATERIAL AND METHODS 

Study area  

The Pelotas River basin is located on the border of 

the Brazilian states of Santa Catarina and Rio Grande do 

Sul (Figure 1). The Pelotas River is the main affluent of 

the Uruguay River, composing one of the largest basins of 

Southern Brazil. It possesses a 13,227 km² drainage area, 

62% in the state of Santa Catarina, and 38% in the state of 

Rio Grande do Sul. The climate of the region is considered 

temperate, with average yearly rainfall of 1623 mm, 

distributed throughout the year, but having higher 

concentrations from May to September. 

 

 

FIGURE 1. Study area geographic location, land use and sediment sampling points within the Pelotas River drainage basin.  
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The soil was classified using the Spatial Analysis 

Tools from the ArcGIS 10 software. Images were used 

from the Digital Elevation Models, belonging to the 

TOPODATA project of the Brazilian National Institute for 

Spatial Research (INEP). The use of soil used in areas of 

influence was classified by using images from an orbital 

sensor taken on January 30, 2014, by the Landsat 8 

satellite. The classification was done in a supervised 

manner, using the Maximum Likelihood algorithm from 

the SCP (Semi-Automatic Classification Plugin) plugin of 

the open source QGIS software, version 2.14.5. Figure 1 

illustrates the soil use classes, wherein pastures occupy 

52.79% of the total area of influence, followed by 

vegetation (45.16%), agriculture (0.92%), and urban area 

(0.46%). Furthermore, the basin houses industrial activities 

such as timber, pulp & paper, construction, and 

agriculture. The hydroelectric potential becomes apparent 

due to the extremely wavy relief and the presence of the 

Machadinho and Barra Grande hydroelectric power plants 

(HPP), as well as the possibility of installing the Pai Querê 

and three other HPPs, which are under licensing process 

now.  

Sample collection and preparation  

Sediment samples were collected from eight sites 

within the Pelotas River basin, using a Petersen sampler. 

Six locations in the Pelotas River (PEL 00, PEL 01, PEL 

02, PEL 03, PEL 04, PEL 05) and two in its tributaries 

(TRI 01 – Contas River and TRI 02 –São Sebastião do 

Arvoredo Stream) (Figure 1). Five samples were collected 

from each location, constituting a composite sample by the 

norms of ANA (National Water Agency). Sampling was 

carried out in February 2014, a period with the lowest 

annual rainfall average. This is important because the fine 

river sediments are deposited during the dry season, and 

are washed away during the rainy season. Thus, only one 

yearly sampling during the dry season is sufficient for 

analysis (ANA, 2011). After collecting the samples, they 

were transported in a refrigerated vehicle (4 ºC) and later 

dried out in an enclosed area, away from the sun and at 

room temperature.  

Physicochemical analyses 

Particle size analyses were conducted with a 

combination of sedimentation and sieving procedures, 

according to the NBR 7181/1984 standard of the Brazilian 

Association of Technical Norms (ABNT). The total 

organic carbon (TOC) was determined by the modified 

Walkley-Black method (Coser et al., 2012). 

The chemical elements were only quantified in the 

silt + clay fraction (<63 µm), as recommended by the 

World Health Organization (WHO, 1982). In order to do 

so, after drying, the sediment samples were sieved through 

a PVC and nylon sieve with a 63 µm mesh net.  

The elements aluminum (Al), iron (Fe), and 

manganese (Mn) were extracted on a wet basis, using the 

3050B method of USEPA (UNITED STATES 

ENVIRONMENTAL PROTECTION AGENCY). This 

extraction method was developed to quantify the fractions 

of metals that could become environmentally available. 

After extraction, these elements were quantified by flame 

atomic absorption spectrometry (FAAS). Data accuracy 

was evaluated by the analytical methods for IAEA 356 and 

IAEA 433 certifications as reference materials (marine 

sediment), which were in line with the results at the 95% 

confidence level.  

Total mercury (Hg) was quantified by 

atomic absorption spectrometry based on Zeeman-

background correction, with a pyrolysis reactor. First, the 

solid sample (sediment) is thermally disrupted, and then 

the Hg vapor is measured (Castilhos et al., 2006; Fiori et 

al., 2013). The accuracy of these data was evaluated by 

comparing it to Mess-3 sample (marine sediment), i.e. 

certified reference material, checking the consistency of at 

least 95%. 

Data analysis 

Sediment particle-size analyses were interpreted 

through the ternary diagrams of Shepard (1954) and Pejrup 

(1988) to determine texture and hydrodynamics, 

respectively. These interpretations were performed in the 

R environment using the RYSGRAN package (Gilbert et 

al., 2012).  

The set of sediment physicochemical variables was 

summarized in a Principal Component Analysis (PCA) by 

the PCORD 5.0 software. This assessment reduces the set 

of original variables into a set of Principal Components 

(PC), looking to maintain the maximum variability of the 

original set. PCA was performed on the Pearson 

correlation matrix of variables, adopting the broken-stick 

retention criterion, i.e. with eigenvalues higher than those 

randomly expected (Jackson, 1993). To interpret the 

meaning of retained PCs of original variables, only 

Pearson correlation coefficients higher than 70% were 

considered (Jolliffe, 1986). 

 

RESULTS AND DISCUSSION 

Particle size analysis was used to classify the 

sediment samples by texture and hydrodynamics (Figure 

2). The Shepard Diagram (Figure 2A), on the other hand, 

displays the texture variability among locations. The PEL 

02 site showed a silty clay texture, while PEL 01 and PEL 

04 had sandy silty clay textures and PEL 00 a silty clayey 

sand texture. Both TRI 01 and PEL 03 sites had a clayey 

sandy textures while TRI 02 revealed a sandy clayey silt 

texture and PEL 05 a silty sand texture.  

The hydrodynamics in PEL 00, PEL 03, PEL 05, 

and TRI 02 was high according to the Pejrup diagram 

(Figure 2B). On the other hand, PEL 01, PEL 02, PEL 04, 

and TRI 01 presented moderate hydrodynamics. The sites 

with elevated hydrodynamics had higher proportions of 

sand, from about 52% to 72%. In high hydrodynamic-

energy environments, fine particles remain suspended and 

then transported to environments with lower energy levels, 

where they are sedimented (Noronha-D'mello & Nayak, 

2015). 
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FIGURE 2. Textural composition and hydrodynamics of the bottom sediments of the Pelotas River. A: Shepard Diagram. B: 

Pejrup Diagram.  

 

Figure 3 exhibits the PCA for the set of 

physicochemical variables of sediments. According to the 

broken-stick criterion, two PCs were considered for the 

analysis; they comprised 69.22% of the total variability. In 

the positive quadrant, the PC 1 is composed of the 

variables sand, Al, and gravel; yet, in the negative one, it is 

composed of the variables clay, silt, and Hg (Figure 3). 

The PC 2 in the negative quadrant is composed of the 

variables Mn and Fe. Conversely, TOC was taken as 

uninterpretable by the broken-stick criterion, thus 

presenting lower variability among the locations than the 

random variability (Jackson, 1993). Therefore, no 

significant statistical difference among the sampled 

locations was registered. The PC 1 separated the sites into 

three groups: the first, formed by PEL 03 and PEL 05, 

which had the highest results for sand, Al, and gravel; the 

second, by PEL 02, TRI 02, and PEL 01, where the highest 

levels of clay, silt, and Hg were found; and the third, by 

PEL 00, TRI 01, and PEL 04, with intermediate values for 

the variables included in PC 1 (Figure 3). PC 02 separated 

PEL 02 from the rest of sites since it had the highest levels 

of Mn and Fe, and the lowest concentrations of the 

variables forming PC 02 (Figure 3).  

 

 

FIGURE 3. Principal Component Analysis (PCA) of the physicochemical variables of sediments from the Pelotas River. 
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The positive correlation between the finer portion 

of sediments (silt and clay) and Hg contents (Figure 3) is 

due to the larger surface area of fine particles, increasing 

their adsorption capacity (Oliveira et al., 2011; Cembranel 

et al., 2017b). Thus, clay is considered an important factor 

for Hg adsorption in soils and sediments (Araujo et al., 

2015). The PCA shows the lack of correlation between Hg 

and the contents of TOC, Al, Fe, and Mn. In this 

experiment, only the fractions of elements environmentally 

available were quantified, confirming the association 

between most of the Hg found and the fine portion of 

sediments (silt and clay). This result points out the 

complexing minerals as absorbent agents for Hg, albeit 

they are commonly unavailable for reactions with the 

aquatic environment, i.e. there is a low probability of it 

being incorporated by the aquatic biota (Araujo et al., 

2015). 

By observing the PCA results, it seems that the 

largest fraction of Hg found in sediments is in its least 

reactive form (adsorbed to complexing minerals), which is 

hardly available to the ecosystem. Elements of 

anthropogenic origins are predominantly found in 

sediment parts that are more unstable, which are 

vulnerable to small environmental changes (Bartoli et al., 

2012). Hence, we believe the largest fraction of Hg in 

sediments from the Pelotas River is most likely of 

geogenic origin. However, thorough studies in this region 

are still necessary to confirm these results.  

Figure 4 shows the Hg concentrations in the 

sediment of the Pelotas River. The locations presenting 

higher concentrations (PEL 01, PEL 02, PEL 04, and TRI 

02) were the same that had higher quantities of fine 

sediments (silt and clay) and moderate hydrodynamics 

(Figure 2). This supports the results obtained in the PCA 

(Figure 3), which showed a correlation of Hg 

concentrations with silt and clay fractions.  

 

 

FIGURE 4. Mercury concentrations in the bottom sediments of the Pelotas River.  

 

The Hg concentrations in the bottom sediments of 

the Pelotas River varied from 40.5 ng g-1 to 62.0 ng g-1 

(Figure 4; Table 1). Our findings were compared to those 

of other studies in Brazilian river environments, as shown 

Table 1. In general, the highest levels of Hg found in this 

research were lower than were those reported by other 

authors. Furthermore, according to the CONAMA 

resolution nº 454/2012 (Brazilian National Environmental 

Committee), Hg concentrations lower than 170 ng g-1 

(level 1) have smaller probabilities of adversely affecting 

the biota, and only those above 486 ng g-1 (level 2) could. 

Therefore, the concentrations found in the Pelotas River 

show a low probability of risk to the biota. Nevertheless, 

Castro et al., (2016) demonstrated the bioaccumulation 

potential of Hg when studying the Purus River. These 

researchers found Hg concentrations between 38 and 

65 ng g-1 in the sediment of the Purus River, while in 

carnivorous fish muscle, it reached up to 5384 ng g-1, with 

an average of 927 ng g-1. This outcome demonstrates the 

high toxicity, persistence, and bioaccumulation potential of 

this element. In this context, it is important to emphasize 

the need for further studies to quantify the risks to aquatic 

biota and human health in the Pelotas River basin. 
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TABLE 1. Mercury concentration in sediments of river environments in Brazil.  

Location 
Coordinates Hg (ng g-1) 

Impact Reference 
Latitude Longitude Min Aver Max 

Pelotas River * 29°29'36''S 50°07'38"W 40.5 48.7 62.0  This study 

Teles Pires River 09°25'19"S 56°32'20"W 90.,0 148.0 250.0 M; A Wasserman et al., 2007 

Paranaita River 09°28'09"S 56°41'45"W 50.0 83.6 140.0 M; A Wasserman et al., 2007 

Botafogo River 07°42'51"S 34°52'53"W 1.0 138.7 250.0 I Lima et al., 2009 

Paraíba do Sul River 21°40'00"S 41°10'00"W 22.2 56.1 158.3 M; FO Araujo et al., 2015 

Ivinhema River 22°49'31"S 53°33'12"W 25.0 78.0 125.0 M; A Remor et al., 2015 

Paraná River 22°43'31"S 53°18'15"W 36.0 55.0 67.0 NR Remor et al., 2015 

Violão Lake 06°24'00"S 50°21'10"W 130.0 240.0 590.0 NR Sahoo et al., 2015 

Purus River 08°52'50"S 69°13'10"W 38.0 50.0 65.0 NR Castro et al., 2016 

*This study; Impact: human activities conducted in the drainage basins correlated to the increase of Hg concentration in the sediments of 

their respective rivers, as cited by the authors. M: gold mining; GO: organomercurial fungicides; A: Agriculture; I: Industrial production of 

chloride and soda; NR: non-reported group.  

 

CONCLUSIONS 

This study found no correlation between human 

activities and mercury concentrations in the sediment of 

the Pelotas River basin and its tributaries. The mercury 

concentrations found in the sediment have little chance of 

causing adverse effects on local biota. Yet, the high 

toxicity, persistence, and bioaccumulation potential of 

mercury emphasizes the need for further investigations in 

this region with the purpose of quantifying risks it may 

cause to aquatic biota and human health. 
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