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ABSTRACT

In this work, the internal impedance of the lithium-ion battery pack, an essential
measure of the degradation level of the batteries, is estimated employing ensembles
of machine learning models. In this study, we take the supervised learning tech-
niques Multi-Layer Perceptron bagging neural network and gradient tree boosting
into account. Characteristics of the electric power system, in which the battery pack
is inserted, are extracted and used in the modeling and training phases. During this
process, the architecture of the ensembles and the configuration of their base learners
are tuned through validation iterations. Finally, with the application of statistical
testing and similarity analysis techniques, the best ensembles of models are exam-
ined and compared to other methods found in the literature. Results indicate that
our approach is a suitable manner to estimate the internal impedance of batteries.

Keywords: Lithium-ion battery. State of charge. Gradient Tree Boosting. Multi Layer
Perceptron.
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ESTIMATIVA DA IMPEDÂNCIA DE CONJUNTOS DE BATERIAS
DE LÍTIO-ÍON POR MEIO DE APRENDIZADO DE MÁQUINA

RESUMO

Neste trabalho, a impedância interna de um conjunto de baterias lítio-íon (uma
importante medida do nível de degradação) é estimada por meio de conjuntos de
modelos de aprendizado supervisionado tais como: rede neural tipo MLP (Multi-
Layer Perceptron) e ’Gradient Tree Boosting’. Para isto, características do sistema
de alimentação elétrica, em que o conjunto de baterias está inserido, são extraídas
e utilizadas na construção de conjuntos de modelos supervisionados (MLP e xgBo-
ost). Ao longo deste processo, a arquitetura de tais conjuntos de modelos e suas
respectivas configurações são ajustados por meio de validações. Finalmente, com a
aplicação de técnicas de teste e verificação estatística, as acurácias dos modelos são
calculadas e testes comparativos são conduzidos. Os resultados obtidos mostram que
a abordagem proposta é adequada para o problema de estimativa da impendância
de baterias.

Palavras-chave: Bateria lítio-íon. Estado de carga. Gradient Tree Boosting. Multi
Layer Perceptron.
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1 INTRODUCTION

1.1 Satellite battery set actual challenges

Around 20–30 percent of a satellite total mass and a significant portion of its volume
is due to the electrical power supply (EPS). Therefore, the EPS system is impor-
tant to the success of a satellite mission. HILL (2011) enumerated the advantages
and disadvantages of each technology and provided some parameters that allow the
selection of the appropriate EPS system for a given application.

For outer space applications, Li-ion batteries improve the load efficiency of satellites
since they are lighter (expected to have less than one half of the mass of nickel-
hydrogen batteries for the same stored energy (DUDLEY, 1998)). As a result, Li-ion
batteries have been used in satellites of National Aeronautics and Space Adminis-
tration (NASA), China National Space Administration (CNSA) and Europe Space
Agency (ESA) (CHIN; KEITH, 2018).

Failures of Li-ion battery can cause catastrophic consequences (overheating and even
explosions). The study of techniques that aim to detect a failure causing damage to
battery systems in early stages is denominated Prognostic and Health Management
(PHM). The early detection of failures enables the minimization of the damage
risk and the optimization of the Li-ion battery maintenance schedules (ZHANG; LEE,
2011).

The battery PHM methods include measurements of the battery remaining useful
life through direct approaches, which demand high sensing, and machine learning
approaches, which require low sensing (REZVANIZANIANI et al., 2014). The estimation
of the battery remaining useful life is given by its state of charge (SOC) (SAHA et

al., 2009).

The estimation of battery SOC can prevent major accidents. One example of such
accidents occurred during the NASA’s Mars Global Surveyor program. During that
mission, after the adjustment of the satellite’s solar panels position, the spacecraft
was reoriented to an angle that exposed one of two batteries to direct sunlight. The
overheating caused by the battery positioning accelerated the degradation process
and led to the loss of both batteries (WEBSTER, 2007).
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1.2 Li-ion battery state of charge (SOC) estimation

The SOC is crucial to obtain the battery remaining useful life. According to (WA-

TRIN et al., 2012), SOC estimation methods are divided into the following categories
(see Chapter 3).

• Direct measurement: applies physical battery properties, such as the volt-
age and impedance of the battery (see Section 3.1), and requires heavy
sensing.

• Machine learning models: applies indirect battery parameters and can au-
tomatically adjust the SOC for different discharging conditions (see Sec-
tion 3.2).

• Hybrid methods: benefit from the advantages of both SOC estimation
approach and allow a better estimation of battery SOC. According to
(WATRIN et al., 2012), hybrid methods generally produce more accurate
estimation of SOC, compared to individual methods (see Section 3.3).

Although there is a high variety of state of charge (SOC) estimation methods, we
still have room for improvements. In this study, we developed two ensembles of
machine learning models (neural network - Section 2.3.1 and decision tree - Section
2.3.2.1) which aim to estimate the Li-ion battery internal impedance which is directly
correlated to its SOC (according to Section 3.4).

To perform the comparison between the two machine learning ensembles of models,
the Li-ion battery testing database provided by NASA Ames Research Center was
taken into account. It comprises sensor monitoring data of Li-ion batteries running
through 3 different operational profiles (charge, discharge and impedance measure-
ment) at the ambient temperature of 24◦C (SAHA; GOEBEL, 2007). The laboratory
setup is described in Section 4.1.1.

To characterize the battery condition during a certain period, features introduced
in Section 3.5 were calculated. Then, ensembles of machine learning models were
trained (see Section 4.4), and the best configurations of the hyperparameters were
obtained through validation iterations. Finally, a performance metric was used to
compare them (see Section 5.3) with each other and with a benchmark regression
model applied to the same battery data set (see Section 5.3.3).
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The benchmark approach used in this comparison is according to the following pa-
per: A Comparative Analysis of Techniques for Electric Vehicle Battery Prognostics
and Health Management (REZVANIZANIANI et al., 2011). This paper presents a com-
parative study of emerging prognostics and health management techniques that can
give an accurate quantification of the state of health of Li-ion battery cells and
predict their remaining useful life. Adaptive Neural Network (AdNN) (see Section
3.2.2.3) is used for battery internal impedance estimation and remaining useful life
prediction. Its prediction performance is benchmarked using Li-ion battery dataset
(SAHA; GOEBEL, 2007).

The present study applies one-sample Student’s t-test (see Section 2.5) in the eval-
uation of how significantly different from each other are the performance metrics of
the obtained ensembles of models. In addition, this study also applies one-sample
Student’s t-test (see Section 2.5) in the evaluation of how significantly different
are the performance metrics of these ensembles of models when compared with the
benchmark regression model.

This document is organized as it follows. Chapter 2 provides background about the
application of machine learning models in regression. Chapter 3 provides background
about the details of benchmark Li-ion battery state of charge estimation techniques.
Chapter 4 describes the laboratory setup, data preparation, and data modeling.
Chapter 5 depicts the obtained results from the application of ensembles of ma-
chine learning supervised models in the Li-ion battery impedance estimation. This
chapter also presents the performance metrics and the statistic difference between
the proposed ensembles and the benchmark model. Finally, concluding remarks are
drawn in Chapter 6.
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2 MACHINE LEARNING IN REGRESSION

Machine learning models are suitable computational models for detecting changes
in system states (LIU; WANG, 2009). Following this approach, a few information
regarding the analyzed system is necessary to estimate a future condition of the sys-
tem. This characteristic is essential to EPS systems which are sufficiently complex
prohibiting the development of an accurate physical model. However, this approach
implies in wider confidence intervals than other approaches and requires a substan-
tial amount of data for training.

After the data preparation, a machine learning algorithm shall be selected to build
the model. The selection of a proper algorithm for a specific application is a chal-
lenging factor in applying data-driven prognostics methods (ROBERT, 2014).

In this study, the goal is to estimate Li-ion battery internal impedance which is
related to Li-ion battery SOC. Considering that the target variable is numerical, the
following Sections describe relevant concepts and definitions regarding the machine
learning regression methods which are used by the regression ensembles suggested
by this study and detailed in Chapter 4.

2.1 Regression fundamentals

Regression models allow the estimation of a dependent variable (target) from the
analysis of a few independent variables which are related to the problem. To obtain a
function linking the target with the independent variables, in the most of the cases,
only a sample of the population is available. Therefore, the analyzed sample shall
be representative for the prediction of the target. This sample is denominated as
training set and, through the function which relates the independent variables with
the target, further target values can be inferred.

In order to build an adequate regression model, the independent variables shall be
measured accurately, since measurement errors can lead to disturbs in the target
estimation, and the ones which are a linear combination of others shall be excluded
from the training set (ARMSTRONG, 2012).

The function which represents the regression model relates the independent variables
(X) weighted by the vector α with the dependent variable (Y) as follows:

Y ≈ f(X,α) (2.1)

5



According to the equation, the vector of unknown parameters α shall be defined to
obtain the regression model which allows the definition of the target variable. To
define α, a number N of training points must be available, and the target variable
shall be known for these training points.

If the number N of training points is equal to the dimension k of vector α, the
function f is linear, and the independent variables are linearly independent, the
target variable can be exactly obtained. In this case, α is computed by solving a set
of N equations.

If the number N of training points is lower than the dimension k of vector α, the
regression analysis cannot be applied. However, case the number N of training points
is higher than the dimension k of vector α, the system is overdetermined and the
vector α can be calculated to obtain the function f which best fits the training set.
This function is the regression model, and its quality can be achieved through the
distance between the predicted values, and the real values of the target variable (in
Section 2.4.3 the performance metrics are detailed). The techniques proposed in this
study use simple machine learning models which, when combined, achieve a good
result when applied to the regression problem detailed herein. The combination of
simple machine learning models (denominated as base learners) is called ensemble
and the main methods used to combine base learners are described in Section 2.2.

2.2 Ensemble of machine learning models

A machine learning model is suitable for a specific problem. In the development of
the model, a hypothesis or premise shall be considered. From the adopted hypothesis,
the model is elaborated, and its performance can be tested. However, the obtained
result is related to the premise.

Empirically, the combination of various models (each one considering a distinct
premise), tends to yield better results when there is significant diversity among the
models (KUNCHEVA; WHITAKER, 2003).

Due to the high computation needed in the development and testing of the various
models which form the ensemble, these models generally have a simple architecture
since the accurate final performance is achieved by an adequate combination of
them (denominated as base learners). Therefore, these base learners are usually
denominated as "weak learners".

In the following sections, two ensembles techniques considered in this study are

6



details.

2.2.1 Bagging

The bagging ensemble strategy consists of combining the results of the "weak learn-
ers" through their aggregation with equal weight. Therefore, to reduce the variance,
each model of the ensemble uses a random subset of instances from the training set.
This approach minimizes the influence of outliers since in most of the models these
instances are not contained in the training selected subset (BREIMAN, 2003).

According to bagging ensemble strategy, a training set D of size n is divided into
m new training sets Di, each of size n, by sampling from D uniformly and with
replacement. Sampling the m new training sets with replacement implies that some
observations may be repeated in each Di (ASLAM et al., 2007).

In order to obtain the resulting ensemble of models, the m models are fitted using
the m bootstrap samples. Finally, all the models are applied to the scoring set,
and the labels are combined by averaging the output (for regression) or voting (for
classification).

This study applies the bagging ensemble method in the aggregation of the results
obtained with the application of a set of "weak learners" developed by the MLP

neural network technique which is described in Section 2.3.1.

2.2.2 Boosting

The boosting ensemble strategy incrementally creates "weak learners" which aim to
reduce the classification error of the previous models by emphasizing the training
instances that were previously misclassified. Generally, decision tree technique is
applied in the development of the "weak learners" in boosting ensembles due to its
simplicity.

2.2.2.1 AdaBoost

The most popular boosting ensemble technique is the AdaBoost which, at each
iteration, builds a "weak learner" weighted by the coefficient ηt such that the sum
training error Et of the resulting t-stage is minimized (KéGL, 2013).

Et = E[Ft−1(x) + ηth(x)] (2.2)
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Where:

• x is the collection of training instances

• Ft−1(x) is the boosted classifier built at the previous stage of training

• E(F ) is the error function

• ηt is the learning rate in time t which weights the weak learner to be added
to the final classifier

• ft(x) = ηth(x) is the weak learner that is being considered to add to the
final classifier

2.2.2.2 Gradient boosting

The gradient boosting technique creates a sequence of "weak learners" (assembled in
a model F ) which intends to minimize the mean squared error (FRIEDMAN, 2000).
Therefore, after every iteration of the gradient boosting process, it builds a new
model from the previous one which includes an estimator h(x) to enhance the re-
sulting model:

Fm+1(x) = Fm(x) + h(x) (2.3)

The estimator h(x) is calculated assuming that a perfect h(x) would fit exactly the
target variable:

Fm+1(x) = Fm(x) + h(x) = y (2.4)

Considering the perfect estimator as h(x) = y − Fm(x), minimizing the residual
y−Fm(x) implies in approaching the best estimator. Recursively, each Fm+1 model
corrects the previous one Fm.

The problem of minimizing the residual y − F (x) for a given model consists of the
negative gradients (concerning F (x)) of the squared error loss function 1

2(y−F (x))2.
Therefore, gradient boosting is a gradient descent algorithm (SCHAPIRE; FREUND,
2012). This study applies the gradient boosting ensemble method in the aggregation
of the results obtained with the application of a set of "weak learners" developed by
the decision tree technique which is described in Section 2.3.2.
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2.3 Machine learning techniques

This study applies two ensembles of models in order to estimate the battery inter-
nal impedance: a MLP neural network bagging and a gradient tree boosting. Each
of these ensembles is generated by "weak learners" developed by MLP neural net-
work (see Section 2.3.1) and Gradient tree boosting (see Section 2.3.2) techniques,
respectively.

2.3.1 Multi Layer Perceptron neural network bagging

The MLP neural network bagging consists of an ensemble of "weak learners" which
are artificial neural networks structured according to the MLP structure. Each one
of these learners selects a subset of the training set randomly, and the final result is
obtained through the simple average of the base learners outputs.

There are several types of artificial neural networks applied in regression problems,
as exemplified in Section 3.2.2. Among them, the Multi-Layer Perceptron neural
network is the most popular technique.

The MLP neural network is a directed graph divided into layers of nodes. The
neurons of a layer are fully connected to the neurons of the next layer, except for
the input nodes which are the input data itself. The intermediary layers and the last
layer contain neurons that apply a nonlinear activation function to the input sign
and generate an output (KRUSE, 2013).

Figure 2.1 illustrates an example of aMLP neural network. The zm neurons (input
layer) correspond to the predictors values of the training matrix which are weighted
by the weight vector vnm and linked to the xn neurons of the hidden layer. These
neurons apply the activation function to their inputs whose results are weighted by
the weight vector wkn and linked to the output layer yk (output layer).

2.3.1.1 Multi Layer Perceptron activation function

Since each neuron of the MLP neural network applies a nonlinear activation func-
tion to the weighted inputs, the network can distinguish data that are not linearly
separable (CYBENKO, 1989).

The two most common activation functions applied by neurons of an MLP neural
network are both sigmoids and, using the output layer of the MLP according to
Figure 2.1 as an example, the activation functions are described by:
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Figure 2.1 - MLP network architecture

Source: (HAYKIN, 1999)

Yk = tanh(wkn) and Yk = (1 + e−wkn)−1, (2.5)

Where:

• zm: neuron in position m of the input layer

• xn: neuron in position n of the hidden layer

• yk: neuron in position k of the output layer

• Yk: output of the neuron in position k of the output layer

• vnm: weighted output of neuron zm of the input layer which generates an
input of neuron xn of the hidden layer

• wkn: weighted output of neuron xn of the hidden layer which generates an
input of neuron yk of the output layer
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The first one is denominated as the hyperbolic tangent function which ranges from
-1 to 1, and the second one is denominated as the logistic function which is similar
in shape but ranges from 0 to 1.

Here ym is the output of the kth neuron and wkn is the weighted sum of the input
synapses. In specific applications, other activation functions can be selected, like the
rectifier and softplus functions.

In the present study, it is used the tanh activation function due to the following
requirements:

• The neural network weights are obtained through the backpropagation
technique which requires the activation function to be differentiable,
smooth, monotonic and bounded

• The activation function shall not cause the undesirable behavior of flatting
the error surface after some iterations of the learning process

The logistic function complies with the first requirement once corresponds to a
monotonically increasing function. However, if the argument of the function is sub-
stantially negative, it generates output values too close to 0.0 which leads to a
low learning rate for all subsequent weights and an ineffective continuation of the
training process. On the other hand, the tanh function will, in the same situation,
generate a value close to -1.0, and maintain learning rate (LECUN et al., 1998).

2.3.1.2 Multi Layer Perceptron learning algorithm

MLP network is initialized with random weights (preferably values close to zero).
During the neural network training process, the learning algorithm updates the
network weights until it achieves a behavior identified in the training set. During
each iteration of this iterative process, an example or a subset of the training set is
presented to the network which uses its independent variables values as input and its
target values as output. To train the network by using these input and output data,
it is applied a supervised learning function called backpropagation (RUMELHART et

al., 1986).

During the learning process, the backpropagation method updates the network
weights based on the amount of error in the output compared to the expected result
(the label value). Therefore, after each iteration, the learning process minimizes the
least mean squares.
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Using the output layer of the MLP according to Figure 2.1, the error in output
node yk in the ith data point (training example) by ek(i) = dk(i)− yk(i), where d is
the target value, and y is the value produced by the network. The corrections to the
weights of the nodes are made based on those corrections which minimize the error
in the entire output, given by:

E(i) = 1
2

∑
k

e2
k(i). (2.6)

Using gradient descent, we find our change in each weight to be

∆wkn(i) = − ∂E(i)
∂uk(i)

xn(i) ∗ α (2.7)

Where:

• xn: output of the previous neuron

• α: learning rate (defines how fast the weights converge to a response)

• uk: induced local field

The sum of the weighted inputs of neuron yk is the induced local field uk. For an
output node the derivative of formula 2.7 can be simplified by:

− ∂E(i)
∂uk(i)

= ek(i)φ′(uk(i)) (2.8)

Where:

• φ′: derivative of the activation function

For a node located in a hidden layer the relevant derivative is calculated as below:

− ∂E(i)
∂un(i) = φ′(un(i))

∑
k

− ∂E(i)
∂uk(i)

wkn(i). (2.9)

According to the formula 2.9, the update of the nth hidden nodes weights depends on
the change in weights of the kth nodes, which represent the output layer. Therefore,
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to update the hidden layer weights, the output layer weights are defined previously
according to the derivative of the activation function. This algorithm is denominated
backpropagation due to the direction of the weights updating which occurs from the
output layer to the input layer (HAYKIN, 1999, Chapter 4).

2.3.1.3 Multi Layer Perceptron learning momentum

According to the backpropagation algorithm, the MLP network initiates with ran-
dom weights at a specific point on the error function and updates the weights re-
cursively until the achievement of a global minimum of the error function. However,
according to Equation 2.10, the global minimum can be equal to a local minimum
or the global minimum can be different from the local minimum. Therefore, a mod-
ification of the basic backpropagation learning algorithm is conducted to avoid the
convergence to a local minimum (SHEEL et al., 2007).

∆wekn(t+ 1) = (1− α)η ∗ δn ∗ wkn + α∆wekn(t) (2.10)

Where:

• ∆wekn(t+ 1): change in weight of wkn in time t+ 1

• ∆wekn(t): change in weight of wkn in time t

• wekn: weight which multiplies the output of neuron xn of the hidden layer
which generates an input of neuron yk of the output layer at time t+ 1

• η: learning rate

• α: the influence of the inertial term

• δn: error signal of neuron xn

• xn: neuron in position n of the hidden layer

• wkn: weighted output of neuron xn of the hidden layer which generates an
input of neuron yk of the output layer

2.3.2 Gradient tree boosting

Gradient tree boosting is an ensemble method which aims to create an optimal
regression model combining various decision trees ("weak learners"). Each one of
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these learners is built from the previous one and aims to minimize the error of the
prior learner through gradient boosting method (according to Section 2.3.2.2).

2.3.2.1 Decision tree

A decision tree consists of a set of rules each of them dividing the training set into
subsets which are further divided into other subsets according to the remaining rules.

As an example, a simple decision tree is built to estimate the mean Li-ion battery
internal impedance during a particular cycle of charge and discharge. The training
set according to Table 2.1 details the values of features F1 and F2 (described in
Section 3.5) of the battery during four initial charge and discharge cycles.

Table 2.1 - Battery simple training set

N Cycle F1 F2 Impedance
1 27.0 25.7 0.061
2 25.6 25.7 0.059
3 25.6 26.2 0.059
4 25.2 25.9 0.059

To create a simple decision tree to estimate the mean Li-ion battery internal
impedance at the fifth charge and discharge cycle, one of the features F1 or F2
is selected to be the top of the decision tree. To select this first attribute that gen-
erates a tree, a measurement of entropy is applied to verify what feature is able
to divide the training set into the most homogeneous subsets regarding the target
variable (BREIMAN et al., 1984). One of the most popular entropy indicators is the
"Gini index". According to this entropy metric, the homogeneous degree of a train-
ing subset is the sum of the probability of its individuals of belonging to a specific
class multiplied by the sum of the probabilities of belonging to the other classes,
according to the Equation 2.11:

IG(Fn) =
J∑
i=1

pi
L∑
k 6=i

pk =
J∑
i=1

pi(1− pi) = 1−
J∑
i=1

pi
2 (2.11)

Where:

• Fn: feature n of the training set
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• IG(F ): Gini index of feature Fn

• pi: probability of i training instance of belonging to a specific class

• pk: probability of i training instance of belonging to a distinct class from
the actual instance class

• ∑L
k 6=i pk: sum of the probabilities of i training instance of belonging to the

other classes

Applying the training set according to Table 2.1, two simple decision trees of only
two branches each (denominated decision stump) can be built to estimate the mean
Li-ion battery internal impedance.

The first decision tree selects the feature F1 as the top feature of the decision tree
and chooses the threshold equal to 27V to divide the training set into two subsets.
Therefore, the obtained decision stump is according to Figure 2.2.

Figure 2.2 - Decision stump with F1 as top feature

This decision stump divides the training set which contains four individuals into
two distinct subsets each one containing two individuals. All the individuals with
the value of F1 feature above or equal to 27V have the impedance value of 0.061Ω,
and all the individuals with the value of F1 feature below 27V have the impedance
value of 0.059Ω. For this reason, the decision tree subsets are homogeneous, and the
decision stump can estimate accurately the mean Li-ion battery internal impedance.

The second decision tree selects the feature F2 as the top feature and chooses the
threshold equal to 25.9V to divide the training set into two subsets. Therefore, the
obtained decision stump is according to Figure 2.3.
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Figure 2.3 - Decision stump with F2 as top feature

This decision stump divides the training set which contains four individuals into
two distinct subsets each one containing two individuals. All the individuals with
the value of F2 feature above or equal to 25.9V have the impedance value of
0.059Ω. However, only one individual with the value of F2 feature below 25.9V
has the impedance value of 0.061Ω. The other individual of the second group has
the impedance value of 0.059Ω. For this reason, the decision tree subsets are not
entirely homogeneous (the second subset is fifty percent homogeneous) and the deci-
sion stump cannot estimate accurately the mean Li-ion battery internal impedance.
In other words, the decision stump created with the subset by feature F2 has a lower
accuracy when compared with the decision stump created from the feature F1.

Applying an entropy measurement technique before selecting the top feature to
begin splitting the training set, the feature which splits the individuals into the
most homogeneous subsets can be selected and the optimized decision stump is
obtained.

In this example, the decision tree contains one level (only one split is executed).
However, the decision tree can grow by splitting the obtained subsets. At each
decision tree level, the algorithm identifies the most relevant feature to be used in
the split and divides the subset into two other subsets which are divided during
further splits.

2.3.2.2 Gradient tree boosting ensemble

The gradient tree boosting algorithm intends to minimize the mean squared error
through gradient boosting (see Section 2.3.2) applying decision trees as the "weak
learners". During the boosting process, a decision tree aims to minimize the mean
squared error from the previous one.
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After computing Ft, Ft−1, Ft−2..., the decision trees split the input space into Jt

disjoint regions R1t, . . . , RJtt and obtain a constant value in each region. The com-
bination of the tree partitions outputs is obtained as follows:

Ht(x) =
Jt∑
j=1

bjtI(x ∈ Rjt), (2.12)

Where:

• Ht(x) is the ensemble of decision tree models obtained through the appli-
cation of instances x at iteration t

• bjt is the value predicted in the region Rjt

• Rjt is the region which contains all the training features

The combination of the tree partitions depends on the learning rate ηt. Increasing
the learning rate, the time until the convergence reduces. However, a high learning
rate increases the risk of not achieving the convergence. After selecting the learning
rate, the model is updated as follows (HASTIE; FRIEDMAN, 2009):

Ft(x) = Ft−1(x) + ηth(x), ηt = arg min
η

n∑
i=1

L(Ft(x), Ft−1(xi) + ηth(xi)) (2.13)

Where:

• x is the collection of n training instances

• Ft(x) is the gradient tree boosting classifier built at the actual stage of
training

• Ft−1(x) is the gradient tree boosting classifier built at the previous stage
of training

• ηt is the learning rate in time t which weights the weak learner to be added
to the final classifier

• ht(x) = ηth(x) is the weak learner that is being considered to add to the
final classifier
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2.3.2.3 Gradient tree boosting features importance

As detailed in Section 2.3.2.1, during the development of each decision tree, which
forms the gradient tree boosting ensemble, at each decision tree level, the feature
that splits the training data into the most homogeneous subsets is calculated. There-
fore, the features used to split the training data at the decision top-three levels are
considered the most relevant features since they can split the training set into the
larger homogeneous subsets (BREIMAN et al., 1984). The importance of the features
in a decision tree is considered during the simplification of the model. Specifically,
one might remove the less important features with a low degradation.

2.4 Validation and testing

2.4.1 Validation

During the modeling stage, the hyperparameters of the ensembles of models are
tuned within validation iterations. During each validation iteration, a specific en-
semble of models built with a certain hyperparameters configuration is applied to a
validation set (the subset of the historical dataset apart from the training set), and
the performance metric is calculated (herein it is applied the RMSE performance
metric). Finally, after a few validation iterations, the ensembles of models which
achieved the lower validation error (according to the applied performance metric)
are considered the most accurate ensembles of models.

To increase the chances that the ensembles of models built with the training set will
generalize to an independent dataset and continue to achieve an adequate result in a
real problem with low risk of overfitting the training and validation sets, a statistical
analysis denominated cross-validation can be performed.

The cross-validation technique consists of splitting the training set into a certain
number of folders. Each folder is a partition of the training set and, considering
one round cross-validation, one of the folders is segregated as a validation set while
the remaining folders are used to train the ensemble of models. Thus, the obtained
ensemble of models is validated with the computation of RMSE performance metric
applying the ensemble of models to the validation set (RON, 1995).

Considering a two round cross-validation, two validation iterations are performed
and, during each iteration, a specific folder is used as validation set and the remaining
ones as training set. During each iteration a RMSE performance metric is obtained
and the mean RMSE performance metric is the result of the cross-validation. The
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number of rounds of the cross-validation process is limited to the number of folds
(splits of the original training set).

2.4.2 Testing

After obtaining the best ensembles of models through the cross-validation iterations
described in Section 4.4, a testing set completely apart from the training and valida-
tion sets is obtained from the historical database and used to verify the test RMSE

performance metric of the best ensembles of models. During the testing process, the
ensembles of models are no longer tuned (LORENZO et al., 2015). The test RMSE

performance metric indicates how well the ensembles of models perform in the scor-
ing data (the data to be predicted with the ensembles of models application). Thus,
the obtained result can be compared with other classification approaches.

2.4.3 Performance metric

Among a variety of performance metrics, the Root Mean Square Error (RMSE)
technique is broadly applied in the validation, and testing of regression models. The
RMSE performance metric is used herein in the validation stage when the ensembles
of models are tuned, and the best hyperparameters configuration is obtained, and
in the testing stage, when the best-obtained ensembles of regression models are
compared with each other and with the benchmark approach.

Considering a numeric label attribute in the estimative of the battery set impedance,
each observed value of the validation or testing set can be compared with the pre-
dicted one. This individual deviation is called a residual and the aggregation of all
the residuals is obtained as follows (HYNDMAN; KOEHLER, 2006):

RMSE =
√∑n

t=1(ŷt − yt)2

n
(2.14)

Where:

• ŷt: predicted instance

• yt: observed instance

• n: number of instances
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2.5 Statistical similarity

In this study, the obtained results are compared with each other and with a bench-
mark approach. Therefore, a measurement of statistical similarity is applied to eval-
uate if the performance metrics are significantly different from each other. Thus, it
is used the Student’s t-test which is most commonly applied when the compared
subsets follow a normal distribution (FADEM, 2008).

This present study applies the one-sample Student’s t-test, as described below:

Z = (X̄ − µ)
( σ√

n
) (2.15)

Where:

• X is the sample mean from a sample X1, X2, . . . , Xn, of size n

• σ is the population standard deviation of the data

• µ is the population mean

Once the Z value is calculated, in order to define if X is significantly different from
σ, it shall be compared with a predefined threshold. Case the Z value is above the
threshold, the statistic difference is validated and the sample mean can be considered
distinct of the population mean.
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3 LI-ION BATTERY SOC ESTIMATION

The estimation of the state of charge is critical in the design of charging/discharging
operational cycles (cell-level balancing) and in the elaboration of a reliability pro-
gram to prevent the occurrence of abnormalities such as overcharging, overheating
and over-discharge. The accurate SOC estimation leads to a reliable definition of the
remaining useful energy, the optimization of the battery operation and the extension
of its operational life (ZHANG; LEE, 2011).

SOC is calculated according to Equation 3.1. The nominal capacity (Qn) is the
maximum energy stored by the battery in its initial operational cycles and it is
given by the manufacturer.

SOCt = Qt

Qn

. (3.1)

Therefore, once the nominal capacity is already defined, the methods described below
intend to estimate the actual battery capacity after charge/discharge cycles.

According to (WATRIN et al., 2012), the various mathematical methods of estimation
are classified in the following categories:

3.1 Direct measurements

Direct measurement methods use physical battery properties such as the terminal
voltage and impedance in the estimation of SOC and usually require heavy sensing.

3.1.1 Open circuit voltage method

For lead-acid battery, there is a linear relationship between the SOC and its open
circuit voltage (OCV ) given by (COLEMAN et al., 2007):

OCV (t) = a1 ∗ SOC(t) + a0. (3.2)

Where:

• OCV (t) is the open circuit voltage of the battery at t

• SOC(t) is the state of charge of the battery at t
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• a0 is the battery terminal voltage when SOC = 0

• a1 is obtained from the value of a0

3.1.2 Terminal voltage method

For lead-acid battery, there is a approximate linear relationship between the SOC
and its electromotive force (EMF ). However, for Li-ion batteries, the terminal volt-
age of battery drops not linearly after the initial operation cycles and, therefore, it
is not indicated to battery SOC(t) estimation (SATO; KAWAMURA, 2002).

3.1.3 Impedance spectroscopy method

The impedance spectroscopy method is conducted under controlled experimental
conditions and, for different charge and discharge currents, measures the battery
internal impedance values over a wide range of frequencies (LI et al., 2010). Once
there is a linear relationship between the battery SOC and its internal impedance,
the state of charge under different operational conditions can be obtained. However,
this method is intrusive and demands high sensing which is not always available in
operational systems.

3.1.4 Coulomb counting method

The Coulomb counting method measures the discharging current of a battery and in-
tegrates the discharging current over time in order to estimate SOC by the following
equation:

SOC(t) = SOC(t− 1) + I(t)
Qn

∗∆t. (3.3)

Where:

• SOC(t) is the SOC value at time t

• I(t) is the discharging current at time t

• Qn is the battery nominal capacity

• ∆t is the difference between t and t− 1
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3.2 Machine learning systems

The machine learning systems are self-designing ones that can be automatically
adjusted in non-stationary systems. Batteries are affected by many chemical factors
and have nonlinear SOC. Therefore, machine learning systems offer a good solution
for SOC estimation.

In (SCHWABACHER, 2005), there are evaluated various machine learning algorithms
applied in machine learning system and presents useful information to conclude
pros and cons of each one. Examples of machine learning algorithms: multi layer
perceptron neural network (MLP ), gradient boosting (xgBoost), radial basis func-
tion (RBF ), fuzzy logic methods, support vector machine (SVM), fuzzy neural
network, and Kalman filter.

For batteries already in operation, the data collected during tests performed with
similar equipment can be used as training set. In these cases, the efficacy of the
machine learning system will be determined not only by the quantity of data but
also by the quality of them. The data quality depends on the performed tests and
consists of the presence or absence of noisy and high-dimensional data. To improve
the data quality, there are techniques to extract representative features from multi-
dimensional data and signals obscured by noise (MOSALLAM et al., 2013).

The following Sections describe machine learning techniques commonly applied in
SOC estimation.

3.2.0.1 Auto regressive model

An autoregressive model consists of a time series analysis based on stochastic process
theory which is applied in signal processing, intelligent information analysis, and
PHM (PANDIT; WU, 1983).

An auto regressive model of order p is denoted by AR(p) and defined as Xt =
c+∑p

i=1 ϕiXt−i+εt, where ϕ1, . . . , ϕp are the parameters of the model, c is a constant,
and εt is white noise. In a matrix format, this is equivalent toXt = c+∑p

i=1 ϕiB
iXt+

εt so that, moving the summation term to the left side, we have φ(B)Xt = c + εt

(PANDIT; WU, 1983).

In order to maintain the model wide-sense stationary, some parameter constraints
are needed. For example, processes in the AR(1) model with |ϕ1| ≥ 1 are not
stationary. To assure AR(p) model to be wide-sense stationary, the roots of the
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polynomial zp −∑p
i=1 ϕiz

p−i must be inside of the unit circle. In other words, each
(complex) root zi must satisfy |zi| < 1 (HASTIE et al., 2009).

According to (DATONG et al., 2012), it is applied AR model (Auto Regressive) and
ND − AR model (Nonlinear Degradation Auto Regression) for Remaining Useful
Life (RUL) estimation of lithium-ion batteries based on the estimation of its internal
impedance.

3.2.1 Gradient tree boosting

Gradient tree boosting popularity is due to the properties that all tree-based algo-
rithms have: they can handle data of mixed type (continues, categorical, etc.) as
well as data with missing values, they are immune to the presence of outliers as well
as to the presence of irrelevant inputs, and they scale nicely. On the other hand,
their predictive power is usually inferior compared to another state of the art ML
algorithms, such as neural networks and SVMs (HASTIE et al., 2009).

However, tree-based methods can produce highly accurate predictions if grouped
in the form of an ensemble. A gradient tree boosting based SOC indicator is used
to estimate the RUL of the battery during a flight mission which is based on the
measurement of the terminal voltage (MANSOURI et al., 2017).

Section 2.3.2 details the gradient boosting ensemble of "weak learners" based on
decision trees.

3.2.2 Artificial neural network

An artificial neural network (ANN) is a network of neurons or nodes linked one to
another. These links allow the transmission of information between them. In this
process, the input of a neuron is biased by the weight assign to this link. After,
the output of the neurons is computed by a mathematical function named activa-
tion function. This output is propagated to the following neurons in the network
(HAYKIN, 1999).

There are several types of artificial neural networks used in machine learning systems
such as follows:

3.2.2.1 Multi Layer Perceptron neural network

Multi-Layer Perceptron neural network is the most popular type of artificial neural
networks. Generally, MLP neural network applied the backpropagation learning
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method to tune its weights. Due to their excellent learning ability and nonlinear
mapping capacity, the MLP neural network has been applied in SOC estimation.
It is worth noting that, in SOC estimation, the relationship between the input and
target is a nonlinear relation (WEIGERT et al., 2011).

According to (LINDA et al., 2009), the Multi-Layer Perceptron neural network is
applied in SOC estimation using the recent history of voltage, current and the
ambient temperature of a battery.

Section 2.3.1 details the ensemble of a few backpropagation Multi-Layer Perceptron
neural networks which individual results are combined through bagging approach.

3.2.2.2 RBF neural network

The RBF neural network is a useful estimation methodology for systems where the
main goal is to obtain more detailed information from an incomplete training set.
The RBF neural network has been used in SOC estimation, according to (CHANG,
2012). Results achieved an adequate operation speed and estimation accuracy an,
for this reason, meets the demands in practice. In (CHANG, 2012), the RBF neural
network SOC estimation method uses the input data of the terminal voltage, dis-
charging current, and temperature of the battery to estimate the SOC for LiFePO4
battery under different discharging conditions.

In order to eliminate the battery degradation’s effect on the SOC estimation accu-
racy of the original trained model, (KANG et al., 2014) proposes a new Radial Basis
Function Neural Network (RBFNN) model. Through simulations, the new model
proved to have higher accuracy of the SOC estimation and good robustness against
varying aging cycles, temperatures, and loading profiles.

3.2.2.3 Adaptive neural network

An adaptive neural network is built upon a feed-forward Multi-Layer Perceptron
neural network with adaptive and recurrent feedback links from user-selected nodes.
The connection topology may vary from one application to another, and the net-
work weights are adaptively optimized using the recursive Levenberg-Marquardt
algorithm (RLM) which allows the network to learn from the past (LIU et al., 2010).

Features extracted from sensor data of voltage, current, power, impedance, fre-
quency, and temperature readings are used to estimate the internal impedance of a
battery set containing lithium-ion cells that were cycle-life tested at 60 percent of
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the state of charge and temperature (25C and 45C) (LIU et al., 2010).

According to (REZVANIZANIANI et al., 2011), it is applied an Adaptive Neural Net-
work (AdNN) for Remaining Useful Life (RUL) estimation of lithium-ion batteries
based on the estimation of its internal impedance.

3.2.3 Fuzzy logic method

Fuzzy logic models are applied in complex and nonlinear problems. Therefore, they
can be used to analyze data obtained by impedance spectroscopy and Coulomb
counting methods. In these fuzzy logic models, the ac battery internal impedance
and the voltage recovery are applied as input parameters (SALKIND et al., 1999).
An interesting application of a fuzzy logic-based SOC estimation is in portable
defibrillators (SINGH et al., 2006).

3.2.4 Support vector machine

In a classification problem, the support vector machine (SVM) methods aim to
build hyperplanes to maximize the minimum distances between individuals from the
training set classified into distinct categories. The SVM has also been applied for
regression problem. In this case, a threshold is defined for each numerical attribute
to divide the individuals according to the numerical attribute. The SVM achieves
good results in the estimation of the SOC of lithium-ion battery since it is insensitive
to small changes (HANSEN; WANG, 2005).

3.2.5 Kalman filter

According to (XU et al., 2012), the Kalman filter method provides accurate estima-
tions of battery SOC. (YATSUI; BAI, 2011) presents a Kalman filter based SOC

estimation method for lithium-ion batteries which effectiveness is validated through
experimental results. It is proposed by (BARBARISI et al., 2006) an extended Kalman
filter (EKF ) to estimate the concentrations of the main chemical battery compo-
nents by using the terminal current and voltage measurements. The concentrations of
the main chemical battery components are related to the battery internal impedance
which is proportional to battery SOC.

3.3 Hybrid methods

Direct measurements and machine learning methods approaches can be combined
to leverage the performance metrics of the predictive models by using the strengths
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of both approaches (LIU et al., 2012).

3.3.1 Coulomb counting and EMF combination

The combination of direct measurement method (Coulomb counting method) during
the discharge state with the battery EMF - electromotive force - measurement has
been developed and implemented in an operational system (POP et al., 2009).

3.3.2 Coulomb counting and Kalman filter combination

According to (WANG et al., 2007), a new SOC estimation method, denoted as
“Kalman Ah method”, can be applied. This method applies the Kalman filter
method to estimate the initial value used in the Coulomb counting method. Then,
the Coulomb counting method is applied to adjust the SOC value along the further
operational cycles. With this hybrid approach, the SOC estimation error decreased
to 25 percent of the error when using Coulomb counting method.

3.3.3 Per-unit system and EKF combination

According to (KIM; CHO, 2011), EKF method combined with a per-unit (PU) sys-
tem results in high accuracy estimation of lithium-ion battery SOC. According to
this hybrid approach, the absolute values of the parameters in the equivalent circuit
model in addition to the terminal voltage and current are converted into dimension-
less values relative to a set of base value. Therefore, the converted values are applied
to dynamic and measurement models in the EKF algorithm.

3.4 Li-ion battery state of charge (SOC) based on battery internal
impedance

The methods described in the previous Sections aim to estimate the SOC. However,
the SOC estimation is directly related to the battery internal impedance estimation,
which is the scope of this study.

According to the definition of the SOC, the function which provides the battery
state of charge based on battery internal impedance is obtained as follows:

SOCt = SOCt0 +
∫ t

t0
(η · I
Ct

) · dt (3.4)

Where:
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• SOCt0 : estimated SOC at time t0, when the estimation process starts

• SOCt: estimated SOC at time t

• η: current efficiency

• I: current - assumed to be positive when charging

• Cn: capacity of the battery at time t

In this study, the battery impedance is obtained through the ensembles of machine
learning models (see Section 4.4) which can be applied in the determination of
battery state of charge (SOC).

3.5 Features selection for Li-ion battery impedance estimation

Battery impedance, which decreases over the working time of a battery, is an im-
portant and direct indicator for estimating SOH and remaining useful life of the
battery (FARMANN et al., 2015). In online or in-orbit applications, such as electric ve-
hicles and satellites, capacity measurement or monitoring is difficult due to the lack
of sensing data available during operational cycles (LIU et al., 2013). According to
(SAHA; GOEBEL, 2007), to accurately estimate the battery internal impedance, EIS
technique can be applied through offline tests under optimal measuring conditions
and by using specialized and expensive equipment (DALAL et al., 2011). However,
during its operational life, the battery cannot be removed very often to conduct
EIS tests. Also, these tests are expensive.

Due to the need of applying operational data in the estimation of the battery internal
impedance, operating direct parameters, such as voltage, current, and temperature,
could be used in the development of an estimation model. Although, in practical
applications, such characteristics are controlled to meet the load requirements of
an associated circuit and cannot represent battery aging (PARVIZ; MOIN, 2011). For
this reason, indirect features shall be used to characterizes the battery operational
cycles.

According to (ZHANG; LEE, 2011), six features characterize each C − D cycle and
can be applied in machine learning systems modeling to estimate battery internal
impedance, as described as follows:
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3.5.1 F1 and F2 - Time intervals extracted from CC/CV charge step

The first two features are charge related and extracted from the CC/CV charge
step. According to (EDDAHECH et al., 2014), the CC capacity decreases with battery
aging. In each charging step, the battery is first charged in CC (continuous current)
mode and then in CV (continuous voltage) mode. The fixed cutoff voltage and cur-
rent cannot provide direct degradation information for battery internal impedance
estimation. However, the time intervals between the nominal voltage and the cutoff
voltage (F1) and between the nominal current and the cutoff current (F2) can be
applied as features.

3.5.2 F3 - Time interval between two predefined discharge voltages

In the initial operational cycles, lithium-ion batteries of new cell phones/laptops
have the maximum operating time. However, the operating time (discharging time
period) after subsequent full charge becomes shorter and shorter. Also, there is a
certain relationship between the discharging period and the capacity of lithium-ion
batteries. Therefore, the time intervals of equal discharging voltage differences (F3)
can be applied as features in the SOC estimation (LIU et al., 2013).

The TIEDVD parameter is defined as the time interval corresponding to a certain
discharging voltage difference according to Equation 3.5:

TIEDVDk = (tV max − tV min)k (3.5)

Where:

• TIEDVDk: time difference between two predefined discharging voltage at
cycle k

• tV max: time during the discharge cycle when battery discharge voltage
achieves a predefined maximum value at cycle k

• tV min: time during the discharge cycle when battery discharge voltage
achieves a predefined minimum value at cycle k

3.5.3 F4 and F5 - Average temperatures during charge and discharge

The body temperature of a Li-ion battery affects its thermal behavior and its ca-
pacity and resistance. Thus, the fourth and fifth degradation features are average

29



temperatures during charge and discharge step, respectively (ONDA et al., 2006).

The fourth feature (F4) is extracted from the charge step and corresponds to the
average temperature during the time interval F1. Similarly, the fifth feature (F5)
is extracted from the discharge step and corresponds to the average temperature
during the time interval F3.

3.5.4 F6 - Cutoff voltage in discharge step

The discharge cutoff voltage is related to depth of discharge (DoD) which, according
to (SATO, 2001), impacts the battery performance. Therefore, the discharge cutoff
voltage is considered as the sixth feature in our model (F6).

Next chapter will detail how these features were extracted from the Nasa’s dataset.
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4 DATA PREPARATION AND MODELING FOR LI-ION BATTERY
IMPEDANCE ESTIMATION

In this Chapter, the battery dataset preparation and modeling is described in details.
This chapter defines a data manipulation and analysis process which transforms the
raw battery testing data into a structured dataset. The obtained dataset is divided
into training, validation and testing sets and used by machine learning algorithms
to build two ensembles of machine learning models based on MLP neural network
bagging (Section 2.3.1) and gradient tree boosting (Section 2.3.2).

After performing tests to compare both models, their results are compared with
the following model applied to the same battery dataset and tested using the same
testing set: A Comparative Analysis of Techniques for Electric Vehicle Battery Prog-
nostics and Health Management (PHM)(REZVANIZANIANI et al., 2011). The Adap-
tive Neural Network proposed in this paper is according to Section 3.2.2.3 and its
obtained performance is described in Section 5.3.3.

4.1 Li-ion battery testing set information

In the present study, machine learning models in Li-ion battery internal impedance
estimation are developed upon data provided by National Aeronautics and Space
Administration (NASA) Ames Prognostics Center of Excellence (SAHA; GOEBEL,
2007).

The laboratory setup and data recording were conducted by National Aeronautics
and Space Administration (NASA) Ames Prognostics Center of Excellence (SAHA;

GOEBEL, 2007). According to NASA experiment, the laboratory setup is according
Section 4.1.1 and the experimental data organized according to Section 4.1.2.

4.1.1 Laboratory setup

The laboratory setup contains an operational battery (containing a set of Li-ion
cells), loads, chargers and an assembly of devices for battery health monitoring
(BHM) containing sensors of temperature, voltage and current, switches, data ac-
quisition system and a computer for control and analysis. Figure 4.1 details the full
stack.

The Li-ion cells are submitted to charge and discharge cycles under different en-
vironmental conditions and load set by the environmental chamber and electronic
load controller, respectively. In addition, periodically, EIS measurements (which
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Figure 4.1 - Laboratory setup

Source: (SAHA; GOEBEL, 2007)

obtain the battery internal impedance for a certain range of ac frequencies) are col-
lected through BHM module. The switches alternate the operational battery cycles
between charging, discharging and EIS cycles (SAHA; GOEBEL, 2007).

4.1.2 Battery testing set information

The Li-ion batteries operate under different operational profiles (charge, discharge
and impedance) at ambient temperatures of 4, 24 and 44◦C (SAHA; GOEBEL, 2007):

a) Charge step: charging was carried out in a constant current (CC) mode
at 1.5A until the battery voltage reached 4.2V and then continued in a
constant voltage (CV ) mode until the charge current dropped to 0.02A

b) Discharge step: discharging was conducted in CC mode until the discharge
voltage reached a predefined cutoff voltage. Fixed and variable load cur-
rents at 1, 2, and 4A were used and the discharge runs were stopped at
2V, 2.2V, 2.5V or 2.7V

c) Impedance measurement: measurement was performed through an electro-
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chemical impedance spectroscopy (EIS) frequency sweep from 0.1Hz to
5kHz

Figure 4.2 details the battery data structure of the operational profiles.

Figure 4.2 - Data structure

Source: (SAHA; GOEBEL, 2007)

4.1.3 Li-ion battery impedance measurement rectifier

To eliminate the noise generated by time-varying current passing through an electro-
chemical cell or battery due to load fluctuation, a filtering approach or an electronic
cancellation technique shall be applied. In the laboratory setup described above, it
was used an electronic device.

The time-varying current flowing through the circuit detailed in Section 4.1.1 excites
a magnetically-coupled ac current probe which produces an opposite signal that is
amplified and injected into the circuit, canceling the oscillation of the original signal.

4.2 Data preparation for Li-ion battery impedance estimation

The data detailed in Figure 4.2 is structured in two distinct tables. The first ta-
ble (denominated as external temperature, voltage, and current experimental data)
contains external temperature, voltage and current measured directly after the bat-
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tery termination along the C−D battery cycles. The second table (denominated as
electrochemical impedance spectroscopy experimental data) is obtained through the
spectroscopy experiments and comprises with the battery internal impedance along
the same C −D cycles.

4.2.1 External temperature, voltage and current experimental data

A few snapshots of the first table are according to 4.1.

Table 4.1 - External temperature, voltage and current experimental data

profile year mon day hour min sec temp voltage current cycle
discharge 2010 9 3 12 10 9.43 6.31 3.84 0.00 1
discharge 2010 9 3 12 10 25.7 6.36 3.31 -1.99 1
discharge 2010 9 3 12 10 26.2 6.44 3.28 -1.99 1

This table contains the time series of the following parameters measured directly
after the battery termination along the C-D battery cycles:

• external temperature (in F )

• voltage (in V )

• current (in A)

NOTE:

In this study, during the discharge process, they were only considered the load
current of 2.0A and the snapshots between 3.8V and 3.0V .

To obtain the features detailed in Section 4.3, the snapshots are aggregated by
charge and discharge cycle. However, prior to the features computation, outliers
shall be excluded. These outlier records do not comprise with one of the following
requirements:

• During the charge step carried out in a constant current (CC) mode, the
minimum battery voltage shall be 3.8V and the charging current shall be
equal to 1.5A until the battery voltage maximum limit which shall not
exceed 4.2V
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• During the charge step carried out in a constant voltage (CV ) mode, the
charging current shall be equal to 4.2V until the battery current minimum
limit which shall not dropped below to 0.02A

4.2.2 Electrochemical impedance spectroscopy experimental data

A few snapshots of the second table are according to 4.2.

Table 4.2 - Electrochemical impedance spectroscopy experimental data

profile year mon day hour min sec impedance rectified imp cycle
EIS 2010 9 3 12 10 9.43 0.05-0.42i 0.23-0.01i 1
EIS 2010 9 3 12 10 25.7 0.17-0.02i 0.22-0.01i 1
EIS 2010 9 3 12 10 26.2 -0.02-0.02i 0.22-0.01i 1

NOTE:

They were only considered the electrochemical impedance spectroscopy experimental
results with a frequency of 2.0Hz and the rectified battery impedance according to
Section

4.3 Specific features selection for Li-ion battery impedance estimation

The laboratory setup and data recording conducted by National Aeronautics
and Space Administration (NASA) Ames Prognostics Center of Excellence(SAHA;

GOEBEL, 2007) resulted in testing data containing data from the operation cycles
of 134 rechargeable lithium-ion batteries organized in 34 battery data sets. Each
battery dataset contains the test data according to Figure 4.2. The testing data
applied in this study is according to (SAHA; GOEBEL, 2007). In this study, a dataset
structured as detailed in 4.2 is used in the computation of the features to be applied
in the modeling stage.

For each C −D (charge and discharge) cycle, the following features were extracted
exactly as proposed by (ZHANG; LEE, 2011) (according to Section 3.5):

• F1: during charge cycle, time interval between the nominal voltage and the
cutoff voltage

• F2: during charge cycle, time interval between the nominal current and the
cutoff current
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Table 4.3 - Historical set - impedance real component

cycle F1 F2 F3 F4 F5 F6 imp_re
1 9966.407 6422.609 472.313 27.0074 26.3008 2.4556 0.06175
2 10226.375 6627.891 472.125 25.6742 26.5323 2.6321 0.05989
3 10635.968 6528.063 472.344 25.6754 26.3325 2.5010 0.05919

• F3: during discharge cycle, time interval between two predefined voltages

• F4: average temperature during the time interval F1

• F5: average temperature during the time interval F2

• F6: during discharge cycle, cutoff voltage

The historical set applied in the machine learning systems modeling includes the six
features (F1, F2, F3, F4, F5, and F6) and the label attribute which corresponds to
the rectified battery impedance.

In order to obtain the rectified battery impedance correspondent to a specific C−D
cycle of the external temperature, voltage and current experimental data table (4.1),
the mean real and imaginary components of the Li-ion battery internal impedance
were obtained for every C − D cycle of electrochemical impedance spectroscopy
experimental data table (4.2). Thus, the mean Li-ion battery internal impedance
correspondent to a specific C −D cycle is the simple average of the Li-ion battery
internal impedance along all the timestamps of the cycle. During each timestamp,
the mean Li-ion battery internal impedance is calculated according to Equation 4.1.

impedance =
√

(real + imaginary)2 (4.1)

Where:

• real: real component of the Li-ion battery internal impedance

• imaginary: imaginary component of the Li-ion battery internal impedance

Tables 4.3 and 4.4 are extractions of the historical sets corresponding to the real
and imaginary components which contain 600 C −D training cycles.
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Table 4.4 - Historical set - impedance imaginary component

cycle F1 F2 F3 F4 F5 F6 imp_img
1 9966.407 6422.609 472.313 27.0074 26.3008 2.4556 -0.00096
2 10226.375 6627.891 472.125 25.6742 26.5323 2.6321 -0.00112
3 10635.968 6528.063 472.344 25.6754 26.3325 2.5010 -0.00105

4.4 Li-ion battery impedance data modeling

After the data preparation according (ZHANG; LEE, 2011), two ensembles of machine
learning models (MLP neural network bagging - Section 2.3.1 and gradient tree
boosting - Section 2.3.2) were developed in order to estimate the mean Li-ion battery
internal impedance.

To test the two ensembles of machine learning models and compare the obtained
results with the benchmark approach, the database was split into a training set
(applied in the development of the ensembles of models) and a testing set (applied
in the determination of the performance achieved by the ensembles of models). To
consider the same train and test C −D cycles as were considered in the benchmark
analysis and allow the comparison between the results, the training set was formed
by the C−D cycles from 1 to 380. The testing set used in the evaluation of the two
ensembles of models developed herein is the same as the benchmark testing set and
comprises with the C −D cycles from 380 to 600.

After segregating the database in training and testing sets, the training set contain-
ing the C − D cycles from 1 to 380 is divided into training and validation sets to
allow the evolution of the ensembles of models through some training cycles. During
each training cycle, the training set is split randomly into 70-30. The larger split
is used to fit the ensemble models while the smaller split is segregated and applied
after the modeling in the validation process.

Therefore, within a training cycle, the hyperparameters which tune the ensembles
architectures and the configurations of the base learners are adjusted. From the
training set, each training cycle generates a modified ensemble of base learners. To
compare the generated ensembles of regression models, during a training cycle, for
a specific combination of the hyperparameters, the specific ensemble of models is
applied to the validation set.

The model application allows the estimation of this mean Li-ion battery internal
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impedance that can be compared with the real value. Applying the RMSE perfor-
mance metric in the validation set, the deviations between the estimated and real
values are aggregated, and the quality of the ensemble of models is obtained. At
each validation iteration, the training set is randomly split into 70-30 subsets (train-
ing and validation sets) and the ensemble of models, tuned with a specific set of
hyperparameters, is validated as described in Section . After the validation cycles,
the best hyperparameters configuration which tuned the best ensemble of models
can be selected to be applied in the test set.

4.5 MLP neural network bagging with monotonicity constraints model

In this ensemble of models, a base learner is aMLP neural network with monotonic-
ity constraints which implements one hidden-layer that can enforce or not monotonic
relations on designated input variables. Each training cycle applies 10 or 20 ensem-
ble members to fit, enforce or not the monotonicity and applies 1, 2, 3, 4, 5, 6, 7, 8,
9 or 10 hidden nodes in the hidden layer.

The ensemble members to fit in each training cycle are obtained according to Section
2.2.1. Each ensemble member contains a random subset of 70 percent of the training
set and, after generating the 10 or 20 regression models (depending on the number
of ensemble members to fit), the result corresponds to the mean value obtained
through the application of all regression models.

These training cycles with different combinations result into different MLP neural
networks with monotonicity constraints. These different combinations of the hyper-
parameters are described in Table 4.5.

Table 4.5 - MLP neural network with monotonicity constraints hyperparameters

hyperparameter description possible values
hidden nodes number of hidden nodes in the first hidden layer 1 to 10

ensemble learners number of ensemble members to fit 10, 20

monotonicity column indices of covariates for which the
monotonicity constraint should hold 0 or 1

bag logical variable indicating whether or not
bootstrap aggregation (bagging) is used TRUE

iter.max maximum number of iterations of
the optimization algorithm 500

Each combination of the hyperparameters tune a specific ensemble of models which
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has a performance metric obtained through the application of RMSE in the val-
idation set. Figure 4.3 details the root mean square error (horizontal axis) calcu-
lated according to Equation 4.1 of the 16 best bagging ensembles of MLP models
which hyperparameters are according to Table 4.5. Each one of the 16 best bagging
ensembles is represented in the Figure 4.3 by a set of three colored bars. Each
hyperparameter configuration of the 16 best bagging ensembles of MLP models is
represented by a specific color representing a value in the vertical axis as follows:

• Blue bars: present the number of base learners applied in each one of the
ensembles

• Orange bars: present the number of nodes (neurons) applied in the hidden
layer of the MLP base learners which form the ensembles

• Gray bars: present the usage or not of the monotonicity criteria in the
updating process of the MLP base learners weights (’0’ means that the
monotonicity criteria was not applied while ’1’ means that the monotonic-
ity criteria was applied)

Figure 4.3 starts with the hyperparameters configurations which resulted in the
ensemble methods with the lower root mean square error when applied in the vali-
dation set. The ensemble of MLP models that achieved the lower root mean square
error was tuned with the following hyperparameters: 20 ensemble learners, 6 neurons
in the hidden layer and no monotonicity forcing.

In the other hand, the ensemble of MLP models that achieved the higher root mean
square error was tuned with the following hyperparameters: 20 ensemble learners,
10 neurons in the hidden layer and monotonicity forcing.

4.6 Gradient tree boosting model

In this ensemble of models, a base learner is a decision tree with a maximum depth
of 4 or 8. In the boosting ensemble of the base learners, the learning rate, applied
in the computation of the next learner, varies between 0.1 to 1.6 with a step of 0.1.
Finally, to reduce the variance, different subsets of the features can be used by the
base learners. In the boosting process, 80 percent of the features were randomly used
by the learners or all the features were used by them.

These different combinations of the hyperparameters result into different gradient
boosting ensembles of models, as described in Table 4.6.
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Figure 4.3 - Mean square error of 16 best ensembles of MLP neural networks

The hyperparameter η has an important role in the gradient boosting modeling since
it controls the learning rate. This parameter scales the contribution of each tree by
a factor between 0 and 1. It is used to prevent overfitting by making the boosting
process more conservative. A lower learning rate - η - increases the robustness to
overfitting but also the computing time.

Each combination of the hyperparameters tune a specific ensemble of models which
has a performance metric obtained through the application of RMSE in the vali-
dation set according to Section 2.4.3. Figure 4.4 details the root mean square error
(horizontal axis) calculated according to Equation 4.1 of the 16 best xgBoost en-
sembles of models which hyperparameters are according to Table 4.6. Each one of
the 16 best boosting ensembles is represented in the Figure 4.4 by a set of three
colored bars. Each hyperparameter configuration of the 16 best xgBoost ensembles
of models is represented by a specific color representing a value in the vertical axis
as follows:
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Table 4.6 - Gradient boosting hyperparameters

hyperparameter description possible values
objective objective function reg:linear

max_depth maximum depth of a tree 4 or 8

η
control the learning rate: scale
contribution of each tree by a factor
of 0 <eta <1

0.10 to 1.60

column_sample subsample ratio of columns
when constructing each tree 1.0 or 0.80

instance_sample

subsample ratio of the training instance.
0.5 means that xgboost randomly
collected half of the data to grow trees
and this will prevent overfitting

1.0

evaluation_metric evaluation metric per validation cycle RMSE
validation cycles the max number of validation cycles 200

• Blue bars: present the rate of features (from ’0’ to ’1’) selected randomly
by each base learner. ’1’ means that all features are applied

• Orange bars: present the maximum depth of the decision trees which form
the xgBoost ensembles of models

• Gray bars: present the learning rate - η - of the xgBoost ensembles of
models

Figure 4.4 starts with the hyperparameters configurations which resulted in the
ensemble methods with the lower root mean square error when applied in the vali-
dation set. The ensemble of decision tree models that achieved the lower root mean
square error was tuned with the following hyperparameters: decision trees maximum
depth of 8 levels, no column sample (all the base learners applies all the features)
and learning rate of 1.2 in the development of the consecutive learners.

In the other hand, the ensemble of decision tree models that achieved the higher
root mean square error was tuned with the following hyperparameters: decision trees
maximum depth of 4 levels, column sample of 80 percent (all the base learners applies
randomly 80 percent of all the features) and learning rate of 0.4 in the development
of the consecutive learners.
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Figure 4.4 - Mean square error of 16 best ensembles of decision trees
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5 COMPUTER EXPERIMENTS AND RESULTS FOR LI-ION BAT-
TERY IMPEDANCE ESTIMATION

In this Chapter, the ensemble of models described in Chapter 4 is tested in the
C-D testing cycles from 380 to 600. After performing tests to comparing both
models, their results are compared with the following model applied to the same
battery dataset and tested using the same testing set: A Comparative Analysis
of Techniques for Electric Vehicle Battery Prognostics and Health Management
(PHM)(REZVANIZANIANI et al., 2011). The Adaptive Neural Network proposed in
this paper is according to Section 3.2.2.3 and its obtained performance is described
in Section 5.3.3.

5.1 MLP neural network bagging with monotonicity constraints test

After developing, ensembles of MLP neural network and validating them with the
validation set (randomly selected as 30 percent of the training set), the best ensem-
bles of models are detailed in Table 5.1.

Table 5.1 - Best ensembles of MLP neural network models

ensemble hidden
nodes

ensemble
learners monotonicity bag iter.max

1 6 20 0 TRUE 500
2 7 10 0 TRUE 500
3 10 10 0 TRUE 500

To obtain a more accurate performance metric, the threeMLP ensembles of models
are validated through cross-validation methodology according to Section 4.4. Thus,
instead of segregating the training set randomly in 70-30 subsets, the C−D training
cycles from 1 to 380 are divided into five folds. During the first iteration, the first fold
(containing 76 C −D cycles) is used to validate the ensemble of models developed
with the last four folds (containing 304 C − D cycles). The RMSE performance
metric of the first iteration is obtained through the application of the ensembles of
models to the validation set according to Section 2.4.3. This process is repeated five
times. At each iteration, a specific fold is used as validation set and the remaining
folds as training set. Finally, five RMSE performance metrics are obtained and the
mean RMSE metric is considered as the RMSE cross-validation performance met-
ric. Table 5.2 enumerates the RMSE metrics obtained through the each validation
cycle and the mean RMSE cross-validation performance metric.
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Table 5.2 - Performance metrics of best MLP bagging ensembles at cross validation iter-
ations

iteration ensemble 1 ensemble 2 ensemble 3
1 0.0049 0.0051 0.0053
2 0.0030 0.0027 0.0030
3 0.0061 0.0056 0.0054
4 0.0020 0.0022 0.0013
5 0.0023 0.0032 0.0023

MEAN 0.0037 0.0038 0.0035

The best three ensembles according to Table 5.1 are tested through C −D testing
cycles from 380 to 600. For each one of the C − D testing cycles, the estimated
battery internal impedance is compared with the real value in ω. Figure 5.1 shows
the estimated values of the battery internal impedance according to each one of the
ensembles detailed in Table 5.1.

The differences between the estimated and real mean Li-ion battery internal
impedances during each one of the C − D testing cycles are according to Figure
5.2 and the RMSE error of the three ensembles when applied on the testing set are
according to Table 5.7.

5.2 Gradient tree boosting test

5.2.1 Gradient tree boosting optimal ensembles

After developing ensembles of decision trees through gradient tree boosting and
validating them with the validation set (randomly selected as 30 percent of the
training set), the best ensembles of models are detailed in Table 5.3.

Table 5.3 - Best gradient tree boosting ensembles

ensemble max
depth

columns
sample

η - learning
rate

instances
sample

evaluation
metric

1 8 1.0 1.2 1 200
2 4 1.0 0.1 1 200
3 8 0.8 1.6 1 200

In order to obtain a more accurate performance metric, the three xgBoost ensembles
of models are validated through cross-validation methodology according to Section
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Table 5.4 - Performance metrics of best gradient tree boosting ensembles at cross valida-
tion iterations

iteration ensemble 1 ensemble 2 ensemble 3
1 0.0050 0.0050 0.0030
2 0.0054 0.0035 0.0065
3 0.0045 0.0044 0.0089
4 0.0039 0.0048 0.0057
5 0.0022 0.0059 0.0041

MEAN 0.0042 0.0047 0.0057

4.4. Thus, instead of segregating the training set randomly in 70-30 subsets, the
C − D training cycles from 1 to 380 are divided into five folds. During the first
iteration, the first fold (containing 76 C−D cycles) is used to validate the ensemble of
models developed with the last four folds (containing 304 C−D cycles). The RMSE

performance metric of the first iteration is obtained through the application of the
ensembles of models to the validation set according to Section 2.4.3. This process
is repeated five times. At each iteration, a specific fold is used as validation set and
the remaining folds as training set. Finally, five RMSE performance metrics are
obtained and the mean RMSE metric is considered as the RMSE cross-validation
performance metric. Table 5.4 enumerates the RMSE metrics obtained through the
each validation cycle and the mean RMSE cross-validation performance metric.

The best three ensembles according to Table 5.1 are tested through C −D testing
cycles from 380 to 600. Figure 5.3 shows the estimated and real values of the Li-ion
battery internal impedance according to each one of the ensembles.

The differences between the estimated and real battery internal impedances during
each one of the C −D testing cycles are according to Figure 5.4 and the RMSE

error of the three ensembles when applied on the testing set are according to Table
5.7.

5.2.2 Gradient tree boosting features importance

According to Section 2.3.2.3, a specific feature of the data set has distinct importance
values in the decision trees which form the gradient tree boosting ensemble. For the
three best ensembles according to Table 5.3, the average importance values of the
features in all their base learners are indicated in Table 5.5.

The features importance in the three ensembles can be averaged. Thus, the mean
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Table 5.5 - Features importance in the best three gradient tree boosting ensembles

feature ensemble 1 ensemble 2 ensemble 3
F1 0.044 0.147 0.035
F2 0.021 0.099 0.344
F3 0.693 0.316 0.249
F4 0.100 0.152 0.063
F5 0.020 0.116 0.006
F6 0.123 0.170 0.304

importance of the six features in the three ensembles is according to Table 5.6 which
is sorted by importance.

Table 5.6 - Mean features importance in the best three gradient tree boosting ensembles

feature mean importance
F3 0.419
F6 0.199
F2 0.155
F4 0.105
F1 0.075
F5 0.047

According to Table 5.6, the most relevant feature for the estimation of the battery
internal impedance through gradient tree boosting ensembles of models is the time
interval between two predefined discharge voltages (F3). Therefore, as empirically
noted according to Section 3.5, the discharge period is indeed a reliable indicator of
the battery degradation.

In another hand, the average body temperature of the battery during discharge is
the less relevant feature for the estimation of its internal impedance through gradient
tree boosting ensembles of models. Thus, the laboratory setup can be simplified, and
the temperature sensing can be removed from it without a significant impact in the
battery internal impedance estimation.

5.3 Li-ion battery impedance model test

According to RMSE (see Section 2.4.3), the MLP ensemble of models with the
higher performance on the testing set has the configuration of 20 ensemble members
to fit and 6 hidden nodes on the hidden layer while the xgBoost ensemble of models
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with the higher performance has (η=0.10 and a features sampling ratio of 1.00).

Table 5.7 enumerates the RMSE performance metrics obtained through the appli-
cation of the best ensembles of models based on MLP bagging and xgBoost in the
testing set (C −D cycles from 380 to 600).

Table 5.7 - RMSE error of best ensembles

ensemble MLP xgBoost
1 0.0019 0.0018
2 0.0023 0.0017
3 0.0024 0.0029

According to Table 5.7, the ensemble of models that achieved the lower RMSE

error when applied in the C−D testing cycles from 380 to 600 is the second xgBoost
ensemble of models which has the following hyperparameters configuration: decision
trees maximum depth of 8 levels, no column sample (all the base learners applies all
the features) and learning rate of 0.1 in the development of the consecutive learners.

In the other hand, the third xgBoost ensemble of models achieved the higher root
mean square error when tuned with the following hyperparameters: decision trees
maximum depth of 8 levels, column sample with 0.8 rate (a subset of 80 percent of
the features is randomly chosen by the base learners) and learning rate of 1.6 in the
development of the consecutive learners.

As described in Section 4.6, a high learning rate applied in the iterative boosting pro-
cess which forms the xgBoost ensemble of models can lead to overfitting. The third
xgBoost ensemble of models is an example of such phenomenon since it achieved a
low RMSE error during the validation process but a high RMSE error during the
testing process.

In general, the xgBoost ensembles of models achieved a lower RMSE error when
compared to MLP ensembles of models. In Section 5.3.2, the statistical similarity
between the ensembles is calculated. In addition, Section 5.3.2 also compares the
obtained ensembles of base learners with benchmark machine learning models, as
mentioned in Section 1.2.

The following Sections describe the training and testing stages of the AdNN ((REZ-
VANIZANIANI et al., 2011)) model development. This machine learning approaches

47



apply only the own target variable.

5.3.1 Li-ion battery impedance AdNN model

According to Section 3.2.2.3, the AdNN training process applies the last five in-
stances of the target variable as input of a neural network. Therefore, with each set
of six instances, a neural network is trained. This training process repeats for the
C − D training cycles from 1 to 380 and during each iteration, the AdNN model
is updated. After the training iterations, the AdNN model begins to predict the
Li-ion battery impedance for the C −D testing cycles from 380 to 600 testing data
(REZVANIZANIANI et al., 2011).

5.3.2 Student’s t-test application

According to Student’s t-test technique (see Section 2.5), in order to check the
statistic difference between the performance metrics of the the MLP and xgBoost
ensembles of models when compared with each other and with the benchmark model,
the Z value obtained through the Student’s t-test formula shall be above a positive
threshold value and below a negative threshold value. Herein, the adopted positive
threshold value is of 0.05 while the adopted negative threshold value is of -0.05.

In the Student’s t-test described herein, there were considered the best three ensem-
bles of MLP and xgBoost models (according to Tables 5.1 and 5.3), respectively.

Therefore, the two samples containing three performance errors (each one obtained
through the application of MLP bagging and xgBoost ensembles of models on
the testing set) can be compared with each other and with the performance error
obtained through the application of the benchmark model by using the Student’s
t-test formula (2.15).

Table 5.7 enumerates the three performance errors obtained through the application
of best three MLP bagging and xgBoost ensembles of models on the testing set.

In order to calculate the Z value of the statistic difference of MLP bagging and
xgBoost performance errors compared with each other and with the benchmark
model performance error, the following assumptions were made:

• For the comparison between the MLP bagging and xgBoost performance
metrics: σ is the population standard deviation of the data

• For the comparison of theMLP bagging and xgBoost performance metrics
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with the benchmark model performance metric: σ is the sample standard
deviation of the data

Table 5.8 enumerates the Z value of the statistic difference of MLP bagging and
xgBoost performance metrics compared with each other and with the benchmark
model performance metric.

Table 5.8 - Student’s t-test analysis

Z value MLP model xgBoost model AdNN model
(REZV., 2017)

MLP model - 0,17 -13,66
xgBoost model -0,44 - -5,60

5.3.3 Li-ion battery impedance model comparison

Considering the Z value of Table 5.8, the RMSE error obtained in the estimation
of the mean Li-ion battery internal impedance through MLP bagging and xgBoost
ensembles of models are compared with the RMSE error of the benchmark model
described in Section 1.2: Adaptive Neural Network (AdNN)(REZVANIZANIANI et al.,
2011).

The RMSE mean error of the performance metric samples obtained through the
application of the ensembles of regression models on the battery data set provided
by National Aeronautics and Space Administration (NASA) (SAHA; GOEBEL, 2007)
are according to Table 5.9.

Table 5.9 - RMSE error of the ensembles of regression models application

MLP xgBoost
AdNN model
(REZV., 2017)

0.0022 0.0021 0.0043

According to Table 5.8 and considering the threshold of Z = 0.05, the performance
of the ensembles of models proposed herein and the benchmark models are distinct
compared to each other.

The Gradient Tree Boosting (xgBoost) ensemble of models achieved the lower
RMSE error and, for this reason, is considered the most suitable in the Li-ion
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battery impedance estimation.
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Figure 5.1 - Estimated and real battery internal impedance values through application of
MLP bagging ensembles of models in the testing cycles
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Figure 5.2 - Differences between estimated and real battery internal impedance values
through application of MLP bagging ensembles of models in the testing cycles
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Figure 5.3 - Estimated and real battery internal impedance values through application of
xgBoost ensembles of models in the testing cycles
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Figure 5.4 - Differences between estimated and real battery internal impedance values
through application of xgBoost ensembles of models in the testing cycles
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6 CONCLUSIONS

In this study, it was conducted an extensive benchmark analysis to enumerate and
detail the various methods applied in the Li-ion battery SOC estimation. The de-
scribed methods are categorized in: direct measurements, machine learning systems,
and hybrid methods.

To estimate the Li-ion battery SOC, a well-known approach consists in the esti-
mation of the Li-ion battery internal impedance related to the SOC parameter,
according to Section 3.4. Some of the approaches which obtain Li-ion battery SOC
parameter indirectly through the estimation of the Li-ion battery internal impedance
are described in Section 3.2. A deeper investigation in the literature of these studies
revealed two studies which perform tests in the same battery data set made avail-
able by National Aeronautics and Space Administration (NASA) Ames Prognostics
Center of Excellence (SAHA; GOEBEL, 2007).

Herein, features which characterize the charge and discharge cycles of the battery
data set were extracted from battery data set made available by National Aero-
nautics and Space Administration (NASA) Ames Prognostics Center of Excellence
(SAHA; GOEBEL, 2007) and applied in the modeling process. In this stage, two
broader applied regression techniques (MLP bagging and gradient tree boosting)
received the training data sets and used in the deployment of two regression models.

Finally, the obtained regression models needed to be evaluated. Therefore, it was
applied the RMSE (Root Mean Square Error) performance metric, and the results
were used to compare the two regression models.

In addition, the RMSE error obtained in the estimation of the battery set
impedance through MLP bagging and gradient tree boosting ensembles of mod-
els were compared with the RMSE error of the benchmark model described in
Section 1.2: Adaptive Neural Network (AdNN) (REZVANIZANIANI et al., 2011).

In order to compare the ensembles of regression models, the Student’s t-test was
applied, and the statistic difference between each other was defined (5.3.2).

According to Table 5.8 and considering the threshold of 0.05, the performance of
the Gradient Tree Boosting (xgBoost) ensembles of models is higher when compared
with the Multi-Layer Perceptron (MLP ) bagging ensemble of models and the AdNN
benchmark model.
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In addition to the adequate accuracy obtained by the gradient tree boosting ensemble
of models, it also has the advantage of providing important insights regarding the
data through the interpretation of the relationship between the extracted features.
As detailed in Section 5.2.2, the importance of the features can be considered in the
definition of the minimal features set that with a lower measurement effort makes
possible the deployment of an ensemble of regression models with adequate accuracy.
A future study can simplify the experimental laboratory setup by reducing the
applied sensing. As described in Section 5.2.2, the mean Li-ion battery temperature
during discharging cycles is the less relevant feature according to xgBoost) ensembles
of models. In addition, the mean Li-ion battery temperature during charging cycles
is the third less important feature. Thus, the temperature sensing can be removed,
and the obtained ensembles of models can be tested to verify the impact of such
modifications in their performance errors.

The estimation of the mean Li-ion battery internal impedance through Multi-Layer
Perceptron (MLP ) bagging and Gradient Tree Boosting (xgBoost) ensemble of
models applying the feature extraction according to Section 4.3 had an adequate
result. However, the estimation of the Li-ion battery internal impedance of battery
sets operating under abnormal conditions (e.g. electric systems of hybrid cars) can
reveal difficulties which were not found in the present study. Therefore, future studies
could apply the proposed approach detailed herein in the estimation of Li-ion battery
set internal impedance operating under various conditions.

In conclusion, the Multi-Layer Perceptron (MLP ) and Gradient Tree Boosting
(xgBoost) approaches described in this study were compared only with a machine
learning model. Therefore, a future study could apply a direct measurement method
in order to estimate the Li-ion battery internal impedance footprint of the same
battery set and enrich the benchmark analysis detailed herein.
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