ESPECTRO-IMAGEADOR DE VARREDURA MERIDIONAL PARA O ESTUDO DA PRECIPITAÇÃO DE PARTÍCULAS NA ALTA ATMOSFERA NA REGIÃO DA ANOMALIA MAGNÉTICA BRASILEIRA

Sheron de O. Monteiro, José Y. Bageston, Gustayo R. Wrasse, Daniel Michelon, Nelson J. Schučh, Hisao Takahashi, Delano Gobbi.

Universidade Federal de Santa Maria - UFSM Av. Roraima - Bairro Camobi - Caixa Postal 5021 - 97110-970 - Santa Maria/RS sheron@lacesm.ufsm.br, njschuch@lacesm.ufsm.br

O Campo Magnético Terrestre é assimétrico e sua mais baixa intensidade encontra-se numa extensa região que cobre parte do Oceano Atlântico e parte do Território Brasileiro. Tal região é conhecida como a Anomalia Magnética do Atlântico Sul (AMAS). Como consequência de tal Anomalia, o Cinturão de Radiação que circunda a Terra (Cinturão de Van Allen) encontra-se rebaixado nessa região, ocasionando uma maior precipitação de partículas energéticas (prótons e elétrons) na Atmosfera local. Esta precipitação é modulada principalmente pela Atividade Solar. A precipitação de partículas energéticas na Alta Atmosfera (acima de 80Km) pode ocasionar danos em equipamentos eletrônicos à bordo de satélites ou aos seres humanos que se encontram no espaço a bordo de aeronaves. Esta precipitação de partículas tem grande importância para o conhecimento dos fenômenos Físico-Químicos da Alta Atmosfera, tornando a região da AMAS um excelente laboratório de pesquisa. Com a finalidade de conhecer melhor os efeitos da precipitação de partículas na Alta Atmosfera da AMAS, foi instalado no mês de maio do corrente ano, no Observatório Espacial do Sul - OES/CRSPE/INPE-MCT, localizado no município de São Martinho da Serra/RS, um Espectrômetro Imageador de Varredura Meridional (MIS -Meridian Imaging Spectrometer). Este detector óptico de grande sensibilidade tem capacidade de monitorar as emissões ópticas da Alta Atmosfera numa faixa de 100nm, entre aproximadamente 390,0 à 490,0nm, com resolução espectral de 0,5 a 1,0nm e campo de visão de 160°. Este equipamento realiza o monitoramento das emissões espectrais nas linhas do Nitrogênio Ionizado N₂⁺ 391,4nm e 427,8nm, e do Hidrogênio Beta H₃ 486,1nm. Estas emissões ocorrem principalmente pelas colisões entre os constituintes atmosféricos e partículas energéticas provenientes principalmente do Sol, caracterizando emissões Aurorais. Tais emissões são características das regiões polares, e justamente por causa da compressão das linhas de Campo Magnético na região da AMAS, espera-se observar emissão Auroral à média latitude (29°S, 53°O), onde está localizado o OES/CRSPE/INPE-MCT. Os dados coletados são gravadas em arquivos *.dat (binário) e em outros arquivos como *.jpg. Os arquivos *.dat são lidos e analisados através de programas desenvolvidos em linguagem de programação tipo IDL, enquanto que os arquivos tipo *.jpg são utilizados para uma visualização mais imediata das imagens. Dessa forma, o monitoramento destas emissões ópticas fornece uma boa técnica para a investigação dos fenômenos Físico-Químicos que ocorrem na Alta Atmosfera.