

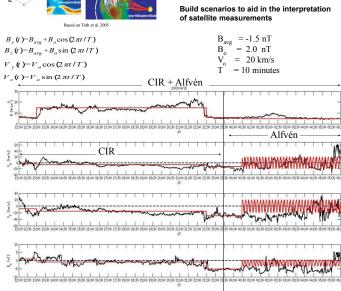
A Global MHD Simulation of ULF Waves Activity in the inner Magnetosphere Resulting from CIR followed by ALFVENIC Fluctuations

IPSD

Alves. M. V.¹; Jauer, P. R.¹; Souza, V. M.¹; Pádua, M. B.¹; Wang, C.²; Alves, L. R.¹; Da Silva, L. S.¹; R. E. Lopez.³; Vieira, L. E. A.¹; Zhengkuan. L.⁴; Hui. L⁴; Gonzalez, W.¹; Echer, E.¹; Costa, J. E. R.¹; Denardini, C. M.¹; Rockenbach, M. S.¹; Deggeroni,V.¹; Medeiros, C.¹; Marchezi, J. P.¹; Silva, G.¹; Grala, M.¹; Schmitz, R.¹

[1] National Institute for Space Research (INPE), Av. dos Astronautas 1758 - Jardim da Granja, São José dos Campos - SP - CEP: 12227-010 [2] State Key Laboratory of Space Weather, National Space Science Center, Chinese Academic of Sciences, China [3] Department of Physics, University of Texas at Arlington, Texas, USA [4] National Space Science Center, CAS

IPSD_x


Introduction

The interaction between the disturbed solar wind and the geomagnetic field gives rise to different physical processes that can significantly affect technological systems as well as human life. The goal of this work is to investigate the role of a complex solar structure, i.e., a corotating interaction region (CIR) followed by solar wind's magnetic field Alfvénic fluctuations, in the generation of disturbances in the inner magnetosphere in terms of the power spectral density (PSD) of the ultra-low frequency waves (ULF) in the nightside, equatorial region. There are several studies that show the correlation between fluctuations of solar wind's magnetic field and plasma parameters characteristic of CIRs and Alfvénic fluctuations and the corresponding generation of ULF waves in the internal magnetosphere. However, some issues remain. Namely, during such a complex event it is not straightforward to decisively say which solar wind parameters or which combinations thereof are most effective in causing disturbances in the inner magnetosphere, or how each part of the complex interplanetary structure influences the most the temporal evolution of the magnetosphere.

Methodology

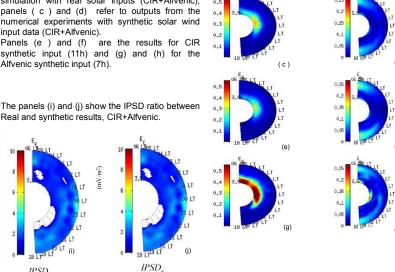
We use global MHD simulations to address some of these questions. Firstly, we use the magnetic field and plasma parameters of a real complex CIR+Alfvénic fluctuations event, (April 20, 2013), as input to the SWMF/BATS-R-US code. With the model outputs the we calculate the PSD of ULF waves in the inner magnetosphere, nightside, equatorial region. By separating the complex event into its constituent parts we build a synthetic magnetic field and plasma profiles based on the physical parameters that characterize each of these parts. The MHD code is then fed with each new synthetic profile to provide ULF PSDs that are compared with those from the simulation with real solar wind inputs.

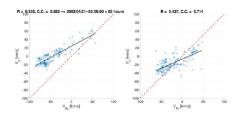
MHD Simulation-SWMF/BATSRUS Center for Space Environment Modeling University of Michigan SWMF/BATSRUS. MHD is based on well-established physical theory Physical domains coupled to this event Space Global Magnetosfera GM: 33 R_F upstream and about 225 R_F downtail. Modeling Inner Magnetosphere IM: Rice Convection Model (RCM) Wolf et al, 1982, Toffoletto 2003 Ionospheric Electrodynamics IE: Ridley et al, 2004, Ridley and Liemohn, 2002

Black lines in the above figure represent the real solar wind data between 12:00 UT, 20 April 2003 and 6:00 UT, 21 April 2003

Red lines represent the synthetic profiles constructed with equations given above for magnetic field and velocity, with a pe of 10 minutes and used as input for numerical experiments.

Results


IPSD .


$$IPSD_{\phi,r} = \int_{0.5\,mHz}^{16.6\,mHz} E_{\phi,r}(\omega) d\omega$$

Comparison among IPSDs of the azimuthal Ephi and radial Er modes in the equatorial, nightside magnetosphere.

Panels (a) and (b) refer to the outputs of the simulation with real solar inputs (CIR+Alfvenic); panels (c) and (d) refer to outputs from the numerical experiments with synthetic solar wind input data (CIR+Alfvenic).

Panels (e) and (f) are the results for CIR synthetic input (11h) and (g) and (h) for the Alfvenic synthetic input (7h).

Correlation Coefficient for the solar wind components Vy and Vz and magnetic field (VAy(z)) for the 3 last hours of the selected event. They are a good indication for the presence of Alfvenic fluctuations.

Conclusions

This numerical experiment will help us to understand which solar wind parameters contribute the most for the ULF waves activity in the nightside magnetosphere, as far as MHD simulations are concerned, and which combination of these synthetic parameters can reproduce the results obtained when running the MHD code with input data from the actual event. This work might also provide important information for future forecasting studies of ULF wave activity in the Earth's magnetosphere whenever the geospace is under the influence of recurrent events as the one analyzed here.

Acknowledgments

P. R. Jauer thanks the financial support from China-Brazil Joint Laboratory for Space Weather for his Postdoctoral fellowship. The authors would like to thank the developers of the Space Weather Modeling Framework and the Center for Space Environment Modeling at the University of Michigan, and the Community Coordinated Modeling Center (CCMC) for providing the input files used in the MHD simulations. V M. Souza thanks the São Paulo Research Foundation (FAPESP) grant 2014/21229-9 for support. M. V. Alves thanks CNPq/MCTIC (310900/2016-6).

GOMBOSI, T. I.; DEZEEUW, D. L.; GROTH, C. P. T.; et al. From Sun to Earth: Multiscale MHD simulations of space weather. In: SONG, P.; SINGER, H. J.; SISCOE, G. L. (Eds.). Geophysical Monograph Series. Washington, D. C.: American Geophysical Union, 2001. v. 125, p. 169–176. ISBN 0-87590-984-1. Disponível em

TÓTH, G.; VAN DER HOLST, B.; SOKOLOV, I. V.; et al. Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, [S.I.], Fev 2012. v. 231, n. 3. p. 870–903. ISSN 00219991

TÓTH, G.; SOKOLOV, I. V.; GOMBOSI, T. I.; et al. Space Wealther Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, [S.I.], 2005. v. 110, n. 412. ISSN 0148-0227

Ellington, S. M., Moldwin, M. B., & Liemohn, M. W. (2016). Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF. Journal of Geophysical Research: Space Physics.

Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G., & Denton, R. E. (2010). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. Journal of Geophysical Research, 115, A11202

sale inclassions of ecophysical research; Try, Tribus.

Agr. C. M., Glocer, A., Hartinger, M. D., Murphy, K. R., Fok, M.-C. H., & Kang, S.-B. (2017). Electron drift resonance in the MHD-coupled Comprehensive Inner gnetosphere (nonsphere model. Journal of Geophysical Research: Space Physics, 122, 12,006–12,018.

McGregor, S. L., M. K. Hudson, and W. J. Hughes (2014), Modeling magnetospheric response to synthetic Alfvénic fluctuations in the solar wind: ULF wave fields in the magnetosphere, J. Geophys. Res. Space Physics, 119, 8801–8812, doi:10.1002/2014.JA020000.