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Abstract : We present here two Petri nets formalisms that cm 

deal with uncertainty by the use of necessity-valued logic. The 

first and basic model, called necessity-valued Petri nets 

(NPN), cm at the same time deal with uncertainty o n 

markings and on transitions. The second rnodel, called 

necessity-valued Petri nets (TNPN), is an extension of both 

NPN and timed Petri neta. 

1 - Introduction 

One of the recent topics developed in the Petri neta research 

field has been the treatment of uncertainty. Some models, like 

the ones proposed in [11 and [2] introduce fuzzy temporal 

constraints [3] in a Petri net forrnalism and use imprecise and 

uncertain markings to monitor flexible manufacturing 

systems. A similar approach has been used in [4] to modeI 

fuzzy programmable logic controllers. In [5], [6], [7], we find 

studies on how to transfortn rule-based systems, in which the 

knowledge bases are pervaded with uncertainty, into Petri 

nets. In [8] fuzzy Petri net languages are discussed. 

In this work, we propose to use elements of 

propositional possibilistic logic to introduce uncertainty in 

Petri nets models. In the following section we describe the 

basic concepts in Petri nets used hera. We then briefly expose 

some fundamenta of necessity-based logic, and give a 

formulation of necessity-based Petri nets and timed necessity-

based Petri neta. We conclude with a brief comparison of our 

models to related works found in the literature.  
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2 - Basic definitions on Petri neta 

A Petri net is a directed graph containing two types 

places and the transitions - , usualiy associated 

and events respectively (see [9] for a first coube 

nets). Maces are graphically represented try _ 

transitions by bars. A token contained in a plar.e 

moment of time, means that a condition associated 

is satisfied at that moment. The distribution of • 

places in a given moment of time is called a 

net (see Fig. 1.a). A transition is enabled when 

its input places contains the number of required t 

on the arca (when only one token is required we x 

the are). At each step of the the execution of the Feia 

of the enabled transitions is chosen to be flred. 

new marking. We rnay ais° associate externai 

transition (e.g. sensors). In this case, the transitics 

if it is enabled and the conditions are true. F 

Net is defined by a quadruple 

PN = <P, T, 1,0> 

where : 

P = {PI ,  P2, 	Pu} is a finite set of places, 

T = {ti, t2, 	tk} is a flnite set of transitions. 
1: T 2' is Lhe input mapping from transitions 

sets of placas, 
O : T —> 2P is the output mapping from transido

sets of places. 

Let p be a place in P, and t be a transition in T. nen 

indicates that p belongs to Lhe set of input places of 

t, and accordingly p E 0(t) indicates that p belongs 

of output places of transition t. 

In this work we only consider safe Petri neta, 
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those where Lhe number of tokens in a place cannot exceed 1. 

A marked safe Petri net is a pair N = <R, Mo>, where R is a 

Petri net, and 1v!0: P {0,1} is Lhe initial marking of R. The 

notation M, —31 Mi+ 1 expresses that from marking M we 

obtain rnarking Mii.i through the firing of transition t. Mi,' is 

defmed as 
M + 1(p) = 1, 	p E 0(t), 

Mi+I(P) = 	p E I(t) and p O (t), 

M1+ 1(p) = M1(13) 	offierwise. 

The rnarking depicted ia Fig. 1.a is given by Mo(pi) = 0, 

Mo(p2) =. 1, Mo(p3) = 1, which can be synthetically described 

Sy Mo = (O 1 1). 

A sequence of transitions S = si...sk, si E T, is Lhe 

concatenation of k transitions fired from an initial marking 

; where si denotes the i-th transition fired from Mo. For 

'mstance, Lhe sequences of length 2 that we can obtain from the 

marked net depicted in Fig. La are S = sis2 = t2t1, and 

V= 51 1 52 tatt- 

, 1- Examples of Petn net formalisms (0¡=11(ti), = 

1.a) PN, 1.b) TPN, 1.c) NPN, 1.d) TNPN. 

In the kind of Petri nets considered so far there is no 

'Icem with time. In fact, the transitions are considered to be 

-r.antaneous. One of the Petri net rnodels that deal explicitly 

• *!-I time is Lhe Timed Petri Net [12], defined by a quintuple 

TPN = <P, T, I, 0, 0> 

' ere P, T, I, O are defined as in PN, and 0 : T 

- sociates to each transition Lhe length of time required to 

zomplish it taken from a time scale 	(see Fig. 1.b). The 

Lens used in transition t during the time span 0(t) are not 

ble anywhere. When a token becomes visible in a place it 

be immediately used by any transition having that place 

as input. For instance, let Mo = (0 1 1) be Lhe initial markin i, 

at time to 012 Lhe Petri net depicted in Fig. 1.b. For sequence 

S = s1s2 = t2t1 a token will be visible at place p1 at time 

`ri = "Go 0(t2), and the net will retum to Lhe initial 

configuration at time '"e2 = `Co+ 0(12) + 0(11)- 

3 - Necessity-valued Petri Neta and Timed 

Necessity-valned Petri Neta 

Necessity-valued logic [11], also called PL1, is a specific type 

of possibilistic logic, in which to each first-order formula cp, 

representing a statement in a knowledge base, we associate a 

constraint N(y) 2 a, where N is a necessity measure (see 

[12] for a detailed study in possibility theory, and [11] for a 

survey in possibilistic loffic). Here we are only interested on 

the case where the y's are propositional formulae. The 

constraint N(T) 2 a in PLI is represented by the pair (rig a), 

called a necessity -valued formula. The quantity a is called the 

valuation of formula cp and is denoted by val(w). Here we call 

(tp a), a necessity -valued proposition when formula ç 

consists of a single proposition. In necessity-valued Iogic we 

make extensive use of some important properties relative to 

necessity measures 

N(cpn-.p) =. O ; N(cpv-9) = 1 ; 

N(qmili) = inin(N(cp),N(W)) ; N(cpvtP) max(N(cp),N(V)) 

In PL1, Lhe classical modus ponens rule has been extended to 

Lhe graded modus ponens defined as 

(93  a), (9) —> 11) 	(11) min(a, r3)) 

where --> denotes Lhe classical logical irnplication. Expression 

(ip a) is here called Lhe minor necessity -valued premise and 

(cp 13) Lhe major necessity-valued premise. 

Let us now see how these concepts can be introduced in 

a Petri net formalism PN = <P,T,I,0>. Let us suppose that it 

is not well-known if a transition t from a set of places I(t) to a 

set of places 0(t) will be enabled when ali Lhe places in I(t) 

contam n tokens. The necessity measure giving Lhe uncertainty 

that transition t will tire can be represented by the necessity-

valued formula (iini2A...nik oi A 02A...A On  13), where 

ij  E 1(t) and oi E 0(t). This formula corresponds in fact to 

n necessity-valued formulae (g) —>o f5). where cp i A...A ik 

The Petri net formal definition can then be extended to 

incorporate uncertainty by attaching valuation 13 to its 

corresponding transition, similarly to what is done with 

1339 



durations in timed Petri nets. Let as now suppose that the 

exact initial distribution of tokens ia the set of places P is not 

well-known. The necessity measure giving Lhe uncertainty that 

a token is in a place p can be represented by the necessity- 

valued proposition (p a). We incorporate this information in 

the Petri net formalism by assigning a to Mo(p), in the initial 

rnarking of the fiei 

A necessity-valued Petri net (NPN) is then formally 

defined by 

NPN = <P, T, I, o, rp. 

where P, T, I and O are defined as given before and 

: T —» [0,11 associates a valuation to each transition. In 

this framework, the initial marking for each piace p thus 

consists of Lhe iower bounds on the necessity measures giving 

the uncertainty that a token is in p. M(p) = 1, which stands for 

N(p) I, means that a token is certainly inside the place, and 

will be graphicaly represented by a filled circle, as with the 

usual Petri nets formalisms. M(p) = O, which stands for 

N(p) O, will be represented by the absence of any symbols 

inside the place. 'fluis does not mean that it is irnpossible that p 

contains a token, it only means that the marking on p is not 

informative. For Lhe intermediate values of M(p), Lhe marking 

ou p is graphically represented by a circle containing lhe value 

M(p) (see Fig. 1.c). 

In this model a transition t is enabled when 1(0 > O and 

M(p) > O, V p E I(t), i.e, when necessity measures related 

both to the dynarnic valuations on the places (represented by 

the rnarkings), and to the transitions are informative. Let Mo 

and Mi respectiveiy be the initial and the i-th marking of an 

NPN. Let Mi —.t  Mut. Marking M.,+1 is defined hy 

Mi-Er(P) = mia (inf b E fm Mi(b), 11(t)), p E 0(t), 

= O, 	 p E I(t), p 0(t), 

Mi+ 1(p) = mi(p) , 	 otherwise. 

The expression inf b E Ro Wh) corresponds to the evaluation 

of a conjunction of a set of necessity-valued propositions 

(p a) at step i. The expression min(inf b E 10) MO), 1(t)) 

corresponda to lhe graded modas ponens ; the first temi 

corresponds to Lhe minar premise and the second to the major 

premise. Note that lhe marking definition in NPNts reduce to 

that of Ws when only certain valuations (=I) are involved 

in a firing. As an example, let us consider the Petri net in 

Fig. 1.c with ri(t i ) = .7, 11(t2) = 1(t3) =1(t4) = 1. For the 

1 
It is important to note that, although feasible, not 4 

applications require lhe rnodeling of uncertainty in buill 
transitions and initial markings. Indeed, we may con,... -IN 

situations where Lhe initial marking is certain and -- 

transitions are uncertain, - corresponding for instance to 

known satisfiability of externai conditions to the firing - •1 

where ali transitions are certain, but where there is only te 

imperfect knowledge of the initial localization of tokens ia 

places. 

Until now, transitions (certain or not) ia NPN's mil 

considered to be instantaneous. We now propose a nece 

based Petri net formalistn that is capabie of dealing 

transitions requiring an amount of time to be compl 

accomplished. A timed necessity-valued Petri net (TNPN" ii 

then formally defined by 

TNPN = <P, T, I, 0, O, tp 

where P, T, I, O, O, and i  are defined as given before se* 

Fig. 1.d). In TNPN's Lhe markings are defined as in NI)NN 

and time is treated as ia TPN's. 

The uncertainty described by TNPN may have diferem' 

meanings depending on the joint interpretation of O and TI. A 
first interpretation teta the duration 8 be exact, and 1 con 

firing conditions. For instance, let as suppose that it is 

known if some externai conditions ou a transition t are 

Then it will also be ill-known if t will fire when ali Lhe pl 

ia 1(t) contam n tokens. The uncertainty on t would 

correspond ou the statement the "there.  is a necessity 

transition t will fire, and ia this case it shall take exactly 

minutes". Another interpretation situates uncertainty ia 

dura non of the firing, corresponding for instance to 

staternent of Lhe kind "there is a necessity a that the firing 

sequence S = t2t1t4 with Mo = (O 1 .8), we 

Mi = (.7 0 .8), M2 = (O .7 .8), and M3 = (.7 O O). 

A marking M ia any Petri net should not contamn 

in places representing contradictory conditiouts. For in 

if we have two places p i  and p2 representing conditions 

we should make sure that we do not have M(pi) = I 

M(p2) = 1 at the same time. A marking in NPN's should 

even more restricted, not allowing M(p i) > O and M(p-

occur at Lhe same time. This should be done to gua 

coherence, since ia possibilistic logic when N(q) > O we 

= O. 

Ii 
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e havinsition t takes x minutes". The uncertainty in the last 

Inement is related to the time spent for the transition to be 

1 tc'kentampleted, and not to Lhe satisfiability of the conditions 

istancennocia(ed to the firing. 

s (1) an  Let the Petri net of Fig. I.d be such that Ti(ti) = .7, 
= 1 ar. 2) = 1(t3) . 1 (t4). 1, and 0(t1) = 1h, 0(t 2) = 2h, 

wild Np . = Oh, 0(t4) = 4h. Let us suppose that we can yield an 

)2)  > ()iria] marking Mo= (O 1 .8) corresponding to 5.5 hours 
ranteek Migo. Let us suppose that we want to know Lhe maximal 
e has. - ibility that place p1 contains a token, and that the Iast c 

'ng is kept uniu l the end of Lhe current transition. We have 

lot ai "ossible sequences with length of time greater than 5.5h. 

1)°t1 --..h S = t2t1t4, transition ilis firing, and the last marking was 

ceiv .8). With S' = t2t1t2t1, ti is firing, and the last marking 

(.7 O .8). With S" = t4t2t1, t2 is firing, and Lhe last 

ng was (O .8 O). Then the maximal plausibility 

sity) that there is a token in place p i  now is .7. 

Lhe 	- Conelusion 

- have presented two Petri nets formalisms based ou 

ity-valued logic, which is a special kind of possibilistic 

The first and basic model, called necessity-valued Peni 

NPN), can at the same time deal with uncertainty on the 

ngs and on Lhe transitions. When uncertainty is present 

Soth Lhe markings and Lhe transitions NPN's can be used to 

el rule-based systems, requiring only some slight 

fications on Lhe markings. Let Mi --> t  M1 .1. Then, for ali 

0(t), we will have M,,i(p) = max(M i(p), 

inf b E l io  Mi(b), ri(t))). Tlás scheme thus representa an 

ative approach to those used in [5] and [6]. 

The second model, called necessity-valued Petri nets 

TNTN). is an extension of both NPN and timed Petri-nets. 

ugh dealing with time and possibilistic logic, it is not a 

application of timed possibilistic logic [13], in which we 

with dates (e.g. "the lights on the production plant will be 

certainly after 8,A M, and before 6A id "). The model 

sed here cannot deal with statements of Lhe type "Lhe 

tion will take around x minutes to be completed". li has 

less expressive power than Lhe model proposed in [1] and 

which makes use of fuzzy temporal constraints [3] ; it is 

ever of much easier manipulation. It also represents a 

formal altemative approach to that used in [7]. 

I th 

o ill- 

are 

ity-

vith 

eI 

) is 

Future research on NPN's and TNPN's include extension 

to other models of Petri nets, - such as Petri neta with objects 

for instance , and a deep study of the relations between 

TNPN's and tirned possibilistic logic. 
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