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Abstract: The aim of this study is to evaluate the potential of multifrequency and Full-polarimetric
Synthetic Aperture Radar (SAR) data for retrieving both Above Ground Biomass (AGB) and Leaf Area
Index (LAI) in the Amazon floodplain forest environment. Two specific questions were proposed:
(a) Does multifrequency SAR data perform more efficiently than single-frequency data in estimating
LAI and AGB of várzea forests?; and (b) Are quad-pol SAR data more efficient than single- and
dual-pol SAR data in estimating LAI and AGB of várzea forest? To answer these questions, data
from different sources (TerraSAR-X Multi Look Ground Range Detected (MGD), Radarsat-2 Standard
Qual-Pol, advanced land observing satellite (ALOS)/ phased-arrayed L-band SAR (PALSAR-1).
Fine-beam dual (FDB) and quad Polarimetric mode) were combined in 10 different scenarios to model
both LAI and AGB. A R-platform routine was implemented to automatize the selection of the best
regression models. Results indicated that ALOS/PALSAR variables provided the best estimates
for both LAI and AGB. Single-frequency L-band data was more efficient than multifrequency SAR.
PALSAR-FDB HV-dB provided the best LAI estimates during low-water season. The best AGB
estimates at high-water season were obtained by PALSAR-1 quad-polarimetric data. The top three
features for estimating AGB were proportion of volumetric scattering and both the first and second
dominant phase difference between trihedral and dihedral scattering, extracted from Van Zyl and
Touzi decomposition, respectively. The models selected for both AGB and LAI were parsimonious.
The Root Mean Squared Error (RMSEcv), relative overall RMSEcv (%) and R2 value for LAI were
0.61%, 0.55% and 13%, respectively, and for AGB, they were 74.6 t·ha−1, 0.88% and 46%, respectively.
These results indicate that L-band (ALOS/PALSAR-1) has a high potential to provide quantitative and
spatial information about structural forest attributes in floodplain forest environments. This potential
may be extended not only with PALSAR-2 data but also to forthcoming missions (e.g., NISAR, Global
Ecosystems Dynamics Investigation Lidar (GEDI), BIOMASS, Tandem-L) for promoting wall-to-wall
AGB mapping with a high level of accuracy in dense tropical forest regions worldwide.

Keywords: SAR data; Above Ground Biomass (AGB); Leaf Area Index (LAI); Wetlands Amazon

1. Introduction

The estimation and monitoring of Above Ground Biomass (AGB) and Leaf Area Index (LAI) in
tropical forests is of great relevance for understanding biogeochemical cycles and the effects of climate
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change on forest resources. Such measurements also support international protocols such as the
United Nations Reducing Emissions from Deforestation and Forest Degradation (REDD+) [1]. AGB is
regarded as an important indicator in ecological studies and management of vegetation, whereas LAI
is a key parameter in plant ecology.

Due to frequent cloud coverage [2], Synthetic Aperture Radar (SAR) remote sensing has been
shown to be an important tool for the assessment of both LAI and AGB in tropical regions [3–5]. This is
due to the capacity of SAR systems to both penetrate clouds and interact with vegetation canopies,
with the volumetric backscattering component being a function of canopy structure. Although SAR
systems are not able to retrieve the vertical structure of vegetation as easily as airborne Light Detection
and Ranging (LiDAR) systems, the wide swath orbital coverage capability of SAR systems is useful for
assessing large wetland ecosystems such as the floodplains along Amazonian rivers, known for their
biodiversity, complexity and difficult access [6].

The applicability of SAR data to determine forest biophysical parameters depends on the number
of polarizations and the frequency or wavelength used [6,7]. Most orbital SAR platforms acquire
data in only single- and dual-polarization modes, thus having limited potential for discriminating
subtle structural differences in the vegetation [7–10]. Quad-pol, or full-polarimetric mode, provide
the complete scattering matrix of the backscattered wave, allowing the calculation of polarimetric
decomposition and other polarimetric descriptors, which can potentially better describe canopy
structural properties [11,12]. This has already been shown by several studies [12–20]. Multi-frequency
SAR data can also be used as an alternative to single-frequency single- or dual-pol data. Its synergy
enables discrimination of subtle vegetation types and assessment of structural properties, albeit
with different degrees of success, as different frequencies interact with distinct sections of the plant
canopy [15,21–23].

To date, provision of orbital quad-pol SAR data has been limited to experimental mode, with
limited swath coverage, and/or the data are more expensive than single- and dual-pol images.
Multi-frequency analysis entails acquisition of data from different orbital sensors provided by different
space agencies, therefore raising project costs and computational demands and complexity. However,
it is still important to assess the efficacy and feasibility of applying both multi-polarimetric and
multi-frequency methods to estimate forest structural attributes. SAR literature indicates that both
X- and C-band backscattering coefficient images (σ0) saturate at relatively low AGB levels (i.e., up to
50 and 250 t/ha, respectively [21,24–29]). L-band saturates at 88 to 900 t/ha [30–36], depending on
vegetation structural complexity. In general, SAR signal saturation thresholds tend to decrease with
vegetation structural complexity, especially for tropical forests. Therefore, exploring the saturation
threshold and investigating the potential of polarimetric features in such environments is still necessary.

Várzeas are eutrophic river floodplains associated with large high-sediment load (“white
water”) rivers in the Amazon. They occupy approximately 200,000 km2 within the Amazon
basin [37], providing important ecosystem services to human populations and hosting endemic
fauna and flora species, such as the Amazonian manatee (Trichechus inunguis) [38] and the Pirarucu
fish (Arapaima gigas) [39]. They also have an important role in regional biogeochemical cycles,
although estimates are still quite uncertain as they are one of the most under-sampled Amazon
ecosystems [40,41]. Várzeas are currently threatened by anthropogenic land-use/land-cover
changes [42]; approximately 54% of the original forest cover in lower Amazon várzeas was lost
between 1984 and 2009 [43,44]. Therefore, developing efficient remote sensing methods for assessing
structural forest attributes such as Leaf Area Index (LAI) and Above Ground Biomass (AGB) is of major
importance to further ecological and biogeochemical studies in várzeas, because these attributes have
noticeable relationships with ecophysiological processes such as evapotranspiration, photosynthetic
activity, carbon assimilation and biomass stocks [45]. Such information may also serve as more
accurate proxies for habitat structure in biodiversity studies. Quantitative data about várzea forests
can also assist decision-makers, public governance and environmental policies regarding planning
and conservation.
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Therefore, this paper answers two questions: (a) Does multifrequency SAR data perform more
efficiently than single-frequency data in estimating LAI and AGB of várzea forests?; and (b) Are
quad-pol SAR data more efficient than single- and dual-pol SAR data in estimating LAI and AGB of
várzea forest?

2. Materials and Methods

2.1. Study Area and Field Inventories

The study area is located within Pará State (Brazil) and encompasses an ~88 ha section of the
Lago Grande de Curuai (Figure 1). This floodplain lake has an annual and monomodal flooding
regime, with high-water season occurring between May and June, and low-water season occurring
from November to December [46].
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Figure 1. (a) Location of Pará state (dark gray) within Brazil (light gray); (b) detailed view of the Lago 
Grande de Curuai; (c) classes and field plots location; (d) Radarsat-2 HV image in low-water season; 
(e) advanced land observing satellite (ALOS)/ phased-arrayed L-band Synthetic Aperture Radar 
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Figure 1. (a) Location of Pará state (dark gray) within Brazil (light gray); (b) detailed view of the
Lago Grande de Curuai; (c) classes and field plots location; (d) Radarsat-2 HV image in low-water
season; (e) advanced land observing satellite (ALOS)/ phased-arrayed L-band Synthetic Aperture
Radar (PALSAR-1) HV image in high-water season.

The vegetation comprises a mosaic of vegetation types, including grasslands, shrubs and forests,
whose distribution, species composition, canopy structure and phenology are strongly linked to the
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seasonal flooding dynamics [40,47,48]. Specifically, the land cover in the study area comprises six
major classes, previously defined and mapped using dual-season PolSAR Radarsat-2 data [8].

The Open Water class corresponds to the water surface previously mapped using C-band SAR
imagery (Figure 1d) acquired during the low-water season. The water surface during the high-water
season was mapped using the L-band SAR image (Figure 1e) and will be referenced here as Open
Water High Season class. Therefore, the class Várzea Fields was mapped as the difference in water
surface between the two periods.

In this study, floating and emergent macrophytes (Figure 1d) were merged because they are
not distinguishable from each other in L-band SAR scenes [21]. As the Várzea fields correspond to
the regions colonized by grasses during the low-water season, we decided to group all these classes
into a new class named Non-forested. Therefore, the following classes were examined in this study:
(1) Floodable Forests: forest growing on high floodplains subject to shorter seasonal flooding periods;
(2) Shrubs: shrubs and/or early succession tree vegetation with sparse canopies and low height,
subject to longer seasonal flooding; and (3) Non-forested: emergent and floating herbaceous plant
communities dominated by palustrine grasses, with high biomass and density levels and subject to
longer seasonal flooding periods, and floodplain regions that are colonized by terrestrial herbaceous
plants during low-water season.

The flowchart (Figure 2) summarizes the main steps described in the following sections.
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Figure 2. Flowchart for estimating above-ground biomass and leaf area index from the SAR dataset on
Amazon floodplain forests.

Forest inventories were carried out from 18 October 2013 to 29 October 2013, during the low-water
season, by establishing eighteen 25 × 25 m (0.0625 ha) sample plots, distributed between Flooded
Forest areas (Figure 1c). LAI was measured using an LAI-2200 Plant Canopy Analyzer (Li-Cor Inc.,
Lincoln, NE, USA). Eight measurements were taken within each sample plot beneath the canopy
(two rows of four measurements), using a 270-degree lens cap with the closure turned towards the
holder. All measurements were taken with the sun at low elevation angles, always located behind
the operator, avoiding the incidence of direct light on the sensor. Clear sky reference measurements
were taken before and after plot sampling, no earlier or later than 10 min from the observations,
at nearby clearings.

At each sample plot, we measured the total height (h, in m) and the diameter at the breast
height (DBH > 10 cm) (d, in cm) for all living tree individuals. Each single tree species was
identified in the field by a trained parabotanist. Based on this identification, we compiled
measurements of wood density (p, in g cm3) from Wittmann, et al. [49] and from the Global
Wood Density Database—GWDD; (http://datadryad.org/handle/10255/dryad.235). Wood density
of similar species within the family/genera was used whenever the species were not found in
the database.

http://datadryad.org/handle/10255/dryad.235
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The AGB of each single tree was computed as the average AGB obtained from Equations (1)–(3),
according to Schöngart and Wittmann [50] for Amazonian flooded forests.

AGB1 = F ∗ P ∗ hAGB1 ∗ π(d/2)2 (1)

AGB2 = 0.112 ∗ (p ∗ h ∗ d2)
0.916

(2)

AGB3 = 0.0509 ∗ p ∗ h ∗ d2 (3)

In (2), F is a fixed form factor of 0.6 [51]. The AGB of individual trees of each plot were then
summed, and their values scaled to t/ha. Boxplots for both AGB and LAI helped identify possible
outliers that could impact model fitting [52].

2.2. SAR Image Acquisition

SAR satellite data from three sensor platforms were acquired: advanced land observing satellite
(ALOS)-phased-arrayed L-band (i.e., 1.27-GHz center frequency, ~23 cm) SAR (PALSAR-1) [53],
Radarsat-2 at the C-band frequency [54], and TerraSAR-X at the X-band frequency [55]. Radarsat-2
and TerraSAR-X images were provided through the Science and Operational Applications Research
(SOAR) program of the Canadian Space Agency (CSA), and PALSAR-1 scenes were provided by
the ALOS Kyoto & Carbon Initiative and the ALOS PI program of the Japan Aerospace Exploration
Agency (Table 1).

Table 1. Characteristics of SAR data.

Sensor Band Wavelength
band (cm) Operation Mode Polarization Observation

Date
Spatial
resolution (m)

TerraSAR-X Band-X ~3.1 Multi Look Ground
Range Detected (MGD) HH Oct. 19st 2011 20 × 20

Radarsat-2 Band-C ~5.6 Standard Qual-Pol (SQ) Full-polarimetric Oct. 20st 2011 20 × 20

PALSAR-1 Fine-beam dual (FBD) HH and HV Oct. 25st 2010

PALSAR-1 Band-L ~23.6 Fine-beam dual (FBD) HH and HV Oct. 08st 2010
19 (in range) ×
10 (in azimuth)

PALSAR-1 Polarimetric (PLR) Full-polarimetric Mar. 30st 2009
PALSAR-1 Band-L ~23.6 Polarimetric (PLR) Full-polarimetric May. 15st 2009 23 × 23

Field campaign: Oct. 18st to 29st 2013
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Mosaicked images.

All SAR images were acquired in October (low-water season), except for the ALOS/PALSAR-1
PLR scene, which was obtained during the high-water season. This seasonal variation may influence
forest backscattering signals according to vegetation structure, affecting the estimates of LAI and AGB.
It must be noted that forest inventory was not concurrent with satellite overpasses. Nevertheless, most
Floodplain Forest regions have remained unchanged for the past seventeen years, according to [56].

2.3. Image Processing

The full polarimetric image processing is summarized in Figure 3. The Radarsat-2 SQ image was
multilooked using four looks in azimuth and one look in range, resulting in approximately 20 × 20 m
ground-range spatial resolution. The ALOS/PALSAR-1 PLR image was multilooked using six looks
in azimuth and one look in range, which resulted in approximately 23 × 23 m spatial resolution.
Both Radarsat-2 and ALOS/PALSAR-1 PLR scenes were used to compute the Covariance (C) and
Coherence (T) matrices. In order to minimize speckle noise and preserve image spatial resolution
and information, the Refined Lee adaptive filter with a 5 × 5 window size was applied over the
full-polarimetric scenes. For consistent results, filtering with similar window sizes was applied to both
ALOS/PALSAR-1 FBD and TerraSAR-X images. Table 2 shows the polarimetric decomposition and
incoherent SAR features (including sigma-nought (σ0)) extracted from the full-polarimetric data.
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Table 2. Polarimetric Features extracted from the full-polarimetric SAR data (quad-pol).

Polarimetric Decomposition Symbol Description

Cloude-Pottier [57]

α angle α Dominant scattering type.
Entropy H Proportional importance of the dominant scattering type.

Anisotropy A Proportional importance of secondary and tertiary scattering types.

Freeman–Durden (Freeman & Durden 1998)

Volumetric scattering FDV Proportion of volumetric scattering.
Double-bounce scattering FDD Proportion of double-bounce scattering.

Odd scatering FDS Proportion of odd (surface) scattering.

Touzi [58]

Scattering type magnitude αS1; αS2; αS3; αSm;
Angle of the symmetric scattering vector direction in the
trihedral-dihedral basis. Similar to Cloude-Pottier’s α angle.

Scattering type phase difference ΦαS1, ΦαS2, ΦαS3, ΦαSm Phase difference between trihedral and dihedral scattering.

Helicity τ1; τ2; τ3; τm Symmetric nature of target scattering. If τ = 0, target is isotropic.
Orientation angle ψ1; ψ2; ψ3; ψm Target tilt angle.

Yamaguchi [59]

Volumetric scattering YV Proportion of volumetric scattering.
Double-bounce scattering YD Proportion of double-bounce scattering.

Odd scattering YS Proportion of odd (surface) scattering.

Van Zyl [60]

Volumetric scattering VZV Proportion of volumetric scattering.
Double-bounce scattering VZD Proportion of double-bounce scattering.

Odd scattering VZS Proportion of odd (surface) scattering.

Incoherent SAR Features Acronyms Description of Features
(σ◦) HH band * HH-dB Backscatter coefficient (dB)
(σ◦) HV band * HV-dB Backscatter coefficient (dB)

(σ◦) VV band * VV-dB Backscatter coefficient (dB)

Ratio (HV/VV) * (HV/VV) Linear units
Ratio (HV/HH) * (HV/HH) Linear units

Ratio (VV/HH) * (VV/HH) Linear units

Difference (HV/VV) * (HV-VV) Linear units

Difference (HV/HH) * (HV-HH) Linear units

Difference (VV/HH) * (VV-HH) Linear units
SPAN SPAN SPAN = |Shh|2 + 2|Shv|2 + |Svv|2 [11] (Linear units)

Biomass index BMI (HH + VV)/2-magnitude images [61] (Linear units)
The radar vegetation index RVI RVI = 8σHV/(σHH + σVV + 2σHV) [62] (dB)

To identify the features extracted from the ALOS-PALSAR-1 PLR and FBD, TerraSAR-X and, Radarsat-2 SQ the
symbol * was replaced by the acronyms PL-PLR, PL-FDB, TX and RC2, respectively.

Range-doppler terrain correction and georeferencing were applied using the digital elevation
model (DEM) extracted from the Shuttle Radar Topography Mission (SRTM), with a spatial resolution
of 3 arc-seconds (90 m) and approximately 5 m of vertical resolution [63]. All processing steps were
performed with the polarimetric SAR Data Processing and Educational Tool (PolSARPRO) software,
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version 5.0 [64], with exception of the range-doppler correction, which was carried out with the
Sentinel-1 Toolbox version 4.0 [65].

TerraSAR-X and PALSAR-1 FBD images were converted to sigma-nought (σ0) intensity
backscattering coefficients (dB) using the Equation (4) [66,67].

σ0 = 10 ∗ log10〈DN2〉+ CF (4)

where DN is Digital Number (amplitude) and CF is the calibration factor in dB for the channels.
For PALSAR-1 FBD and TerraSAR-X MGD the CF is equal to −83 and −46.7, respectively.

2.4. Assembly of SAR Modeling Sets

In order to answer the proposed scientific questions, the SAR data were grouped as follows:
(i) single/dual pol: TerraSAR-X band, ALOS PALSAR-1 FDB, and the features (HH and HV) extracted
from Radarsat-2 SQ and PALSAR-1 PLR (acquired in the high-water season); (ii) multifrequency group:
combination of the features extracted from TerraSAR-X, Radarsat-2 and ALOS/PALSAR-1 FBD images
acquired during the low-water season; (iii) full-polarimetric data (Table 3).

Table 3. Definition, acronyms and description of SAR predictor sets. The description and acronyms
of features composing the single and dual-pol groups (Table 2) are highlighted in gray. The original
datasets identified by the symbol * in the Table 2 are replaced by their acronyms shown in the third
column of this table.

Data type Data source Acronyms of
dataset Dataset description (Features) j = numbers

of features

SAR single and
dual-pol

TerraSAR-X TX TX(HH-dB) 1
Radarsat-2 RC2 R2C(HH-dB), R2C(HV-dB), R2C(HV/HH), R2C(HV-HH) 4
ALOS/PALSAR-1 FBD PL-FBD PL(HH-dB), PL(HV-dB), PL(HV/HH), PL(HV-HH) 4
ALOS/PALSAR-1 PLR PL-PLR PLR(HH-dB), PLR(HV-dB), PLR(HV-HH), PLR(HV-HH) 4

Multifrequecy

PL-FBD+TX PL-FBD+TX Same acronyms of features PL-FBD+TX dataset 5
PL-FBD+RC2 PL-FBD+RC2 Same acronyms of featuresPL-FBD+RC2 dataset 8
TX+RC2 TX+RC2 Same acronyms of features TX+RC2dataset 5
PL-FBD+RC2+TX MULT Same acronyms of features TX+RC2+PL-FBD dataset 9

Full-polarimetric Radarsat-2 RC2(POL) Table 2 40
ALOS/PALSAR-1 PLR PL-PLR(POL) Table 2 40

2.5. Above Ground Biomass and Leaf Area Index Modeling

Univariate and multivariate Generalized Linear Models (GLMs) were estimated for predicting
both AGB and LAI, using SAR datasets as predictor (Table 3). Two different link functions were tested
for GLM specification, the identity function (i.e., Multivariate Linear Regression, Equation (5)), and the
log link function (Equation (6)), since AGB and LAI variables ε R+ [68]. The predicted quantities will
hereafter be referred as E(Yi) and lnE(Yi), respectively.

E(Yi) = µi, Yi ∼ N(µi, σ2)

µi = b0 + bpxp, p = 1, 2, . . . , j
(5)

ln E(Yi) = µi, Yi ∼ N(µi, σ2)

µi = b0 + bpxp, p = 1, 2, . . . , j
(6)

where b0, bρ, xp, ln are the intercept, regression coefficients, the predictor variables (features) and
natural logarithm, respectively.

Mean SAR responses (Table 2) correspond to a homogenous region around each 0.0625 ha plot,
encompassing a minimum of four pixels. A routine was implemented in the R scripting language [69]
for automatic model calibration, selection and assessment, as well as for outputting AGB and LAI
maps (Supplementary Material). The core package of the routine is the “glmult” package [70], which
allows model fitting using all predictor variable combinations. A two-level routine (Figure 4) applies
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different numerical criteria for defining the best models. Thus, for j independent predictor (Table 3),
the number of calibrated models is 2j + 1.

In the first selection level, the small-sample-size corrected version of the Akaike information
criterion (AICc) was applied, following the recommendation that models with ∆AICc≤ 2 units, relative
to the lowest AICc value, should not be dismissed [71] (Figure 4). At the second level, models were
assessed based on statistical significance (α = 0.05), R-squared (R2) or pseudo R-squared (for lnE(Yi)),
and leave-one-out cross-validation using the Root Mean Squared Error (RMSEcv). To support model
assessment, the relative overall RMSEcv (Rel. RMSE) in percentage, bias and average relative error
(ARE) were also reported. Pixel level spatial prediction maps (output maps) were then generated from
all significant models and submitted to visual assessment.
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Given the high computation cost of full-polarimetric based models (i.e., j = 40), polarimetric
features were split into three groups of analogous decompositions that could represent similar
information (Figure 5). Then, each group was submitted to the levels of selection (see gray box
in Figure 4). The predictors of the selected models were then regrouped into a new set of predictors
(k’), which was subsequently used as input to the “Levels of selection”, showed as step B in Figure 5.
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2.6. Visual Assessment of Maps LAI and AGB Maps

Finally, the LAI and AGB output maps from selected models for both polarimetric and
non-polarimetric SAR data were submitted to visual analyses (Figures 4 and 5) in order to assess their
suitability with respect to the reference map, land-cover classes (Figure 1c–e; Table 1), and ground
information regarding land-use and land-cover classes (April 2011) and from field observations
provided by Arnesen, et al. [72], Furtado, et al. [73] and Furtado, Silva and Novo [8]. The best model
was that with the minimum RMSEcv and the highest agreement with the spatial distribution of woody
vegetation cover classes (Figure 1), assessed by inspecting the output maps. To facilitate this inspection,
the maps were generated automatically in ascending order of RMSEcv.

All final predictions were cut considering the lower and upper thresholds observed in the LAI
and AGB data (Figure 6). Thus, the lower and upper bounds for AGB were 0 and 600 t/ha, and for
LAI, 2 and 6. Values outside this range were clipped to the nearest threshold.

3. Results

3.1. Exploratory Analysis of LAI and AGB Data

Both boxplots contain two AGB (the largest-Figure 6a) and LAI (the smallest-Figure 6b) values
that may be outliers. To better understand the impact of these possible outliers on model calibration
and/or map accuracy, the selection process was carried out by including and excluding them. To refer
to the number of LAI or AGB samples used in the model calibration, subscribed numbers (16 or
18) were added to the dataset acronyms henceforth (Table 3). To compare the results of equivalent
models calibrated with either 18 or 16 samples for both LAI and AGB, their observed versus predicted
scatterplots (OBS vs. PREDs) were joined.
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3.2. LAI Models

In general, all model biases were low, however the LAI estimates obtained from the lnE(Yi) models
had better spatial correspondence with land-cover classes (Figure 1), supported by the empirical
knowledge of study area (Table 4). Models selected from RC2(POL) and PL-PLR(POL)16 did not
provide reliable maps and were therefore not considered further. Among the models selected from
SAR single/dual-pol dataset, PL-FBD18 showed the highest R2 and the lowest RMSEcv and Rel. RMSE
with HV-dB as predictor (Table 4). The same feature was also ranked in the model PL-FBD16 OBS vs.
PREDs distribution (Figure 1). The best output LAI map resulted from the 18 LAI samples model
(Figure 7a).

Regarding the multifrequency dataset, the best model (highest R2 and the lowest RMSEcv and Rel.
RMSE was provided by PL-FBD+TX18 (Figure 7b). Despite the similarity in the R2 and the RMSEcv
and Rel. RMSE statistics of both PL-FBD+TX18 and PL-FBD18, their output maps are quite different.
This is clearly observed when comparing the regions with high and low LAI values (i.e., green and red
regions, respectively) because there are not coincident. PL-FBD18 was selected as best model, because
it presented coherent results based on visual analyses and consists of a single predictor (HV-dB) (thus
having operational advantages).

Visual analysis of the best LAI map (Figure 7a) indicated that the regions in red (i.e., lowest values
set for the LAI maps) match with the locations of the Non-forested class (Figure 1). This is a clear
indication that L-band dual-pol SAR images are less sensitive to lower LAI values (i.e., 2 or less),
likely due to the longer wavelength. The LAI map also shows that the Flooded Forest class is clearly
discriminated from the Non-forested class, because most of the regions with the highest LAI values
are located within it, except for some of the Shrub areas.

3.3. AGB Regression Models

The AGB models fitted with lnE(Yi) presented lower RMSEcv and Rel. RMSE values and,
in general, showed better spatial correspondence with land-cover classes (Figure 1) than those
estimated with E(Yi) models (Table 5). The models estimated using single/dual-pol SAR data did not
provide satisfactory results, neither in terms of RMSEcv, Rel. RMSE and R2 values, nor for map visual
analysis. Thus, these models were not considered further.
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Table 4. Generalized Linear Model (GLM) specifications and model evaluation for predicting Leaf Area Index from synthetic aperture radar data in floodplain forests
of the Amazon basin.

TX

TX18 TX16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE Bias

lnE(Yi) TX(HH-dB) 45.1 0.36 0.78 8.7E-03
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RMSE Bias
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PL-FBD+RC2

PL-FBD+RC218 PL-FBD+RC216

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
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TX+RC2

TX+RC218 TX+RC216

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE Bias

lnE(Yi) MSEq TX18 45.1 0.36 0.78 8.7E-03 sig 13.6 17 0.002 lnE(Yi) intercept 32.3 NA 0.61 NA NA NA NA NA
E(Yi) MSEq to TX18 44.2 0.39 0.76 5.6E-03 sig 13.0 17 0.000 E(Yi) intercept 32.3 NA 0.61 NA NA NA NA NA

MULT

MULT18 MULT16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE Bias

lnE(Yi) MSEq PL-FBD+TX18 36.2 0.69 0.56 2.2E-04 sig 8.9 12 −0.005 lnE(Yi) MSEq PL-FBD16 26.8 0.42 0.49 7.0E-03 sig 7.9 10 0.001
E(Yi) MSEq PL-FBD+TX18 35.3 0.69 0.59 1.5E-04 sig 8.9 13 0.000 E(Yi) MSEq PL-FBD16 26.2 0.44 0.49 5.3E-03 sig 7.8 10 0.000

RC2(POL)

RC2(POL)18 RC2(POL)16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE Bias

lnE(Yi) R2C(HV-dB) + R2C(VV-dB) + R2C(SPAN)
+ R2C(BMI) + R2C(HV-VV) + ΦαS2 + ψ2

34.4 0.94 0.50 1.9E-05 sig 3.9 11 0.002 lnE(Yi) R2C(HV-VV) 29.7 0.30 0.56 2.9E-02 sig 8.0 12 0.000

E(Yi) R2C(HV-dB) + R2C(VV-dB) + R2C(SPAN)
+ R2C(BMI)+ R2C(HV-VV) + ΦαS2 + ψ2

31.3 0.95 0.43 8.2E-06 sig 3.7 9 0.000 E(Yi) R2C(HV-VV) 30.0 0.29 0.57 3.2E-02 sig 8.2 12 0.000

PL-PLR

PL-PLR18 PL-PLR16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE Bias

lnE(Yi) PL(HV-dB) + PL(HV-HH) 49.0 0.34 0.85 4.6E-02 sig 12.6 19 0.000 lnE(Yi) PL(HV-dB) + PL(HV-HH) 24.2 0.60 0.41 2.5E-03 sig 5.7 8 0.000
E(Yi) PL(HV-dB) + PL(HV-HH) 49.0 0.34 0.87 4.6E-02 sig 12.6 19 0.000 E(Yi) PL(HV-dB) + PL(HV-HH) 24.1 0.61 0.41 2.4E-03 sig 5.7 8 0.000

PL-PLR(POL)

PL-PLR(POL)18 PL-PLR(POL)16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE
Rel.

RMSE Bias GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE Bias

lnE(Yi) MSEq PL-PLR18 49.0 0.34 0.85 4.6E-02 sig 12.6 19 0.000 lnE(Yi) MSEq PL-PLR16 24.2 0.60 0.41 2.5E-03 sig 5.7 8 0.000
E(Yi) MSEq PL-PLR18 49.0 0.34 0.87 4.6E-02 sig 12.6 19 0.000 E(Yi) MSEq PL-PLR18 24.1 0.61 0.41 2.4E-03 sig 5.7 8 0.000
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Figure 7. Comparison of predicted and observed values of LAI and spatial prediction for the models:
(a) PL-FBD+TX18; (b) PL-FBD18. The yellow arrow indicates some high-density shrubby areas. Central
Amazon Floodplain, Brazil.

As can be observed in the graphic OBS vs. PRED in Figure 8, the absence of possible outliers in
the estimated models did not positively impact their accuracy. Thus, the further analyses considered
only the models calibrated with 18 samples of AGB.

The models PL-FBD+RC218 and MULT18 presented satisfactory accuracy (i.e., the lowest RMSEcv,
Rel. RMSE and highest R2). However, the last one displayed better results in the map visual analyses
(Figure 8a). Therefore, considering multifrequency data, the best result was achieved by MULT18

(Figure 8a).
The RMSEcv, Rel. RMSE and R2 values were similar, with a low bias for the models calibrated

from full-polarimetric data (i.e., RC2(POL)18 and PL-PLR(POL)18); their output maps are displayed in
the Figure 8b,c, respectively. The best AGB map was estimated from PL-PLR(POL)18 model (Figure 8c).
This map, unlike other AGB maps, shows the highest AGB value within the Flooded Forest class
and in some high-density shrub areas (indicated by a yellow arrow in this Figure). This also allows
us to discriminate the Flooded Forest class from the Non-forested class. Furthermore, most of the
regions with highest AGB values (around 600 t/ha−1) are located in the interior regions of the Flooded
Forest class, which agrees with the AGB spatial distribution patterning observed during field work.
This model also presented the best accuracy, resulting in the lowest average relative error (46.4%).
Therefore, we can conclude that the best AGB model is PL-PLR(POL)18.
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Table 5. GLM model specifications and model evaluation for predicting aboveground biomass from synthetic aperture radar data in floodplain forests of the
Amazon basin.

TX

TX18 TX16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) TX(HH-dB) 232.8 0.34 149.56 1.2E-02 sig 66.8 92 −4.1 lnE(Yi) TX(HH-dB) 175.4 0.24 51.49 4.6E-02 sig 49.5 46.2 −0.2
E(Yi) TX(HH-dB) 235.0 0.25 150.04 3.5E-02 sig 79.8 92 0.0 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

RC2

RC218 RC216

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) R2C(HH-dB) + RC2(HV/HH) + R2C(HV-HH) 222.1 0.82 107.90 1.5E-04 sig 48.9 66 −30.3 lnE(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA
E(Yi) RC2(HV/HH) 235.5 0.23 159.43 4.5E-02 sig 91.3 98 0.0 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

PL-FBD

PL-FBD18 PL-FBD16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) intercept 237.2 NA 163.22 NA NA NA NA NA lnE(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA
E(Yi) intercept 237.2 NA 163.22 NA NA NA NA NA E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

PL-FBD+TX

PL-FBD+TX18 PL-FBD+TX16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) MSEq TX18 232.8 0.34 149.56 1.2E-02 sig 66.8 92 −4.1 lnE(Yi) MSEq TX16 175.4 0.24 51.49 4.6E-02 sig 49.5 46.2 −0.2
E(Yi) MSEq TX18 235.0 0.25 150.04 3.5E-02 sig 79.8 92 0.0 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

PL-FBD+RC2

PL-FBD+RC218 PL-FBD+RC216

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)

lnE(Yi) PL(HV/HH) + R2C(HH-dB) + R2C(HV/HH) +
R2C(HV-HH) 218.9 0.86 107.95 4.0E-05 sig 37.7 66 50.3 lnE(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

E(Yi) PL(HV/HH) + R2C(HV-dB) 233.6 0.44 142.10 1.6E-02 sig 70.7 87 2.2 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA
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Table 5. Cont.

TX+RC2

TX+RC218 TX+RC216

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) MSEq RC218 222.1 0.82 107.90 1.5E-04 sig 48.9 66 −30.3 lnE(Yi) MSEq TX16 175.4 0.26 51.49 4.6E-02 sig 49.5 46.2 −0.2
E(Yi) MSEq TX18 235.0 0.25 150.04 3.5E-02 sig 79.8 92 0.0 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

MULT

MULT18 MULT16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) PL(HV/HH) + RC2(HV/HH) + TX(HH-dB) 211.0 0.88 107.32 2.1E-06 sig 35.1 66 −11.4 lnE(Yi) MSEq TX16 175.4 0.26 51.49 4.6E-02 sig 49.5 46.2 −0.2
E(Yi) PL(HV/HH) + RC2(HV-HH) + TX(HH-dB) 232.8 0.57 130.47 1.4E-02 sig 71.1 80 1.4 E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

RC2(POL)

RC2(POL)18 RC2(POL)16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) RC2(HV/HH) + τ2 210.3 0.85 74.60 9.8E-07 sig 51.9 46 −8.2 lnE(Yi) YD + αS2 + ΦαS1 + τm 173.4 0.71 40.50 5.1E-03 sig 28.4 36.4 0.1

E(Yi) RC2(VV-dB) +RC2(HV/HH) + RC2(HV-dB) +
RC2(HV/VV) + VZS +τ2 + αSm

226.4 0.88 83.77 4.9E-05 sig 43.9 52 −2.5 E(Yi) αS2 + ΦαS1 + τm 172.6 0.62 42.18 7.4E-03 sig 33.0 37.9 0.0

PL-PLR

PL-PLR18 PL-PLR16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) intercept 237.2 NA 163.22 NA NA NA NA lnE(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA
E(Yi) intercept 237.2 NA 163.22 NA NA NA NA E(Yi) intercept 177.0 NA 55.85 NA NA NA NA NA

PL-PLR(POL)

PL-PLR(POL)18 PL-PLR(POL)16

GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.
RMSE

Bias
(t.ha) GLM Model AICc R2 RMSEcv Fp-value 5% ARE Rel.

RMSE
Bias

(t.ha)
lnE(Yi) VZD + ΦαS1 + ΦαS2 208.9 0.88 74.59 9.2E-07 sig 46.4 46 −4.9 lnE(Yi) VZD + ΦαS1 + ψ2 176.6 0.51 55.66 3.1E-02 sig 36.9 50.0 -0.3
E(Yi) VZD + ΦαS1 + ΦαS2 224.8 0.72 109.92 4.1E-04 sig 75.5 68 0.0 E(Yi) VZD +ΦαS2 + ψ2 175.5 0.54 47.53 2.1E-02 sig 36.5 42.7 0.0
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4. Discussion

The RMSEcv, Rel. RMSE and relative error were comparatively low (0.65, 13% and 10.3%,
respectively) for the LAI model adjusted with only one predictor, HV-dB. Thus, the model had
satisfactory accuracy. These results indicate the importance of cross-polarized data in providing
information about the structural complexity of vegetation canopy by means of volumetric scattering in
wetland environments [74]. As the results (i.e., map visual analyses and statistic indexes) from model
PL-PLR18 were less accurate than those provided by PL-FBD18, we inferred that the hydrological
seasonality of the region might impact the accuracy of the models and the estimated maps.

Considering the AGB range analyzed in this work and the structural complexity of floodable
forests, we can state that the selected model for AGB provided good results, with comparatively low
RMSEcv (74.59 t/ha), Relative RMSEcv and average relative error (both around 46%). The predictors
composed of the polarimetric models were coherent, that is, phase dependent. One of them is VZD,
which provides information about the proportion of double-bounce scattering generated by Van Zyl
decomposition [60]. The others two selected parameters are ΦαS1 and ΦαS2, extracted by the Touzi
decomposition [58]. These predictors provide information about the first and the second dominant
phase difference between trihedral and dihedral scattering, respectively. Some works, such as Martins,
et al. [75], identified that the proportion of double-bounce scattering is an important feature for
estimating the AGB in the Amazon forest. A possible explanation is that this kind of scattering
mechanism may be enhanced due to the clear floor of floodable forests and the reduced understory
layer [74,76]. However, this may be detected only by L or longer SAR band systems [77].

In relation to the predictors ΦαS1 and ΦαS2, some researchers, such as Li, et al. [78], Sartori,
Imai, Mura, Novo and Silva [12], Storie, et al. [79] and Touzi [58], reported that ΦαS1 improves the
classification accuracy and thus the discrimination between some wetland vegetation types, such as
macrophyte, open bog and small shrubs. This predictor has also been reported as sensitive to the water
under vegetation [80].

The analyses related to AGB, presented above, lead us to conclude that L-band full-polarimetric
data is an important predictor of AGB in both Amazonian flooded forests and dense forest regions
characterized by high AGB values; thus, it has the potential to overcome the current limitations of
orbital SAR data in mapping AGB with reliable accuracy in dense forest regions [5].

Furthermore, vegetation structural parameters such as canopy height and crown diameter are
important for the development of ecological studies related to dynamic and spatial characterization
of vegetation [81], which can also be used indirectly for estimating AGB (i.e., as data input in the
allometric equations) [82] or can be integrated with other methodologies such as presented in [83].

Since the SAR signal is sensitive to form and structure of targets—rather than tree species and
wood density, which are important parameters for estimating ground AGB [84]—we expect that the
L-band polarimetric will presented the same or even more potential to estimate and map vegetation
structural parameters such as canopy height and crown diameter. Therefore, we encourage the
development of studies with this aim and highlight that the routine presented in this work can assist
in their development.

These results endorse and reinforce the potential of the forthcoming SAR missions at L-band, such
as TanDEM-L [85]. Although data policy will restrict public access to the data, TanDEM-L is expected
to overcome the current SAR data limitation in both mapping and monitoring AGB on a global scale
with satisfactory accuracy and spatial resolution [86].

This potential is amplified with Airborne Light Detection and Ranging (LiDAR) data, which can
be used to calibrate and validate SAR-adjusted models through the upscale approach, reducing the
dependency of field inventory data. This is especially true in regions with difficult access, such as
several environments found in the Amazon forest biome. Furthermore, information such as crown
diameter, canopy height and number of individuals (trees) can be extracted directly from this source of
data and can potentially be used as input in the allometric equations and, indirectly, to improve AGB
estimation [82]. Thus, the data generated by future missions such as Global Ecosystems Dynamics
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Investigation Lidar (GEDI) [87] can extend the applicability of the methodology presented in this work
to other forest environments worldwide. In addition, we stress that the quad-polarimetric SAR images
with larger wavelengths, such as P-band and S-band, provide results quite similar or even better than
those achieved in this work [88]. This is especially true given that the SAR signal can penetrate deeper
in the dense multi-layer of the tropical forests. Thus, missions such as BIOMASS, which will generate
P-band SAR images [88], and NISAR, which will generate quad-polarimetric images in L-band and
S-band frequencies, hold promise for mapping and monitoring AGB with relatively high accuracy on
a global scale [89–92].

5. Conclusions

Our results show that the model approach lnE(Yi) generally presented better results than E(Yi),
especially in the visual analyses of the AGB and LAI maps. Furthermore, the models selected for both
AGB and LAI were parsimonious, and their output maps matched with the classes and empirical
knowledge about the study area. For both LAI and AGB retrievals, the best results were achieved
using the features extracted from ALOS-PALSAR-1 scenes. This result indicates that, for the estimation
and mapping both LAI and AGB parameter in a Floodable Forest environment, single-frequency
polarimetric L-band images are more efficient than multifrequency dual-pol or single-pol SAR.
For the estimation of LAI, the cross-polarization data (HV-dB) was sufficient. For AGB, however,
the features extracted from polarimetric decompositions seems to be essential. Thus, for mapping
LAI, dual-pol SAR images performed best, as they have operational advantages when compared with
quad-polarimetric SAR. For AGB mapping procedures, the full-polarimetric data is preferable. These
results reinforce the potential of this kind of data in mapping AGB in Floodable Forest environments.
We also believe that this result can be extended to other dense forest environments worldwide.

Considering the wide range of AGB values contemplated in this work, we strongly believe that
the results achieved by the best AGB model were satisfactory and that the methodology presented
is suitable for estimating this parameter. We believe this can be extended to vegetation structure
parameters such as canopy height and crown diameter. However, to confirm these findings, more
tests must be performed in other regions and environments, with more samples of AGB if possible.
To better understand the potential and limitations of this routine, we encourage the development of
future works with other modeling methods such as random forest and genetic algorithms.

Finally, the authors believe that the results and the feature selection process presented in this
research may provide important information for the scientific community regarding the applicability
of L-band quad-polarimetric SAR images. This is related to the estimation of AGB and its potential to
overcome the current limitation in the context of wetlands and densely tropical forests environments.
In this sense, we expect to collaborate on the construction of a background for analysis and assessment
of current (PALSAR-1 and -2) and future missions (NISAR, GEDI, BIOMASS, Tandem-L), which we
believe have enormous potential for mapping of AGB with high accuracy on a global scale in the near
future. Such information can provide essential information for future generations to better understand
the dynamics of our planet in the face of modern issues such as climate change and anthropogenic
land-cover change.
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