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Abstract 

An important task in the space community nowadays is to study what is the best form to avoid a collision of an 

asteroid with the Earth, what could possible save the Earth from huge material and lives losses. Several options have 

been considered, e.g. detonation of a nuclear artifact, gravity-tractor and kinect impactor. They can be separated into 

impulsive and non-impulsive alternatives. Among the impulsive approaches, the kinect impactor, changing the 

asteroid orbit by means of an impact between one or more spacecraft with it, is the most feasible for our current 

technological status. This papers aims to analyse the effects of Jupiter in this alternative by mapping the deflections 

obtained for several values of the impulse given to the asteroid by the kinect impact, as well as for the intercept time 

before the predicted closest approach with the Earth. In order to do so, we assume a Circular Restricted Three-Body 

Problem system composed by an asteroid, the Earth and the Sun; and a Bi-Circular Restricted Four-Body Problem 

system composed by an asteroid, the Earth, the Sun and Jupiter. The asteroid selected as a study case in this work has 

its orbital characteristics inspired in the asteroid 2017 PDC, from the hypothetical asteroid impact scenario presented 

at the 2017 IAA Planetary Defense Conference. The results obtained for the three-body problem are in accordance 

with previous studies in the literature, while the simulations considering Jupiter show that it can severely changes the 

outcome of such deflection strategy. The Jupiter addition to the dynamics causes a magnitude and phase shift in the 

predicted miss distance if compared to the three-body problem. In some cases this may increase the gravitational 

interaction between the Earth and the deflected asteroid and maybe culminates in large miss distances or impact 

scenarios that would not be predicted by the three-body problem. The present paper may be the first step for new 

studies of the Jupiter influence in an asteroid deflection. 

 

Keywords: Kinect Impactor; Asteroid Deflection; Planetary Defense; Restricted Three-Body Problem; Bi-Circular 

Restricted Four-Body Problem. 

 

1. Introduction 

The recent incidents such as the Tunguska event in 

1908 [1] and the Chelyabinsk meteor in 2013 [2] warn 

us that an asteroid collision with the Earth is a real risk. 

In the last decades, the possible threat of an asteroid 

impact with the Earth has gained much attention in the 

scientific community and many strategies have been 

proposed to deflect such an asteroid. They are mainly 

separated into two categories: impulsive and non-

impulsive strategies. As an example of a non-impulsive 

alternative we can cite the gravity-tractor [3]. Among 

the impulsive approaches, the one considered in a more 

readiness technological status is the kinect impactor, in 

which one or more spacecraft impact the asteroid 

transferring momentum to it. In fact, in the next decade 

NASA should launch the DART spacecraft to test this 

deflection strategy [4]. 

Ahrens and Harris [5] derived one of the first 

analytical estimates of the necessary impulse to deflect 

an asteroid in a route of collision with the Earth. Park 

and Ross [6] formulated an optimization problem to find 

the minimal impulse to deflect the asteroid by using 

planar two-body approximations. Ross et al. [7] 

expanded this work by taking into account the 

gravitational effect of the Earth. A further generalization 

was made to consider the out of plane case [8]. Some of 

the main results of these and other works [9,10,11,12], 

that are considered in this paper, are: the impulse is 

more efficient if applied at the perihelion of the orbit of 

the asteroid; and the impulse is more efficient if applied 

in the direction of the velocity of the asteroid, for 

deflection times greater than roughly its orbital period. 

The present paper aims to test the influence of 

Jupiter in an asteroid deflection. This is done by 

applying a complete three-body problem and then 

comparing it with a four-body problem. For this 

purpose, it is applied a CRTBP (Circular Restricted 

Three-Body Problem), which consists of the Earth, Sun 

and the Asteroid, and a BCRFBP (Bi-circular Restricted 

Four-Body Problem), composed by these three bodies 

with the addition of Jupiter. Additionaly, the analytical 

model presented in Carusi et al. [10] is applied to 

validate the results. The asteroid chosen to be deflected 

is inspired in the 2017 PDC, a hypothetical asteroid 
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impact scenario presented at the 2017 IAA Planetary 

Defense Conference. 

 

2. Mathematical Formulation 

It was chosen the CRTBP and the BCRFBP to 

analyse the effects of a third and a forth body, 

respectively, in the modification of the orbit of the 

asteroid due to the impulse received from a kinect 

impactor. The CRTBP is presented in Section 2.1 and 

the BCRFBP in Section 2.2. The Carusi et al. [10] 

analytical estimate used to validate the results is briefly 

presented in Section 2.3. In order to test the assumptions 

of the impulse applied to the asteroid, we apply the 

optimization method found in Park and Mazanek [8]. 

This is a three-dimensional optimization formulation 

that does not neglect the Earth and it is briefly stated in 

Section 2.4. 

In the CRTBP and BCRFBP approaches a synodic 

reference frame is used and the equations of motion are 

written using the canonical system of units (the same is 

true for the analytical estimate and the optimization 

problem), which are: the unit of distance is the distance 

between M1 and M2, the gravitational constant is 

unitary, the angular speed of the synodic reference 

frame is unitary, the mass of M2 is µ and the mass of M1 

is 1-µ, the unit of time is chosen such that the period of 

the synodic frame is 2π [13]. The synodic reference 

frame has its x axis connecting M1 and M2; its origin is 

the center of mass of M1 and M2; the y axis is 

orthogonal to the x axis lying on the orbital plane of M1 

and M2 and the z axis completes the right handed 

reference frame. 

 

2.1 Circular Restricted Three Body Problem 

(CRTBP) 

To study the effect of the third body on the 

deflection of the asteroid it is chosen the CRTBP, where 

M1 and M2 are the Sun and the Earth, respectively, as 

shown in Fig. 1. The equations of motion are: 

 

𝑥̈ − 2 𝑦̇ = 𝑥 − (1 − 𝜇)
𝑥+𝜇

𝑟1
3  − 𝜇

𝑥−1+𝜇

𝑟2
3 ,               (2.1) 

𝑦̈ + 2 𝑥̇ = 𝑦 − (1 − 𝜇)
𝑦

𝑟1
3 − 𝜇

𝑦

𝑟2
3,                        (2.2) 

𝑧̈ = 𝑦 − (1 − 𝜇)
𝑧

𝑟1
3 − 𝜇

𝑧

𝑟2
3,                                  (2.3) 

 

where r1 and r2 are the distances between the Sun and 

the Earth to the asteroid, respectively. 

 

2.2 Bi-Circular Restricted Four Body Problem 

(BCRFBP) 

The BCRFBP is chosen to study the influence of 

Jupiter over the asteroid deflection. In this model, M1 

and M2 are the Sun and Jupiter, respectively, as shown 

in Fig. 2. The Earth is assumed to be in a circular orbit 

around the center of mass of the Sun and Jupiter and on 

the same orbital plane. The equations of motion are: 

 

𝑥̈ − 2 𝑦̇ −
𝜇𝑒

𝑅𝑒
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𝑧̈ = −(1 − 𝜇)
𝑧

𝑟1
3  − 𝜇

𝑧

𝑟2
3 −

𝜇𝑒

𝑟3
3 𝑧,                                (2.6) 

 

where r1, r2 and r3 are the distances between the asteroid 

and the Sun, Jupiter and Earth, respectively. The angle 

ψ is the phase angle between Jupiter and the Earth, as 

shown in Fig. 2, 𝜇𝑒 is the mass of the Earth in canonical 

units (the actual mass of the Earth divided by the sum of 

the masses of Jupiter and the Sun) and Re is the distance 

between the Earth and the center of the reference frame. 

 

 
Fig. 1. Representation of the CRTBP. 

 

 
Fig. 2. Representation of the BCRFBP. 

 

2.3 Analytical estimate 

This analytical estimate takes into account the 

gravitational perturbation of the Earth, but differently of 

what is made in Carusi et al. [10], here we are interested 

in calculating the miss distance δ. Therefore, their 

analytical formulation can be simply restated to solve 

the following second order equation for the miss 

distance: 
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𝛿2 +
2(1−𝜇)

𝑈2 𝛿 − 𝑏𝑖
2 = 0,                                    (2.7) 

 

where the mass parameter 𝜇 is the same as the one of 

the CRTBP, and as a consequence all the other variables 

must be in accordance with the canonical units of the 

CRTBP as well, U is the heliocentric unperturbed 

encounter velocity and 𝑏𝑖 is an impact parameter for the 

Earth, calculated here as: 

 

𝑏𝑖 =
(3 𝑡 𝑈 𝑠𝑖𝑛𝜃𝑎 𝑉 𝛥𝑉)

1 − 2 𝑎 𝑉 𝛥𝑉
 ,                                         (2.8) 

 

where t is the time when the spacecraft intercepts the 

asteroid, 𝜃  is the angle between the asteroid’s and 

Earth’s velocities at the collision encounter, a is the 

semi-major axis of the asteroid, V is the velocity of the 

asteroid when the spacecraft impacts it and 𝛥𝑉  is the 

impulse applied to the asteroid due to the kinect impact. 

A more detailed description on how to calculate each of 

the parameters is presented in Carusi et al. [10]. 

 

2.4 Impulse Optimization 

This method is formulated to calculate optimal 

impulses for deflecting the asteroid through nonlinear 

programming. It is applied a patched-conics approach, 

including the gravitational effect of the Earth. 

The performance index is defined by the magnitude 

of the impulse applied to the asteroid as: 

 

𝐽 = ||Δ𝑉⃗ ||,                                                          (2.9) 

 

while the constraints are stated as: 

 

𝑟𝐸 − 𝑟𝑆𝑂𝐼 = 0,                                                    (2.10) 

𝑏 − 𝑏𝑖 =,                                                           (2.11) 

𝑟̇𝐸 < 0,                                                               (2.12) 

 

in which 𝑟𝐸 is the distance of the asteroid from the Earth, 

𝑟𝑆𝑂𝐼  is the radius of Earth’s SOI, b is the approach 

distance of the asteroid and, finally, 𝑟̇𝐸  is the time 

derivative of 𝑟𝐸 . The impact parameter 𝑏𝑖  is calculated 

different from the Eq. 2.8. For further explanations, 

please refer to Park and Mazanek [8]. 

 

3. Method 

The semi-major axis (a = 2.2439 AU), inclination (i 

= 6.2970 degrees) and eccentricity (e = 0.6070) of the 

asteroid 2017 PDC is taken from the JPL’s Horizon 

System. The inertial reference frame, represented in Fig. 

3, is defined such that the center of the Earth lies in the 

x axis at the instant of the collision. The other three 

Keplerian elements of the asteroid (longitude of the 

ascending node, argument of periapsis and true 

anomaly) are found such that the orbit of the asteroid 

intersects exactly the position correspondent to the 

center of the Earth at the collision instant, in a two-body 

propagation. For the BCRFBP, it is assumed that the 

initial phase angle between Jupiter and the Earth is zero, 

meaning that Jupiter also lies in the x axis at the instant 

of the collision. 

Once all of the orbital elements are obtained, the 

true anomaly is set a few degrees before the collision 

and the asteroid state at this point is obtained, which 

will be the initial state for our simulations. This 

procedure is necessary to avoid that the gravitational 

influence of the Earth severely changes the asteroid’s 

orbital elements in the further backward integration of 

the equations of motion. The true anomaly offset is 

arbitrarily chosen in a way that the distance between the 

asteroid and the Earth is 2 to 3 times larger than the 

Earth’s SOI. For the asteroid 2017 PDC a value of 5 

degrees is good enough. 

The equations of motion for each problem are 

integrated backward in time from 5 to 50 years. This 

range is considered for the time when the spacecraft 

intercepts the asteroid, when the Δ𝑉⃗  is applied. An 8-7th 

order Runge-Kutta integrator with Dormand and Prince 

formulae is chosen to integrate the equations of motion. 

 

 
Fig. 3. The inertial reference frame at the collision 

instant.  

 

As observed in other works [11,12], an impulse 

tangential to the velocity of the asteroid is the optimal 

solution when the intercept times are greater than about 

the orbital period of the asteroid. Therefore, we choose 

Δ𝑉⃗  to be tangential to the velocity of the asteroid, since 

our intercept time ranges from 5 to 50 years and the 

period of the asteroid is P = 3.35 years. The chosen Δ𝑉⃗  
is applied to the asteroid state at the intercept instant and 

the equations of motion are then integrated forward in 

time, while keeping track of the relative distance 

between the asteroid and the Earth. The minimum 

relative distance between the asteroid and the Earth is 

admitted to be the miss distance δ. 

 

4. Results and Discussion 

This analysis indicates the divergence of the 

deflection obtained by a given Δ𝑉⃗ , at an intercept time t, 
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between the three and four-body problems. The focus is 

to observe how sensible to the influence of Jupiter the 

deflection can be. This kind of analysis may be a 

precursor for further deeper studies in that line. 

But, before investigating the divergence between the 

models, it is mandatory to prove that the assumptions of 

an optimal tangential impulse holds for the asteroid 

2017 PDC in the time span considered here. This is 

done by applying the optimization problem described in 

Section 2.4. 

Figures 4 and 5 show the optimal Δ𝑉⃗  obtained for 

different intercept times, decomposed into the 

tangential, perpendicular and normal components. Each 

component is defined as following: the tangential 

component is tangent to the asteroid’s velocity; the 

perpendicular component is perpendicular to the first 

component and lies on the orbital plane of the asteroid 

and, lastly, the normal component is perpendicular to 

this orbital plane. 

Figure 4 is obtained for a chosen miss distance of 1 

Earth’s radius. The tangential component is completely 

dominant for times greater than 5 years, as it is 

noticeable by the match between the green (||Δ𝑉⃗ ||) and 

the red (tangential component) curves. For most of the 

intercept times, the perpendicular component (blue line) 

is of the order of 0.1 mm/s and the normal component 

(black line) is less than 0.1 mm/s, not even being shown 

in the figure for most intercept times. 

 
Fig. 4. The optimal Δ𝑉⃗  obtained for each intercept time, 

considering δ = 1 Earth’s radius.  

 

Figure 5 keeps the same framework, but now for a 

chosen miss distance of 100 Earth’s radii. The 

tangential component stills dominant for times greater 

than five years, but with an increase of roughly two 

orders of magnitude. 

Figures 6 to 9 show the miss distance for different 

values of the impulse. The perihelion points for the 

CRTBP and the BCRFBP are indicated by a red 

asterisk. As we will show, and as expected, the largest 

miss distances are achieved when the impulse is applied 

at the perihelion of the orbit of the asteroid. Yellow 

lines depict the results for the BCRFBP, while the 

orange lines represent the CRTBP and the blue lines the 

analytical estimate of the Section 2.3. 

Figure 6 shows the results for an impulse of 1 cm/s. 

The analytical estimate shows a bounded linear 

behavior for the miss distance. This was expected 

because of the approximations in its formulation, which 

holds a linear relationship between the miss distance 

and the intercept time when the true anomaly is not 

considered. The CRTBP agrees quite well with the 

analytical estimate, which validates our formulation. 

The only significant divergence between both is found 

in the interval: 30 years < t < 45 years. This is probably 

caused by significant gravitational interactions between 

the asteroid and the Earth after the impulse is applied in 

this time interval. Such behavior was already noted by 

Carusi et al. [10]. In fact, they present a formulation to 

take into account these effects, which is disregarded in 

this paper. Finally, the BCRFBP diverges considerably 

from the other two. This is clear by the continuous 

phase shift between the BCRFBP and the other two 

models as the time grows. Moreover, the BCRFBP 

presents a maximum miss distance of 15.2 Earth’s radii 

for the 50 year time span, while the analytical estimate 

and the CRTBP predicts a maximum miss distance  of 

18.5 Earth’s radii. As already noted, all approaches 

predict the largest miss distances when the asteroid is at 

its perihelion. 

 
Fig. 5. The optimal Δ𝑉⃗  obtained for each intercept time, 

considering δ = 100 Earth’s radii. 

 

The same conclusions can be extended to Figs. 7 and 

8. Figure 7 shows the results for an impulse of 5 cm/s. 

The maximum miss distance obtained for the BCRFBP 

is 76.6 Earth’s radii while the CRTBP predicts that a 

maximum miss distance of 94.2 Earth’s radii. This is 
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closely 5 times larger than the values predicted for an 

impulse of 1 cm / s, indicating a linear relationship 

between the impulse and the miss distance, what is 

expected for low impulses [5, 8]. For an impulse of 10 

cm/s, shown in Fig. 8, the maximum miss distance 

under the BCRFBP is 154.6 Earth’s radii and the 

CRTBP obtains a maximum miss distance of 189.4 

Earth’s radii. These values are closely 10 times larger 

than the ones obtained for an impulse of 1 cm/s.  

 
Fig. 6. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑐𝑚/𝑠.  

 
Fig. 7. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 5 𝑐𝑚/𝑠. 

 

As noted in Fig. 5, a miss distance of 100 Earth’s 

radii, which is very large (roughly 1.5 times the Earth-

Moon distance), is obtained for greater intercept times 

with an impulse as low as ≈10 cm/s. Therefore, a value 

larger than this, in these conditions, would be 

unnecessary, if not infeasible from a technological and 

physical perspective related to the momentum transfer. 

However, for scientific purposes, extrapolating these 

considerations, and applying an impulse of 1 m/s, the 

Fig. 9 is obtained. The overall behavior is the same 

noted in the other figures. The maximum miss distance 

value is of 1721.9 for the BCRFBP and 1957.2 in the 

CRTBP, which is respectively 105.8 and 113.3 times 

larger than the values found for an impulse of 1 cm/s. 

This shows that the linear relationship between the miss 

distance and the impulse still roughly kept for impulses 

that could produce considerably large miss distances, at 

least for a long intercept time. 

 

 
Fig. 8. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 10 cm/s. 

 
Fig. 9. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑚/𝑠. 

 

The initial phase angle 𝜓  is not a controllable 

variable. Of course, the Jupiter initial position cannot be 

chosen. However, by choosing different initial phase 

angles, the relevance of the Jupiter influence might 

become more obvious. For this reason, we now choose 

to apply an impulse of  1  cm/ s for different Jupiter 

initial positions. The values chosen for the initial phase 

angle 𝜓  are 90o, 180o and 270o, besides the already 
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applied value of 0o. Figures 10 to 13 show the results for 

an intercept time span of 15 to 50 years. The blue lines 

represent the CRTBP, while the orange lines are 

representing the BCRFBP. A red line is plotted to mark 

the Earth’s radius. 

Figure 10 shows the results for a phase angle of 0o. 

The results are the same obtained in Fig. 6, the only 

reason to plot it again is to keep the pattern with the 

later figures, what facilitates a comparison.  

Figure 11 represents the results obtained for 𝜓 = 

90o, which means that Jupiter lies exactly on the inertial 

y axis at the collision instant between the asteroid and 

the Earth. As one can note, the phase shift between the 

miss distance curves of the BCRFBP and the CRTBP is 

largely reduced. Another interesting fact is that the 

BCRFBP predicts a maximum miss distance of roughly 

18 Earth’s radii when the initial phase angle is set to 

90o, which is 3 Earth’s radii larger than the one obtained 

for an angle value of 0o. 

 

 
Fig. 10. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑐𝑚/𝑠 and 𝜓 = 0o. 

 

 
Fig. 11. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑐𝑚/𝑠 and 𝜓 = 90o. 

 

If the initial phase angle is set to 180o, the results are 

very similar to the ones found for a value of 0o, as 

shown in Fig. 12. Nevertheless, some slight differences 

are noted. The miss distance curves are phase shifted 

backwards and a small divergence in the values are 

observed. The maximum miss distance for this case is 

close to 14 Earth’s radii, while a roughly value of 15 

Earth’s radii is found in Fig. 10, as already shown. 

 
Fig. 12. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑐𝑚/𝑠 and 𝜓 = 180o. 

 

 
Fig. 13. The miss distance 𝛿  obtained for each of the 

models, using ||Δ𝑉⃗ || = 1 𝑐𝑚/𝑠 and 𝜓 = 270o. 

 

Lastly, Fig. 13 shows the results when the initial 

phase angle is made equal 270o. The divergence 

between these results and the others are quite 

noticeable. In an intercept time of around 27 years, the 

miss distance value explodes in the BCRFBP, reaching 

up values as large as 300 Earth’s radii. Zooming in Fig. 

13 in lower miss distances we obtain the Fig. 14. It 

shows that the behavior for this case is quite similar to 

the one found in Fig. 11. However, when t ≈ 27 years, 

the kinect impactor throw the asteroid in an orbit that 

causes an impact with the Earth. For larger intercept 

time values the miss distance explodes, indicating that 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18,E2,1,2,x45262        Page 7 of 8 

the Jupiter influence for this case causes a considerable 

gravitational interaction with the Earth if the impulse is 

applied.  

 

 
Fig. 14. Zooming in Fig.13. 

 

5. Conclusions  

The dynamics of an impulsive asteroid deflection 

considering the gravitational effects of the Earth and 

Jupiter was analyzed. They show that the effects of 

Jupiter might be considerable in some scenarios. 

The linear relation between the miss distance and the 

impulse applied to the asteroid is held when considering 

the CRTBP. This is in accordance with previous studies 

in the literature and with the analytical estimate 

presented here. However, the simulations for the 

BCRFBP show that the Jupiter inclusion in the 

dynamics can substantially changes the relation. It can 

changes the magnitude of the obtained miss distance, 

the linear bounded relation between the time and the 

miss distance and also imply in a phase shift of the 

predicted miss distance.  

Of course any predicted result obtained through a 

method similar to the one presented in Section 2.3 will 

be refined in a full N-body problem. Even so, if any 

analytical approximation or thumb rule considering 

Jupiter can be obtained, a first approach can predict a 

much more reliable result. And a behavior as harsh as 

the one obtained for an initial phase angle of 270o might 

be taken into account at a firsthand. 

As far as the authors know, this is the first time that 

such a study is performed. Though Carusi et al. [10] 

made their analysis considering a full N-body problem, 

with Jupiter, Saturn, Mars, Moon and the Earth, no 

systematic attention was paid to compare the effects of 

each body. Therefore, this work may lay down the 

ground for further studies in the same lines. 
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