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ABSTRACT

A finite analytic (FA) alternating direction implicit
(ADI) numerical scheme is presented and applied to
the solution of three-dimensional transient heat con-
duction problems in multilayered composite plates.
The basic idea of the FA method is the incorporation
of a local analytic solution of the governing equation
in the numerical solution of the boundary-value prob-
lem. The FA numerical solution is applied to two
sample problems. Numerical and experimental re-
sults show that the FA method is accurate and well
suited for simulating the transient temperature re-
sponse of composite samples.

1. INTRODUCTION

During the past decades, composite materials have
found many practical applications in various in-
dustrial fields (aerospace, nuclear, micro-electronics,
etc.). The increasing requirements for assuring the
integrity of composite hardware have called for appro-
priate and efficient non-destructive evaluation (NDE)
methods. Recently, pulsed photothermal NDE tech-
niques have successfully been applied to coatings
(Aamodt el al. 1990}, thin films (Leung and Tam
1988) and layered materials (Balageas et al. 1991).
In such techniques, the surface temperature of the in-
spected sample, after being irradiated with a short
heat pulse, is monitored by an infrared detector.
While the absorbed energy diffuses as heat through
the material, the subsurface features and defects are
revealed in the form of variations in the sample sur-
face temperature.

Due to the rapid development of the composite
materials technology, the study of heat conduction
in multilayered media has been handled by many
authors. Apart from purely numerical approaches
{Tamma and Yurko 1989; Muzzio and Solaini 1987),
some analytical techniques are also available (Ozisik
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1980; Mikhailov ef al. 1983). Nevertheless, the simu-
lation of the thermal behavior of a multidimensional
composite structure with a large number of layers,
during a pulsed photothermal NDE experiment, re-
mains a difficult task for most analytical and numer-
ical methods.

On the one hand, the analytical solutions are usu-
ally very complex and cumbersome to implement.
This is due to the necessity of solving the correspond-
ing Sturm-Liouville eigenvalue problem, which is not
of the conventional type because of the discontinuity
of the coeflicient functions, and to the slow conver-
gence of the costumary solutions expressed in terms
of double or triple infinite series. On the other hand,
the standard numerical methods generally require a
fine grid and have a tendency to become time con-
suming when dealing with problems with local high
temperature gradients and when a high accuracy level
is sought.

In the present study, the problem of the transient
temperature response of a three-dimensional compos-
ite plate consisting of parallel layers of orthotropic ho-
mogeneous materials, in imperfect thermal contact, is
solved by the finite analytic (FA) method using an al-
ternating direction implicit (ADI) calculation scheme.
Qur primary purpose is to provide an accurate and
efficient numerical procedure to predict the transient
temperature response of a composite sample during
a pulsed photothermal NDE experiment.

In the following sections, the formulation of the FA
method is detailed and applied to two sample prob-
lems. Comparison with both simulated and exper-
imental results demonstrate the effectiveness of the
nurnerical technique.

2. MATHEMATICAL FORMULATION

It is assumed that the composite plate consists of |
parallel layers of thickness éz; = z;41 — z;, as shown



in Fig.1. Each layer is homogeneous, orthotropic and
may have thermal properties that are different from
those of the adjacent layers. The surface film coeffi-
cient h; at the interfaces is allowed to vary in the y
and z-directions. For ¢ > 0, heat is transfered from
the outer boundaries according to boudary conditions
of third kind. There is no heat generation in the me-
dia.

The mathematical formulation of this heat diffu-
sion problem governing the temperature distribution

in the ith section, z; <z <zi4, 1=1,2,...,1,1s
given as :
9*T; J*T; Ty oT;
 —— o o i = P; "i -, 1
keiggr thuigr thigr =G5 (1)

where T;(z,y, 2,t) is the temperature of the ith sec-
tion, p; is the density, C; is the specific heat and
ksi, kyi, ki are the thermal conductivities in the z,
vy and z-directions.

The composite structure is subjected to the follow-
ing boundary conditions :

aT;
— k21 0—1'1- + T = folt) , (2)
oT)
kxla—x] + hi1 T = f]+1(t) , (3)
atz=zy =0and z = z;41 = Lg;
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at z=0and z =L, for z; <z < zi4,.
At the interfaces, the media are subjected to the
following conditions :

oT;
— ki = hi+l(Ti - Ti+l) ) (8)
Oz
oT; 0T 41
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with z = z;,,, where h;y(y,2) is the surface film

coeflicient. Non-capacitive internal defects are also

represented by this kind of boundary conditions.
For ¢ = 0, the initial condition is expressed by

Ti(z,y,2,t) = Fi(z,y,2) - (10)
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Figure 1: Multilayered composite plate.

3. DESCRIPTION OF THE FA METHOD

The FA method has been developed by Chen and
his collaborators (1984,1988) to remedy the difficul-
ties experienced in the numerical solution of fluid flow
and heat transfer problems. It has recently been ex-
tended to the solution of transient heat conduction
problems on 1D multilayered composite slabs with
linear and non-linear boundary conditions by Ramos
and Giovannini (1992).

The basic idea of the FA method is to incorporate
a local analytical solution in the numerical solution
of the governing partial differential equations, thus
reducing the truncation error in the finite difference
approximatton and eliminating the use of an approx-
imation function in the finite element method. The
FA method decomposes the computational domain
into a number of small discrete elements in which lo-
cal analytic solutions are obtained due to locally sim-
ple geometry, equation or boundary condition. The
FA method has some attractive features. It is un-
conditionally stable and allows one to use a coarser
computational mesh without loss of accuracy.

The ADI FA solution strategy adopted in the
present work comprises the following major steps :

1. Splitting of Eq.(1) into a triplet of one-
dimensional equations, as follows

PT 1 0T 0

8z T gy Ot (D

PT 1 T ,_

3 g O (12)
and 2T 1 OTh

T 1 9T ,

522 an O (13)

where «zi, ay; and «; are the thermal diffusiv-
ities in the x, y and z-directions, respectively.



2. Discretisation of the computational domain in
the z, y and z-directions into small one-
dimensional elements R}, R(¥) and R®), respec-
tively. Any interior element RU), delimited by
the nodes j — 1 and j + 1, shall be completely
overlapped by subregions RU~1) and RO+,

3. On all the interior nodes, boundary conditions
of the first type are given and allowed to vary
linearly during a time step At = t™ — ™1,

4. Derivation of the local analytic solutions. The
external boundary conditions are automnaticaly
enforced by incorporating into the numerical pro-
cedure the local analytic solutions for the outer
elements (in the z-direction, R(") and R()).

5. Assembling and overlapping of all local analytic
solutions in each orthogonal direction.

The resulting set of tridiagonal algebraic equations,
solved sequentially in the z, y and z-directions, for
each 7, £ and { grid lines, provides the temperature
distribution 77}, throughout the computational do-
main.

4. NUMERICAL SOLUTION

Let T;(&,t) be the solution of Eq.(1) in the element
R, &1 <€ < &4, where £ is a local space coor-
dinate. Evaluating Tj(€,t), at £ = §; and t =™, as
a function of the initial and boundary conditions of
the local problem, expressed in terms of the element
nodal values, namely !

F}n_l(ﬁ): (7—}171-1-1,71171 1 7’;+1 ,5) (14)
Tyoi(t) = FTT TP 0 (15)

and
Tin () = fT7TL T (16)

one can obtain a six-point formula for the tempera-
ture 77" in the form

T~ ._('_,_1T 1+(_,+1T+1+Pm b (17)

where the implicit coeflicient terms are given by
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and the source term is expressed by
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Generally, N = 20 provides results accurate enough
for most applications. However, a larger number of
eigenvalues may be necessary for calculating small-

. . -1
timne solutions. The f;‘n term can be evaluated by

—=m—1
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where the function Fj'"_l(f) 1s approximated by
second-order Lagrange polynomials passing through
T3, T and TP, that s

j+1
FPi(e) = v (6T
+ W OT + W (OTRT , (26)
with
¥, (6) = (€= &)(€ — &) (27)

(£J-1 _€J)(£J—1 _£J+1) ’
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Figure 2: Absolute error ¢4, versus grid size Af.

(€ =&-1)( —&+1)
& —&-1)(& —&41)
€ -&-D(E-¢&)
&1 = &G-1)(&41 — &)
Similar formulas can be derived for each unknown
nodal point 7, £ and l. In the present study, consid-
ering that the RU) elements do not span accross the
boundary between two different composite layers, the
above formulation shall be completed converting into
an algebraic form, with a finite-difference approxima-
tion, the interface conditions given by Eqs.(8) and
(9). This system of algebraic equations, relating any
node to its neighboring nodal values, can be solved
to provide the FA numerical solution of the problem.

¥v;(6) = ( (28)

‘I’J’+1(f) =

(29)

5. NUMERICAL RESULTS

In order to illustrate the effectiveness of the ADI FA
numerical model developed previously, two sample
problems were considered. The FA solutions were
evaluated in comparison with known analytical solu-
tions and with an ADI Cranck-Nicolson (CN) finite-
difference model. All computations were carried out
on a HP/Apollo 9000/425t workstation. A detailed
study of the accuracy and the efficiency of the FA
method for solving conduction problems in compos-
ite structures is reported by Ramos (1992).

The first sample problem consists of a homogeneous
2D plate (o = 5.4 x 1077 m?/s, k = 1.1 W/mK) of
side L = 0.01 m, with initial unit uniform tempera-
ture and convective boundary condition with respect
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Figure 3: CPU time versus absolute error €4, (s =
0.14; 6 x 6, 11 x 11, 21 x 21 and 51 x 51 nodes).

to an environment at T,, = 0°C’. The heat trans-
fer coeflicient & is constant and uniform throughout
the plate sides. To study the convergence of the FA
solution, the absolute error €435, defined as

€abs :I Toum — Tezaet | s (30)
was computed in a plate vertex, at { = 55, and plot-
ted against the grid size A€, for s = wAt/AL? = 0.14.
The results, presented in Fig.2, show that the FA
method has a second-crder convergence rate, simi-
lar to that presented by the CN solution. The effi-
ciency of the FA method was assessed by comparing
the CPU time for both the FA and the CN methods
to achieve the same level of accuracy. The results are
plotted in Fig.3. As expected, for a prescribed accu-
racy level, the FA approach requires a rmuch coarser
grid and hence less CPU time than that required by
the CN method. For example, at ¢4, = 1.5 x 107K,
the FA method is almost 10 times faster than the CN
method.

The second example concerns a homogeneous 3D
cube with 1nitial zero uniform temperature and adi-
abatic boundary conditions (A = 0). For ¢ > 0, the
front face is submitted to a plane square-wave heat
pulse of duration 7 = 1, 10 or 30 s and with a flux
intensity adjusted to generate a steady-state temper-
ature of Tyy = 1, 2 or 3°C, respectively. The tem-
perature history of the front face is shown in Fig4.
The FA results agree very well with the exact solution
with an average relative error of less than 0.7 %.
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Figure 4: Temperature histories at the front face of
a homogeneous cube, subjected to heat pulses of dif-
ferent intensities (At = 1 s, 11 x 11 x 11 nodes).

6. EXPERIMENTAL RESULTS

To demonstrate the applicability of the ADI FA
model in solving a practical problem of current tech-
nological interest, the 3D transient temperature re-
sponse of a carbone-epoxy laminate sample contain-
ing internal defects was simulated. The numerical
results were compared with those obtained in labora-
tory, during a pulsed photothermal NDE experiment.

The test sample is a 200 x 200 x 5 mm flat plate,
made of 17 layers of carbone fibers inbedded in an
epoxy matrix. Carbone-epoxy laminates are low ther-
mal conductivity, highly anisotropic materials (¢, =
a, = 10 x qp = 2.2 x 1076 mz/s), widely used In
the aerospace industry. During the sample fabrica-
tion process, rectangular 180 pum thick teflon inclu-
sions of various sizes have been inserted at different
depths and locations, as shown in Fig.5, to simulate
subsurface damages.

The test apparatus consists of a pulsed infrared
(IR) source, an AGEMA 880 long-wave IR camera,
placed perpendicularly to the sample front face, and
a data acquisition system, allowing real-time 12-bits
digitalisation and hard disk storage in a rate of 25 im-
ages per second. For t > 0, the front face is irradiated
with a square-wave heat pulse, while a sequence of 504
thermographic images is recorded, covering both the
heating and cooling phases.

Knowing the emissivity of the sample, time-varying
thermograms can be extracted from the data by col-
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Figure 5: Defects arrangement in the carbone-epoxy
sample.

lecting the thermal signal at particular pizels in the
thermographic images. Experimental temperature
histories for three different locations (points 1, 2 and
3 in Fig.5) are plotted in Fig.6 and 7 and show an
excellent agreement with the results obtained by the

ADI FA method.

7. CONCLUSION

In the present work, an alternating direction im-
plicit (ADI) finite analytic (FA) numerical scheme is
presented and applied to the solution of a transient
heat conduction problem in a 3D multilayered com-
posite plate. The basic idea of the FA method is
the incorporation of a local analytic solution of the
governing equation in the numerical solution of the
boundary-value problem. The FA method allows for a
coarser computational grid than the standard numer-
1cal schemes and hence provides savings in processing
time. Numerical and experimental results show that
the FA method is accurate and well suited for simulat-
ing the transient temperature response of composite
samples during a pulsed photothermal NDE experi-
ment.
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Figure 6: Experimental and numerical thermograms
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