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A discussion of crowdsourced geographic
iInformation initiatives and big Earth observation
data architectures for land-use and land-cover
change monitoring
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Environmental Challenges

GLOBAL WARMING OVERPOPULATION AND DEFORESTATION
OVERCONSUMPTION

- and Change Monitoring;

"purpose for which and "physical properties of a
activities by which land surface"
human use land"

(JOSHI, Neha et al., 2016)



Citizen Science for Land-Use and Land-

Cover Monitoring

1. Providing up-to -date and
detailed information for land use
and land cover monitoring;

2. Incorporating the society
judgement into the analysis of
datasets;

3. Analyze existing information
about land use and land cover
change.




Participatory Monitoring Platforms

greunatruth2.0

- Provide collectively a map;

- Bring together the community;
- Keep costs low for users;

- Estimulate academic
programmes;

- Participatory sensing;
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tow Lanad Lise andd Lsnd Cower Miorsboring

- Estimating Accuracy of LULC
changes throughout crowd-
based validation methods; el
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- Improve information quality;




Participatory Action Research

- Project Design;
- Infrastructure Technology and Communications;
- Data Management;

- Participants Engagement vs Participants
Motivation;

- Participants Preparation;
- Data Quality;
- Data Privacy;

- LULC Change Classification Purpose.

Participatory
Life in society

PAR

Research
Mind, Knowledge

Action
Experience



Big Earth Observation Data

Earth Observation Programs:
Large and open satellite
Imagery

Remote sensing applications:
meteorology, oceonography, agriculture, etc.

Researchers need stable and efficient solutions
to support the development and validation of
algorithms for big Earth observation data analysis.

Analytical scaling: allow algorithms developed
at the desktop to run on big databases with
minor changes.

Software reuse: allow researchers to adapt
existing methods for big data with minimal
reworking.

Collaborative work: share results with the
scientific community.

Replication: encourage research teams to build
their own infrastructure.



A NN
Research Question

How can citizen science be applied in
big Earth observation data analytics to
iImprove land use and cover change
monitoring?



Spatio-Temporal Analysis

Space First Time Later Analysis Time First Space Later Analysis

Forest Cover Forest Loss (xy)
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Vegetation Index
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The key is to
Evaluate and considgr the
compar&: the temporal auto-
o reSUdS | correlation of the
Independaently data instead of the
for different spatial auto-

time Instances; correlation.



The importance of a computing

Infrastructure for analysis

« Data Cubes worldwide: Time-series multi-dimensional (space, time, data type) stack of
spatially aligned pixels ready for analysis.

.. and Use



The importance of a computing

Infrastructure for analysis

Why server side? It is possible to move questions and the data. Most of the time it turns out to be
more efficient to move the questions than to move the data. (Fourth paradigm principles (Jim Gray,
2005))

Data streaming processing

Parallel and Distributed Computing

Fragment my problem

Into pleces
Problem P

Data Stream

- Fast Access

- Scalable Storage Dats e

] Elnmplex Analysis - Hardware failure
-Simple

Programming Model Combine the data after analysis



The importance of a computing

Infrastructure for analysis

Multidimensional Array Databases
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The importance of a computing

Infrastructure for analysis

MapReduce Paradigm
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Big Earth Observation Data Analytics for

Land-Use and Land-Cover Monitoring
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Big Earth Observation Data Analytics
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Citizen Science applied in Big E

Observation Data Analytics

Auxiliary Data
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Citizen Science applied in Big Earth
Observation Data Analytics - Sampling

- Domain-Aware Citizen

- High cognitive demand

- Participatory process
- Local Knowledge

W

TIME



Citizen Science applied in Big Earth

Observation Data Analytics - Validation
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Citizen Science applied in Big Earth

Observation Data Analytics - Validation

(1) pixels wrongly classified
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Citizen Science applied in Big Earth

Observation Data Analytics - Validation

The third measure refers to pixels whose class
membership values, computed by the classification
method presented above, are similarly high for two
or more classes.

The pixels LULC class stability is a continuous
variable.

Normalized class membership distributions for two
pixels.

The class stability is computed as the difference
between the highest and the second highest
normalized class membership values.
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Citizen Science applied in Big Earth

Observation Data Analytics - Validation

Thus, the classification stability for pixel 2 in
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Figure (a) 1s higher than in pixel 1.
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Citizen Science applied in Big Earth

Observation Data Analytics - Validation

Considering the
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related accuracies
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Citizen Science applied in Big Earth

Observation Data Analytics
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Conclusions

The aim of our future work should throw light on questions of very distinct nature:

1.

engaging citizens (e.g., how to engage and motivate citizens to contribute as a way to
ensure the sustainability of the project?);

. project sustainability (e.g., how can citizens be assigned to tasks and their

contributions managed in an intelligent manner as a way to optimize the
effectiveness/data input relation?);

. reliability of information (e.g., to which extent appropriate architecture designs should

help citizens to contribute with reliable LULCC information?);

. the use of an specific "technique"” such as active learning (e.g., to what extent

crowdsourced data may improve the accuracy of machine learning algorithms within big
EO data architectures?);

. passing by decision-making support (e.g., what are the possibilities and constraints in

terms of remote sensing and auxiliary data inputs to a crowd-assisted LULCC monitoring
system?).
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