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followed by ALFVENIC Fluctuations

Introduction
The interaction between the disturbed solar wind and the geomagnetic field gives rise
to different physical processes that can significantly affect technological systems as
well as human life. The goal of this work is to investigate the role of a complex solar
structure, i.e., a corotating interaction region (CIR) followed by solar wind’s magnetic
field Alfvénic fluctuations, in the generation of disturbances in the inner magnetosphere
in terms of the power spectral density (PSD) of the ultra-low frequency waves (ULF) in
the nightside, equatorial region. There are several studies that show the correlation
between fluctuations of solar wind’s magnetic field and plasma parameters
characteristic of CIRs and Alfvénic fluctuations and the corresponding generation of
ULF waves in the internal magnetosphere. However, some issues remain. Namely,
during such a complex event it is not straightforward to decisively say which solar wind
parameters or which combinations thereof are most effective in causing disturbances in
the inner magnetosphere, or how each part of the complex interplanetary structure
influences the most the temporal evolution of the magnetosphere.
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Conclusions

This numerical experiment will help us to understand which solar wind parameters contribute the

most for the ULF waves activity in the nightside magnetosphere, as far as MHD simulations are

concerned, and which combination of these synthetic parameters can reproduce the results obtained

when running the MHD code with input data from the actual event. This work might also provide

important information for future forecasting studies of ULF wave activity in the Earth’s magnetosphere

whenever the geospace is under the influence of recurrent events as the one analyzed here.
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Methodology

MHD is based on well-established physical theory
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Rice Convection Model (RCM) Wolf et al, 1982, 
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Ionospheric Electrodynamics IE:
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Physical domains coupled to this event

We use global MHD simulations to address some of these questions. Firstly, we use the
magnetic field and plasma parameters of a real complex CIR+Alfvénic fluctuations event,
(April 20, 2013), as input to the SWMF/BATS-R-US code. With the model outputs the we
calculate the PSD of ULF waves in the inner magnetosphere, nightside, equatorial
region. By separating the complex event into its constituent parts we build a synthetic
magnetic field and plasma profiles based on the physical parameters that characterize
each of these parts. The MHD code is then fed with each new synthetic profile to provide
ULF PSDs that are compared with those from the simulation with real solar wind inputs.

CIR

Alfvén

CIR + Alfvén

B y (t )=Bavg+Bocos(2πt /T )

Bz (t)=Bavg+Bosin (2πt /T )

V y (t )=V ocos(2πt /T )

V z (t )=V o sin (2πt /T )

Bavg = -1.5 nT
Bo =  2.0  nT
Vo =   20 km/s
T     = 10 minutes
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Results

IPSDϕ ,r= ∫
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IPSDϕ IPSDr

Black lines in the above figure represent the real solar wind data between 12:00 UT, 20 April 2003 and 6:00 UT, 21 April 2003
(ACE). 
Red lines represent the synthetic profiles constructed with equations given above for magnetic field and velocity,  with a period 
of 10 minutes and used as input for numerical experiments.

Comparison among IPSDs of the azimuthal Ephi
and radial Er modes in the equatorial, nightside
magnetosphere.
Panels (a) and (b) refer to the outputs of the
simulation with real solar inputs (CIR+Alfvenic);
panels ( c ) and (d) refer to outputs from the
numerical experiments with synthetic solar wind
input data (CIR+Alfvenic).
Panels (e ) and (f) are the results for CIR
synthetic input (11h) and (g) and (h) for the
Alfvenic synthetic input (7h).

The panels (i) and (j) show the IPSD ratio between
Real and synthetic results, CIR+Alfvenic.
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Correlation Coefficient for the
solar wind components Vy and
Vz and magnetic field (VAy(z))
for the 3 last hours of the
selected event. They are a
good indication for the
presence of Alfvenic
fluctuations.

Based on Tóth et al. 2005


