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Abstract. Several quasi-analytical algorithm (QAA) versions were developed to make it suitable
for different inland water systems. QAABBHR and QAAOMW were reparameterized based on two
reservoirs from the Tietê River cascading system (São Paulo State, Brazil), which present widely
differing compositions. Considering the purpose of monitoring the entire cascade through
a unique QAA version, we aimed to assess the suitability of these two QAA versions and,
in addition, another two QAA native forms (versions 5 and 6), for retrieving inherent optical
properties (IOPs) in Ibitinga hydroelectric reservoir (IHR), situated in the same cascading sys-
tem. In addition to that, we addressed bio-optical characterization of IHR, using spectral and
water quality data collected in a field campaign conducted in July 2016. Wide spatial variability
of optically significant constituent (OSC) in IHR and colored dissolved organic matter predomi-
nance in its absorption budget was observed. None of the tested QAA versions were completely
suitable in retrieving absorption coefficients for IHR in all wavelengths. However, results for
wavelengths commonly used as proxy for OSC concentration retrieval were satisfactory in
some of the models. Therefore, the results obtained in this study shows that QAAs versions
can be used for specific purposes (e.g., chlorophyll-a mapping), by employing the best
model for IOPs retrieval at a specific wavelength. This highlights the challenge of copying
with high optical variability in cascading systems. In this sense, further research is necessary,
for either achieving a QAA reparameterized version appropriate for aquatic systems with widely
differing optical properties or another analytical scheme. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.036014]
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1 Introduction

Remotely sensed data have been used to retrieve the optically significant compounds (OSC)
concentrations in inland waters, using bio-optical models. These models are often empirical or
semianalytical models. Empirical models directly relate remotely sensed measurements to
the OSC of interest, usually through statistical regression, whereas semianalytical is based
on radiative transfer inverse modeling. Empirical models can be time and site limited with
no physical meaning.

Semianalytical and quasianalytical algorithms (QAA)1 are based on radiative transfer theory
and often include empirical steps. A semianalytical model estimates the total absorption coef-
ficient atðλÞ by sum of phytoplankton absorption coefficient, aφðλÞ, colored dissolved organic
matter (CDOM) absorption coefficient, aCDOMðλÞ, and nonalgal particle absorption coefficient,
aNAPðλÞ2–4 while QAA estimates atðλÞ using exclusively remote sensing reflectance (Rrs).
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The backscattering coefficient, bbðλÞ, is also estimated via semianalytical models by summing
bb of each in-water constituent, except CDOM, whereas QAA also retrieves backscattering coef-
ficient of suspended particles bbpðλÞ using Rrs, though analytical and empirical steps.

QAA is a special case because it includes empirical and analytical steps for retrieving inher-
ent optical properties (IOPs) and was developed to retrieve IOPs in the open ocean and coastal
waters, and later for turbid waters. There are mainly three limitations of QAA applicability in
inland waters: (1) the model used to estimate the atðλÞ is empirically derived from synthetic data,
(2) the model used to estimate η—spectral power for bbpðλÞ derivation, and (3) the equations
used to estimate the phytoplankton absorption coefficient.5,6

The applicability of QAA in optically complex inland waters is certainly more challenging than
when working on case 1 waters.2 To make QAA suitable for more complex waters, calibration and
reparameterization of the original versions are required as demonstrated by several authors.5–8

Considering that at shorter wavelengths, at is highly influenced by aφ and CDOM plus detritus
absorption coefficient, aCDM, in inland waters, reparameterization includes reference wavelength
(λ0) shifting to red-edge and near-infrared regions.

6–10 In addition to that, other usual enhancements
in inland water QAAversions are a calibration of intermediary empirical and semianalytical steps,
such as atðλ0Þ and bbpðλÞ estimation, and reparameterization of equations or coefficients for
aφ and aCDM estimation, according to the IOPs presented in the specific inland water body.

When it comes to cascading reservoirs systems, variability trends are also influenced by
cascading effects,11 as well as by the different contributions arriving from the drainage
basin, tributary rivers, and floodgates mechanisms.12 In such aquatic systems, there are widely
differing optical properties and the efficiency of parameterized versions is uncertain.

Tietê River cascading system is located in São Paulo state, a densely populated region of
Brazil where water quality is an urgent matter. Recently, two QAA versions were parameterized
for two reservoirs from this system: QAABBHR

13 and QAAOMW.
14 The QAABBHR was parame-

terized for the eutrophic Barra Bonita hydroelectric reservoir (BBHR),15 which is the first
reservoir of the cascading system, receiving large amounts of pollutants from the metropolis of
São Paulo and also from agriculture and cattle raising.11 Suspended particulate matter (SPM) in
this reservoir is dominated by the organic fraction.12,13 The QAAOMW version was parameterized
for the oligo-to-mesotrophic Nova Avanhandava reservoir (NHR), located further downstream,
presenting relatively low chlorophyll-a (Chl-a) and SPM concentrations, and inorganic predomi-
nance in its SPM.12

Ibitinga hydroelectric reservoir (IHR) is also situated in the Tietê River, downstream from
BBHR and upstream from NHR. Chl-a and SPM concentration values in IHR are typically
between the ranges found in BBHR and NHR.16 However, due to some particularities, as organic
matter predominance and slightly higher Chl-a concentrations, IHR is possibly more similar to
BBHR bio-optical characteristics. Considering that IHR bio-optical status is comparable with
BBHR ones, the hypothesis here tested is that QAABBHR could be able to consistently retrieve aφ
in IHR but may be not capable of accurately retrieve aCDM, as QAABBHR was parameterized
considering phytoplankton features of the BBHR reservoir.13

To test the aforementioned hypothesis, we aim to assess the performance of QAABBHR and
QAAOMW, in addition two latest native forms of QAA − QAAV5

17 and QAAV6
18—in retrieving

aφ and aCDM for IHR; we also will retrieve at for each QAA version. We decided to also test
the QAAV5 and QAAV6 to compare the results from the original and reparameterized versions.
This investigation relates to the purpose of monitoring all the cascading system in an integrated
manner, through a unique QAAversion properly adjusted for capturing the bio-optical variability
occurring along the system. We also addressed water quality and bio-optical characterization of
IHR, intending to associate it with algorithms efficiency, as this was not previously reported in
the literature.

2 Materials and Methods

2.1 Study Area

IHR is located in the middle course of Tietê River, central area of São Paulo State, Brazil (21°45′
S and 48°59′W). It is the third of six cascading reservoirs [Fig. 1(a)]. Its flooded area is around
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114 km2, with ∼9 m of average depth and an average flow of 525 m3 s−1. IHR is situated in
a temperate humid climate, characterized by well-defined dry and wet seasons. The surrounding
area presents grazing land, sugarcane crops, and minor reforestation areas.19 The river receives
wastewater discharges from domestic and industrial sources along its course, besides diffuse
sources of pollution arising from agriculture and cattle breeding activities. The trophic state
of the reservoir is highly spatially and temporally variable, and some areas are classified as
eutrophic, whereas other ones are considered mesotrophic.16,20 A field campaign was conducted
during austral winter, from July 19 to 23, 2016, in which water quality and spectral data were
obtained in 29 sampling stations [Fig. 1(c)], as well as water samples collected just below
air–water interface.

2.2 Water Quality Data

Secchi disk depth (m), turbidity (NTU), and electric conductivity (μs∕cm) data were obtained in
all 29 sampling stations [Fig. 1(c)]. Water samples were collected to estimate Chl-a concentra-
tion, through acetone extraction method.21,22 The SPM concentrations, as well as organic (OSM)
and inorganic suspended matter (ISM) fractions were estimated according to the American
Public Health Association protocol.23

2.3 Radiometric Data

Total upwelling radiance [LtðλÞ; Wm−2 sr−1 nm−1] and atmospheric diffuse radiance [LsðλÞ;
Wm−2 sr−1 nm−1] were measured using two RAMSES-ARC hyperspectral radiometers.
Downwelling irradiance [EdðλÞ; Wm−2 nm−1] was measured using a RAMSES-ACC sensor
(TriOS, Oldenburg, Germany). All radiometric sensors used were operated in the spectral
range between 350 and 900 nm, with a spectral resolution of 3.3 nm. The acquisition geometry
followed Ref. 24, with LtðλÞmeasured at a zenith angle (θ) of 140 deg, LsðλÞ at θ ¼ 40 deg, and
EdðλÞ measured with the sensor aligned to the zenith, i.e., θ ¼ 0 deg; all measurements were
taken at an azimuth angle of 90 deg.

These radiometric quantities were then applied to estimate Rrs (sr−1) spectra, using the spec-
tral optimization approach proposed by Ref. 25, to remove surface-reflected radiance [LrðλÞ].26
Rrs spectra, which were estimated through in situ hyperspectral measurements, were then
resampled to simulate satellite data. The spectral response functions of each ocean and land
colour instrument—Sentinel 3 band were used to derive band-weighted data.

Fig. 1 (a) São Paulo State location in Brazil, (b) cascading reservoirs in Tietê River. Please note
the IHR upstream from NHR and downstream from Barra Bonita reservoir (see text for more
details), and (c) distribution of 29 sampling stations in IHR.
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2.4 Phytoplankton Absorption Coefficient (aφ), Detritus Plus CDOM Absorption
Coefficient (aCDM), and Total Absorption Coefficient (at)

To estimate CDOM absorption coefficient (aCDOM, m−1), water samples were filtered through
Whatman nylon membrane—0.22-μm porosity and 47-mm diameter. The absorbance of the
filtrates was read using a 2600 UV–VIS spectrophotometer (Shimadzu, Japan), and the results
were applied to calculate aCDM as proposed by Ref. 27 [Eq. (1)]:

EQ-TARGET;temp:intralink-;e001;116;655aCDOM ¼ 2.3
ODCDOMðλÞ

r
; (1)

where ODCDOMðλÞ is the optical density of CDOM and r is the cuvette path length (0 and 1 m).
To determine the total particulate (algal and detritus) absorption coefficient (ap, m−1), water

samples were filtered through fiberglass GF/FWhatman—0.7-μm porosity and 47-mm diameter.
Then, transmittance–reflectance (T–R) method described by Refs. 28 and 29 was employed
using a double-beam 2600 UV-VIS spectrophotometer equipped with an integrating sphere.
The spectral sampling ranged from 280 to 800 nm, with a spectral resolution of 1 nm. To bleach
pigments from the filters, a 10% sodium hypochlorite (NaCLO) solution was used and T–R
measurements were taken again. By eliminating pigments influence, it was possible to obtain
detritus absorption coefficient (ad, m−1); ap and ad are then obtained according to Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;505ap;dðλÞ ¼
2.303 × ODp;dðλÞ

V × A
; (2)

where ODpðλÞ is the optical density of total particulate, ODdðλÞ is the optical density of detritus,
V is the filtered volume (m3), and A is the filter clearance area (m2). The phytoplankton absorp-
tion coefficients (aφ,m−1) were calculated by subtracting ad from ap. Finally, aCDM is calculated
by adding aCDOM to ad.

The at is calculated as the sum of the absorption coefficients of pure water (aw), phytoplank-
ton (aφ), nonalgal particles (aNAP), and CDOM (aCDOM).

2.5 Quasianalytical Algorithm

QAAV5 and QAAV6 performances were evaluated for IHR. It is important to highlight that
QAAV6 was developed to improve QAA accuracy in water systems in which Rrs at 670 nm is
>0.0015 sr−1, i.e., coastal regions and areas with high sediments concentration. QAABBHR and
QAAOMW, the two reparameterized versions for Tietê River cascading system, were also tested.
The dataset considered by Ref. 13 for QAABBHR parameterization presented high values and
a broad range of Chl-a concentration (from 17.7 to 797.8 mgm−3; average 274.5 mgm−3) and
SPM concentration ranging from 3.6 to 44.0 gm−3 (average 14.6 gm−3), with its organic
fraction corresponding to ∼90% of total SPM in the samples. Differently, the dataset used by
Ref. 14 forQAAOMW parameterization showed low average Chl-a concentration (16.15 mgm−3,
ranging from 2.46 to 38.59 mgm−3), as well as low average SPM concentration (1.85 gm−3,
varying from 0.10 to 5.30 gm−3); inorganic fraction was predominant in total SPM. Statistic
metrics used to assess the QAAs performances for IHR were normalized root mean square
error (NRMSE) and mean absolute percentage error (MAPE), considering aφ, aCDM, and at
estimated from water samples obtained in the field campaign as reference data.

The main improvements applied by the authors to adequate QAA for BBHR were changing
λ0 to 709 nm; calibration of χ and of the coefficients of the polynomial fit for empirical derivation
of atðλ0Þ; parameterization of ξ based on in situ aCDM spectral slope and empirical calibration of
ζ. These alterations aimed to adjust the model for the highly eutrophic environment of BBHR.
Even presenting an oligo-to-mesotrophic status, the adjustment of λ0 toward NIR region also
showed to be satisfactory in NHR. To parameterize QAA for NHR, in addition to shifting λ0,
the combination of wavelengths in the equation for χ estimation was modified, as well as the
wavelengths for η calculation, which were calibrated based on in situ at measurements.
Considering local data, band ratio and the offset coefficient for ζ estimation were changed
in QAAOMW, along with S optimization for ξ derivation; final steps for obtaining aCDMðλÞ
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followed Ref. 8. For aφ derivation, QAAOMW follows an approach combining Refs. 30 and 31,
using in situ dataset to reproduce the spectral shape for aφðλÞ.

3 Results and Discussion

3.1 Water Quality Characterization

Chl-a and SPM concentrations varied widely (1.37 to 119.04 mgm−3 and 1.00 to 8.10 gm−3,
respectively), showing significant spatial variability (Table 1). OSM represented 63% of the
SPM, which means organic matter is slightly predominant. Turbidity values also showed
some fluctuation, although it was lower than the variation presented by Chl-a and SPM
(coefficient of variation 23.28%); in general, turbidity presented a relatively low average value
(4.24 NTU). Secchi disk presented an average of 2.23 m and the lowest coefficient of
variation (15.50%).

Regarding the absorption coefficients, adð443Þ and aφð443Þ presented similar average val-
ues, whereas aCDOMð443Þ presented the highest values—>adð443Þ and aφð443Þ. Detritus can be
constituted of mineral matter, humus, or organic remains; considering that organic fraction
of SPM showed to be slightly higher in this dataset and aφ is not dominant, detritus in the
reservoir is probably mainly constituted of humus and organic remains that are not resulting
from phytoplankton degradation.32

3.2 Bio-Optical Characterization

In situ measured Rrs spectra [Fig. 2(a)] show absorption features around 675 nm and a reflec-
tance peak around 700 nm that can be associated with Chl-a. However, these Rrs features are not

Table 1 Descriptive statistics of water quality parameters and optical data in IHR; SD, standard
deviation; CV, coefficient of variation; n ¼ 29.

Minimum Maximum Mean SD CV (%)

Chl-a (mgm−3) 1.37 119.04 19.34 24.71 127.79

SPM (gm−3) 1.00 8.10 2.45 1.40 57.19

OSM/SPM 0.29 0.88 0.63 0.15 23.28

ISM/SPM 0.12 0.71 0.37 0.15 40.11

Depth (m) 9.50 21.60 14.90 4.29 28.77

Turbidity (NTU) 2.82 8.87 4.24 1.19 28.01

Secchi depth (m) 1.60 3.20 2.23 0.35 15.50

aφð443Þ (m−1) 0.06 1.88 0.30 0.36 120.44

aCDMð443Þ (m−1) 1.06 2.78 1.61 0.30 18.64

ad ð443Þ (m−1) 0.14 0.62 0.37 0.13 33.54

aCDOMð443Þ (m−1) 0.69 2.17 1.24 0.30 24.18

at ð443Þ (m−1) 1.13 4.68 2.06 0.80 38.95

Fig. 2 (a) In situRrs spectra and (b) average absorption coefficients by phytoplankton (aφ), CDOM
(aCDOM), detritus (ad ) and pure water (aw ); n ¼ 29.
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observed in all stations, indicating spatial variability in terms of optically significant constituents
(OSC) at IHR. A prominent feature of reflectance in the green spectral region, around 550 nm,
can be observed with different magnitudes [Fig. 2(a)]. This reflectance peak is usually related
with scattering from algal cells,33 and also with ISM, which shifts higher reflectance values
toward longer wavelengths.34 Average aCDOM was the greatest contributor for at until around
660 nm [Fig. 2(b)]. Average ad presented higher values than average aφ through blue and green
spectral regions; approximately at 600 nm average aφ shows slight increase, and it is consid-
erably greater than average ad from 660 to 700 nm [Fig. 2(b)].

Ternary plots (Fig. 3) display the relative contribution of aCDOM, aφ, and ad to the total
absorption at IHR. Similar datasets from BBHR13 and NHR,14 collected in May, 2014, and
May, 2016, respectively, are also plotted for comparison purpose. It is relevant to highlight
that all three dataset considered here were collected during the dry season.

Absorption in IHR dataset is dominated by CDOM in all three wavelengths here considered,
corresponding to 70.11%� 3.94% at 443 nm, 73.63%� 4.67% at 560 nm, and 68.94%�
6.43% at 665 nm. Detritus contributed to the total absorption budget with 18.13%� 2.67%

at 443 nm and 17.18%� 3.40% at 560 nm. At 665 nm, phytoplankton contributed with
20.08%� 5.27% of the total while detritus contributed with only 10.97%� 2.86%. In BBHR,
total absorption was predominately due to phytoplankton in all three wavelengths, especially at
665 nm, with aφ contributing with 85.72%� 3.18%. However, at 443 and 560 nm the total
absorption is more balanced among all OSC as can be observed in the scatter of dots around
the central area of the plots [Figs. 3(a) and 3(b)]. In NHR dataset, otherwise, ad was the major
contributor at 443 and 560 nm, corresponding to 62.16%� 4.42% and 72.02%� 6.52%,
respectively. At 665 nm, aφ represented 65.15%� 5.97% of total absorption, whereas ad
was the second greatest contributor with 32.51%� 5.72%.

3.3 QAA Performances

3.3.1 Absorption coefficient of phytoplankton (aφ)

QAAOMW presented the lowest average NRMSE (%) and MAPE (m−1) for aφ retrieval (Table 2).
However, if we consider only 665-nm band, which is a diagnosis wavelength for Chl-a, this
same version shows the highest errors (NMRSE ¼ 31.74%, MAPE ¼ 6.03 m−1).

QAAOMW tuning was based on NHR dataset, comprising Chl-a concentration values lower
than the ones measured in IHR (NHR average 7.94 mgm−3; IHR average 19.34 mgm−3), and
this difference can be related to its poor performance at 665-nm band. QAABBHR, differently,
was developed for a highly productive reservoir, and IHR bio-optical status did not showed to be
similar to BBHR one, justifying why it was not completely suitable for retrieving aφ in IHR.
QAAV6 showed higher values of NRMSE and MAPE than QAAV5 in all wavelengths,
although this performance was not initially expected as QAAV6 was proposed for Rrs

ð670Þ > 0.0015 sr−1, which fits IHR dataset [Rrsð670Þ ¼ 0.00427 sr−1]. Comparatively,

Fig. 3 Ternary plots presenting the relative contribution of detritus, phytoplankton and CDOM to
the total absorption (without water fraction) at three different wavelengths for IHR (red dots), BBHR
(black dots), and NHR (brown dots): for 443, 560, and 665 nm.
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QAAV5 showed to be the most accurate version at 665 nm (NMRSE ¼ 15.35%,
MAPE ¼ 1.19 m−1).

Scatterplots of aφ estimated by the QAAs and aφ measured in the laboratory are shown in
Fig. 4. In general, QAAV5 overestimated aφ in great part of wavelengths [Fig. 4(a)], except for
the longer ones—specifically 681 and 709 nm—for which the version underestimated the values.
The other versions overestimated most of the aφ values at all wavelengths, excluding QAABBHR

at 412 nm. It can be clearly observed that a sampling spot disagrees with the other ones in almost
all wavelengths for all four QAA tested; this spot corresponds to the highest Chl-a and SPM
concentrations of the dataset.

3.3.2 Absorption coefficient of CDOM plus detritus (aCDM)

For aCDM, all QAAs variants demonstrated similar average NRMSE and MAPE, presenting
reasonable accuracy (Table 3). An improvement in the NRMSE values can be observed with
increasing wavelengths. QAAOMW showed slight better results (NRMSE ¼ 21.74%, MAPE ¼
0.44 m−1); NHR is a nonproductive reservoir and it is dominated by aCDM in the blue–green

Table 2 QAAs performances for aφ retrieval, according to each band, based on NRMSE (%) and
MAPE (m−1).

QAAV5 QAAV6 QAABBHR QAAOMW

Bands (nm)
NRMSE

(%)
MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

412 14.04 1.36 17.14 1.93 19.46 0.70 21.94 1.84

443 15.86 1.35 19.82 1.91 13.80 0.86 21.02 1.15

490 30.77 2.44 40.53 3.29 30.86 2.46 26.07 0.98

510 32.46 2.61 44.12 3.58 35.94 2.86 19.92 0.67

560 38.14 3.21 54.41 4.55 49.70 4.03 20.49 0.60

620 14.19 1.38 21.25 3.49 20.01 3.48 16.07 0.84

665 15.35 1.19 20.23 4.09 18.06 5.46 31.74 6.03

681 15.49 0.78 19.17 2.32 14.03 2.56 23.79 1.94

709 112.00 3.78 118.04 10.99 89.48 10.70 30.64 0.45

Average 32.03 2.01 39.41 4.02 32.37 3.68 23.52 1.61

Fig. 4 Comparison between estimated and measured aφ using: (a) QAAV5, (b) QAAV6,
(c) QAABBHR, and (d) QAAOMW.
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region, just as IHR, and this can be associated with the lower errors presented by QAAOMW.
As generally the estimation of aCDM form remotely sensed data uses the wavelength of 443,
the lowest NRMSE was observed for QAAOMW version.

Figure 5 shows that QAAV5, QAAV6, and QAABBHR consistently underestimated aCDM in all
wavelengths. It probably occurs due to high CDOM and detritus concentrations and its relative
predominance in the absorption budget of IHR (see Fig. 3), which is not commonly found in
ocean and coastal waters, and also differs from BBHR optical characteristics. In these scatter-
plots, two sampling spots evidently differ from the others: one of them is discrepant in all
wavelengths and also corresponds to the spot with the highest Chl-a and SPM concentrations
(as in Fig. 4), whereas the second one disagrees mostly in the shortest wavelengths—except for
QAAOMW, which overestimated aCDM values for all wavelengths—and it corresponds to the
second-highest SPM concentration in the dataset.

On the other hand, QAAOMW was able to retrieve, in general, more consistent values of aCDM
[Fig. 5(d)]. It is important here to highlight that QAA approach unifies absorption by detritus and
CDOM as aCDM. Taking this into account, and also considering that NHR absorption occurs
mostly due to detritus, while in IHR the CDOM is predominant, it corroborates the capability

Table 3 QAAs performances for aCDM retrieval, according to each band, based on NRMSE (%)
and MAPE (m−1).

QAAV5 QAAV6 QAABBHR QAAOMW

Bands (nm)
NRMSE

(%)
MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

412 50.41 0.85 49.60 0.84 41.17 0.67 29.49 0.35

443 40.71 0.87 40.26 0.86 34.54 0.70 24.64 0.31

490 32.75 0.91 32.56 0.90 29.54 0.78 21.43 0.33

510 30.46 0.92 30.33 0.91 28.07 0.81 20.69 0.34

560 25.94 0.95 25.89 0.94 24.83 0.86 19.71 0.39

620 23.52 0.97 23.50 0.97 23.07 0.92 19.82 0.49

665 22.42 0.98 22.41 0.98 22.20 0.95 19.98 0.57

681 21.91 0.98 21.91 0.98 21.74 0.96 19.85 0.58

709 21.65 0.99 21.65 0.99 21.54 0.97 20.07 0.64

Average 29.97 0.94 29.79 0.93 27.41 0.85 21.74 0.44

Fig. 5 Comparison between estimated and measured aCDM using: (a) QAAV5, b) QAAV6,
(c) QAABBHR, and (d) QAAOMW.
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of QAAOMW in retrieving aCDM in nonphytoplankton-dominated waters and, consequently,
its potential in determining carbon content in aquatic systems.

3.3.3 Total absorption coefficient (at)

Regarding the at retrieval, QAAOMW performed better with NRMSE ranging from 15.89% to
32.97% (average of 21.34%) and QAAV5 was the one that presented the highest errors with
55.76% at 412 nm and average NRMSE of 39.38% (Table 4). The second best performance
was observed for QAABBHR with NRMSE ranging from 15.72% to 50.51% (average of
27.77%). QAAOMW great performance for at correlates with its good average results for
aφ and aCDM, demonstrating that indeed, both initial steps for at estimation and the last
ones—partitioning of at into aφ and aCDM—in QAAOMW parameterization showed to be
fairly adequate for IHR characteristics.

According to Tables 2 and 3, the highest errors for lower wavelengths observed in Table 4
were due to the estimation of aCDM. The QAAs performed better for aφ in lower wavelengths
than in the longer ones. Scatterplots of at estimated by the QAAs and at measured in laboratory
are shown in Fig. 6. These graphs show that the performance of QAAOMW outperformed
the other QAA versions.

Table 4 QAAs performances for at retrieval, according to each band, based on NRMSE (%) and
MAPE (m−1).

QAAV5 QAAV6 QAABBHR QAAOMW

Bands
(nm)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

NRMSE
(%)

MAPE
(m−1)

412 55.76 2.88 53.59 2.26 50.41 1.93 32.97 0.41

443 42.51 2.06 40.90 1.60 37.10 1.30 24.41 0.27

490 36.00 1.36 33.54 1.01 29.19 0.78 17.26 0.18

510 34.56 1.27 32.15 0.94 27.78 0.71 16.37 0.18

560 31.67 0.97 29.35 0.71 24.56 0.49 17.23 0.18

620 28.52 0.58 27.42 0.37 20.78 0.20 18.73 0.16

665 25.43 0.43 24.49 0.24 16.02 0.11 15.89 0.13

681 21.84 0.40 22.16 0.27 15.72 0.13 16.15 0.16

709 78.17 0.27 66.89 0.17 28.39 0.07 33.05 0.08

Average 39.38 1.14 36.72 0.84 27.77 0.63 21.34 0.19

Fig. 6 Comparison between estimated and measured at using: (a) QAAV5, (b) QAAV6,
(c) QAABBHR, and (d) QAAOMW.
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3.3.4 Implications for OSC monitoring

Neither originals nor reparameterized QAA versions tested here were capable of estimating
accurately the absorption coefficients in all wavelengths. This shows a challenge in copying
with high optical variability in cascading system. Although QAABBHR was parameterized for
a high productive aquatic system, the model could not accurately retrieve the aφ at 665 nm
[aφ (665)], which is used as a proxy to estimate Chl-a concentration. This possibly happened
because Chl-a concentration in BBHR is very high (∼797 mgm−3), and due to this the Rrs

spectra are masked by the package effect, as reported by Ref. 35. For aφð665Þ, the QAAV5

presented the lowest error. On the other hand, to estimate the aCDM at 443 nm [aCDMð443Þ],
which is a proxy for carbon content36 the QAAOMW presented the lowest error. These results
highlighted the limitation of such quasianalytical scheme to monitor the spatial–temporal OSC in
the cascading system. However, the obtained results also demonstrate an opportunity to better
understand the complexity of these aquatic systems and try to figure out how to improve
the QAA to use only one version to estimate the OSC in the entire cascade. Up to now,
the monitoring of OSCs from space operationally is still a challenge.

4 Conclusion

As QAA native versions, QAAV5 and QAAV6, were designed for ocean and coastal waters,
a poor performance for optically complex inland waters was already expected and it was con-
firmed. However, QAABBHR did not performed satisfactorily as supposed, demonstrating that
even presenting some similarity regarding the OSCs, the bio-optical status of BBHR and IHR are
substantially different and, thus, IHR IOPs cannot be derived through this reparameterized QAA.
Therefore, our hypothesis can be rejected as QAABBHR was not suitable for retrieving neither aφ
nor aCDM. Although QAAOMW was able to retrieve relatively accurate average values for aφ and
aCDM values in IHR, in addition performing relatively well for aCDMð443Þ, it presented an unsuit-
able performance for aφð665Þ, indicating that this version also has its limitations for deriving
IHR IOPs at wavelengths used as proxy for OSCs concentrations estimation. Variability of
bio-optical characteristics along the cascading system was confirmed as none reparameterized
version for reservoirs in the same system was completely suitable for IHR in all wavelengths.
Even though the algorithms did not performed satisfactorily in all wavelengths, results for spe-
cific wavelengths show potential when it comes to OSCs concentration retrieval. We can high-
light the good, it is possible to point out the good QAAV5 performance for aφð665Þ estimation
and QAAOMW performance for aCDMð443Þ. These results demonstrate the possibility of using
QAAversions that showed to be suitable for a particular absorption coefficient at a certain wave-
length for an application that relates to it, using them as a proxy and then applying it to estimate
the OSC in inland waters from space. In any case, further research is necessary, either aiming to
achieve a QAA reparameterization appropriate for waters with widely differing optical properties
or analyzing the suitability of other analytical methods.
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