
sid.inpe.br/mtc-m21c/2019/04.02.23.51-TDI

NUMERICAL METHODS APPLIED TO SPACE
MAGNETOHYDRODYNAMICS FOR HIGH

PERFORMANCE COMPUTING

Müller Moreira Souza Lopes

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Margarete Oliveira
Domingues, and Odim Mendes
Junior, approved in May 02, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3T3K8C2>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2019/04.02.23.51-TDI

NUMERICAL METHODS APPLIED TO SPACE
MAGNETOHYDRODYNAMICS FOR HIGH

PERFORMANCE COMPUTING

Müller Moreira Souza Lopes

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Margarete Oliveira
Domingues, and Odim Mendes
Junior, approved in May 02, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3T3K8C2>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy

Cataloging in Publication Data

Lopes, Müller Moreira Souza.
L881n Numerical methods applied to space magnetohydrodynamics

for high performance computing / Müller Moreira Souza Lopes. –
São José dos Campos : INPE, 2019.

xxiv + 203 p. ; (sid.inpe.br/mtc-m21c/2019/04.02.23.51-TDI)

Thesis (Doctorate in Applied Computing) – Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, 2019.

Guiding : Drs. Margarete Oliveira Domingues, and Odim
Mendes Junior.

1. Adaptive mesh refinement. 2. Magnetohydrodynamics.
3. High performance computing. 4. Divergence cleaning.
5. Magnetosphere. I.Title.

CDU 519.6:537.84

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

To my mother.

v

ACKNOWLEDGEMENTS

I thank the National Institute for Space Research (INPE) and the Graduation pro-
gram in Applied computing (CAP) for the necessary structure for the realization of
this work.

This thesis was supported by CNPq (PhD scholarship, process number
140626/2014− 0).

I also thank to CAPES for the sandwich doctorade grant via PDSE program (process
number 88881.132489/2016− 01).

I thank the Aix-Marseille University for the hospitality during the CAPES sandwich
doctorade visit in April 2017.

I thank the University of Southampton for the hospitality during the CAPES sand-
wich doctorade visit from May to July 2017 and the CNPq/FAPESP Sprint/SOU
visit from January to March 2018.

I thank the supervisors Margarete Domingues and Odim Mendes for suggesting and
planning this project and for the many fruitful scientific discussions, suggestion,
opportunity, material and patience which allowed this work to be developed.

I thank Dr. Ralf Deiterding for receiving me in the University of Southampton in
my two visits, for the fruitfull discussions which colaborates for the progress of this
work and for his assitance with the AMROC framework.

I thank Dr. Kai Schneider for receiving me in the Aix-Marseille Univesity, for the
fruitfull discussions regarding to local time stepping methods, which colaborates for
the progress of this work.

I thank also Varlei Menconi and Marcelo Banik for the technical support and Anna
Gomes for the fruitful discussions.

This work has the finantial/technical support related to the cluster Orion (FINEP
Grant: 0112052700).

vii

ABSTRACT

The study of physical systems related to the space sciences presents several chal-
lenges regarding the great variety of phenomena and scales. In particular, mag-
netohydrodynamic models are applied in space weather to study phenomena that
reach the Earth’s atmosphere, affecting infrastructure services provided to society.
In this context, many fields of study complement each other to obtain a better
understanding of these systems. Among these approaches are the numerical simu-
lations, which provide an approximated prediction of the system behaviour from a
predefined setup. However, in order for this simulations to be viable, they must be
performed in a realistic time, which is a challenge for complex models such as the
magnetohydrodynamic equations. Thus, the use of adaptive computational meshs
that present higher refinements in regions of interest is an effective strategy to re-
duce the computational time required for simulations. In particular, the simulations
of the magnetohydrodynamic equations present a fundamental challenge that is the
emergence of a non-realistic divergence over the magnetic field caused by numeri-
cal errors, which requires special techniques to be treated in order to maintain the
correctness and the numerical stability. This work presents a code for solving mag-
netohydrodynamic equations using a high-performance environment that allows the
use of adaptive meshs and parallel algorithms. Also, a new technique is proposed to
overcome the divergence problem. The code is applied in several test problems in
order to verify its performance. Then it is applied to a Earth magnetosphere model.
As a product of this thesis, an innovative, high-performance tool for the future space
weather research conducted at INPE.

Keywords: Adaptive mesh refinement. Magnetohydrodynamics. High performance
computing. Divergence cleaning. Magnetosphere.

ix

MÉTODOS NUMÉRICOS APLICADOS A
MAGNETOHIDRODINÂMICA ESPACIAL PARA COMPUTAÇÃO

DE ALTO DESEMPENHO

RESUMO

O estudo de sistemas físicos relacionados às ciências espaciais apresentam diversos
desafios devido à grande variedade de fenômenos e escalas envolvidos. Em particu-
lar, modelos magnetohidrodinâmicos são aplicados em clima espacial para estudar
fenômenos que atingem a atmosfera terrestre, os quais podem afetar serviços de
infraestrutura oferecidos à sociedade. Neste contexto, diversas áreas de estudo se
complementam visando obter um melhor entendimento destes sistemas. Dentre es-
tas abordagens encontram-se as simulações numéricas, que fornecem uma previsão
aproximada do comportamento do sistema a partir de uma configuração predetermi-
nada. Porém, para que as simulações sejam viáveis, elas devem ser realizadas dentro
de um intervalo de tempo realístico, o que é um desafio para modelos complexos
como as equações magnetohidrodinâmicas. Desta forma, o uso de malhas computa-
cionais adaptativas que apresentam maior refinamento em regiões de interesse é uma
estratégia efetiva para reduzir o custo computacional requerido por estas simulações.
Em particular, as simulações das equações magnetohidrodinâmicas apresentam um
desafio inerente associado a emersão de uma divergência não realística sobre o campo
magnético causada por erros numéricos, sendo necessário o uso de técnicas especi-
ais para manter a exatidão e a estabilidade numérica. Este trabalho apresenta um
código para simular as equações magnetohidrodinâmicas utilizando um ambiente
de alto desempenho que permite o uso de malhas adaptativas e algoritmos para-
lelizados. Além disso, é proposta uma nova técnica para lidar com o problema da
divergência. Este código é aplicado em diversos problemas de teste para verificar
sua performance, incluindo um modelo de magnetosfera terrestre. Como produto
desta tese, obtém-se uma ferramenta inovadora e de alta performance para futuras
pesquisas em clima espacial a serem conduzidas pelo INPE.

Palavras-chave: Refinamento de malha adaptativo. Magnetohidrodinâmica. Proces-
samento de alto desempenho. Correção de divergência. Magnetosfera.

xi

LIST OF FIGURES

Page

4.1 Numerical extrapolation to the interfaces. 25
4.2 Full Riemann fan for the MHD equations. 28
4.3 Example of a slope s dividing two arbitrary states. 32
4.4 HLL Flux Riemann’s fan . 34
4.5 Schematic structure of the HLLD solver Riemann’s fan. 35

5.1 Red/Black Gauss-Seidel colour distribution in a 2D mesh. 56
5.2 V-cycle multigrid algorithm. 59

6.1 Example of hierarchy of retangular submeshes. The clustered regions
marked in grey are overlayed by a finer submesh. 62

6.2 Adaptive mesh and corresponding tree structure to store the patches. . . 64
6.3 Example of a patch containing two layers of ghost cells. 64
6.4 Patch with ghost cells placed over the mesh hierarchy. 65
6.5 Cell clustering algorithm. 67

7.1 AMROC folder hierarchy. 70

8.1 Riemann type IC: 1 direction. Cuts over the x-axis for the 2D and 3D
solutions using meshes with 20482 and 5123 cells, alongside with the exact
solution. 79

8.2 Riemann type IC: 2 directions. Results for ρ, p, E and ux obtained by
the 2D and 3D simulations from the AMROC and CARMEN codes. . . . 81

8.3 Riemann type IC: 2 directions. Results for uy, uz, Bx, By and Bz obtained
by the 2D and 3D simulations from the AMROC and CARMEN codes. . 82

8.4 2D-OTV: solution for ρ using different flux limiters in a base mesh with
2562 cells. 84

8.5 2D-OTV: solution for ρ using different flux limiters in a base mesh with
20482 cells. 85

8.6 GLM parabolic-hyperbolic correction: p and DB results for the 2D prob-
lems. 90

8.7 GLM parabolic-hyperbolic correction: Solutions obtained for the 2D
problems using the mesh G4. 93

8.8 GLM parabolic-hyperbolic correction: p and DB results for the 3D-OTV
problem. 94

xiii

8.9 GLM parabolic-hyperbolic correction: Solutions obtained for the 3D-
OTV problem using the mesh G2. 95

8.10 GLM elliptic correction: p and DB results for the 2D problems. 97
8.11 GLM elliptic correction: p and DB results for the 3D-OTV problem. . . . 98
8.12 GLM elliptic correction: Solutions obtained for the 2D problems using

the mesh G4. 99
8.13 GLM elliptic correction: Solutions obtained for the 3D-OTV problem

using the mesh G2. 100
8.14 GLM triple correction: p and DB results for the ROT, 2D-OTV and

BWV problems. 102
8.15 GLM triple correction: p and DB results for the 3D-OTV problem. . . . 103
8.16 GLM triple correction: Solutions obtained for the 2D problems using the

mesh G4. 104
8.17 GLM triple correction: Solutions obtained for the 3D-OTV problem using

the mesh G2. 105
8.18 Parameter DB, obtained for the 2D problems using the discussed diver-

gence cleaning approaches in the base mesh G4. 108
8.19 Parameter DB, obtained for the 3D-OTV problem using the discussed

divergence cleaning approaches in the base mesh G2. 109
8.20 ‖B‖ obtained for the base mesh G4 the ADV, ROT, 2D-OTV and BWV

problems using the discussed divergence cleaning approaches. 109
8.21 REC: Solution for p, the adaptive mesh and mesh distribution per pro-

cessors. This simulation was performed using 4 refinement levels with
threshold value ε = 0.001 and 24 processors. 113

8.22 Results for p, the adaptive mesh and mesh distribution per processors.
This simulation was performed using 4 refinement levels with threshold
value ε = 0.001 and 24 processors. 116

8.23 SCI: Results for p, the adaptive mesh and mesh distribution per pro-
cessors. This simulation was performed using 4 refinement levels with
threshold value ε = 0.001 and 24 processors. 119

8.24 Magnetosphere setup after the hydrodynamic step. 124
8.25 Magnetosphere setup before the inclusion of the real solar wind data. . . 125

xiv

LIST OF TABLES

Page

4.1 Best convergence order obtainable with a s stages RK method. 39

8.1 Riemann type IC: 2 directions. Initial values for the each quadrant. . . . 80
8.2 GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the

parallel computations for the 2D problems, using the mesh G4, in function
of the number of processors. 91

8.3 GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the
computations of the problems using 16 processors in function of the base
mesh. 91

8.4 GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the
parallel computations for the 3D-OTV problem, using the mesh G2, in
function of the number of processors. 91

8.5 GLM parabolic-hyperbolic correction: Breakdown of the CPU time in
hours spent in the main tasks computations for different numbers of
processors in the ADV problem. 92

8.6 GLM elliptic correction: Elapsed time, in hours, for the parallel computa-
tions for the 2D problems, using the mesh G4, in function of the number
of processors. 96

8.7 GLM elliptic correction: Elapsed time, in hours, for the parallel compu-
tations for the 3D-OTV problem, using the mesh G2, in function of the
number of processors. 97

8.8 GLM elliptic correction: Elapsed time, in hours, for the computations of
the 2D and 3D problems using 16 processors in function of the base mesh
used. 97

8.9 GLM triple correction: Elapsed time, in hours, for the parallel computa-
tions for the 2D problems, using the mesh G4, in function of the number
of processors. 101

8.10 GLM triple correction: Elapsed time, in hours, for the parallel compu-
tations for the 3D-OTV problem using the mesh G2, in function of the
number of processors. 102

8.11 GLM triple correction: Elapsed time, in hours, for the computations of
the 2D and 3D problems using 16 processors in function of the base mesh
used. 102

xv

8.12 Divergence and CPU time, in hours, obtained by the discussed divergence
cleaning methods. 107

8.13 ADV problem: Errors for the Bx and By components in the L1 and L∞
norms obtained by the studied divergence cleaning approaches in the
mesh G4 using 16 processors. 107

8.14 REC: Errors in p, memory consumption and CPU time obtained by using
several refinement levels. 112

8.15 REC: Breakdown of the CPU time in % spent in the main tasks compu-
tations for different numbers of refinement levels using ε = 0.001. 112

8.16 KHI: Errors in p, memory consumption and CPU time obtained by using
several refinement levels with ε = 0.001. 115

8.17 SCI: Errors in p, memory consumption and CPU time obtained by using
several refinement levels. 118

xvi

LIST OF ABBREVIATIONS

ADV – Magnetic field loop advection
AMROC – Adaptive Mesh Refinement in Object-oriented C++
BWV – Spherical Blast Wave
CFL – Courant-Friedrich-Lewy Condition
FD – Finite Differences method
FE – Finite Elements method
FV – Finite Volumes method
GLM – Generalised Lagrange Multiplier
HDF – Hierarchical Data Format
HLL – Harten–Lax–van Leer
HLLD – Harten–Lax–van Leer Discontinuities
KHI – Kelvin-Helmholtz instability
MHD – Magnetohydrodynamic model
MPI – Message Passing Interface
MR – Multiresolution method
MUSCL – Monotone Upstream-Centered Schemes for Conservation Laws
OTV – Orszag-Tang vortex
RK – Runge–Kutta method
REC – Magnetic Reconnection
ROT – Rotor Problem
SAMR – Structured Adaptive Mesh Refinement
SCI – Shock-Cloud Iteration
SG – Scaled Gradient
VTK – Visualization ToolKit
WENO – Weighted Essentially Non-Oscillatory

xvii

LIST OF SYMBOLS

A – scalar value notation
A – vector notation
A1A2 – tensor product between the vectors A1 and A2
A – matrix/tensor notation
I – identity matrix
λD – Debye lenght
ND – number of particles inside the Debye sphere
ε0 – vacuum premittivity constant
k – Boltzmann constant
e – electron charge
L – plasma lenght scale
fpe – plasma frequency
νen – electron-neutron collision rate
t – time
r – physical space coordinates
v – velocity space coordinates
α – generic type of particles
nα – number of particles of type α per unit of volume
mα – mass of particle of type α
qα – electric charge of particles α
Tα – temperature of the particles α
fα – distribution function of the particles α
uα – fluid velocity of the particles α
wα – thermal velocity of the particles α
hα – heat flow of particles α
Pα – stress tensor of particles α
pα – isotropic pressure component of the stress tensor of particles α
πα – anisotropic component of the stress tensor of particles α
Nd – number of degrees of freedom
γ – adiabatic index
Aα – momentum rate of change of the particles α due to collisions
Qα – generated heat per unit of volume of the particles α due to collisions
B – magnetic field
E – electric field
J – current density
η – resistivity
ρC – single fluid charge density
ρ – single fluid mass density
u – single fluid velocity
p – single fluid isotropic pressure

xix

E – plasma internal energy
q – vector of conservative variables
w – vector of primitive variables
λ

+/−
f/A/s/e – MHD model eigenvalues
cf – fast magnetosonic velocity
cs – slow magnetosonic velocity
cA – Alfvén velocity
Rm – magnetic Reynolds number
U – plasma velocity scale
te – final instant of the simulation
F – flux components
S – source terms
Ω – physical domain
d – number of dimensions of the physical domain
Ci,j,k – cell centred at the point (xi, yj, zk)
∆x – length of the cell C in the x direction
∆3r – volume of the cell C
qi,j,k – average value of q in the cell Ci,j,k
n – time evolution counter
an – solution of the variable a after n iterations of the time evolution
(m) – iterative method counter
a(m) – solution of the variable a after m iterations of a iterative method
S – surface surrounding an integration domain
F , G, H – numerical fluxes in the x, y and z directions, respectively
φ – slope limiter function
qθ, i – variable number θ of the solution vector qi
v – vector of characterist variables
vθ – variable number θ of the characteristic variables vector
Rθ – eigenvector associated with the eigenvalue λθ
σ – Courant number
DB – ratio between the divergence and magnitude of the magnetic field per unit of volume
ψ – divergence cleaning parameter
ψ – vector containing every solution ψ of the mesh
r – residual from iterative method
r∗ – projected residual from iterative method
e∗ – error from iterative method
νpre νpost – number of iteration per level in the multigrid method
L – highest refinement level of the mesh
ε – mesh refinement thresholding value
ν – ration between flagged cells and total cells in the clustering algorithm
G` – computational mesh discretised in the refinement level `
G`m – patch number m of the mesh G`

xx

ξ – distance to the origin
tCPU – CPU time
g – gravity field
Bd – dipole magnetic field of the Earth

xxi

CONTENTS

Page

1 INTRODUCTION . 1

2 PLASMA PHYSICS . 5
2.1 Plasma characteristics . 5
2.2 Mathematical description of plasma phenomena 7
2.2.1 Kinetic model . 7
2.2.2 Fluid model . 9

3 MAGNETOHYDRODYNAMICS 13
3.1 Ideal MHD . 14
3.1.1 System eigenvalues . 15
3.2 Resistive MHD . 17

4 NUMERICAL FORMULATION 21
4.1 Finite Volumes method . 22
4.2 Numerical Fluxes . 24
4.2.1 High-Resolution Schemes . 25
4.3 Riemann problem . 27
4.3.1 Rankine–Hugoniot relations . 31
4.3.2 HLL Riemann solver . 33
4.3.3 HLLD Riemann solver . 35
4.4 Runge-Kutta methods . 39
4.5 Courant-Friedrich-Lewy Condition . 40

5 DIVERGENCE CLEANING . 43
5.1 Generalised Lagrange Multipliers approach 44
5.1.1 Splitting methods . 45
5.1.2 Parabolic correction . 46
5.1.3 Hyperbolic correction . 46
5.1.4 Parabolic-hyperbolic correction . 49
5.1.5 Elliptic correction . 50
5.2 Relaxation Methods . 51
5.3 Multigrid methods . 56

xxiii

5.4 Combining the elliptic and parabolic-hyperbolic corrections 58

6 PATCH-STRUCTURED ADAPTIVE MESH REFINEMENT . 61
6.1 Mesh Hierarchy . 63
6.1.1 Patch boundaries . 63
6.2 Flagging algorithm . 65
6.3 Time evolution . 67

7 COMPUTATIONAL ASPECTS 69
7.1 Generic SAMR solver . 71
7.2 Base MHD module . 71
7.3 Specific MHD module . 71
7.4 Multigrid solver module . 72
7.5 Running test cases . 72
7.6 Building new test cases . 74

8 RESULTS: VERIFICATION . 77
8.1 Accuracy experiments . 77
8.2 Divergence cleaning performance experiments 86
8.2.1 Results: GLM parabolic-hyperbolic correction 89
8.2.2 Results: GLM elliptic correction . 96
8.2.3 Results: GLM triple correction . 101
8.2.4 Comparison between the GLM methods 106
8.3 Adaptive mesh experiments . 110
8.4 Magnethosphere simulation . 120

9 LOCAL TIME STEPPING . 127

10 CONCLUSIONS . 129

REFERENCES . 131

ANNEX A - PROOFS OF THE THEOREMS 143

ANNEX B - NERK LOCAL TIME STEPPING 167

ANNEX C - AMROC MHD SOLVER DISCUSSIONS 197

xxiv

1 INTRODUCTION

Phenomena associated with the interplanetary environment can affect some aspects
of modern society directly. Many of these phenomena are associated with solar activ-
ity, which presents a cycle in which those events present maximums and minimums
in its frequencies and intensity (KIVELSON; RUSSELL, 1995). Several physical pro-
cesses connect those phenomena to Earth’s electrodynamics responses requiring the
proposal and understanding of physical models (MENDES et al., 2005). Among the
significant consequences of those phenomena are the risks of damage in systems that
depends on satellite technologies, energy distribution systems, etc., as discussed for
instance in Cucinotta et al. (2015) and Schrijver et al. (2015). Hapgood (2011)
discussed some of the many impacts that solar activity has over our society and
highlighted the consequences of some extreme events registered in history.

In this context, the importance of the surveillance of solar activity and the study
of its impacts on the Earth’s atmosphere and the objects in space has increased
in recent years. To deal with space environment risks, many research centres have
increasingly dedicated to the space weather field development. The studies depend
on the analysis of the data originated from several instruments, such as magnetome-
ters, radio-telescopes, space probes, and others. To complement the analysis and
the possible forecast of space-Earth coupling phenomena, there is a high expecta-
tion that numerical models will be used as the nowadays low atmosphere weather
forecasting ones. In particular, most of the physics of the Earth’s magnetosphere
can be described using a magnetohydrodynamic (MHD) model. Early attempts to
numerical space weather forecasting are discussed in Tóth et al. (2012), which uses
an MHD model based on the seminal work of Powell (POWELL et al., 1999; POWELL,
1997). Among the necessities of the space weather field, the numerical modelling
of the phenomena in this area is challenging in several aspects. On the one hand,
in the physics scope, the space plasmas contain a wide variety of phenomena and
scales, which varies from the order of the fraction of the Earth’s radius to the order
of solar radius. On the other hand, from the computational scope, the simulation
of the MHD equations presents a high computational cost because it requires accu-
rate results due to the instabilities it involves. Therefore, adaptive meshs and high
performance methodologies have a vital role in this space context.

The adaptive methodologies were introduced in the 1980’s to improve the perfor-
mance of numerical simulations in the hydrodynamical context. For instance, one can
mention the adaptive mesh refinement (BERGER, 1982; BERGER; CORELLA, 1989;

1

BERGER; OLIGER, 1984) and later ideas such as the seminal work on adaptive mul-
tiresolution (HARTEN, 1995), as described in the review papers of Deiterding (2011)
and Domingues et al. (2011), respectively. More recently, this context was compared
(DEITERDING et al., 2016) and integrated (DEITERDING; DOMINGUES, 2017; DEIT-

ERDING et al., 2018) into the Adaptive Mesh Refinement in Object oriented C++

(AMROC) framework reviewed in Deiterding (2011) and references therein for hy-
drodynamics. That framework uses a message passing interface (MPI) to perform
parallel computations in a patch-structured adaptive mesh refinement environment
for finite volumes methods. Moreover, AMROC has a well balanced workload dis-
tribution, implying in an excellent computational performance. Nowadays very few
frameworks have those kinds of qualities. In this context, this thesis develops and
implements a new ideal and resistive MHD solver for multidimensional problems
using the AMROC framework, taking advantage of both the adaptive and paral-
lel implementations provided by this framework. The developed and implemented
solver was based on the CARMEN MHD module described in Gomes (2017), Gomes
et al. (2015), and Domingues et al. (2013).

The MHD simulations present an inherent challenge associated with the formation of
non-physical divergence components in the magnetic field, requiring a methodology
capable of correcting the solution after every iteration of the time evolution process
in order to maintain the Gauss’s law for magnetism valid for the solution (BRACK-

BILL; BARNES, 1980). In this context, it is possible to propose several strategies
(DEDNER et al., 2002; MUNZ et al., 2000; KAWAI, 2013; DERIGS et al., 2018) named
divergence cleaning methods. Some approaches present lower computational cost.
However, they do not eliminate the divergence components effectively, although they
do not compromise the solution of the physical phenomena. On the other hand, other
approaches mostly eliminate these divergence components effectively, with the price
of a high computational cost and a slight diffusion in the solution. Several studies ad-
dressed and presented comparisons among those methods (HOPKINS, 2016; MIYOSHI;

KUSANO, 2011; BALSARA; KIM, 2003; TÓTH, 2000). The construction of a perfect
divergence cleaning approach is still an open problem in the high performance com-
puting scope. In this context, to improve the development in this area, this thesis
also makes a contribution by proposing a new divergence cleaning approach that
combines both approaches in the Generalised Lagrange Multiplier (GLM) context
introduced in Dedner et al. (2002) and Mignone et al. (2010).

Another contribution of this thesis is an adaptive wavelet-based methodology for
local time stepping. This methodological approach is general and it can be applied in

2

both hydrodynamic and magnetohydrodynamic cases to increase the computational
performance of adaptive meshes by fixing the Courant number for every cell and
obtaining a time step proportional to the cell refinement. The proposed numerical
solution innovates by allowing higher order methods in time. This approach was
implemented in the CARMEN code developed in Roussel et al. (2003), extended to
local time stepping in Domingues et al. (2008) and optimised in (DEITERDING et al.,
2016).

The thesis highlights are:

• A multi-dimensional MHD solver for ideal and resistive cases which is de-
veloped and implemented in a high performance environment using adap-
tive mesh refinement strategies with an MPI formulation, which was pub-
lished in Moreira Lopes et al. (2018a).

• A successful approach to overcome the magnetic field numerical divergence
problem. This method combines the techniques presented in Dedner et al.
(2002) and Munz et al. (2000). This approach uses a multigrid solver to
overcome the performance limitations of the operator defined in Munz et
al. (2000). It will be presented in Domingues et al. (2019a).

• A mesh refinement criteria based on the wavelet formulation proposed in
Harten (1995) which is implemented in the context of patch structured
adaptive mesh refinement methods and is under revision in Domingues et
al. (2019b).

• An improvement to the local time stepping strategy proposed in
Moreira Lopes (2014), which was published in Moreira Lopes et al. (2018b)
for the second order accuracy and recently, extended to third order with a
detailed stability analysis in Moreira Lopes et al. (2019).

Outline

Chapter 2 introduces the concept of plasma and the mathematical formulation
that allows describing space science problems of interest and concludes with the
mathematical approach for fluids obtained from the Boltzmann equation. Chap-
ter 3 presents some simplification assumptions to describe the plasma as a single
fluid, which allows obtaining a basis for magnetohydrodynamical models as the one
applied for magnetosphere and Sun-Earth electrodynamical coupling.

3

Once the physical problem is characterised, Chapter 4 presents the numerical meth-
ods applied in the simulations of the studied equations. Chapter 5 presents different
approaches to overcome the divergence problem inherent to magnetohydrodynamic
simulations, including the proposed one, which requires several numerical methods,
also discussed in this chapter. Chapter 6 describes the adaptive mesh refinement
techniques, used to perform the mesh adaptation. Chapter 7 discusses the imple-
mentation of those methods in the proposed magnetohydrodynamic solver.

Chapter 8 presents the solvers verification tests, the comparisons among the GLM
corrections, the adaptive simulations, and the magnetospheric experiment. Chapter
9 contains an article developed in parallel with this thesis, concerning the imple-
mentation of a new time adaptation strategy, which is annexed. The conclusions
and future works are presented in Chapter 10. Additionally, in annex A, the proof of
the theorems presented in Chapter 2 and 3 are included. Annex B and C consist of
two articles published during this thesis, which contains an extension of the results
from the NERK local time stepping initially developed during the Author’s Master
program and extended during this PhD program; and the AMROC MHD solver
verification in its earlier stages, respectively.

4

2 PLASMA PHYSICS

Plasma is the most common state which known matter can be found in the uni-
verse. It is found in stars, the solar wind, the interplanetary medium, earth’s mag-
netosphere and in many other structures in the universe. This state of matter is
characterised by the electrons disattaching from the atoms, which allows them to
roam freely through the medium, interacting with another ions and molecules. A
collective behaviour is established involving the the electrically charged particles
(CHEN, 2016). However, not every ionised gas is considered to be in the plasma
state.

2.1 Plasma characteristics

As presented in Bittencourt (2004), to be considered a plasma, an ionised gas should
present three physical factors to ensure the plasma behaviour. These characteristics
are described as follows.

Macroscopic Neutrality

One of the major characteristics of the plasma is maintaining the quasi-neutrality
condition, which is described as an apparent overall charge neutrality through the
medium. However, in the small scales, the medium may contain charged regions and
electric fields.

Under this condition, the electric field created by every charged particle must be
screened by their surrounding particles of opposite charge. The range of the effects
due to the electric field generated by a particle is estimated by the Debye length,
calculated as:

λD =
(
ε0kTe
nee2

) 1
2

, (2.1)

where ε0 is the permittivity constant, k is the Boltzmann constant, Te is the electron’s
temperature, ne is the density of electrons in the medium and e is the electron charge.

In this context, the quasi-neutrality condition is assured when the Debye length is
considered very small when compared with the length scale L. Thus:

L >> λD. (2.2)

Physically, this means that the range of the medium L must be much higher than
the radius of action of any coulombian force inserted in the medium.

5

Debye screening

The quasi-neutrality condition states that the plasma may presents electric fields
around charged particles in small scales. These fields should occur inside a region
delimited by the Debye length, denominated Debye sphere. In order to avoid these
fields to have a higher influence radius, the electrons move themselves in order to
screen the electric fields at a distance around λD.

In this context, a high number of particles around the perturbed particle are re-
quired in order to properly screen any electrostatic field around the particle within
a distance near the Debye length.

The number of particles ND inside the Debye sphere is estimated as its volume times
the density of electrons. Therefore, if

ND = 4
3πλ

3
Dne ≈ λ3

Dne >> 1 (2.3)

is satisfied, the charge potential inside the Debye sphere is considered to be properly
screened.

Plasma frequency

When the electric field inside the plasma is perturbed, its electrons presents a col-
lective behaviour in order to restore the macroscopic neutrality. However, due to
inertial effects, the electrons moves beyond of the equilibrium point. This effect pro-
duces a new electric field in the opposite direction, requiring a new collective motion
to restore the macroscopic neutrality.

This recursive effect causes the electrons to move around the equilibrium point
periodically. This cycle has an oscillation frequency, called plasma frequency, given
by:

fpe = 1
2π

(
nee

2

ε0me

) 1
2

, (2.4)

where me is the electron mass. However, this oscillation is meddled by collisions
with neutrons, disturbing the movement of the electrons inside the Debye sphere.
Consequently, this effect may compromise the screening process, causing the loss of
the quasi-neutrality.

In this context, the electrons are considered to move freely around the Debye sphere
when their plasma frequency fpe is higher than the electron-neutron collision rate

6

νen. Therefore, the last condition to characterise a plasma is:

fpe > νen, (2.5)

where the electron-neutron collision rate is given by:

νen ≈ 10−19nn

(
kTe
me

) 1
2

(2.6)

and nn is the neutron density inside the medium.

2.2 Mathematical description of plasma phenomena

The plasma dynamo can be described by several mathematical formulations. The
most accurate is the particle model, which considers the motion of each particle
inside the plasma individually, obtaining a momentum equation for each particle.
However, besides being accurate, this model is computationally impractical due to
the immense number of particles inside a real plasma. Therefore, some considerations
have to be done in order to obtain a more practical formulation, such as the kinetic
model, which maps particles with similar position and velocity collectively using
analytical mechanics techniques.

2.2.1 Kinetic model

The kinetic model extends the Newtonian formulation by also mapping the particles
according a velocity space, creating a 6-dimensional phase space (r,v), where r =
(x, y, z) is the physical space and v = (vx, vy, vz) is the velocity space.

Instead of following the particles around the medium, this formulation is focused in
controlling the number of particles, indicated by Nα, inside the space between (r,v)
and (r + dr,v + dv), where α can represent electrons, neutrons or ions, according a
distribution function fα. Thus, the number of particles inside this space is determined
as:

d6Nα (r,v, t) = fα (r,v, t) d3r d3v, (2.7)

where d3r = dx dy dz and d3v = dvx dvy dvz. The dynamo of the plasma inside the
phase space is governed by the evolution in time of the distribution function fα,
which is given by the Boltzmann Equation:

∂fα
∂t

+ v · ∇rfα + a · ∇vfα =
(
δfα
δt

)
coll

, (2.8)

7

where ∇r = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z
, ∇v = i ∂

∂vx
+ j ∂

∂vy
+ k ∂

∂vz
. The right side term is

associated to plasma collisions, which can be described using several models such as
the Boltzmann, Fokker-Plank and Krook collision terms (BITTENCOURT, 2004).

The Boltzmann equation describes the microscopic behaviour of the plasma effec-
tively. However, for many applications, much of the microscopic effects can be ne-
glected due to large scale of the problem. In these cases, the problem can be simplified
by variables which describes the plasma dynamo macroscopically.

The macroscopic variables are defined as an average value of a physical quantity
inside a unit of volume. Supposing an arbitrary physical quantity g, its average
value inside a unit of volume of the physical space is defined by:

< g >α = 1
nα (r, t)

∫
v

gfα (r,v, t) d3v, (2.9)

where nα represents the number of particles of the type α in the space between r
and r + dr, independently of their individual velocities. This value is obtained by
integrating d6Nα over the velocity space, thus:

nα (r, t) = 1
d3r

∫
v
d6Nα (r,v, t) =

∫
v
fα (r,v, t) d3v. (2.10)

In special, the velocity component of the particles of a certain type α can be decom-
posed as the sum between the fluid velocity uα, defined as the average velocity of
all particles α within a unit of volume; and the thermal velocity wα which describes
the dispersion in the velocity component of a particle of type α in relation to the
average velocity. Therefore:

v = uα + wα. (2.11)

By definition, the fluid velocity uα is calculated as the average value of velocity v.
Using the Equation 2.9, this value is defined as:

uα(r, t) = < v >α = 1
nα (r, t)

∫
v

vfα (r,v, t) d3v. (2.12)

Consequently, the average value for the random thermal velocity is:

< wα(r, t) >α = < v− uα >α = < v >α − < uα >α = 0, (2.13)

since < uα >α= uα is already an average value. In Goedbloed and Poedts (2004), the

8

thermal component wα allows the definition of the thermal macroscopic quantities:

Tα(r, t) = mα

Ndk
< ‖w‖2 >α (Temperature) (2.14a)

hα(r, t) = 1
2nαmα < ‖w‖2w >α (Heat flow) (2.14b)

Pα(r, t) = nαmα < ww >α (Stress tensor) (2.14c)

where Nd is the number of degrees of freedom available to the particles. This number
is used to define the adiabatic index γ of the gas:

γ = Cp
CV

= Nd + 2
Nd

, (2.15)

where Cp and CV are the specific heats of constant pressure and volume, respectively.

The stress tensor Pα can be decomposed as the sum between its isotropic and
anisotropic contributions as:

Pα = pαI + πα, (2.16)

where the isotropic part pα is given in function of the temperature and particle
density:

pα = nαkTα, (2.17)

and the anisotropic part πα is a tensor with null elements in its diagonal.

2.2.2 Fluid model

Plasmas that presents a high frequency of particle collisions, so that each particle
of type α maintains a local equilibrium distribution function, can be described as
a conducting fluid. Mathematically, this formulation describes the plasma dynamo
using macroscopic variables such as density, macroscopic velocity and temperature.

In particular, considered as particles in thermal equilibrium, the particles with veloc-
ity v are distributed over the phase space according to the Maxwellian distribution:

fα (v) =
(

mα

2πkTα

) 3
2
e
−mα‖v‖2

2kTα (2.18)

The fluid model treats the plasma as a mixture of many interpenetrating fluids so
that each fluid is composed by a type of particles α. Therefore, in this formulation,
a set of equations is obtained to describe the dynamo of each fluid composed by
particle of the type α. In special, the single fluid formulation presented in Chapter

9

3, also know as magnetohydrodynamics, considers the mixture of ions and electrons
as a single fluid unit.

The system of equations that describes the fluid approximation is obtained by taking
as many moments of the Boltzmann Equation as desirable, then converting the
microscopic variables into macroscopic variables. The fluid formulation studied in
this work, farther presented in Chapter 3, approximates the plasma dynamo until
the second moment. These moments are taken by applying the following integral
operators to the Boltzmann Equation:

mα

∫
v
d3v︸ ︷︷ ︸

0th moment

mα

∫
v

vd3v︸ ︷︷ ︸
1st moment

mα

∫
v
‖v‖2d3v︸ ︷︷ ︸

2nd moment

(2.19)

This process results in the system of equations obtained in the Theorem 1, proven
is in Annex A.
Theorem 1. The moments of the Boltzmann Equation produces the following set
of equations:

∂nαmα

∂t
+∇ · (nαmαuα) = Sα (2.20a)

∂ (nαmαuα)
∂t

+∇ · [nαmαuαuα + Pα]− nαqα (E + uα ×B) = Aα. (2.20b)

1
2
∂nαmα‖uα‖2

∂t
+ ∂NdknαTα

∂t
+∇ ·

(1
2nαmα‖uα‖2uα + 1

2NdknαTαuα + uα · Pα + hα
)

−nαqαE · uα = uα ·Aα +Qα

(2.20c)
where qα is the electric charge of a particle α, Sα is rate per unit of volume which the
particles α are produced or lost due to collision effects, A is the rate of change of the
momentum of the particles α due to collisions with particles of another types, Qα is
generated heat per unit of volume of the particles α due to collisions with another
particles, B is the magnetic field and E is the electric field.

Each moment of the Boltzmann Equations produces an equation that describes the
evolution of one physical quantity. However, every equation contains a term that
is described by the equation in the next momentum. In particular, these moments
produces the following equations:

• The 0th moment describes the evolution of the term nα, but it introduces
the variable uα, described by the next moment, into the system.

10

• The 1st moment describes the evolution of the term uα, but it introduces
the variables B, E and P, which can be associated with the variable Tα,
described in the next moment.

• The 2nd moment describes the evolution of the term Tα, but it introduces
the variable hα to the system.

As noted, the procedure of taking moments of the Boltzmann equation always
presents more parameters than equations, making the system with non-unique so-
lutions. To bypass this problem, the system should be completed by another set of
equations which uses the same parameters, and some terms might be neglected. In
special, for the fluid formulation presented in Chapter 3, the system is completed
by the Maxwell Equations, which describes the behaviour of magnetic and electric
fields as:

∇ ·B = 0 (Gauss’ law - Magnetism) (2.21a)

∇× E = −∂B
∂t

(Faraday’s law) (2.21b)

∇×B = J (Ampère’s law) (2.21c)

∇ · E = ρC
ε0

(Gauss’ law) (2.21d)

where J is the current density and ρC is the charge density. Alongside with the
Maxwell equations, the system of equations is also completed with the Ohm’s law:

E + u×B = ηJ, (2.22)

where η is the resistivity. In the next chapter, the relations presented in this chapter
are used to describe the magnetohydrodynamic model, which considers the plasma
as a single fluid, instead of a mixture of particles α.

11

3 MAGNETOHYDRODYNAMICS

The Magnetohydrodynamic (MHD) model describes the plasma dynamo as a single
conductor fluid under a magnetic field. For that, it neglects the particularity of
the motion of each particle type so that the model considers the group of ions and
electrons as a single fluid element.

Mathematically, the MHD model describes the plasma by the set of single fluid
macroscopic variables q (r, t) = (ρ, ρu, E ,B), corresponding to density, momentum,
internal energy and magnetic field, respectively. The single fluid variables are defined
as the sum of terms associated to one type of particle, such as:

ρ (r, t) =
∑
α

nαmα (Density) (3.1a)

ρC (r, t) =
∑
α

nαqα (Charge density) (3.1b)

ρu (r, t) =
∑
α

nαmαuα (Momentum) (3.1c)

J (r, t) =
∑
α

nαqαuα (Current density) (3.1d)

p (r, t) =
∑
α

pα (Isotropic pressure) (3.1e)

The MHD equations are obtained by summing the fluid equations obtained in the
previous chapter for electrons and ions. Then, after applying the MHD model as-
sumptions, the sum of variables associated to one type of particle are converted to
the single fluid macroscopic variables according to the Equations 3.1.

This model is particularly useful to describe problems which the plasma has macro-
scopic force balance, equilibrium and dynamic. In special, for space sciences, phe-
nomena like the magnetosphere, the solar wind and heliosphere are well represented
by the MHD formulation. In the context of laboratory plasmas, the MHD model
poorly represents their dynamo. However, it is a good stability predictor for those
plasmas.

In order to reduce the mathematical complexity of the phenomena, the following
assumptions are made in addiction to the approximations presented in the previous
chapter:

Electron mass neglected: considering that mi >> me, where mi and me corre-

13

sponds to the mass of the ions and electrons, respectively, the terms with me are
neglected of the formulation. Thus the plasma density became ρ = nimi, character-
ising a low-frequency plasma.

Mass and momentum conservation: the system is assumed to neither produce
or loss particles. Therefore the collision term Sα = 0. Furthermore, the collision
between particles of different types are assumed to conserve the momentum in the
system, thus ∑α Aα = 0.

Isotropic pressure: the anisotripic component of stress tensor is neglected. There-
fore Pα = pαI .

Adiabatic process: the system is assumed to not transfer heat. Therefore, the heat
flux hα and the generated heat Qα are neglected.

3.1 Ideal MHD

The ideal MHD is the simplest representation of the dynamo of plasma as a conduct-
ing fluid. This formulation is an adiabatic process that neglects dissipative terms
such as η, πα and hα, corresponding to resistivity, viscosity and heat conductivity
effects, respectively. Thus, under the ideal MHD formulation, the plasma conserves
the physical properties of mass, momentum, energy, helicity and the magnetic field
topology due to the absence of dissipation. Considering these assumptions, the The-
orem 2, proven in the Annex A, presents the MHD equations.
Theorem 2. Applying the Ideal MHD properties to the fluid formulation obtained
in Section 2.2.2 produces the following equations:

∂ρ

∂t
+∇ · (ρu) = 0 (3.2a)

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p+ B ·B

2

)
I−BB

]
= 0 (3.2b)

∂E
∂t

+∇ ·
[(
E + p+ B ·B

2

)
u− (u ·B) B

]
= 0 (3.2c)

∂B
∂t

+∇ · [uB−Bu] = 0, (3.2d)

where this system is completed with the internal energy equation, given by the com-
bination of the hydrodynamic and magnetic energies:

E = p

γ − 1 + ρ
u · u

2 + B ·B
2 , (3.3)

14

and γ is the adiabatic index.

This formulation, called conservative form, describes the evolution of physical quan-
tities that in the absence of dissipative effects, should be conserved. Thus:

∂

∂t

∫
ρd3r = 0 ∂

∂t

∫
ρud3r = 0

∂

∂t

∫
Ed3r = 0 ∂

∂t

∫
Bd3r = 0. (3.4)

The numerical simulations of the MHD equations performed in this work are based
in this conservative form due to the formulation of the numerical methods chosen
for those simulations, presented in Chapter 4.

3.1.1 System eigenvalues

The numerical methods for the simulation of the MHD model, presented in Chap-
ter 4, requires the eigenvalues associated with each spacial derivative of the system.
These eigenvalues are obtained from the matrices multiplying their respective deriva-
tives when the system is written in the form of an advection equation:

∂w
∂t

+ Ax
∂w
∂x

+ Ay
∂w
∂y

+ Az
∂w
∂z

= 0, (3.5)

where Ax, Ay and Az are matrices associated with the transport in the i, j and k
directions, respectively, and w is a vector of variables. However, the terms of the
conservative MHD equations can not be expressed in this formulation. Thus, the
system of equations is rewritten as the primitive formulation.

The primitive formulation describes the MHD equations based in the vector of vari-
ables w = (ρ, p, vx, vy, vz, Bx, By, Bz). The system of equations that rules the MHD
model using the primitive variables is obtained by reordering the terms of the con-
servative formulation, except for the energy equation. This equation is substituted
by the pressure equation deducted in the Theorem 3, proven in the Annex A. This
equations requires the alternative formulation of the second moment of the Boltz-
mann Equation, presented in Equation A.82.
Theorem 3. The pressure equation for Ideal MHD is given by:

∂p

∂t
+ (u · ∇) p = −γp∇ · u (3.6)

15

Thus, the system of Ideal MHD equations in the primitive form is written as:

∂ρ

∂t
+∇ · (ρu) = 0 (3.7a)

∂u
∂t

+ (u · ∇) u = −1
ρ
∇p+ 1

ρ
(∇×B)×B (3.7b)

∂p

∂t
+ (u · ∇) p = −γp∇ · u (3.7c)

∂B
∂t

+∇ · [uB−Bu] = 0 (3.7d)

This system of equations is expressed in the form of an advection equation, con-
forming Equation 3.5, using the matrices Aa, where a stands for the axes x, y or z,
calculated as:

Ax =



ux 0 ρ 0 0 0 0 0
0 ux γp 0 0 0 0 0
0 1

ρ
ux 0 0 −Bx

ρ
By
ρ

Bz
ρ

0 0 0 ux 0 −By
ρ
−Bx

ρ
0

0 0 0 0 ux −Bz
ρ

0 −Bx
ρ

0 0 0 0 0 0 0 0
0 0 By −Bx 0 −uy ux 0
0 0 Bz 0 −Bx −uz 0 ux



(3.8a)

Ay =



uy 0 0 ρ 0 0 0 0
0 uy 0 γp 0 0 0 0
0 0 uy 0 0 −By

ρ
−Bx

ρ
0

0 1
ρ

0 uy 0 Bx
ρ
−By

ρ
Bz
ρ

0 0 0 0 uy 0 −Bz
ρ
−By

ρ

0 0 −By Bx 0 uy −ux 0
0 0 0 0 0 0 0 0
0 0 0 Bz −By 0 −uz uy



(3.8b)

16

Az =



uz 0 0 0 ρ 0 0 0
0 uz 0 0 γp 0 0 0
0 0 uz 0 0 −Bz

ρ
0 −Bx

ρ

0 0 0 uz 0 0 −Bz
ρ
−By

ρ

0 1
ρ

0 0 uz
Bx
ρ

By
ρ
−Bz

ρ

0 0 −Bz 0 Bx uz 0 −ux
0 0 0 −Bz By 0 uz −uy
0 0 0 0 0 0 0 0



(3.8c)

Each one of these matrices presents seven non-zero eigenvalues, which can be ordered
in ascending order as:

λ−f ≤ λ−A ≤ λ−s ≤ λe ≤ λ+
s ≤ λ+

A ≤ λ+
f . (3.9)

These eigenvalues are calculated for every axis a in Gomes (2012), obtaining:

λe = ua, λ±f = ua ± cf , λ±s = ua ± cs, λ±A = ua ± cA (3.10)

where the velocities cf , cs and cA are defined as:

cf =
√

1
2

[
κ2

1 + κ2
2 +

√
(κ2

1 + κ2
2)2 − 4κ2

1κ
2
a

]
(Fast magnetosonic velocity) (3.11a)

cs =
√

1
2

[
κ2

1 + κ2
2 −

√
(κ2

1 + κ2
2)2 − 4κ2

1κ
2
a

]
(Slow magnetosonic velocity) (3.11b)

cA = ‖κa‖ (Alfvén velocity) (3.11c)

with the values κ given as:

κa =
√
B2
a

ρ
, κ1 =

√
γp

ρ
, κ2 = ‖B ·B‖

ρ
. (3.12)

3.2 Resistive MHD

This formulation is a more realistic description of the plasma dynamo that is ob-
tained by considering the resistive effects obtained in the energy and induction
equation, which are neglected in the Ideal MHD model. The resistive effects causes
a diffusion in the magnetic field lines, allowing the study of a new range of phenom-
ena beyond of the described by the Ideal MHD.

17

Physically, the resistive formulation does not preserve the topology of the magnetic
field lines, allowing magnetic reconnections, which are responsible for many phe-
nomena, such as Coronal Mass Ejections (KIVELSON; RUSSELL, 1995).

However, besides being more realistic than the Ideal MHD, the resistive MHD formu-
lation is not applied in every situation due to the increasing of both the theoretical
and computational efforts to study the plasma. Therefore, the resistive formulation
is applied when his effects are significant to the physics of the problem.

The relevance of the resistive effects over the problem studied is measured by the
magnetic Reynolds number Rm defined by:

Rm := UL
η
, (3.13)

where U and L are the typical velocity and length scale of the flow and η is the
resistivity. The magnetic Reynolds number is a dimensionless number that represents
the ratio between the magnitude of the advective and diffusive effects. Thus, a low
magnetic Reynolds number (Rm << 1) implies in a medium considerably influenced
by resistive effects, requiring the usage of the resistive MHD model. In contrast,
a high magnetic Reynolds number (Rm >> 1) implies in a medium dominated by
advective effects, which the Ideal MHD formulation is more suitable.

The equations that describes the resistive MHD model are obtained analogously
as the Ideal MHD equations, but without dropping the terms associated with the
resistivity η. In special, the continuity and the momentum equations in the resis-
tive model are identical to the obtained for the ideal model, whilst the resistive
energy and induction equations are obtained by applying the Ampère’s law into
the Equations A.114 and A.117. However, the resistive induction equation requires
some modifications to be written in the conservation form, which is performed in
the Theorem 4, proven in the Annex A.
Theorem 4. The resistive induction equation, obtained in Equation A.117, can be
rewritten in the conservative form as:

∂B
∂t

+∇ ·
[
uB−Bu + η

(
(∇B)T −∇B

)]
= 0 (3.14)

Therefore the resistive MHD model is governed by the following equations in the

18

conservation form:
∂ρ

∂t
+∇ · (ρu) = 0 (3.15a)

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p+ B ·B

2

)
I−BB

]
= 0 (3.15b)

∂E
∂t

+∇ ·
[(
E + p+ ‖B‖

2

2

)
u− (u ·B) B + (ηJ)×B

]
= 0 (3.15c)

∂B
∂t

+∇ ·
[
uB−Bu + η

(
(∇B)T −∇B

)]
= 0 (3.15d)

Defined the studied equations, the next chapter presents the numerical strategies
applied to perform the MHD simulations.

19

4 NUMERICAL FORMULATION

This chapter presents the numerical schemes used in the simulations of the MHD
model. The first step to perform these simulations is to discretise the problem in
space and, in case of evolutive PDEs, time. The spatial discretisation consists into
representing the physical domain of the problem by using a set of elements, such as
mesh points or cells, so that each element is associated with a value representing
the solution locally.

The major approaches for the spatial discretisation are the Finite Volumes (FV)
(LEVEQUE, 1990), Finite Differences (FD) (LEVEQUE, 2007) and the Finite Ele-
ments (FE) (DHATT et al., 2012) methods. The FV method has the advantages of
allowing an explicit approach, which requires considerably less computational efforts.
Moreover, it is constructed under an integral formulation, obtaining good results in
solutions with discontinuities and being suitable for complex geometries. However,
this approach has the disadvantage of being difficult to obtain high order solutions.
In the context of MHD equations, the FV formulation is used in works such as Felker
and Stone (2018), Balsara and Dumbser (2015) and Shakeri and Dehghan (2011).
The FD method is both easier to implement and to obtain high order solutions, also
allowing the explicit approach. However, its differential formulation does not present
good results in solutions with discontinuities and it may require complex approxi-
mations to handle complex geometries. This method is applied to MHD equations
in Do et al. (2017), Christlieb et al. (2014) and Mignone et al. (2010). Lastly, the
FE method has the advantages of both FV and FD methods, such as being good
for complex geometries, the integral formulation and the simplicity to obtain high
orders. However, it does not support an explicit approach in time. The FE method
is applied for MHD in works such as Yang et al. (2018), Li and Zheng (2017) and
Basting and Kuzmin (2017).

The time discretisation is defined as a finite enumeration of the time instants which
the solution is represented during the evolutive PDE simulation. These instants are
determined during the simulations so that the time step, defined as the difference
between two consecutive instants of the time discretisation, follows the CFL condi-
tion, which is a constraint that delimits the size of the time step based on the spatial
discretisation and the eigenvalues of the problem, as presented in Section 4.5.

Defined the discretisation methods, the numerical simulation consists in evolving
the value of each element of the spatial discretisation from one instant of the time
discretisation to the next successively until the predetermined final time te is reached.

21

For that is required an initial condition, which is a description of the initial state
of the solution, and the boundary conditions, which describes the behaviour of the
system at the edges of the physical domain.

In this work, the spatial discretisation is done by the FV method, presented in Sec-
tion 4.1. This choice is justified by the necessity, in the scope of space weather, for
numerical schemes that handles shocks and can be executed in a reasonable time.
The FV method depends of numerical schemes to compute the flux of the physi-
cal quantities in the interfaces between adjacent cells. The implemented MHD code
uses the schemes presented in the Section 4.2 to compute those fluxes. The Sec-
tion 4.2.1 presents a numerical technique to increase the accuracy of these schemes
while avoiding unwanted oscillations caused by strong shocks. The time evolution
is performed using Runge–Kutta methods (BURDEN; FAIRES, 1989), as discussed in
Section 4.4.

4.1 Finite Volumes method

The FV method is an adequate approach for solving problems concerning about
conservation laws, such as transport of energy, mass and heat (LEVEQUE, 1990).
Considering a vector of physical quantities q, the laws which rules these quantities
can be written in the form:

∂q

∂t
+∇ · F (q) = S (q) , (4.1)

where F is a matrix with the flux components and S is the source term. Considering
the MHD model presented in Chapter 3, this formulation can be obtained using the
conservative variables q = (ρ, ρu, E ,B) as presented in the Equations 3.2.

This formulation is considered fully conservative when S (q) = 0, which is valid
for both Ideal and resistive MHD models. The Chapter 8.4 presents a non-ideal
MHD model containing some physical terms, such as gravity, that does not have a
formulation which can be included in the flux vector, causing the loss of conservation
in q.

Considering a three dimensional problem in a Cartesian mesh, the discretisation
of a physical domain Ω = [xs, xe] × [ys, ye] × [zs, ze] using the FV method is done
by dividing this domain into cells Ci,j,k centred at points (xi, yj, zk), with xi =
xs +

(
i+ 1

2

)
∆x, where ∆x = xe − xs

Nx

is the length of the cell in the x direction and
Nx is the number of cells in this direction. The positions yj and zk have analogous

22

definitions using the y and z axis, respectively.

For each cell Ci,j,k, the solution q is represented by an average value qi,j,k given by:

qi,j,k(t) = 1
∆3r

∫
Ci,j,k

q(x, y, z, t)d3r, (4.2)

where ∆3r = ∆x∆y∆z is the volume of Ci,j,k and d3r = dxdydz is the differential of
the volume defined by the space between r and r + dr.

The equation that describe the evolution of the average value q in every cell is
obtained by integrating the Equation 4.1 over a cell Ci,j,k:

∫
Ci,j,k

∂q

∂t
d3r = −

∫
Ci,j,k
∇ · [F (q)] d3r +

∫
Ci,j,k

S (q) d3r (4.3)

Using the Leibniz’ rule in the time derivative, the Gauss’ rule at the divergence term
and dividing by the volume ∆3r, the Equation 4.3 became:

d

dt

(
1

∆3r

∫
Ci,j,k

qd3r

)
= − 1

∆3r

∮
∂Ci,j,k

F (q) · n dS + 1
∆3r

∫
Ci,j,k

S (q) d3r, (4.4)

where n is vector normal to the surface S which delimits the boundaries of the cell
C. Applying the Equation 4.2 and the average function value theorem for the source
term integral:

d

dt
qi,j,k = − 1

∆3r

∮
∂Ci,j,k

F (q) · n dS + S (qi,j,k) (4.5)

Splitting the surface integrals for each face of the cell Ci,j,k and applying the average
function value theorem in these integrals, the formulation of the FV method is
obtained as:

d

dt
qi,j,k =

F−i,j,k −F+
i,j,k

∆x +
G−i,j,k − G+

i,j,k

∆y +
H−i,j,k −H+

i,j,k

∆z + S (qi,j,k) , (4.6)

where F−i,j,k is an average value representing the flux between the cells centred at
(xi−1, yj, zk) and (xi, yj, zk). The flux F+

i,j,k is defined between the cells (xi, yj, zk)
and (xi+1, yj, zk). Therefore, by definition F+

i,j,k = F−i+1,j,k. This property guarantee
the conservation in q for the FV method if S (q) = 0, since every quantity which is
entering in one cell is being subtracted from another cell.

The fluxes G and H have analogous definitions as F , but for the y and z axis, respec-
tively. The fluxes F−i,j,k and F+

i,j,k are defined by the respective following integrals

23

over the faces in xi − ∆x
2 and xi + ∆x

2 :

F∓i,j,k =
∫∫

∂C
i∓ 1

2 ,j,k

F
[
q

(
xi ∓

∆x
2 , y, z, t

)]
dydz (4.7)

These values are computed by techniques called numerical fluxes, which are discussed
in the Section 4.2. Considering that the flux values F , G and H have analogous
definitions and therefore are computed by analogous techniques, from this point
the notations are simplified in the following sections by treating the problem as
one-dimensional, returning to the three-dimensional notation when necessary.

4.2 Numerical Fluxes

The next step to perform the FV method resides on the computation of the fluxes
F defined in Equation 4.7. Each flux could be interpreted as an evaluation of F in
the interface between two adjacent cells. However, due to these cells having different
average values, there is a discontinuity in the solution located in the interface. Thus,
the interface region can be described as the following piece-wise constant function
containing a single discontinuity:

q =

q+
i−1, if x < xi−1 + 1

2∆x

q−i , if x > xi−1 + 1
2∆x

, (4.8)

where q+
i−1 is a reconstruction of the solution qi−1 in the right side interface of the

cell Ci−1, while q−i is a reconstruction of the solution qi in the left side interface of
the cell Ci. Further details of these reconstructions are given in Section 4.2.1.

This configuration as an initial condition combined with a conservation law is called
a Riemann problem (TORO, 1999). For sake of simplicity, this initial condition is
rewritten as:

q =

qL, if x′ < 0

qR, if x′ > 0
, (4.9)

where x′ is an auxiliary axis, parallel to x, centred at xi−1 + 1
2∆x. The solution of

the Riemann problem provides an average value at the studied interface, x′ = 0,
during the time step from tn to tn + ∆t. Therefore, an average value for the flux F
is also obtained from this solution.

24

4.2.1 High-Resolution Schemes

In the context of FV methods, the earlier first order Godunov’s schemes considers the
solution in the entire cell as the constant average value qi. Therefore, the interface
values for a cell Ci are q −i = q +

i = qi, as illustrated in Figure 4.1a. These schemes
were proven unable to provide high order solutions without unwanted spurious os-
cillations (GODUNOV, 1959), causing numerical instabilities or incorrect solutions.

These oscillations in high order solutions are avoided by the usage of high-resolution
schemes, which are characterised by obtaining a high accuracy around shocks and
discontinuities and maintaining the solution free from spurious oscillations, while
obtaining a spatial accuracy of at least second order around smooth regions. Fur-
thermore, a high-resolution scheme requires fewer mesh elements than a first order
scheme to obtain a similar accuracy.

Figure 4.1 - Numerical extrapolation to the interfaces.

a) Godunov constant approximation. b) MUSCL reconstruction.
Source: Author’s production.

Among the high-resolution schemes for FV methods, popular approaches are the
Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) (van LEER,
1979), applied in MHD equations in works such as Moreira Lopes et al. (2018a),
and the Weighted Essentially Non-Oscillatory (WENO) schemes (LIU et al., 1994),
applied in Titarev and Toro (2004) for 3D Euler equations and in Xu et al. (2016)
for ideal MHD equations.

The WENO schemes are able to obtain higher resolutions than MUSCL schemes.
However, they may require more computational cost and larger stencils. In this
context, the MUSCL schemes are chosen for the proposed MHD solver due to its
computational efficiency and good resolution around discontinuities.

25

The MUSCL approach is based in the use of slope limiters, consisting in the use of
a piece-wise linear reconstruction to extrapolate each variable qθ, i of the solution qi
to the left and right boundaries of Ci. The left and right extrapolations, denoted by
q −θ, i and q +

θ, i, are used to reconstruct the respective interface solutions q −i and q +
i .

These extrapolations are illustrated in the Figure 4.1b.

To perform those extrapolations, Toro (1999) suggested the following relations:

q +
θ, i = qθ, i + 1

4

[
(1− ω) ∆L

θ, i φ

(
∆R
θ, i

∆L
θ, i

)
+ (1 + ω) ∆R

θ, i φ

(
∆L
θ, i

∆R
θ, i

)]
(4.10a)

q −θ, i = qθ, i −
1
4

[
(1 + ω) ∆L

θ, i φ

(
∆R
θ, i

∆L
θ, i

)
+ (1− ω) ∆R

θ, i φ

(
∆L
θ, i

∆R
θ, i

)]
(4.10b)

where ω ∈ [−1, 1] is a weight value, the slope values ∆L
θ, i and ∆R

θ, i are given by:

∆R
θ, i = qθ, i+1 − qθ, i, ∆L

θ, i = qθ, i − qθ, i−1, (4.11)

and φ(r) is a slope limiter function that ensures the Total Variation Diminishing
property of the solution. This property ensures that the solution will not develop
spurious oscillations around discontinuities or shocks. In the proposed MHD code,
the following slope limiter functions are available:

• Minmod (ROE, 1986):

φ(r) = max [0,min (1, r)] ; (4.12)

• Monotonized Central (MC) (van LEER, 1977):

φ(r) = max
[
0,min

(
2r, r + 1

2 , 2
)]

; (4.13)

• Superbee (ROE, 1986):

φ(r) = max [0,min (1, 2r) ,min (r, 2)] ; (4.14)

• van Albada (van ALBADA et al., 1997):

φ(r) = r2 + r

r2 + 1; (4.15)

26

• van Leer (van LEER, 1974):

φ(r) = ‖r‖+ r

‖r‖+ 1; (4.16)

• Koren (KOREN, 1993):

φ(r) = max
[
0,min

(
2r, 2r + 1

3 , 2
)]

; (4.17)

The reconstructed interface solutions qRi and qLi+1 from the adjacent cells Ci and
Ci+1, replaces the initial condition of the Riemann problem given in Equation 4.9,
obtaining:

q =

qRi , if x′ < 0

qLi+1, if x′ > 0
. (4.18)

This Riemann problem has an exact solution calculated through a characteristic
variable representation, provided in the next section. However, for practical reasons,
the solution of the Riemann problem is approximated by using numerical methods
called approximate Riemann solvers. In the proposed MHD solver, the Riemann
problems are approximated by the methods presented in the Sections 4.3.2 and
4.3.3.

4.3 Riemann problem

The most common approach to solve the Riemann problem is the method of charac-
teristics. This method is based in a change of variables which transforms the studied
problem into an advection equation. This so-called characteristic formulation have
an exact solution, which is converted back to the original variables.

To construct the characteristic formulation of the MHD equations, consider its prim-
itive formulation:

∂w
∂t

+ Ax
∂w
∂x

= 0, (4.19)

where w = (ρ, p,u,B) is the vector of the primitive variables and Ax is the Jacobian
matrix of the system. For the ideal MHD problem, these values are presented in
Section 3.1.1.

Considering the MHD equations as a hyperbolic system, the matrix Ax has real
eigenvalues and can be diagonalised. Hence, Ax = PxVxP−1

x , where Px is a matrix
which its columns are the eigenvectors of Ax and Vx is a diagonal matrix which its

27

elements are the eigenvalues of Ax in ascending order. Multiplying P−1
x in Equation

4.19:
P−1
x

∂w
∂t

+ P−1
x Ax

∂w
∂x

= 0. (4.20)

Then, defining the characteristics variables v = P−1
x w:

∂v

∂t
+ P−1

x AxPx
∂v

∂x
= 0. (4.21)

Thus, the characteristic formulation is given as:

∂v

∂t
+ Vx

∂v

∂x
= 0. (4.22)

This formulation implies in a set of advection equations for each characteristic vari-
able vθ from the vector v. Therefore, considering a Riemann problem as initial con-
dition, the characteristics vθ of the discontinuity formed in x′ = 0 propagates with
a velocity correspondent to its eigenvalue λθ = dx′

dt
over the x′t plane, creating the

Riemann fan as described in Figure 4.2.

Figure 4.2 - Full Riemann fan for the MHD equations.

Source: Author’s production.

The space between each pair of adjacent propagated characteristic defines an in-
termediary star state. In the case of the MHD equations, there are the states vL∗,
vL∗∗, vL∗∗∗, vR∗∗∗, vR∗∗ and vR∗. For each star state, the solution v assumes different
values.

In order to calculate each variable vθ from v, consider that each characteristic λθ

28

separates the solution inside the Riemann fan so that the value vθ from any arbitrary
star state is given as:

vθ

(
x′

t

)
=

v
L
θ , if x′

t
< λθ

vRθ , if x′

t
> λθ

. (4.23)

This implies that the difference between two adjacent states, separated by a char-
acteristic λθ, is equal to the correspondent jump value ∆vθ where:

∆v1 =
[
vR1 − vL1 , 0, 0, 0, 0, 0, 0

]T
∆v2 =

[
0, vR2 − vL2 , 0, 0, 0, 0, 0

]T
...

∆v7 =
[
0, 0, 0, 0, 0, 0, vR7 − vL7

]T
. (4.24)

Therefore, any star state in the left side of the Riemann fan can be calculated by
adding to the left state vL the jump conditions required to reach that star state.
While the star states in the right side of the Riemann fan can be calculated by
subtracting the jump conditions from the right state vR. Thus, the exact solution
for every point with an inclination x′

t
inside the Riemann fan is calculated as:

v

(
x′

t

)
=



vL, if x
′

t
< λ−f

vL∗ = vL + ∆v1, if λ−f ≤
x′

t
< λ−A

vL∗∗ = vL + ∆v1 + ∆v2, if λ−A <
x′

t
< λ−s

vL∗∗∗ = vL + ∆v1 + ∆v2 + ∆v3, if λ−s <
x′

t
< λe

vR∗∗∗ = vR −∆v7 −∆v6 −∆v5, if λe <
x′

t
< λ+

s

vR∗∗ = vR −∆v7 −∆v6, if λ+
s <

x′

t
< λ+

A

vR∗ = vR −∆v7, if λ+
A <

x′

t
< λ+

f

vR, if x
′

t
> λ+

f

(4.25)

Multiplying this solution by Px, then using the definition Pxv = w and the relation
Px∆vθ = Rθ∆vθ, where Rθ is the eigenvector associated with the eigenvalue λθ and
∆vθ = vRθ −vLθ . Thus, the exact solution of the Riemann problem is described in the

29

primitive variables as:

w
(
x′

t

)
=



wL, if x
′

t
< λ−f

wL∗ = wL + R1∆v1, if λ−f ≤
x′

t
< λ−A

wL∗∗ = wL + R1∆v1 + R2∆v2, if λ−A <
x′

t
< λ−s

wL∗∗∗ = wL + R1∆v1 + R2∆v2 + R3∆v3, if λ−s <
x′

t
< λe

wR∗∗∗ = wR −R7∆v7 −R6∆v6 −R5∆v5, if λe <
x′

t
< λ+

s

wR∗∗ = wR −R7∆v7 −R6∆v6, if λ+
s <

x′

t
< λ+

A

wR∗ = wR −R7∆v7, if λ+
A <

x′

t
< λ+

f

wR, if x
′

t
> λ+

f

(4.26)

Obtained the solution for the Riemann problem, the flux inside every state is calcu-
lated by multiplying the primitive solution by the Jacobian matrix Ax and using the
relations Ax

∂w
∂x

= ∂F (q)
∂x

and AxRθ = λθRθ. Thus, the flux in the interface x′ = 0
is obtained as:

Axw (0, t) = F [q (0, t)] = Fexact, (4.27)

where

Fexact
(
qL,qR

)
=



F
(
qL
)
, if 0 < λ−f

FL∗ = F
(
qL
)

+ R1λ1∆v1, if λ−f < 0 < λ−A

FL∗∗ = F
(
qL
)

+ R1λ1∆v1 + R2λ2∆v2, if λ−A < 0 < λ−s

FL∗∗∗ = F
(
qL
)

+ R1λ1∆v1 + R2λ2∆v2 + R3λ3∆v3, if λ−s < 0 < λe

FR∗∗∗ = F
(
qR
)
−R7λ7∆v7 −R6λ6∆v6 −R5λ5∆v5, if λe < 0 < λ+

s

FR∗∗ = F
(
qR
)
−R7λ7∆v7 −R6λ6∆v6, if λ+

s < 0 < λ+
A

FR∗ = F
(
qR
)
−R7λ7∆v7, if λ+

A < 0 < λ+
f

F
(
qR
)
, if λ+

f < 0
(4.28)

Besides the Riemann problem having a known exact solution, its usage in real ap-
plications are impracticable due to the high computational cost required for the
eigenvector computations, which are associated with the usage of iterative methods.

30

For ideal MHD, an exact solver is applied in Takahashi and Yamada (2014), and
in Giacomazzo and Rezzolla (2006) an exact solver is also proposed for relativistic
MHD.

The alternative to solve the Riemann problem under a reasonable computational
time is the usage of the approximated Riemann solvers. One of the most popular
approaches is the Roe solver (ROE, 1981), which is applied for MHD equations in the
works of Brio and Wu (1988). This approach replaces the Jacobian matrix Ax for
an approximated constant coefficient linear matrix Āx

(
qL,qR

)
. Then, the Riemann

problem is solved analogously using this linearised Jacobian matrix, resulting in a
problem with simpler eigenvectors.

Another class of successful approximated Riemann solvers are the HLL-type Rie-
mann solvers (HARTEN et al., 1983). In the proposed MHD code, described in Chapter
7, are implemented the HLL and HLLD Riemann solvers described in Sections 4.3.2
and 4.3.3, respectively. The choice for the HLL-type over the Roe-type solvers in this
work is due to the its robustness and lower computational cost, since the HLL-type
does not require eigenvector computations.

The construction of the HLL-type solvers is based on the approximation of the jump
conditions. This is done through the Rankine–Hugoniot relations, derived in the next
section.

4.3.1 Rankine–Hugoniot relations

The Rankine–Hugoniot relations associates the solutions of two adjacent states sep-
arated by a shock wave and their respective fluxes. To obtain these relations, the
1D Ideal MHD equations in its conservative formulation are considered:

∂q

∂t
= −∂F (q)

∂x
, (4.29)

integrating over the domain [x′, x′ + dx′]× [tn, tn + dt]:

∫ x′+dx′

x′

∫ tn+dt

tn

∂q

∂t
dtdx = −

∫ x′+dx′

x′

∫ tn+dt

tn

∂F (q)
∂x

dtdx. (4.30)

31

These integrals can be solved using the Leibniz’s rule for t in the left side and for x
in the right side term, obtaining:

∫ x′+dx′

x′
[q (x, tn + dt)− q (x, tn)] dx = −

∫ tn+dt

tn
[F (q(x′ + dx′, t))− F (q(x′, t))] dt.

(4.31)
These integrals can be splitted into:

∫ x′+dx′

x′
q (x, tn + dt) dx︸ ︷︷ ︸

`1

−
∫ x′+dx′

x′
q (x, tn) dx︸ ︷︷ ︸
`2

=−
∫ tn+dt

tn
F (q(x′ + dx′, t)) dt︸ ︷︷ ︸

`3

+
∫ tn+dt

tn
F (q(x′, t)) dt︸ ︷︷ ︸

`4

.

(4.32)

Considering the schematic presented in Figure 4.3, the integration interval of each
integral presented in Equation 4.32 corresponds to a side of the rectangle over the
x′t plane. Taking into account that any of them crosses the slope s, they are all
integrations over constant functions. Therefore, the exact solution of these integrals
can be obtained through the mean value theorem:

(
q l − q r

)
dx′ = −

[
F (q r)− F

(
q l
)]
dt (4.33)

Figure 4.3 - Example of a slope s dividing two arbitrary states q l and q r. The sides `1,
`2, `3 and `4 correspond to the integration intervals of the terms in Equation
4.32.

Source: Author’s production.

Considering s = dx′

dt
as a slope value that approximates the characteristic velocity,

32

the Rankine–Hugoniot relations are obtained as:

s
(
qr − ql

)
= F (qr)− F

(
ql
)

(4.34)

This relation is applied in HLL-type approximate Riemann solvers as the jump
conditions to calculate the next most internal star states using the data known
from the external states. Then, the next more internal star states are computed
recursively.

4.3.2 HLL Riemann solver

The HLL-type (Harten-Lax-van Leer) is a class of approximate Riemann solvers
which simplifies the Riemann fan by considering only some of the characteristic
waves. These waves are approximated by slope values, then the intermediary star
states and their respective fluxes are obtained through the Rankine–Hugoniot rela-
tions.

The simplest case, the HLL Riemann solver, as proposed in Harten et al. (1983), is
constructed under the assumption of a constant state q∗ that covers from the slowest
to the fastest wave, λ−f and λ+

f respectively, forming the Riemann fan presented in
Figure 4.4. Therefore, the states of the solution q over the plane x′t are described
as:

q (x′, t) =


qL, if x′

t
< sL

q∗, if sL ≤ x′

t
≤ sR

qR, if x′

t
> sR

(4.35)

where sL and sR are approximations of the wave velocities λ−f and λ+
f , respectively.

In Davis (1988), the following values are suggested:

sL = min
(
uLx − cLf , uRx − cRf

)
sR = max

(
uLx + cLf , u

R
x + cRf

)
(4.36)

where cLf and cRf are the fast magnetosonic velocities, as defined in Equation 3.11a
in Section 3.1.1, for the left and right states respectively.

Using the Rankine–Hugoniot relations given in Equation 4.34 to describe the jump
conditions over the waves sL and sR, the following system is obtained:

s
L
(
q∗ − qL

)
= F∗

(
qL,qR

)
− F

(
qL
)

sR
(
qR − q∗

)
= F

(
qR
)
− F∗

(
qL,qR

) (4.37)

33

Figure 4.4 - HLL Flux Riemann’s fan

Source: Author’s production.

where F∗
(
qL,qR

)
is the value of the flux inside the q∗ region. The solution for this

system in the variables q∗ and F∗
(
qL,qR

)
is given by:

q∗ =
sRqR − sLqL + F

(
qL
)
− F

(
qR
)

sR − sL
, (4.38a)

F∗
(
qL,qR

)
=
sRF

(
qL
)
− sLF

(
qR
)

+ sLsR
(
qR − qL

)
sR − sL

. (4.38b)

Therefore, the HLL flux approximates the solution for the Riemann problem as:

FHLL
(
qL,qR

)
=


F
(
qL
)
, if sL > 0

F∗
(
qL,qR

)
, if sL ≤ 0 ≤ sR

F
(
qR
)
, if sR ≤ 0

. (4.39)

This can be simplified by:

FHLL
(
qL,qR

)
=
s̄RF

(
qL
)
− s̄LF

(
qR
)

+ s̄Ls̄R
(
qR − qL

)
s̄R − s̄L

, (4.40)

where the new slopes s̄L and s̄R are:

s̄L = min
(
sL, 0

)
s̄R = max

(
sR, 0

)
. (4.41)

Despite being a simple methodology, the HLL flux is not suitable to solve prob-
lems with isolated discontinuities, presenting a significant dissipation in those cases.

34

This effect is caused because all the intermediary states of the MHD problem are
approximated as only one state.

4.3.3 HLLD Riemann solver

The HLLD (Harten-Lax-van Leer Discontinuities) Riemann solver is proposed in
Miyoshi and Kusano (2005) as an extension of the HLL solver based on the multi-
state HLLC-type solvers (TORO, 1999). This method splits the Riemann fan into
4 intermediary states qL∗, qL∗∗, qR∗∗ and qR∗ obtained between the 5 waves sL,
sL∗, sM , sR∗ and sR. Therefore, as illustrated in Figure 4.5, the solution inside the
Riemann fan are described as:

q (x′, t) =



qL, if x′

t
< sL

qL∗, if sL < x′

t
< sL∗

qL∗∗, if sL∗ < x′

t
< sM

qR∗∗, if sM < x′

t
< sR∗

qR∗, if sR∗ < x′

t
< sR

qR, if 0 > sR

(4.42)

Figure 4.5 - Schematic structure of the HLLD solver Riemann’s fan.

Source: Author’s production.

where the slopes sL and sR approximates the fast magnetosonic waves λ−f and λ+
f ,

35

respectively, using the following relations:

sL = min
[
min

(
uLx , u

R
x

)
−max

(
cLf , c

R
f

)
, 0
]

sR = max
[
max

(
uLx , u

R
x

)
+ max

(
cLf , c

R
f

)
, 0
] . (4.43)

The middle slope sM approximates the entropy wave λe by:

sM =

(
sR − uRx

)
ρRuRx −

(
sL − uLx

)
ρLuLx − pR + pL

(sR − uRx) ρR − (sL − uLx) ρL . (4.44)

Lastly, the waves sL∗ and sR∗, associated with the Alfvén waves λ−A and λ+
A respec-

tively, are approximated by:

sL∗ = sM − |Bm|√
ρL s

L−uLx
sL−sM

sR∗ = sM + |Bm|√
ρR sR−uRx

sR−sM
, (4.45)

where Bm = 1
2

(
BL
x +BR

x

)
is an average value of the component of the magnetic

field which is parallel to the flux. In the HLLD solver, this component is assumed to
be constant through the intermediary states of the Riemann’s fan. Furthermore, the
velocity component parallel to the flux, ux in this case, and the total pressure are also
considered constant inside the Riemann’s fan. These values are given respectively
by sM and:

p∗T =

(
sR − uRx

)
ρRpLT −

(
sL − uLx

)
ρLpRT + ρLρR

(
sR − uRx

) (
sL − uLx

) (
uRx − uLx

)
(sR − uRx) ρR − (sL − uLx) ρL .

(4.46)
where the total pressure pT stands for the sum of both gas and magnetic pressure
as:

pT = p+ 1
2‖B‖

2. (4.47)

Applying the slopes sL and sR into the Rankine-Hugoniot condition given in Equa-
tion 4.34, the intermediary states qL∗ and qR∗ are obtained for the values of a as L

36

or R, respectively.

qa∗ =



ρa∗

ρa∗ua∗x

ρa∗ua∗y

ρa∗ua∗z

Ea∗

Ba∗
x

Ba∗
y

Ba∗
z



=



ρa s
a−uax
sa−sM

ρa∗sM

ρa∗
(
uay −Ba

yχ1χ2
)

ρa∗ (uaz −Ba
zχ1χ2)

(sa−uax)Ea−paTu
a
x+p∗T s

M+Bmχ4
sa−sM

Bm

Ba
yχ1χ3

Ba
zχ1χ3



(4.48)

where the auxiliary variables χ are given by:

χ1 =
[
ρa (sa − uax)

(
sa − sM

)
−B2

m

]−1
(4.49a)

χ2 = Bm

(
sM − uax

)
(4.49b)

χ3 = ρa (sa − uax)
2 −B2

m (4.49c)

χ4 =
(
sMBm + uayB

a
y + uazB

a
z − ua∗ ·Ba∗

)
(4.49d)

Analysing those intermediary states formulation, it is noted that the energy term
requires the computation of the other variables beforehand. Further analysis also
shows that there is a combination of values that may lead to a division by zero in
χ1. Also, when sM = uax, sa = uax±caf , Ba

y = Ba
z = 0 and B2

m ≥ γpa, the problem may
produces complex magnetosonic velocities. In those cases, the intermediary states
qa∗ are equal qa.

To obtain the remaining intermediary states qa∗∗, are assumed that ρa∗∗ = ρa∗.
Applying the slopes sL∗ and sR∗ into the Rankine-Hugoniot condition, these states

37

are obtained as:

qa∗∗ =



ρa∗∗

ρa∗∗ua∗∗x

ρa∗∗ua∗∗y

ρa∗∗ua∗∗z

Ea∗∗

Ba∗∗
x

Ba∗∗
y

Ba∗∗
z



=



ρa∗

ρa∗sM

ρa∗χ5

[
uL∗y

√
ρL∗ + uR∗y

√
ρR∗ +

(
BR∗
y −BL∗

y

)
sign(Bm)

]
ρa∗χ5

[
uL∗z

√
ρL∗ + uR∗z

√
ρR∗ +

(
BR∗
z −BL∗

z

)
sign(Bm)

]
Ea∗ ∓

√
ρa∗ (ua∗ ·Ba∗ − ua∗∗ ·Ba∗∗) sign(Bm)

Bm

χ5

[
BR∗
y

√
ρL∗ +BL∗

y

√
ρR∗ +

√
ρL∗ρR∗

(
uR∗y − uL∗y

)
sign(Bm)

]
χ5

[
BR∗
z

√
ρL∗ +BL∗

z

√
ρR∗ +

√
ρL∗ρR∗

(
uR∗z − uL∗z

)
sign(Bm)

]


(4.50)

where ∓ signal corresponds to minus or plus signals depending of the values a = L

or R, respectively. The auxiliary variable χ5 is given by:

χ5 =
(√

ρL∗ +
√
ρR∗

)−1
. (4.51)

Considering that the density ρ is always greater than zero, χ5 can not be a value
involving a division by zero. However, the function sign(Bm) is not defined when
Bm = 0. In this case, according to Equation 4.45, both the slopes sL∗ and sR∗

assumes the value sM , resulting in a two-state solver with the slopes sL, sM and sR.
Therefore, the solution inside intermediary states qa∗∗ are considered equal to its
correspondent states qa∗.

Obtained the slopes and the intermediary states, the numerical flux FHLLD
(
qL,qR

)
approximates the solution of the Riemann problem in Equation 4.28 as:

FHLLD
(
qL,qR

)
=



F
(
qL
)
, if sL > 0

F
(
qL
)

+ sL
(
qL∗ − qL

)
, if sL ≤ 0 ≤ sL∗

F
(
qL
)

+ sL∗qL∗∗ −
(
sL∗ − sL

)
qL∗ − sLqL, if sL∗ ≤ 0 ≤ sM

F
(
qR
)

+ sR∗qR∗∗ −
(
sR∗ − sR

)
qR∗ − sRqR, if sM ≤ 0 ≤ sR∗

F
(
qR
)

+ sR
(
qR∗ − qR

)
, if sR∗ ≤ 0 ≤ sR

F
(
qR
)
, if sR < 0

(4.52)

38

4.4 Runge-Kutta methods

The Runge–Kutta (RK) methods are a class of numerical methods for solving ODE’s
in the form dq

dt
= f(q, t), where f is a continuous function inside the integrated do-

main. Those methods are characterised by not requiring the computation of deriva-
tives, neither storing solutions from previous iterations. Instead, the RK methods
requires the current solution and evaluations of f(q, t).

The number of computations of f required for every time evolution iteration using
a RK method is called the number of stages. In general, a RK method with s stages
is written in the form:

qn+1 = qn +
s∑
i=1

biki, (4.53)

where

ki = ∆tf
tn + ci∆t, qn +

i−1∑
j=1

ai,jkj,

 . (4.54)

The constants a, b and c characterises each RKmethod. The choice of these constants
are done so that Equation 4.53 reconstructs the Taylor series expansion of qn to qn+1

until the term of O (∆tp+1), where p is the convergence order obtained by the RK
method, that is:

∥∥∥∥qn +
s∑
i=1

biki︸ ︷︷ ︸
RK evolution

−qn −
∞∑
i=1

∆ti
i!
diqn

dti︸ ︷︷ ︸
Taylor series expansion

∥∥∥∥ = O(∆tp+1). (4.55)

The convergence order obtainable with a RK method is associated with an appro-
priate choice of constants and the number of stages, where higher convergence order
requires more stages to be obtained. In Burden and Faires (1989) is presented the
best convergence order obtainable for a s stages RK method, These results are shown
in Table 4.1.

Table 4.1 - Best convergence order obtainable with a s stages RK method.

Number of stages (s) 1 2 3 4 5 ≤ s ≤ 7 8 ≤ s ≤ 9 10 ≤ s
Convergence order 1 2 3 4 s− 1 s− 2 s− 3

Source: Burden and Faires (1989).

In the MHD solver proposed in Chapter 7, the RK methods are applied to perform

39

the time evolution of every cell of the FV discretisation given in Equation 4.6. Thus:

fi,j,k =
F−i,j,k −F+

i,j,k

∆x +
G−i,j,k − G+

i,j,k

∆y +
H−i,j,k −H+

i,j,k

∆z + S (qi,j,k) . (4.56)

In particular, the solver implemented in this work uses the two stages, second order,
RK method defined by the constants:

b1 = 1
2 , b2 = 1

2 , c2 = 1, a2,1 = 1. (4.57)

This RK method is written in the formulation given in Equation 4.53 as:

qn+1 = qn + 1
2f (qn, tn) + 1

2f (qn + f (qn, tn) , tn + ∆t) , (4.58)

which can be written in the two-step compact formulation:

qaux = qn + f(qn, t)
qn+1 = 1

2 [qn + qaux + f(qaux, t+ ∆t)]
(4.59)

4.5 Courant-Friedrich-Lewy Condition

The Courant-Friedrich-Lewy condition (CFL) is a constraint required in order to
ensure the convergence and stability of the numerical scheme. The idea is to obtain
a relation among the mesh spacing ∆x, ∆y and ∆z, the characteristics of the problem
and the time step so that the fastest characteristic do not cross an entire cell during
the time step.

This relation is useful to obtain a safe time step for the next time evolution ∆tn+1

as:
∆tn+1 = σ [max (sadv, sdif)]−1 (4.60)

where the dimensionless parameter σ ∈ (0, 1) is a predefined value called Courant
number, sadv and sdif are values associated with the fastest slopes due to advective
and diffusive effects, respectively. Considering the primitive formulation of the MHD
model, the advective effects are determined by the matrices Ax, Ay and Az, which
are predominant in Ideal MHD. The advective effects are computed as:

sadv = max∀C∈Ω (λx)
∆x + max∀C∈Ω (λy)

∆y + max∀C∈Ω (λz)
∆z (4.61)

40

where λx is the highest slope, in absolute values, among the characteristics ap-
proximated for a Riemann problem solved in the x direction. Thus, for the MHD
equations:

λx = max
∀C∈Ω

[
|sL|, |sR|

]
. (4.62)

The values λy and λz have analogous definitions for the y and z axis, respectively.

In contrast, the diffusive effects are associated with the matrices coupled with second
derivative terms, such as Axx, Ayy or Azz. These terms do not appear in the Ideal
MHD model, but occurs in formulations such as the Resistive MHD model. In this
case, the diffusive effects are determined by:

sdif = ∆x2∆y2∆z2

2 max∀C∈Ω (η) (∆x2 + ∆y2 + ∆z2) , (4.63)

where max∀C∈Ω (η) is the highest value inside the domain for the resistivity.

41

5 DIVERGENCE CLEANING

In certain numerical methods, such as the FV, the simulations of the MHD equations
produces numerical errors in the magnetic field that violates the Gauss’ law for
magnetism ∇ · B = 0. Physically, as discussed in Brackbill and Barnes (1980),
these errors appear as a force parallel to the magnetic field, which creates magnetic
monopoles. This effect may compromises the topology of the magnetic field lines,
leading to plasma transport orthogonal to the magnetic field. Moreover, this non-
physical behaviour can lead to numerical instabilities (DEDNER et al., 2002; TÓTH,
2000).

The origin of these effects can be illustrated by considering the divergence of the
Induction equation (Equation 3.2d):

∂ (∇ ·B)
∂t

+∇ · [∇× (B× u)] = 0. (5.1)

Mathematically, due to the identity ∇ · (∇× ·) = 0, the term ∇ ·B is expected to
remain constant during the entire simulation. However, this identity is not numer-
ically valid, leading to the generation of ∇ · B components after every time step,
causing the loss of the ∇ ·B = 0 constraint.

The influence of these components over the physics of the problem are measured
with several approaches. In particular, Hopkins (2016) define a parameter given by:

DB = min (∆x,∆y,∆z) |∇ ·B|
‖B‖

(5.2)

If the parameter DB is greater than 1, the divergence over B is considered to com-
promise the solution. This methodology is used in Hopkins (2016) to measure and
ensure the quality of the solution for several divergence cleaning approaches.

These approaches are numerical strategies applied alongside with the time evolution
process in order to avoid these divergence errors. One of the first approaches was
proposed in Brackbill and Barnes (1980), where a Poisson equation is associated with
the divergence of the magnetic field in order to obtain the divergence components
and then, subtract from B. This approach is unfeasible for many applications due
to the high computational costs associated with the implicit methods required to
solve the Poisson equation.

Another well known approach is the parabolic-hyperbolic approach based in Gener-

43

alised Lagrange Multipliers proposed in Dedner et al. (2002). This approach couples
a new equation and a new variable to the system. These new elements are responsi-
ble for transporting and diffusing the numerical errors associated to the formation
of the magnetic monopoles. This approach did not remove the components which
causes divergence in B completely, but it removes the enough to sustain the physics
and the stability for many applications at a very low computational cost.

Other popular divergence cleaning methods are the 8-wave (POWELL, 1997) and
constrained transport (EVANS; HAWLEY, 1988). In Miyoshi and Kusano (2011) is
performed a comparative study of those methods.

5.1 Generalised Lagrange Multipliers approach

One of the most successful approaches for the divergence control are the Gener-
alised Lagrangian Multiplier (GLM) based divergence cleaning corrections. These
approaches are based in the strategy introduced in Assous et al. (1993) for Maxwell’s
Equations. In Dedner et al. (2002) this formulation is extended to MHD problems
based in the formulation of the Lagrange multiplier presented in Munz et al. (2000).

Generalised Lagrange Multipliers are a class of methods for maximising or minimis-
ing function under some constraints. In the context of divergence cleaning methods,
the usage of the GLM methods consists in maximising the Induction equation, while
imposing the constraint ∇ ·B = 0. For that, a scalar field is coupled to the Gauss’s
Law:

D(ψ) +∇ ·B = 0 (5.3)

where D is a differential operator that characterises the divergence cleaning ap-
proach. The solution ψ is applied into the Induction equation in order control the
evolution of the magnetic field:

∂B
∂t

+∇ · (uB−Bu) +∇ψ = 0. (5.4)

In order to study the properties of different choices of D(ψ) over the divergence
cleaning process, a formulation for the evolution of ∇ ·B is obtained by taking the
divergence of the Equation 5.4, obtaining:

∂ (∇ ·B)
∂t

+∇2ψ = 0. (5.5)

44

This equation can be written in terms of D(ψ) using Equation 5.3:

∂D(ψ)
∂t

−∇2ψ = 0. (5.6)

Dedner et al. (2002) presents different options for the operator D, obtaining the
classes of divergence cleaning methods discussed in the Subsections 5.1.2, 5.1.3, 5.1.4
and 5.1.5. In order to minimise the alterations in the MHD original implementations,
in some of these corrections, the terms associated with the divergence cleaning are
integrated by using splitting methods.

5.1.1 Splitting methods

Splitting methods are a class of techniques used to divide the integration of a com-
plicate PDE into several simpler parts and solve them independently. In the context
of the GLM divergence cleaning methods, this formulation is applied in order to sep-
arate the evolution of the MHD equations from the divergence cleaning terms. This
allows the inclusion of the GLM approaches with few modifications in the original
solver.

In the context of the MHD equations with GLM divergence cleaning, the fluxes or
source terms can be decomposed so that:

dq
dt

= f1 (q) + f2 (q) , (5.7)

where f1 (q) represents the fluxes from the MHD equation as presented in Equation
4.6 and f2 (q) are the terms associated with the divergence cleaning. In order to
obtain a mathematical description of the splitting methods, the following operators
are defined as a time evolution iteration with a time step ∆t over the correspondent
PDE:

H∆t (q) : ∂q
∂t

= f1 (q) (5.8a)

S∆t (u) : ∂q
∂t

= f2 (q) . (5.8b)

In this work, the splitting method used for the divergence cleaning is the 1st order
Godunov splitting, presented in LeVeque (1990) as:

q(tn + ∆t) = S∆t
[
H∆t (q(tn))

]
(5.9)

45

5.1.2 Parabolic correction

The parabolic correction is characterised by the operator D(ψ) = 1
c2
p

ψ, with

cp ∈ [0,∞]. Its effects over the divergence of the magnetic field can be analysed
by applying this operator into the Equation 5.6:

∂ψ

∂t
− c2

p∇2ψ = 0. (5.10)

This is a parabolic equation, analogous to the heat equation, which presents diffusive
effects over ψ. Considering the relation 1

c2
p

ψ = D(ψ) = −∇·B from Equation 5.3, the

parabolic correction diffuses ψ, and consequently the divergence in B, at a diffusion
speed c2

p.

The relation ψ = −c2
p∇·B, obtained for the parabolic operator, can be applied into

Equation 5.4, obtaining:

∂B
∂t

+∇ · (uB−Bu) = c2
p∇ (∇ ·B) . (5.11)

Thus, the GLM-MHD model with parabolic correction is obtained by changing the
induction equation of the MHD model, given in Equation 3.2d, by the Equation
5.11. This new model is solved treating the term c2

p∇ (∇ ·B) as a source term.

5.1.3 Hyperbolic correction

The hyperbolic correction is defined by the operator D(ψ) = 1
c2
h

∂ψ

∂t
, with ch ∈ [0,∞].

Performing an analogous analysis as for the parabolic correction, the effects of this
correction over the divergence components of the magnetic field are described by
the hyperbolic equation:

∂2ψ

∂t2
− c2

h∇2ψ = 0. (5.12)

This equation is analogous to the wave equation, which presents advective properties.
Therefore, ψ and ∇·B are transported at a speed c2

h. Unlike the parabolic operator,
the hyperbolic operator does not provide a solution for ψ to be applied into Equation
5.4. Instead, substituting this operator in the Equation 5.3 produces a new equation
which describes the evolution of ψ:

∂ψ

∂t
+ c2

h∇ ·B = 0. (5.13)

46

Thus, the GLM-MHD model with the hyperbolic correction consists in including
the Equation 5.13 into the system and changing the MHD induction equation for
the formulation given in Equation 5.4, which in the conservative form became:

∂B
∂t

+∇ · (uB−Bu + ψI) = 0, (5.14)

where I is an identity matrix. This equation is integrated so that the divergence
cleaning terms are included into the fluxes. This modifies the formulation of the
Jacobian matrices of the primitive formulation presented in Equation 3.5. Using
the primitive variables w̄ = (ρ, p, vx, vy, vz, Bx, By, Bz, ψ), the Jacobian matrices
became:

AGLM
x =



ux 0 ρ 0 0 0 0 0 0
0 ux γp 0 0 0 0 0 0
0 1

ρ
ux 0 0 −Bx

ρ
By
ρ

Bz
ρ

0
0 0 0 ux 0 −By

ρ
−Bx

ρ
0 0

0 0 0 0 ux −Bz
ρ

0 −Bx
ρ

0
0 0 0 0 0 0 0 0 1
0 0 By −Bx 0 −uy ux 0 0
0 0 Bz 0 −Bx −uz 0 ux 0
0 0 0 0 0 c2

h 0 0 0



(5.15a)

AGLM
y =



uy 0 0 ρ 0 0 0 0 0
0 uy 0 γp 0 0 0 0 0
0 0 uy 0 0 −By

ρ
−Bx

ρ
0 0

0 1
ρ

0 uy 0 Bx
ρ
−By

ρ
Bz
ρ

0
0 0 0 0 uy 0 −Bz

ρ
−By

ρ
0

0 0 −By Bx 0 uy −ux 0 0
0 0 0 0 0 0 0 0 1
0 0 0 Bz −By 0 −uz uy 0
0 0 0 0 0 0 c2

h 0 0



(5.15b)

47

AGLM
z =



uz 0 0 0 ρ 0 0 0 0
0 uz 0 0 γp 0 0 0 0
0 0 uz 0 0 −Bz

ρ
0 −Bx

ρ
0

0 0 0 uz 0 0 −Bz
ρ
−By

ρ
0

0 1
ρ

0 0 uz
Bx
ρ

By
ρ
−Bz

ρ
0

0 0 −Bz 0 Bx uz 0 −ux 0
0 0 0 −Bz By 0 uz −uy 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 c2

h 0



(5.15c)

The numerical flux associated with the matrix AGLM
x can be written as:

F
(
q̄L, q̄R

)
= AGLM

x

∂w̄
∂x

= AMHD
x

∂w̄
∂x

+ Aψ
x

∂w̄
∂x

(5.16)

where q̄ is the vector of conservative variables containing the variable ψ, AMHD
x is

the Jacobian matrix of the original MHD formulation with an extra column and line
of zeros, corresponding to ψ and its equation, and Aψ

x contains the terms associated
with the divergence cleaning. Thus, the numerical flux for the GLM formulation
with the hyperbolic correction can be obtained using the HLL-type numerical fluxes
presented in Section 4.3 as:

FGLM
(
q̄L, q̄R

)
= FHLL/HLLD

(
q̄L, q̄R

)
+ Fψ

(
q̄L, q̄R

)
, (5.17)

where the flux Fψ = Aψ
x

∂w̄
∂x

. For sake of simplicity, the null lines and columns of the
matrix Aψ

x are neglected. Thus, this flux became:

Fψ =
 0 1
c2
h 0

 B∗x

ψ∗

 (5.18)

where
 B∗x

ψ∗

 is the solution for the Riemann problem associated with the ma-

trix Aψ
x whose eigenvalues are −ch and ch. This two wave problem can be solved

analogously as performed for the HLL flux in Equation 4.38b, obtaining :

Fψ
(
q̄L, q̄R

)
= 1

2

 ψR + ψL

c2
h

(
BR
x +BL

x

) − ch
2

 BR
x −BL

x

ψR − ψL

 (5.19)

48

where the parameter ch is given in function of the Courant number as:

ch = σ

∆t min(∆x,∆y,∆z). (5.20)

5.1.4 Parabolic-hyperbolic correction

The parabolic-hyperbolic correction is the most used approach among the proposed
in Dedner et al. (2002). This correction is based in the combination of the parabolic
and the hyperbolic operators, obtaining D(ψ) = 1

c2
p

ψ + 1
c2
h

∂ψ

∂t
, with cp and ch ∈

[0,∞]. Applying this operator into Equation 5.6 leads to the telegraph equation:

∂2ψ

∂t2
+ c2

h

c2
p

∂ψ

∂t
− c2

h∇2ψ = 0, (5.21)

which presents advective and diffusive effects determined by the values c2
h and c2

p,
respectively.

As the GLM-MHD model with hyperbolic correction, the induction equation for
the parabolic-hyperbolic correction is replaced by Equation 5.14. In this case, the
equation which describes the evolution of ψ, obtained by substituting the parabolic-
hyperbolic operator in Equation 5.3, is given by:

∂ψ

∂t
+ c2

h∇ ·B = −c
2
h

c2
p

ψ. (5.22)

The parabolic-hyperbolic correction is executed using a splitting method so that the
operators H∆t and S∆t corresponds to the integrating the equations:

H∆t (q) :
∂B
∂t

+∇ · (uB−Bu + ψI) = 0
∂ψ

∂t
+ c2

h∇ ·B = 0
(5.23a)

S∆t (q) : ∂ψ
∂t

= −c
2
h

c2
p

ψ. (5.23b)

where the operator H∆t is identical to the hyperbolic correction presented in Equa-
tion 5.17. Thus, the first step of the parabolic-hyperbolic correction consists in per-
forming a time evolution iteration using the hyperbolic correction.

The operator S∆t is associated with the parabolic terms. Considering the solution

49

ψ̂, obtained after applying the operator H∆t, as initial condition, the equation asso-
ciated with the operator S∆t has the analytical solution:

ψ(t) = ψ̂e
−c2
h

c2
p
t
. (5.24)

Therefore, the variable ψ is updated to the next time instant by the equation:

ψn+1 = ψ̂e−chαp∆t/min(∆x,∆y,∆z), (5.25)

where αp = min(∆x,∆y,∆z)ch
c2
p

.

5.1.5 Elliptic correction

The elliptic correction is a approach analogous to the projection method presented
in Brackbill and Barnes (1980). In the context of the GLM divergence cleaning, it is
defined by the operator D(ψ) = 0. Applying this operator into Equation 5.6 leads
to the Poisson equation:

∇2ψ = 0. (5.26)

This operator is expected to compute and remove the divergence components glob-
ally. As the parabolic-hyperbolic correction, this strategy solves the modified Induc-
tion equation, presented in Equation 5.4, using a splitting method. The first step
consists in solving the original Induction equation, producing a magnetic field with
divergence errors denoted by B̂. Then, in the second step, the following equation is
solved:

∂B̂
∂t

= −∇ψ. (5.27)

Discretising the time derivative, this equation became:

Bn+1 = B̂−∆t∇ψ. (5.28)

The challenge of this approach lies in the calculation of the scalar field ψ. For that,
is considered the divergence of this equation:

∇ ·Bn+1 = ∇ · B̂−∆t∇ · (∇ψ). (5.29)

50

Considering that ∇ ·Bn+1 = 0, the Equation 5.29 became the Poisson equation:

∇2ψ = 1
∆t∇ · B̂. (5.30)

This equation can be numerically solved for ψ. Then, this solution is applied into
Equation 5.28 to produce a divergence free magnetic field.

The Poisson equation is an elliptic problem which requires an implicit method to
be solved. This implies in the resolution of a system of linear equations. In order to
illustrate this system, the solution vector ψ is defined. This vector is a column vector
with N = NxNy lines for 2D problems or N = NxNyNz lines for 3D problems. The
elements of ψ, denoted as ψp, consists in a reordered sequence of all values of ψi,j
or ψi,j,k. This reordered sequence is indexed by p, which is mapped to the indexes i,
j and k by the relation:

• p = i+ jNx, for 2D problems;

• p = i+ jNx + kNxNy, for 3D problems.

This formulation allows to define the discretisation matrix A and the vector b with
the values of 1

∆t∇ · B̂ mapped according the vector ψ. Thus, the Poisson equation
is reduced to the linear system Aψ = b. Linear systems obtained from refined
discretisations are too big for approaches like Gauss’ elimination to handle, requiring
iterative methods, discussed in the following.

5.2 Relaxation Methods

Relaxation methods are particularly interesting to solve linear systems derived from
the discretisation of a elliptic PDE (VARGA, 1999). These methods are based fixed
point iterations, which the system is rewritten in order to represent the solution as
a fixed point of a function f . A fixed point is an element of the domain of a function
that maps itself in the image, that is:

ψ = f (ψ) , (5.31)

According the fixed point theorem, a sequence started from a guessing solution ψ(0)

applied recursively into the relation

ψ(m+1) = f
(
ψ(m)

)
, m = 0, 1, . . . (5.32)

51

converges to the solution ψ if some requirements are fulfilled (BURDEN; FAIRES,
1989).

Jacobi Method

The Jacobi method is one of the simplest approaches for solving linear systems
numerically. It consist in decomposing the discretisation matrix A as the sum of
the matrix D, with the elements of the diagonal of A, and the matrix R with the
remaining elements of A, i.e.:

D =



a1,1 0 0 . . . 0
0 a2,2 0 . . . 0
0 0 a3,3 . . . 0
...
0 0 0 . . . aN,N


, R =



0 a1,2 a1,3 . . . a1,N

a2,1 0 a2,3 . . . a2,N

a3,1 a3,2 0 . . . a3,N
...

aN,1 aN,2 aN,3 . . . 0


(5.33)

Using this decomposition, the system Aψ = b is rewritten as:

(D + R)ψ = b (5.34)

The usage of the diagonal matrix D is particularly interesting because it is easily
inverted. Thus, the solution of the system can be written in a fixed point formulation
as:

ψ = D−1 (b− Rψ) . (5.35)

The Jacobi method is defined by using this relation as a fixed point method to
iterate an initial guess ψ(0) until convergence, i.e. the residual after m iterations
r = Aψ(m) − b became lower than a predefined tolerance. Thus, each value ψp ∈ ψ
after m+ 1 iterations are written as:

ψ(m+1)
p = 1

ap,p

bp −
∑
q 6=p

ap,qψ
(m)
q

 . (5.36)

In particular, for the Poisson equation associated with the Elliptic solver for 2D

52

problems, the fixed-point equation, using the ijk mapping, became:

ψ
(m+1)
i,j = δ2D

2

[(
ψ

(m)
i+1,j + ψ

(m)
i−1,j

)
∆y2 +

(
ψ

(m)
i,j+1 + ψ

(m)
i,j−1

)
∆x2 − ∆x2∆y2

∆t ∇ · B̂i,j

]
,

(5.37)
where δ2D = (∆x2 + ∆y2)−1. For the 3D formulation, the discretisation:

ψ
(m+1)
i,j,k =δ3D

2

[(
ψ

(m)
i+1,j,k + ψ

(m)
i−1,j,k

)
∆y2∆z2 +

(
ψ

(m)
i,j+1,k + ψ

(m)
i,j−1,k

)
∆x2∆z2

+
(
ψ

(m)
i,j,k+1 + ψ

(m)
i,j,k−1

)
∆x2∆y2 − ∆x2∆y2∆z2

∆t ∇ · B̂i,j,k

]
,

(5.38)

with δ3D = (∆x2∆z2 + ∆y2∆z2 + ∆x2∆y2)−1 is used.

By this formulation, the iteration from m to m + 1 do not require any value ob-
tained during this iteration. Thus, the computations of ψ(m+1) can be performed in
no particular order. This allows the usage of parallelism to divide the workload of
a Jacobi method’s iteration among different processors. However, frequently during
the Jacobi iteration, a value ψ(m)

p is required to iterate its adjacent cells after ψ(m+1)
p

was computed. Therefore, both values ψ(m) and ψ(m+1) need to be stored, increas-
ing the memory requirements significantly, which is not desirable for very refined
computations.

Gauss–Seidel Method

In order to avoid this extra memory storage, the Gauss–Seidel method is defined
so that the values ψ(m)

p can be updated to ψ(m+1)
p right after their computation.

The Gauss-Seidel method is constructed similarly as the Jacobi method. The main
difference is the decomposition of the matrix A as the sum of the diagonal matrix
D, with the matrices L and U defined as:

L =



0 0 0 . . . 0
a2,1 0 0 . . . 0
a3,1 a3,2 0 . . . 0
...

aN,1 aN,2 aN,3 . . . 0


, U =



0 a1,2 a1,3 . . . a1,N

0 0 a2,3 . . . a2,N

0 0 0 . . . a3,N
...
0 0 0 . . . 0


(5.39)

Using this decomposition, the system Aψ = b is rewritten as:

(D + L + U)ψ = b. (5.40)

53

These terms can be reordered as:

(D + L)ψ = b− Uψ. (5.41)

This formulation can be interpreted as a fixed point equation that converges to
(D + L)ψ. Therefore, the fixed point iteration is obtained:

(D + L)ψ(m+1) = b− Uψ(m). (5.42)

Reordering these terms, the values ψ(m+1) are computed as:

ψ(m+1) = D−1
(
b− Lψ(m+1) − Uψ(m)

)
. (5.43)

Therefore, a single value ψ(m)
p is updated as:

ψ(m+1)
p = 1

ap,p

bp −
∑
q<p

ap,qψ
(m+1)
q −

∑
q>p

ap,qψ
(m)
q

 . (5.44)

In special, for the Poisson equation, the fixed point iteration for a value ψp is iden-
tical as the presented in Equations 5.37 and 5.38 except for replacing the usage of
the values ψ(m)

q , with q < p, for the updated values ψ(m+1)
q . Therefore, the fixed

point iteration for the Poisson equation for two and three dimensions, using the ijk
mapping, became:

ψ
(m+1)
i,j = δ2D

2

[(
ψ

(m)
i+1,j + ψ

(m+1)
i−1,j

)
∆y2 +

(
ψ

(m)
i,j+1 + ψ

(m+1)
i,j−1

)
∆x2 − ∆x2∆y2

∆t ∇ · B̂i,j

]
,

(5.45)
ψ

(m+1)
i,j,k =δ3D

2

[(
ψ

(m)
i+1,j,k + ψ

(m+1)
i−1,j,k

)
∆y2∆z2 +

(
ψ

(m)
i,j+1,k + ψ

(m+1)
i,j−1,k

)
∆x2∆z2

+
(
ψ

(m)
i,j,k+1 + ψ

(m+1)
i,j,k−1

)
∆x2∆y2 − ∆x2∆y2∆z2

∆t ∇ · B̂i,j,k

]
,

(5.46)

By this formulation, the storage of the value ψ(m)
p is no longer required after the value

ψ(m+1)
p is obtained, implying in a formulation with better memory management than

the Jacobi method, and also converging with less iterations (BURDEN; FAIRES, 1989).
However, this formulation does not allow the use of parallelism since the method
requires values that are obtained during the iteration, implying that the iteration
should be performed in a particular order, rendering the parallelisation ineffective.

54

In the context of the Poisson equation, a parallel formulation for the Gauss-Seidel
method can be obtained through alternative formulations such as the Red/Black
Gauss-Seidel (KARNIADAKIS; KIRBY II, 2003; BRIGGS et al., 2000). Other parallel
strategies are developed in the works of Courtecuisse and Allard (2009) and Dol-
withayakul et al. (2011) with applications in MPI and CUDA.

The Red/Black Gauss–Seidel approach consists in flagging the cells C as Red or
Black. Then, the fixed point iteration is splitted into two steps denominated Red
and Black steps. The Red step is performed by iterating and updating every red
cells of the mesh. The Black step has an analogous definition.

The cells are flagged as Red or Black according to the rule:

• 2D case: Colour(Ci,j) =

Black, if i+ j is even

Red, otherwise

• 3D case: Colour(Ci,j,k) =

Black, if i+ j + k is even

Red, otherwise

An example of a 2D mesh with the Red/Black flagging is presented in Figure 5.1.
When performing the Red step, the iteration of a red cell requires only the values of
the surrounding black cells, which are known a priori. Since the iteration of every
red cell is independent of any unknown value, the red cells can be divided among
the processors trivially.

After the Red step, all the red cells have their updated values at iteration m + 1,
which is the required information to perform the Black step. As well as the Red
step, during the Black step, the black cells can be divided among the processors,
since their required updated red cells are known beforehand. Thus, the Red/Black
Gauss–Seidel iteration can be represented by the operator:

ψ(m+1) = Black step
[
Red step

(
ψ(m)

)]
. (5.47)

The Red/Black Gauss–Seidel approach combines both the faster convergence and
memory management gain of the original Gauss-Seidel method with the parallelisa-
tion obtainable with the Jacobi method. This approach is the technique applied in
this work for solving the Poisson equation. Nevertheless, the Red/Black Gauss–Seidel
approach still requires a huge amount of iterations in order to obtain convergence.

55

Figure 5.1 - Red/Black Gauss-Seidel colour distribution in a 2D mesh.

Source: Author’s production.

In this work is proposed the use of multigrid methods in order to accelerate this
convergence and perform fewer, and cheaper, Gauss-Seidel iterations.

5.3 Multigrid methods

Relaxing methods requires a large amount of iterations to converge to the desired
solution. In special, for multi-dimensional problems, the number of equations and
variables became too large when finer meshes or grids, are used, turning a single
iteration of the relaxing method very costly.

In this context, a methodology capable of reducing the cost of a single iteration and
accelerating the convergence, thus requiring less iterations, became essential. One
of the most successful approaches for this problem are the multigrid (MG) methods
(YAVNEH, 2006; WESSELING, 2004; ARRARÁS et al., 2015). These methods represents
the vector of data using a series of coarser grids so that the refinement of a grid in
the level ` = `min, . . . , L is always 2d times coarser than the grid representing the
next refinement level. The most refined level of this sequence is the level L, which
uses the same refinement parameters of the simulation.

The MG methods are based in the idea whereupon techniques like the Jacobi and
Gauss-Seidel methods vanishes the high frequencies of the error between the exact
and the iterated solutions, denoted by e = ψ−ψ(m), in few iterations. On the other
hand, the lower frequencies requires a huge amount of iterations (BRIGGS et al., 2000;
URBAN, 2009) to be solved. Using this error definition, the system ALψ L = b L can
be rewritten as:

AL
(
ψ(m) L + e L

)
= b L (5.48)

Considering that the high frequencies of e L are vanished as ψ(m) L is iterated a
few times, this error is considered to be dominated by low frequency terms after a

56

predefined νpre number of iterations. The MG methods aims for calculating the error
e L instead of keep iterating ψ(m) L until obtain convergence.

In order to calculate the error e L, the Equation 5.48 is reordered as:

ALe L = b L − ALψ(νpre) L. (5.49)

Substituting the right side for the residual r L = b L − ALψ(νpre) L:

ALe L = r L, (5.50)

The idea of solving this new system for e L is combined with the property that
projecting a solution into a lower resolution level transforms their low frequency
components into higher frequency components (BRIGGS et al., 2000). This allows to
solve a system in the next coarser level, obtaining a solution e L−1

∗ so that the error
e L is reconstructed as:

e L = PL−1→Le L−1
∗ , (5.51)

where PL−1→L is a prolongation operator performed as a multi-linear interpolation
as defined in Deiterding (2011).

Solving the system in the coarser grid requires fewer iterations than would be re-
quired for solving in the finer grid. Besides that, a single iteration in the coarser grid
have a lower computational cost for the relaxing method iteration, due to presenting
one quarter of the equations and variables for 2D cases, and an eighth of them for
the 3D cases.

Therefore, instead of solving the Equation 5.50, the following system is solved in the
next coarser level L− 1:

AL−1e L−1
∗ = r L−1

∗ , (5.52)

where AL−1 is the discretisation matrix for the level L− 1 and r L−1
∗ is obtained by

the projection of the residual r L:

r L−1
∗ = PL→L−1r L, (5.53)

where the projection operator PL→L−1 is defined as an averaging function (DEITER-

DING, 2011). .

Analogously as performed in Equation 5.48 for the most refined level, the solution

57

e L−1
∗ can be decomposed as:

AL−1
(
e (m) L−1
∗ + e L−1

)
= r L−1

∗ , (5.54)

where e L−1 are the components with low frequency of the error e L−1
∗ and e (m) L−1

∗

is the approximation of this error after m iterations of the relaxing method. These
low frequency components e L−1 can be solved analogously as the error presented in
Equation 5.50 as:

AL−1e L−1 = r L−1, (5.55)

where r L−1 = r L−1
∗ − AL−1e (νpre) L−1

∗ .

This process of solving the lower frequency components of the error in a coarser
grid can be repeated recursively until a predefined coarsest level `min, where the
component e `min can be neglected after some iterations.

Once the error e (νpre) `
∗ , obtained from a level ` 6= L, is considered to converge to

the exact solution of the system A`e `
∗ = r `∗ , it is prolongated to the level ` + 1 in

order to approximate the value e `+1 analogously as presented in Equation 5.51 for
the level L− 1.

After the low components of the error e ` are obtained, they are added to the so-
lution e (νpre) `

∗ , as presented in Equation 5.54 for ` = L − 1. Then, the system is
iterated again for a predetermined number of iterations νpost, obtaining a solution
e (νpre+νpost) `
∗ that converges to e `

∗ . This process can be applied recursively until the
solution ψ is obtained in the finest level.

In general, there is no particular order of which order the projection and prolongation
operator should be applied, as long as the finest and the coarsest levels are respected.
This leads to infinity variations of MG methods, where the most commons are the
V-cycle, the W-cycle and the full MG (URBAN, 2009). In particular, the V-cycle,
illustrated in Figure 5.2, is chosen for this work.

5.4 Combining the elliptic and parabolic-hyperbolic corrections

One of the original contributions of this work is the combination of explicit parabolic-
hyperbolic and the implicit elliptic approaches. The idea is to take the advantages of
both methods, the low computational cost of the explicit method and the insurance
of the divergence constraint provided by the implicit method.

58

Figure 5.2 - V-cycle multigrid algorithm.

Source: Author’s production.

The proposed method, denominated GLM triple correction, consists in performing
the explicit parabolic-hyperbolic approach, producing a small divergence over B,
until a cleaning criteria is fulfilled. Then, the implicit elliptic method is applied in
order to restore the divergence constraint. For this work, the cleaning criteria chosen
is perform the elliptic operator after every number of time evolution iterations nMG.
In order to reduce the computational cost of this step, this work applies the MG
formulation over a Red/Black Gauss-Seidel method to take advantage of both the
efficiency of the MG method and the parallel approach of the Red/Black Gauss-
Seidel method.

59

6 PATCH-STRUCTURED ADAPTIVE MESH REFINEMENT

The computational discretisation of the physical domain as presented in Section 4.1
divides the entire domain into cells of equal refinement. However, the choice of a
proper refinement for this type of discretisation is challenging, once a coarse refine-
ment may cause the solution to not be properly represented in the mesh, specially
if it contains localised structures or steep gradients, causing loss of information. On
the other hand, a very fine refinement leads to a considerable amount of unnecessary
computations in these cases, wasting a lot of computational time and memory.

In this context, adaptive techniques are proposed to overcome these limitations.
These techniques maximise the efficiency of the simulation by using an adaptive mesh
which is more refined in the regions where the localised structures are presented, and
is coarser in the smooth regions. The generation of adaptive meshes can be divided
into two approaches: structured and unstructured meshes.

In general, a mesh is defined as a set of geometrical elements that covers the phys-
ical domain without gaps and overlapping elements. Thus, an unstructured mesh
covers the physical domain using elements that presents an irregular pattern, such
as non similar triangles or tetrahedrons. On the other hand, structured meshes are
defined by elements that presents a pattern on its form, such as similar rectangles
or parallelepipeds. Frequently, in these meshes, the elements presents a positioning
pattern, normally being indexed alongside with the coordinate axes.

The main advantage of unstructured meshes is its superior geometrical flexibility.
This type of approach, usually implemented using cell-based data structures, needs
to store all the adjacent cells explicitly. The lack of a simpler methodology to go
through the elements of the mesh causes the memory access during the simulations to
be irregular, implying in a poor performance on vector and super-scalar computers.
Among another disadvantages of this approach are the difficulty in obtaining higher
order solutions and the aspect ratio of each cell.

In contrast, the structured meshes are adequate when the geometric flexibility is not
a priority in the application. In particular, the usage of rectangular domains allows
some optimisation in comparison with the algorithms required for the unstructured
meshes, such as the implementation of a single numerical scheme for every region,
independently of the refinement.

The construction of the adaptive mesh is based in refinement criteria techniques,

61

which measures the local smoothness of the solution in every mesh element. If the
result of the criteria exceeds a predetermined value ε, the mesh element is flagged for
refinement. After that, the flagged elements are replaced, or overlayed, by a patch of
r d more refined elements, where r is the mesh refinement factor and d is the number
of dimensions of the problem. In particular, this work always uses the refinement
factor r as two.

In special, this work uses the patch-Structured Adaptive Mesh Refinement (SAMR)
method, as presented in Deiterding (2011), to implement the proposed MHD code.
This formulation differs by, instead of refining every flagged cell, they are clustered
into rectangular boxes containing both flagged and non-flagged cells so that the
percentage of flagged cells exceeds a predefined parameter ν, as described in Section
6.2. Then, every cluster of flagged cells are overlayed by a finer submesh. Applying
this algorithm recursively in the finer submeshes, a mesh hierarchy as illustrated in
Figure 6.1, is obtained.

Figure 6.1 - Example of hierarchy of retangular submeshes. The clustered regions marked
in grey are overlayed by a finer submesh.

Source: Author’s production.

Considering the field of FV schemes for hyperbolic partial equations, the SAMR
methods were first introduced in the works of Berger and Oliger (BERGER; OLIGER,
1984; BERGER, 1982). In this earlier approach, a more refined submesh could be
overlapped over a coarser mesh without any restriction of alignment between over-
lapping meshes, allowing the use of rotationed meshes, which requires complicated
interpolation operations. Posteriorly, Berger and Corella (BERGER, 1982; BERGER;

CORELLA, 1989) proposed a simpler version of the SAMR, which every mesh of the
hierarchy must be aligned, allowing simpler interpolation operations. In Bell et al.

62

(1994), this version was demonstrated to be more efficient, specially with vector and
super-scalar computers.

6.1 Mesh Hierarchy

The SAMR mesh hierarchy is composed by a sequence of meshes G` enumerated by
the refinement levels ` = 0, 1, . . . , L with refinement ∆x`, ∆y` and ∆z` so that they
present a constant ratio r between adjacent levels, that is:

∆x`+1

∆x` = ∆y`+1

∆y` = ∆z`+1

∆z` = r . (6.1)

Alternatively, the refinement of any level can be obtained from the base mesh re-
finement as:

∆x` = 1
r `

∆x0 ∆y` = 1
r `

∆y0 ∆z` = 1
r `

∆z0 (6.2)

These meshes are embedded so that the domain covered by a finer mesh is also
covered by the next coarser mesh, that is:

GL ⊂ GL−1 ⊂ · · · ⊂ G0 = Ω (6.3)

where the base mesh G0 cover the entire physical domain Ω. These meshes are
divided into a set of non overlapping rectangular submeshes G`m so that:

G` := ∪M`
m=1G`m with G`m1 ∩ G

`
m2 = ∅, m1 6= m2 (6.4)

where M` is the number of submeshes, or patches, used to represent the mesh G`.
The set of meshes G` with ` = 0, 1, . . . , L is implemented as a tree so that each
node of the level ` corresponds to a patch G`m. Furthermore, these nodes presents a
parent-child relation so that every node corresponding to a patch contained in G`+1

is a child of the node corresponding to the overlayed patch in G`. This hierarchy
is exemplified in Figure 6.2. Moreover, this tree allows the definition for multiples
parents for an element due to the possibility of a finer patch being placed over two
coarser patches as shown in Figure 6.1.

6.1.1 Patch boundaries

The mesh hierarchy representation as multiple independent rectangular submeshes
allows a single implementation of the numerical scheme for every patch, indepen-
dently of the refinement level. Thereby, the time evolution process can be performed

63

Figure 6.2 - Adaptive mesh and corresponding tree structure to store the patches.

Source: Author’s production.

for every patch individually. However, to compute the fluxes in the boundaries of ev-
ery patch, the solution of the cells in adjacent patches are required. This restriction
compromises the patch independence to perform the time evolution.

In order to overcome this limitation, the patch structure are complemented with
extra auxiliary cells, called ghost cells, at their boundaries. This allows the boundary
values to be stored in the same data structure as the submesh. An schematic example
of a patch containing two layers of ghost cells is presented in Figure 6.3.

Figure 6.3 - Example of a patch containing two layers of ghost cells.

Source: Author’s production.

Before and during the time evolution, the ghost cell values must be set or updated. As
illustrated in Figure 6.4, the ghost cells can be divided into three cases regarding to
its positioning over the mesh hierarchy. The solution for the ghost cells are obtained

64

according to its positioning case:

• Physical boundary: the ghost cells are updated according to the problem
boundary conditions.

• Same level patch: the ghost cells are updated by coping the solution from
the adjacent patch.

• Coarser patch: the ghost cells are interpolated by the solution in the coarser
level using a multi-linear interpolation.

Figure 6.4 - Patch with ghost cells placed over the mesh hierarchy. The ghost cells marked
with ∆ represents ghost cells that overlays the physical domain of the problem,
while the ghost cells marked with X and O overlays patches of lower and same
refinement, respectively.

Source: Author’s production.

6.2 Flagging algorithm

The construction of the adaptive meshes in the context of SAMR methods are
based in overlaying finer patches over coarser patches that presents a region of
interest. These regions are estimated by flagging cells of the coarser patch that
fulfil a refinement criteria. Then, using the clustering algorithm presented in Bell
et al. (1994), the flagged cells are grouped alongside with a some non flagged cells
forming the regions that requires refinement, which are replaced by new more refined

65

patches. This clustering algorithm is briefly discussed in Figure 6.5. This strategy
uses a parameter ν, which defines the stop criteria of the clustering process. In this
work, typical values are ν = 0.85 for 2D cases, and ν = 0.8 for 3D cases.

During the construction of the adaptive mesh, the flagging process consists in apply-
ing an operator that requires the solution of the cell and its neighbours. If the result
from this operator exceed a threshold value ε, the cell is flagged for refinement. In
particular, the proposed MHD solver implements the following refinement criteria:

• Scaled gradient (SG): This operator flags a cell if the difference, in mod-
ulus, between its solution and the solution in a adjacent cell exceeds the
threshold value for a predetermined variable, i.e., considering a cell at a
position (i, j), it is flagged for refinement if at least one of the following
relations is satisfied. In special, for the mass density,

| ρi+1, j − ρi, j | > ε, | ρi, j+1 − ρi, j | > ε, | ρi+1, j+1 − ρi, j | > ε.

More details in this criteria can be found in Deiterding (2011).

• Multiresolution (MR): This operator is based in the adaptive multiresolu-
tion method proposed in Harten (1995). It uses a wavelet based technique
to predict the expected solution in a finer scale by a operator described
in Roussel (2003) and Moreira Lopes (2014) for 1D, 2D and 3D meshes.
More detail in this multiresolution approach can be found in Domingues
et al. (2011).

This thesis uses a level based thresholding strategy so that the parameter
ε has a different value depending to the refinement. Using the Harten’s
strategy, this level dependent ε` is calculated as:

ε` = ε

∆3r
2d (`−L), 0 ≤ ` ≤ L. (6.5)

This is used in order to control the L1-norm. In this work, all adaptive
MHD simulations problems uses this thresholding strategy only over the
variable mass density (ρ).

Recently both techniques have been compared in the hydrodynamics (DEITERDING

et al., 2016; DEITERDING; DOMINGUES, 2017; DEITERDING et al., 2018) and magneto-
hydrodynamics (DOMINGUES et al., 2019b) contexts and the MR approach presented
better results considering accuracy and CPU time.

66

Figure 6.5 - Cell clustering algorithm. The value Υ associated with each row and column
is defined as the number of flagged cells in that row or column, and ∆ =
Υi+1 − 2Υ + Υi−1.

a) 1st step: Mesh division where Υ = 0. b) 2nd step: Division of the white mesh
where the value ∆n presents the highest
variation between adjacent values with op-
posite signals.

c) Recursive execution of the 2nd step over
the new subdivisions.

d) Stop criteria: Percentage of flagged cells
in the subdivision surpass the predefined
parameter ν

Source: Author’s production.

6.3 Time evolution

As the adaptive mesh is defined, the time evolution for simulations with adaptive
meshes presents its own challenges regarding stability and conservation. As presented
in Section 4.5, the time step parameter ∆t may satisfy the CFL condition in every
patch. In this context, the time evolution process, considering adaptive meshes, may
be performed in two different approaches.

The simpler strategy to use a global time step that satisfy the CFL condition in
every patch of every level. This value is calculated based the mesh size at the finest
level, which produces the lowest values in Equation 4.60. Thus, this value satisfies

67

the CFL condition for the coarser cells. This formulation, used in the codes FLASH
(FRYXELL et al., 2000) and CASTRO (ALMGREN et al., 2010), presents the advantages
of simpler synchronisation algorithms and software frameworks, once the solution in
every submesh being always in the same time instant.

The second approach, implemented in the AMROC framework (DEITERDING, 2011)
discussed in Chapter 7, and consequently in the proposed MHD code, uses a refine-
ment based time stepping strategy. This approach uses the same Courant number
for every patch, independently of its refinement. Therefore, as the values ∆x` varies
according to the refinement level, the respective time step ∆t` must variate in the
same proportion, so that:

∆t`
∆x`

= ∆t`−1

∆x`−1
= ∆t0

∆x0
(6.6)

Alternatively, the time step for every refinement level can be obtained in function
of the time step in the coarsest level as:

∆t` = 1
r `

∆t0. (6.7)

This refinement based time stepping causes the solution in different refinement lev-
els to be available in different time instants, requiring synchronisation algorithms to
perform the time evolution in the finest patches. In this local time stepping context,
the author proposed a new strategy to perform this refinement based time stepping
for high order schemes in his master thesis (MOREIRA LOPES, 2014) and improved
and developed these ideas during his PhD program. The Chapter 9 contains the re-
cent articles with that development (MOREIRA LOPES et al., 2019; MOREIRA LOPES

et al., 2018b). These ideas consist in using a natural continuous extensions for Runge–
Kutta methods, introduced in (ZENNARO, 1986), to perform the synchronisations
required to obtain a new scheme with high order in time. In these works, the ex-
periments were executed in the CARMEN code (ROUSSEL, 2003; DOMINGUES et al.,
2008) using hidrodynamical examples.

68

7 COMPUTATIONAL ASPECTS

This chapter is dedicated to discuss the implementation of the methods presented in
the previous chapters. These implementation are performed in the AMROC (Adap-
tive Mesh Refinement in Object-oriented C++) framework. This framework was
conceived to support the numerical simulation of partial differential equations using
adaptive methods. For that, it implements a special version of the SAMR algorithm
proposed in Berger and Corella (1989) using object-oriented programming resources
in the C++ language. More recently, in Domingues et al. (2019b) the framework was
extended to also support the adaptive multiresolution presented in Harten (1995).

This framework, presented in Deiterding (2011), consists in about 46 thousand of
lines of code in the C++ language and more 6 thousand of lines for visualisation and
data conversion routines. Besides being written in the C++ language, the mathemat-
ical part of the mesh operations, such as prolongation and restriction, are performed
using the FORTRAN language, which presents better performance than the C++
language for mathematical computations.

The AMROC framework is freely available in the webpage https://bitbucket.
org/deiterding/vtf/wiki/Home, which contains the instalation, compilation and
running guides. In special the AMROC MHD module running scripts already con-
tain the commands to convert the output HDF (Hierarchical Data Format) files
into binary VTK (Visualization ToolKit) files used for the data visualisation in
softwares such as VisIt (CHILDS et al., 2012), available in https://wci.llnl.
gov/simulation/computer-codes/visit/downloads, and ParaView (AHRENS et

al., 2005), available in https://www.paraview.org/download/.

In the context of this work, the AMROC framework is divided into two main folders,
the implementation and compilation folders, as presented in Figure 7.1. There are
another folders that are ommited in this diagram. These are in general the folders
that are not relevant for this work, such as installation folders, system folders and
modules for solving another types of equations.

69

https://bitbucket.org/deiterding/vtf/wiki/Home
https://bitbucket.org/deiterding/vtf/wiki/Home
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
https://www.paraview.org/download/

Figure 7.1 - AMROC folder hierarchy.

Source: Author’s production.

The compilation folders are generated automatically during the installation process
into two steps. The first step occur during the command:

autoreconf -v

where the script generates a Makefile.in file inside every subfolder of the implemen-
tation folders that are marked in the Makefile.am files. The second step to generate
the compilation folders occur during the command:

./configure -C --enable-opt=yes --enable-mpi=yes &
--enable-maintainer-mode --enable-shellnewmat HDF4_DIR=$HOME/hdf4

where the script generates the compilation folders based in the Makefile.in files gen-
erated in the first step and the Makefile files into the directories listed in the con-
figure.ac file located inside the vtf/amroc/mhd folder. Once the compilation folders
are built, the code can be compiled using the command:

make

70

inside the directory "test case" regarding to the problem to be simulated. After that,
the compilation folder will contain the executables, some objects and libraries.

7.1 Generic SAMR solver

The folder vtf/amroc/amr contains the base algorithm for a numerical simulation
using SAMR methods for a generic system of equations. The files contained in this
folder defines the data structures and routines outside the scope of the simulated
equations, such as mesh adaptation, mesh distribution per processor, boundary con-
ditions, restriction and prolongation operators, etc.

In particular, the function IntegrateLevel() in the file AMRSolver.h calls the nu-
merical schemes associated with the simulated equation, implemented in the base
module, using the mpass counter. For each iteration of this counter, the scheme
defined in the base is performed, then the ghost cells are updated. Considering the
implemented MHD solver, this counter performs three iterations, corresponding to
the first RK step, the second RK step and the divergence cleaning step, respectively.

7.2 Base MHD module

The files EGLM2D.h and EGLM3D.h, located in the mhd directory of the imple-
mentation folder, contains the base virtual functions to perform a generic simulation
of the MHD equations. In special, these files contains the time evolution function
Step(), called from the Generic SAMR solver, and the virtual functions called from
this function. The use of virtual functions allows the definition of base functions that
may be used for most of the experiments, while allowing the redefinition of these
functions in the Specific MHD module, if required by the studied problem.

In general, the functions from the Base module performs numerical routines that are
independent from the problem simulated, such as flux computations, limiters and
divergence cleaning routines.

7.3 Specific MHD module

The file Problem.h, located in the directory src, implements functions that are par-
ticular to the studied experiment. In general, this file contains initial conditions,
resistivity and gravity fields. However, if necessary for the experiment, this file may
contain redefinitions for the virtual functions implemented in the base module.

71

7.4 Multigrid solver module

The execution of the elliptic divergence cleaning using multigrid methods, as pro-
posed in the Sections 5.1.5 and 5.3 is implemented as a variation of the basic solver
class in the file MGdivClean.h, located in the mhd directory of the implementation
folder. This file is complemented with the file MG_2Dfunctions.h for the 2D cases,
or the file MG_3Dfunctions.h for the 3D cases, where both files are located in the
MGdivClean-functions directory.

The implementation of this correction requires that the file MGdivClean.h to be
included in the end of the Problem.h file corresponding to the studied experiment.
Then, in the correspondent solver.in file, the number of levels must match the value
MGLevels defined in the end of the file MGdivClean.h, which contains all the pa-
rameters related to the multigrid solver.

7.5 Running test cases

After compiled, the code is able to run by executing the run.py script using the
command:

./run.py N

where N is the number of processors to be used. The simulation parameters are
configured in the solver.in file, which contains values to be read from different classes.

• class SolverControl

– LastTime: final instant of the numerical simulation;

– Outputs: number of instants that the code will output the solution
during the simulation; alternativelly, the user may use:

– OutputEvery: number of iterations between each output;

• class AMRSolver

– subclass GridHierarchy

∗ Cells(a): number of cells forming the base mesh in the direction
of the axes x, y or z, indicated by the value a = 1, 2 or 3,
respectively;
∗ GeomMin(a): left boundary of the physical domain in the di-

rection of the axes x, y or z, indicated by the value a = 1, 2 or

72

3, respectively;
∗ GeomMax(a): right boundary of the physical domain in the

direction of the axes x, y or z, indicated by the value a = 1, 2 or
3, respectively;
∗ PeriodicBoundary(a): boolean value to set periodic boundary

condition in the direction of the axis indicated by the value a. If
not, the other options for boundary condition are set in the field
"BoundaryConditions";
∗ MaxLevels: number of refinement levels allowed to compose the

adaptive mesh;

– subclass Integrator

∗ Scheme: numerical scheme for the flux computations. Set 1 for
the HLL flux or 2 for the HLLD flux;
∗ Limiter: flux limiter applied during the flux computations. Set

0 for neither, 1 for Minmod, 2 for Superbee, 3 for VanLeer, 4 for
MC, 5 for VanAlbada or 6 for Koren;
∗ NoClean: boolean value which sets the usage of the parabolic-

hyperbolic divergence cleaning. Set 0 to perform the correction
or 1 to not;
∗ Gamma: value of the adiabatic constant γ;
∗ CFLClean: value of the CFL parameter during the simulation;
∗ alphap: parameter αp of the parabolic-hyperbolic correction;
∗ eglmClean: numerical formulation of the divergence cleaning.

Set 0 for GLM formulation or 1 for EGLM formulation;
∗ Resistivity: choose the MHD model to be considered. Set 0 for

Ideal MHD or 1 for Resistive MHD;

– subclass BoundaryConditions: for every boundary bellow: set
{Type 0} for symmetryc , {Type 1} for slip wall, {Type 2} for in-
let or {Type 3} for outlet boundaries.

∗ LeftSide: left boundary of the x axis;
∗ RightSide: right boundary of the x axis;
∗ BottomSide: left boundary of the y axis;
∗ TopSide: right boundary of the y axis;
∗ BackSide: left boundary of the z axis;
∗ FrontSide: right boundary of the z axis;

73

– subclass Flagging

∗ ScaledGradient: sets the thresholding ε for the SG method;
∗ MRPrediction: sets the thresholding ε for the MR method

7.6 Building new test cases

The implementation of new test cases in the AMROC MHD module requires several
steps. The first step is to create a new folder regarding to the new test case. For sake
of organisation, the new folder should be created in the respective folder according
to the number of dimensions and divergence cleaning approach:

• applications/eglm/2d: For 2D problems using the parabolic-hyperbolic cor-
rection;

• applications/eglm/3d: For 3D problems using the parabolic-hyperbolic cor-
rection;

• applications/MGsolver/2d: For 2D problems using the Multigrid correc-
tion;

• applications/MGsolver/3d: For 3D problems using the Multigrid correc-
tion.

Then, the name of the added folder should be appended into the Makefile.am file
located into the same directory the folder was added. The second step consist in
adding the following files into the test case folder:

• solver.in: Contains the simulation parameters;

• display_file_*.in: Files required for the conversion of the output HDF files
into the visualisation VTK files;

• run.py: Execution script. The variable progname should be set with the
executable name;

• Makefile.am: Required for the generation of the compilation folders;

• src/Problem.h: Contains redefinitions of classes, such as initial conditions
and resistivity field, in order to characterise each test problem;

74

• src/Makefile.am: Required for the generation of the compilation folders.
Contains the executable name, required libraries and their dependences.

The third step consist in adding inside the field AC_CONFIG_FILES of the config-
ure.ac file, a path name to a correspondent Makefile file in the compilation folder for
every Makefile.am file added in this process. Then, after rebuilding the compilation
folder, the new test case is able to run.

75

8 RESULTS: VERIFICATION

This chapter presents a verification analysis of the functionalities implemented in
the AMROC’s MHD solver. This analysis is performed through three rounds of
tests, which aims to check the accuracy, the performance of the divergence cleaning
approaches discussed in Chapter 5 with the parallel algorithms and the adaptive
algorithm. Then, it is discussed a more complex configuration setup involving the
Earth’s magnetosphere.

The simulations performed in this work were performed in a workstation with mul-
tiple nodes with processors Intel Xeon 2.20 GHz with 12 cores each.

Some other results were published in the article (MOREIRA LOPES et al., 2018a)
presented in Annex C, namely:

• MOREIRA LOPES, M.; DEITERDING, R.; GOMES, A.; MENDES, O.;
DOMINGUES, M. An ideal compressible magnetohydrodynamic solver
with parallel block-structured adaptive mesh refinement.Computers and
Fluids, v. 173, p. 293-298, 2018.

Moreover, other new results are expected to be published in the article (DOMINGUES

et al., 2019b) under minor revision.

8.1 Accuracy experiments

The first round of tests aims for to check the accuracy of the 2D and 3D MHD
solvers. For that, three initial conditions are tested. The first one is a simpler problem
with an exact solution, which the 2D and 3D solutions are compared. The second
test compares the solution obtained by the AMROC’s MHD solver with the results
obtained by the CARMEN code (ROUSSEL, 2003), which presents a MHD module
tested and validated in Gomes (2017). The third test problem is used to present a
discussion about the effects concerning the choice of different limiters. This test case
is also used in the performance verification in Section 8.2.

Riemann type initial condition: 1 direction

This test is described in Domingues et al. (2013) as an experiment applied in early
stages of the development of a MHD code. Its purpose is to verify the accuracy of
the numerical schemes, once this problem has an exact solution.

77

The concept of this test consist in simulating an initial configuration that resembles
a Riemann problem, as defined in Section 4.2. In this case, the domain is divided
into two states, left and right, at x = 0. The initial values for these states are given
in function of its x coordinate as:

q0(x ≤ 0) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1.08
0.95
1.2
0.01
0.5

1√
π

1.8√
π

2√
2π



q0(x > 0) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1
1
0
0
0
1√
π

2√
π

2√
2π



(8.1)

The computational domain for this problem is [−0.5, 0.5]2 for the 2D case and
[−0.5, 0.5]3 the 3D case. This problem is completed with Neumann type bound-
aries on the x-axis and periodic boundaries in the y and z-axes. For both cases,
the problem is simulated using the adiabatic constant γ = 5

3 . The numerical fluxes
are computed with the HLLD Riemann solver combined with a MC limiter. The
divergence cleaning is performed using the parabolic-hyperbolic correction with the
factor αp = 0.5. These simulations are performed under CFL condition σ = 0.4 until
the final time te = 0.1 using the base mesh with 20482 and 5123 cells for the 2D and
3D cases, respectively.

In Figure 8.1 is considered a cut parallel with the x-axis in these solutions, which is
compared with the exact solution presented in Domingues et al. (2013). The numeri-
cal solution approximates the exact solution satisfactorily, indicating the correctness
of the numerical solver.

78

Figure 8.1 - Riemann type IC: 1 direction. Cuts over the x-axis for the 2D and 3D solutions
using meshes with 20482 and 5123 cells, alongside with the exact solution.

ρ p

ux uz

Bx Bz

Source: Author’s production.

79

Riemann type initial condition: 2 directions

This test is presented in Dedner et al. (2002) as an extension of the previous test
which is included a discontinuity at y = 0. This configures an initial state so that
each quadrant has a different initial state, as presented in Table 8.1. Therefore, the
problem consists in 4 Riemann problems that will influence themselves during the
simulation.

The computational domain for this problem is [−1, 1]2 for the 2D case and [−1, 1]3

the 3D case. This computational domain is completed with Dirichlet boundary con-
ditions. For both cases, the problem is simulated using the adiabatic constant γ = 5

3 .
The numerical fluxes are computed with the HLLD Riemann solver combined with
a MC limiter. The GLM formulation uses the parabolic-hyperbolic correction with
the factor αp = 0.5. These simulations are performed under CFL condition σ = 0.4
until the final time te = 0.25.

The simulations were performed with a base mesh of 20482 and 5123 cells for the
2D and 3D cases, respectively. Their results are compared with the solutions ob-
tained by the CARMEN code (GOMES, 2017) in the Figures 8.2 and 8.3 for different
variables. The implemented code (AMROC) presented very similar results to the
validated CARMEN code for both 2D and 3D cases, indicating the correctness in
the implementation of the multidimensional solver.

Table 8.1 - Riemann type IC: 2 directions. Initial values for the each quadrant.

Quadrants: 1st) x > 0, y > 0; 2nd) x < 0, y > 0;
3rd) x < 0, y < 0; 4th) x > 0, y < 0.

Variables Quadrant
1st 2nd 3rd 4th

ρ 0.9308 1.0304 1.0000 3.0000
E 5.0838 5.7813 6.0000 1.0000
ρux 1.4557 1.5774 1.7500 −0.7500
ρuy −0.4633 −1.0455 −1.0000 −0.5000
ρuz 0.0575 −0.1016 0.0000 −0.5000
Bx 0.3501 0.3501 0.5642 −0.7500
By 0.9830 0.5078 0.5078 −0.5000
Bz 0.3050 0.1576 0.9830 −0.5000

Source: Dedner et al. (2002).

80

Figure 8.2 - Riemann type IC: 2 directions. Results for ρ, p, E and ux obtained by the 2D
and 3D simulations from the AMROC and CARMEN codes.

AMROC CARMEN
2D 3D 2D 3D

ρ

p

E

ux

Source: Author’s production.

81

Figure 8.3 - Riemann type IC: 2 directions. Results for uy, uz, Bx, By and Bz obtained
by the 2D and 3D simulations from the AMROC and CARMEN codes.

AMROC CARMEN
2D 3D 2D 3D

vy

vz

Bx

By

Bz

Source: Author’s production.

82

Orszag-Tang vortex: 2D formulation (2D-OTV)

The Orszag-Tang vortex is a test problem introduced in Orszag and Tang (1979). It
is extensively used as a verification test for ideal MHD simulations (RYU et al., 1998;
DAI; WOODWARD, 1998; LONDRILLO; ZANNA, 2000). In particular, this problem deals
with transitions in MHD structures and is used to test the robustness of the code
regarding with the formation of MHD shocks and shock-shock interactions.

In this work, the 2D-OTV problem is used to check the effects the choice of the
different limiters presented in Section 4.2.1 over the solution. In addiction, this test
case is also used in the performance tests of the divergence cleaning approaches in
Section 8.2.

The computational domain for the 2D formulation of the OTV problem is [0, 2π]2

with periodic boundaries. The initial condition is given in primitive variables ac-
cording the adiabatic constant γ = 5

3 as:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



γ2

γ

− sin(y)
sin(x)

0
− sin(y)
sin(2x)

0



(8.2)

This problem is simulated for every flux limiter presented in Section 4.2.1 using the
parabolic-hyperbolic correction with the factor αp = 0.5 and the HLLD Riemann
solver with meshes of 2562 and 20482 cells. These simulations are performed under
CFL condition σ = 0.4 until the final time te = π.

The results are presented in the Figures 8.4 and 8.5, respectively. The limiter choice
is most influential in the coarser simulations. In these cases, the simulation without
limiter presented the most different solution due to being a lower order method.
In the other hand, the finer simulations presented similar results for every limiter.
However, its choice performed a relevant role in the stability of the simulations.

83

Figure 8.4 - 2D-OTV: solution for ρ using different flux limiters in a base mesh with 2562

cells.

Without limiter

Minmod Van Leer

MC Van Albada

Superbee Koren
Source: Author’s production.

84

Figure 8.5 - 2D-OTV: solution for ρ using different flux limiters in a base mesh with 20482

cells. The Superbee and without limiter simulations are unstable for the pre-
sented parameters.

Minmod Van Leer

MC Van Albada

Koren
Source: Author’s production.

85

8.2 Divergence cleaning performance experiments

The second round of tests verifies the performance of the divergence cleaning tech-
niques presented in Chapter 5 using fully refined meshes. For that, some 2D and 3D
test problems are simulated using many refinements in order to check the conver-
gence of these solutions and the growth of the divergence in B when more refined
meshes are applied. In addiction, these experiments are repeated using different
number of processors in order to evaluate the scalability of the parallel algorithm.

These performance experiments are executed with the 2D and 3D test cases pre-
sented below and the 2D-OTV problem presented in Section 8.1. Then, the results
of the discussed divergence cleaning methods are compiled, compared and discussed
in Section 8.2.4.

Magnetic field loop advection (ADV)

This advection test proposed in Tóth and Odstrcil (1996) studies the effects of advec-
tion errors and numerical diffusion over ∇ ·B and is used to verify the performance
of divergence cleaning techniques. The problem consists in a circular magnetic field,
in equilibrium with the outside medium, that is transported through a periodic
domain.

The computational domain for this problem is [−1, 1] × [−0.57, 0.57] with periodic
boundaries. The initial state is given by the primitive variables according the adia-
batic constant γ = 5

3 as:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1
1
√

3
2

0.5
0
∂Az
∂y

−∂Az
∂x

0



, (8.3)

where the potential Az = max [10−3 (0.3− ξ) , 0] is given in function of the distance
ξ =
√
x2 + y2.

The simulations of the 2D ADV problem are performed using the HLLD Riemann
solver combined with the MC limiter. The parabolic-hyperbolic correction uses the

86

factor αp = 0.5, when applied. All simulations are performed under CFL condition
σ = 0.4 until the final time t = 6.28.

Spherical Blast Wave (BWV)

The Spherical Blast Wave problem describes the explosion of high pressure sphere
contained into a uniformly magnetised medium. This experiment is applied to study
the propagation of strong MHD discontinuities. According Londrillo and Zanna
(2000), when poor divergence cleaning techniques are applied, the simulation of
this problem may presents spurious oscillations and negative gas pressure due to the
magnitude of the ∇ · B terms increasing alongside with the background magnetic
pressure.

This problem is proposed using different parameter in many works (LONDRILLO;

ZANNA, 2000; BALSARA; SPICER, 1999; ZACHARY et al., 1994). In special, this work
uses the formulation available in the webpage https://www.astro.princeton.edu/
~jstone/Athena/tests/blast/blast.html, which is implemented in the Athena
MHD code (STONE et al., 2018). This formulation uses the computational domain[
−1

2 ,
1
2

]
×
[
−3

4 ,
3
4

]
with periodic boundaries. The solution in primitive variables for

the initial state is given according the adiabatic constant γ = 5
3 as:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1
p0

0
0
0
√

2
2√
2

2

0



(8.4)

where the value p0 is defined according if the point (x, y) is contained in the high
pressure sphere with centre in the origin and radius 0.1 so that:

p0 =

10, if x2 + y2 < 0.12 (High pressure sphere)

0.1, elsewhere
. (8.5)

The simulations for this problem are performed using the HLLD Riemann solver
combined with a MC limiter. The parabolic-hyperbolic correction uses the factor

87

https://www.astro.princeton.edu/~jstone/Athena/tests/blast/blast.html
https://www.astro.princeton.edu/~jstone/Athena/tests/blast/blast.html

αp = 0.5, when applied. All simulations are performed under CFL condition σ = 0.4
until the final time te = 0.2.

Rotor Problem (ROT)

The Rotor problem studies the propagation of strong torsional Alfvén waves. This
experiment consists in a high density fluid (the rotor) rotating in high velocity inside
a lighter background magnetised fluid. According to Balsara and Spicer (1999), this
spinning rotor launches torsional Alfvén waves into the background fluid, causing
the angular momentum of the rotor to decrease. On the other hand, the magnetic
field wraps around the rotor, increasing the magnetic pressure and compressing the
fluid.

The computational domain for this problem is
[
−1

2 ,
1
2

]2
with periodic boundaries.

The solution in primitive variables for the initial state is given according the adia-
batic constant γ = 1.4 as:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



ρ0

1
u0
x

u0
y

0
5√
4π
0
0



(8.6)

where the components ρ0, u0
x and u0

y are defined according if the point (x, y) is
contained inside the rotor, which is a cylinder with centre in the origin and radius
0.1, the background fluid or in a transition region. For each one of these cases, the
components ρ0, u0

x and u0
y are given in function of the distance to the origin ξ as:

(
ρ0, u0

x, u
0
y

)
=


(10,−20y,−20x), if ξ ≤ 0.1 (Inside the rotor)

(1, 0, 0), if ξ > 0.115 (Background fluid)

(9f + 1,−2yf
ξ
,−2xf

ξ
), elsewhere (Transition region)

, (8.7)

with f = 0.115− ξ
0.015 . The simulations for this problem are performed using the HLLD

Riemann solver combined with a MC limiter. The parabolic-hyperbolic correction
uses the factor αp = 0.4, when applied. All simulations are performed under CFL

88

condition σ = 0.4 until the final time te = 0.15.

Orszag-Tang vortex: 3D formulation (3D-OTV)

The 3D formulation of the OTV problem was initially proposed at Helzel et al.
(2011), where a perturbation is added into the z axis. In this case, the computational
domain became [0, 2π]3 with periodic boundaries. The solution in primitive variables
for the initial state is given according the adiabatic constant γ = 5

3 as:

q0(x, y, z) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



γ2

γ

− [1 + εp sin(z)] sin(y)
[1 + εp sin(z)] sin(x)

εp sin(z)
− sin(y)
sin(2x)

0



(8.8)

where εp = 0.2 is a perturbation parameter. The simulations of this problem are per-
formed using the HLLD Riemann solver combined with a MC limiter. The parabolic-
hyperbolic correction uses the factor αp = 0.3, when applied. All simulations are
performed under CFL condition σ = 0.3 until the final time te = π.

8.2.1 Results: GLM parabolic-hyperbolic correction

This section presents the results of the ROT, 2D-OTV, BWV and 3D-OTV prob-
lems obtained by the GLM-MHD model with the parabolic-hyperbolic divergence
cleaning, described in Section 5.1.4. The Figure 8.6 presents the results for pressure
and the parameter DB, defined in Equation 5.2, for the 2D problems using several
refinements, where the base meshes G1, G2, G3 and G4 represents meshes with 2562,
5122, 10242 and 20482 cells for the ROT and 2D-OTV problems, respectively. For
the BWV problem, these parameters represents meshes with 200× 300, 400× 600,
800× 1200 and 1600× 2400 cells.

This figure indicates a convergence of the solution when more refined meshes are
applied and a reduction in the parameter DB. In this ROT and BWV problems, the
parameter DB presents values around machine precision zero in the pink areas. This
is due to the advection of the divergence errors not reaching these regions during
the simulations. The solution for the other variables are shown in Figure 8.7 for the
base mesh G4.

89

Analogously, the Figure 8.8 presents the results for p and DB for the 3D-OTV
problem for the base meshes G1 and G2 corresponding to meshes with 1283 and 2563

cells, respectively. The results for the other variables, considering the mesh G2, are
presented in Figure 8.9.

Figure 8.6 - GLM parabolic-hyperbolic correction: p and DB results for the 2D problems.
Mesh ROT 2D-OTV BWV

G1

G2

G3

G4

Source: Author’s production.

In order to check the performance of the parallel algorithm, these problems along-
side with the ADV problem were successively simulated using different numbers
of processors, scaling by a factor of two after each simulation. The CPU time, in
hours, for these simulations are presented in the Tables 8.2 and 8.4 for the 2D and
3D problems, respectively. These CPU times scaled by a factor around two until the
simulations using 8 processors, but the parallel algorithm still presents a significant
decrease in the CPU time for the simulations with 16 processors.

The Table 8.3 presents the CPU time obtained by the simulations with 16 processors,
in function of the mesh used, for the 2D and 3D problems. These times shows the

90

Table 8.2 - GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the paral-
lel computations for the 2D problems, using the mesh G4, in function of the
number of processors.

Problem Processors
1 2 4 8 16

ADV 119.6 60.8 32.6 16.6 9.4
ROT 7.7 3.9 2.0 1.1 0.6
2D-OTV 16.5 8.4 4.2 2.2 1.5
BWV 6.6 3.3 1.8 0.9 0.6

Source: Author’s production.

Table 8.3 - GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the compu-
tations of the problems using 16 processors in function of the base mesh.

Problem Base mesh
G1 G2 G3 G4

ADV 0.025 0.165 1.201 9.467
ROT 0.001 0.011 0.095 0.674
2D-OTV 0.002 0.022 0.159 1.513
BWV 0.001 0.011 0.085 0.649
3D-OTV 0.163 1.806 26.146 -

Source: Author’s production.

Table 8.4 - GLM parabolic-hyperbolic correction: Elapsed time, in hours, for the parallel
computations for the 3D-OTV problem, using the mesh G2, in function of the
number of processors.

Problem Processors
8 16 32

3D-OTV 3.31 1.80 1.18
Source: Author’s production.

scaling of the computational cost when more refined meshes are used. In Table
8.5 is presented a breakdown of the most computationally costly tasks of the ADV
simulations with different number of processors. The numerical integration, memory
restart and misc tasks presented a scaling factor next to two, while the production
of the output presented a slight reduction in CPU time. However this output cost
is not significative in comparison with the other main tasks.

91

Table 8.5 - GLM parabolic-hyperbolic correction: Breakdown of the CPU time in hours
spent in the main tasks computations for different numbers of processors in
the ADV problem.

Task Processors
1 2 4 8 16

Integration 108.1 54.3 27.2 14.2 7.8
Boundary 0.6 1.1 2.0 0.9 0.6
Memory restart 5.0 2.4 1.4 0.6 0.3
Misc 5.8 2.9 1.8 0.8 0.6
Output (seconds) 14.3 10.6 8.1 7.2 6.9

Source: Author’s production.

92

Figure 8.7 - GLM parabolic-hyperbolic correction: Solutions obtained for the 2D problems
using the mesh G4.

ROT 2D-OTV BWV

ρ

E

vx

vy

Bx

By

Source: Author’s production.

93

Figure 8.8 - GLM parabolic-hyperbolic correction: p and DB results for the 3D-OTV prob-
lem.

G1

G2

Source: Author’s production.

94

Figure 8.9 - GLM parabolic-hyperbolic correction: Solutions obtained for the 3D-OTV
problem using the mesh G2.

ρ E

ux uy

Bx By

Source: Author’s production.

95

Table 8.6 - GLM elliptic correction: Elapsed time, in hours, for the parallel computations
for the 2D problems, using the mesh G4, in function of the number of processors.

Problem Processors
1 2 4 8 16

ADV 1572.5* 548.4* 250.0* 140.8* 39.4
ROT - 17.4 8.3 4.6 2.7
2D-OTV 82.5 37.4 16.7 9.2 5.5
BWV 37.2 17.8 8.3 4.6 2.8

*Estimated CPU time.
Source: Author’s production.

8.2.2 Results: GLM elliptic correction

This section presents the results obtained by the elliptic correction presented in
Section 5.1.5 using the multigrid solver as proposed in Section 5.3 with 3 levels
and νpre = νpost = 1000 Gauss-Seidel iterations. The Figures 8.10 and 8.11 presents
the results for pressure and the parameter DB for the ROT, 2D-OTV, BWV and
3D-OTV problems using the same base meshes presented in Section 8.2.1.

These figures indicates the convergence of the solution p as more refined meshes are
used, while the parameter DB is reduced. The solution for the other variables are
presented in Figure 8.12, for the 2D problems using the mesh G4, and in Figure 8.13
for the 3D problem, using the base mesh G2.

In addition, these problems alongside with the ADV problem were successively sim-
ulated using different number of processors, scaling by a factor of two after each sim-
ulation. The CPU time, in hours, for these simulations are presented in the Tables
8.6 and 8.7 for the 2D and 3D problems, respectively. As the parabolic-hyperbolic
simulations, these CPU times scaled by a factor around two until the simulations
using 8 processors, but the parallel algorithm still presents a significant decrease in
the CPU time for the simulations with 16 processors.

The Table 8.8 presents the CPU time obtained by the simulations with 16 pro-
cessors in function of the base mesh used. These times shows the scaling of the
computational cost when more refined meshes are used.

96

Figure 8.10 - GLM elliptic correction: p and DB results for the 2D problems.
Mesh ROT 2D-OTV BWV

G1

G2

G3

G4

Source: Author’s production.

Table 8.7 - GLM elliptic correction: Elapsed time, in hours, for the parallel computations
for the 3D-OTV problem, using the mesh G2, in function of the number of
processors.

Problem Processors
8 16 32

3D-OTV 46.9 45.3 -
Source: Author’s production.

Table 8.8 - GLM elliptic correction: Elapsed time, in hours, for the computations of the
2D and 3D problems using 16 processors in function of the base mesh used.

Problem Base mesh
G1 G2 G3 G4

ADV 0.769 2.276 50.287 39.473
ROT 0.048 0.152 0.566 2.704
2D-OTV 0.104 0.320 1.121 5.546
BWV 0.061 0.160 0.572 2.8
3D-OTV 22.212 45.313 - -

Source: Author’s production.

97

Figure 8.11 - GLM elliptic correction: p and DB results for the 3D-OTV problem.

G1

G2

Source: Author’s production.

98

Figure 8.12 - GLM elliptic correction: Solutions obtained for the 2D problems using the
mesh G4.

ROT 2D-OTV BWV

ρ

E

vx

vy

Bx

By

Source: Author’s production.

99

Figure 8.13 - GLM elliptic correction: Solutions obtained for the 3D-OTV problem using
the mesh G2.

ρ E

ux uy

Bx By

Source: Author’s production.

100

8.2.3 Results: GLM triple correction

This section presents the results obtained by the proposed approach of combining the
parabolic-hyperbolic correction with the elliptic correction using the MG solver as
discussed in Section 5.4. These simulations are performed using 3 levels for the MG
algorithm, νpre = νpost = 1000 Gauss-Seidel iterations and nMG = 60 time evolution
iterations between each elliptic cleaning. The Figures 8.14 and 8.15 presents the
results for pressure and the parameter DB for the ROT, 2D-OTV, BWV and 3D-
OTV problems using the same base meshes presented in Section 8.2.1.

As the previous methods, these figures suggests the convergence of the solution p as
more refined meshes are used, while the parameter DB is reduced. The solution for
the other variables are presented in the Figure 8.16, for the 2D problems with the
base mesh G4, and in Figure 8.17 for the 3D-OTV problem with the base mesh G2.

As performed for the other methods, the presented problems were simulated using
different number of processors. The Tables 8.9 and 8.10 presents the CPU time for
the simulations in the most refined level for the 2D and 3D problems, respectively.
As the previous simulations, these CPU times scaled by a factor around two until the
simulations using 8 processors, but the parallel algorithm still presents a significant
decrease in the CPU time for the simulations with 16 processors. Then, in Table
8.11, the CPU times of these problems, using 16 processors, are presented in function
of the base mesh G in order to show the scaling of the computational cost when more
refined meshes are used.

Table 8.9 - GLM triple correction: Elapsed time, in hours, for the parallel computations for
the 2D problems, using the mesh G4, in function of the number of processors.

Problem Processors
1 2 4 8 16

ADV 157.7 84.2 40.9 21.1 12.0
ROT 8.7 4.3 2.5 1.2 0.6
OTV 31.2 15.2 7.2 3.9 2.3
BWV 9.3 4.7 - 1.2 0.7

Source: Author’s production.

101

Figure 8.14 - GLM triple correction: p and DB results for the ROT, 2D-OTV and BWV
problems.

Mesh ROT 2D-OTV BWV

G1

G2

G3

G4

Source: Author’s production.

Table 8.10 - GLM triple correction: Elapsed time, in hours, for the parallel computations
for the 3D-OTV problem using the mesh G2, in function of the number of
processors.

Problem Processors
8 16 32

3D-OTV 10.3 2.9 2.2
Source: Author’s production.

Table 8.11 - GLM triple correction: Elapsed time, in hours, for the computations of the
2D and 3D problems using 16 processors in function of the base mesh used.

Problem Base mesh
G1 G2 G3 G4

ADV 0.049 0.248 1.610 12.050
ROT 0.002 0.015 0.185 0.671
2D-OTV 0.006 0.033 0.223 2.301
BWV 0.003 0.046 0.100 0.740
3D-OTV 0.249 2.908 - -

Source: Author’s production.

102

Figure 8.15 - GLM triple correction: p and DB results for the 3D-OTV problem.

G1

G2

Source: Author’s production.

103

Figure 8.16 - GLM triple correction: Solutions obtained for the 2D problems using the
mesh G4.

ROT 2D-OTV BWV

ρ

E

vx

vy

Bx

By

Source: Author’s production.

104

Figure 8.17 - GLM triple correction: Solutions obtained for the 3D-OTV problem using
the mesh G2.

ρ E

ux uy

Bx By

Source: Author’s production.

105

8.2.4 Comparison between the GLM methods

This subsection is dedicated to compare the results obtained by the proposed triple
correction with the other GLM approaches. The Figures 8.18 and 8.19 presents
the results for the parameter DB obtained by each correction for the 2D and 3D
problems. These simulations were performed using 16 processors and the meshes G4

and G2, respectively.

The parabolic-hyperbolic approach obtained machine zero precision in some regions
of the ROT and BWV problems, that is due to the divergence errors not being
transported to those regions yet. In general, the elliptic approach presented the
lowest divergence errors, specially in the ADV and BWV problems. However, it
presented the highest divergence peak in the ROT problem, besides presenting lower
divergence globally.

The proposed triple correction presented lower divergence errors than the parabolic-
hyperbolic correction, specially in the regions containing structures, such as the
centre of the rotor and in the more inner parts of the blast wave. The divergence in
B obtained by the norms L1 and L∞, and the CPU time by each divergence cleaning
approach are presented in Table 8.12 for the 2D and 3D problems. These simulations
were performed using 16 processors and the meshes G4, for the 2D problems, and
G2, for the 3D problems.

The results confirms the reduction in the divergence provided by the triple correction
in relation to the parabolic-hyperbolic correction, while the increase in the CPU time
resulted from this correction did not compromised the computational cost associated
with the simulation.

In particular, the ADV problem has an exact solution to compare with the solutions
obtained by the divergence cleaning approaches discussed in this work. The errors
obtained for the components Bx and By are presented in the Table 8.13. The errors
in the L∞ norm were similar for every approach. However, the elliptic and triple cor-
rections presented an L1 error with one order lower than the parabolic-hyperbolic
approach. The reason for this higher error is presented in the Figure 8.20, which
presents the results for ‖B‖ obtained for the three approaches. The result for the
parabolic-hyperbolic approach presented an oscillation inside the advecting mag-
netic field and a background noise, which did not occur in the elliptic and triple
corrections.

106

Table 8.12 - Divergence and CPU time, in hours, obtained by the discussed divergence
cleaning methods.

Method ‖∇ ·B‖1 ‖∇ ·B‖∞ tCPU
Par-Hyp 2.002e-05 3.987e-03 9.467

ADV Elliptic 2.337e-06 4.181e-03 39.473
Triple 5.064e-06 2.396e-03 12.050

Par-Hyp 1.947e-01 1.417e+02 0.674
ROT Elliptic 3.707e-01 2.396e+02 2.704

Triple 1.842e-01 1.355e+02 0.671
Par-Hyp 1.552e+00 2.243e+01 1.513

2D-OTV Elliptic 5.624e-01 9.130e+00 5.546
Triple 1.366e+00 1.856e+01 2.301

Par-Hyp 2.000e-01 6.795e+01 0.649
BWV Elliptic 1.051e-01 3.840e+01 2.808

Triple 1.846e-01 6.234e+01 0.740
Par-Hyp 1.336e+01 8.023e+00 1.806

3D-OTV Elliptic 1.701e+01 1.520e+01 45.313
Triple 1.383e+01 7.751e+00 2.908
Source: Author’s production.

Table 8.13 - ADV problem: Errors for the Bx and By components in the L1 and L∞ norms
obtained by the studied divergence cleaning approaches in the mesh G4 using
16 processors.

Norm Method
Parabolic-Hyperbolic Elliptic Triple

Bx
L1 3.357e-05 7.463e-06 6.911e-06
L∞ 1.144e-03 1.025e-03 9.940e-04

By
L1 3.203e-05 8.332e-06 8.246e-06
L∞ 9.480e-04 1.015e-03 1.076e-03

Source: Author’s production.

107

Figure 8.18 - Parameter DB, obtained for the 2D problems using the discussed divergence
cleaning approaches in the base mesh G4.

Method
Parabolic-Hyperbolic Elliptic Triple

ADV

ROT

OTV

BWV

Source: Author’s production.

108

Figure 8.19 - Parameter DB, obtained for the 3D-OTV problem using the discussed diver-
gence cleaning approaches in the base mesh G2.

Method
Parabolic-Hyperbolic Elliptic Triple

Source: Author’s production.

Figure 8.20 - ‖B‖ obtained for the base mesh G4 the ADV, ROT, 2D-OTV and BWV
problems using the discussed divergence cleaning approaches.

Parabolic-Hyperbolic Elliptic Triple

Source: Author’s production.

109

8.3 Adaptive mesh experiments

The third round of tests verifies the performance of the AMR module of the AMROC
MHD solver. For that, some 2D and 3D test problems presented below, are simulated
using 24 processors and adaptive meshes with several numbers of refinement levels.
The results of these simulations are compared to a reference solution obtained by
using a full mesh. These experiments are performed using the GLM formulation
with the parabolic-hyperbolic correction.

Magnetic Reconnection (REC)

The magnetic reconnection problem is described in Jiang et al. (2012) as the recon-
nection of the magnetic field lines from two opposing magnetic fields, liberating a
huge amount of energy. This type of phenomena is common in solar physics and is
highly studied due to effects of the interaction between the Earth‘s magnetic field
and the interplanetary environment. This test aims to verify the implementation of
the resistive terms in MHD, once these effects are considered the responsible for the
decay in the magnetic field lines leading to the reconnection.

This problem is initialised considering two different states with a small transition
gap between them. Those states have magnetic fields in opposing directions and the
reconnection occur inside a small region inside the transition gap, where there is a
small resistivity.

The computational domain for this problem is
[
−1

2 ,
1
2

]
×[−2, 2] with Dirichlet bound-

ary conditions. Inside this domain, the resistivity region is defined in the subdomain
[−Lr, Lr] ×

[
−1

5 ,
1
5

]
, where Lr = 0.05. The initial condition, in primitive variables,

are inspired by the one used in Jiang et al. (2012):

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1
0.1
0
0
0
0
B0
y

B0
z



(8.9)

110

where the components B0
y and B0

z are given according to its corresponding state, as:

(
By

0, Bz
0
)

=


(1, 0), if x > Lr (Right state)

(−1, 0), if x < −Lr (Left state)(
sin

(
πx
2Lr

)
, cos

(
πx
2Lr

))
, elsewhere (Transition region)

, (8.10)

The value for the resistivity is defined inside the resistive subdomain in function of
the parameter η0 = 6× 10−4 as:

η (x, y) =


η0
4 [1 + cos(10πx)] [1 + cos(2.5πy)] , if (x, y) ∈ [−Lr, Lr]× [−0.2, 0.2]

0, elsewhere
,

(8.11)

The simulations of this problem are performed using the adiabatic constant γ =
5
3 and the HLLD Riemann solver combined with the MC limiter. The parabolic-
hyperbolic correction uses the factor αp = 0.4. All simulations are performed under
CFL condition σ = 0.4 until the final time t = 2.5.

The Table 8.14 presents the error in p using the L1 norm, the CPU time and the
number of cells and patches used in the adaptive mesh for simulations with several
refinement levels. These simulations are performed using the threshold value ε =
0.001 for the MR refinement criteria. The number of levels used in each simulation
are configured so that the most refined scale correspond to a 1024×2048 mesh. The
simulation that presented the best results is obtained with L = 2, which presented
a reduction of 49% of the CPU time while maintaining an error in the order of
5 × 10−3. In that case the gain is roughly four times in relation to the simulation
with L = 4. In addiction this case presented the lowest number of cells in relation
with the full mesh simulation and also the lowest number of patches. Furthermore
these adaptive cases required around 40% of the cells of the full mesh simulation.

The Figure 8.21 presents the solution for p, the adaptive mesh for the simulation
with 4 levels and the mesh distribution among the 24 processors used. The figure
containing the refinement of the adaptive mesh is interpreted so that the light blue
regions of the domain are represented in the coarsest level and the yellow region is
represented by the most refined scale. The mesh distribution figure is interpreted
so that each coloured region of the physical domain is associated to a different
processor. Considering that the more refined regions requires more computational
efforts, the mesh is distributed among the processors so that it compensates the

111

extra workload of the finer regions by attributing smaller domains to the processors,
while the processor designed for coarser meshes receives a larger domain.

The Table 8.15 is presented a breakdown of the most computationally costly tasks
of the adaptive REC simulations with different number of refinement levels. In com-
parison with the full mesh simulations, the Boundary related tasks presented a more
significative cost in the simulation scope. Also, the adaptive simulations presented
the Recomposition and Regridding tasks, which presented a significant and a slightly
significant cost respectively. The output production cost also presented a not signif-
icant cost in the simulation scope.

Table 8.14 - REC: Errors in p, memory consumption and CPU time obtained by using
several refinement levels.

Base Mesh L Accuracy Cells Patches CPU Time
L1 error (×10−1) # % # (min) %

128× 256 4 0.231 928,932 44 852 27.7 29
256× 512 3 0.226 895,292 42 809 48.1 51
512× 1024 2 0.050 856,968 40 466 48.3 51

Source: Author’s production.

Table 8.15 - REC: Breakdown of the CPU time in % spent in the main tasks computations
for different numbers of refinement levels using ε = 0.001.

Task Levels
1 2 3 4

Integration 73.7 32.1 25.8 44.3
Boundary 14.2 29.4 20.4 30.2
Memory restart 2.5 1.2 0.3 0.3
Recomposition - 17.2 39.0 13.7
Regridding - 0.8 0.7 1.2
Misc 9.2 12.4 7.0 7.0
Output 0.07 0.22 0.19 0.08

Source: Author’s production.

112

Figure 8.21 - REC: Solution for p, the adaptive mesh and mesh distribution per processors.
This simulation was performed using 4 refinement levels with threshold value
ε = 0.001 and 24 processors.

p Adaptive mesh Mesh distribution per processor
Source: Author’s production.

113

Kelvin-Helmholtz instability (KHI)

The Kelvin-Helmholtz (KHI) instability is a phenomena which occur in single con-
tinuous fluids with a velocity shear. It also occurs in the interface of two fluids with
different velocities. In the context of space sciences, the KHI instability appears in
the solar corona, the ionosphere and astrophysical objects.

The simulations of the KHI case, as presented in Dedner et al. (2002), are performed
inside the computational domain [0, 1]× [−1, 1] with periodic boundaries. The initial
condition, in primitive variables, is given according the adiabatic constant γ = 1.4
as:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



1
50

5 [tanh [20(y + 0.5)]− tanh (20(y − 0.5))− 1]
0.25 sin (2πx)

(
e−100(y+0.5)2 − e−100(y−0.5)2

)
0
1
0
0



(8.12)

In this work, the simulations of the KHI problem are performed using the HLLD
Riemann solver combined with a MC limiter. The parabolic-hyperbolic correction
uses the factor αp = 0.5. All simulations are performed under CFL condition σ = 0.4
until the final time t = 0.5.

The Table 8.16 presents the error in p using the L1 norm, the CPU time and the
number of cells and patches used in the adaptive mesh for simulations with several
refinement levels. These simulations are performed using the threshold value ε =
0.001 for the MR refinement criteria. The number of levels used in each simulation
are configured so that the most refined scale correspond to a 1024 × 2048 mesh.
The simulation with L = 2 and 3 obtained results with similar gain, which the first
simulation has around half of the error produced by the second, however it presented
roughly the double of the CPU time with less than the double of cells. In general,
the precision is around ten times the chosen ε.

The Figure 8.22 presents the solution for p, the adaptive mesh for the simulation with
4 levels and the mesh distribution among the 24 processors used. The figure with the
refinement of the adaptive mesh is interpreted so that the blue regions of the domain

114

are represented in the coarsest level and the red region is represented by the most
refined scale. As the previous case, the mesh distribution figure is interpreted so that
each coloured region of the physical domain is associated to a different processor. The
regions containing the centre of the instabilities required the most computational
efforts due to the mesh adaptation, and for this reason it was attributed smaller
domains to the processors. Furthermore, the expected physical behaviour of the
instability was successfully achieved with a roughly desired symmetry.

Table 8.16 - KHI: Errors in p, memory consumption and CPU time obtained by using
several refinement levels with ε = 0.001.

Base Mesh L Accuracy Cells Patches CPU Time
L1 error (×10−1) # % # (min) %

128× 256 4 1.046 536,736 25 935 11.0 11
256× 512 3 0.940 530,868 25 855 10.3 10
512× 1024 2 0.514 793,776 37 695 20.2 21

Source: Author’s production.

115

Figure 8.22 - Results for p, the adaptive mesh and mesh distribution per processors. This
simulation was performed using 4 refinement levels with threshold value
ε = 0.001 and 24 processors.

p Mesh refinement Mesh distribution per processor
Source: Author’s production.

116

Shock-Cloud Iteration (SCI)

The Shock-Cloud iteration is a test case presented in Tóth et al. (2012) used to
check the performance of the numerical scheme when dealing with super-fast flows.
It describes the disruption of a high-density magnetic cloud by a strong shock wave.
For that, is considered an advancing plasma which causes a shock with a stationary
state containing a high density cloud.

The simulations of the SCI problem are performed inside the computational domain
[0, 1]3 with outlet boundaries. The solution, in primitive variables, for the initial
state of the advancing plasma region, delimited by x < 0.05, as:

q0(x < 0.05, y, z) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



3.86859
167.345
11.2536

0
0
0

2.1826182
−2.1826182



(8.13)

The initial configuration for the stationary state is given by:

q0(x > 0.05, y, z) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



ρ0

1
0
0
0
0

0.56418958
0.56418958



(8.14)

where the value ρ0 is defined according if the point (x, y, z) is contained in the high
density cloud with centre in (0.25, 0.5, 0.5) and radius 0.15:

ρ0 =

10, if (x− 0.25)2 + (y − 0.5)2 + (z − 0.5)2 < 0.152 (High density cloud)

1, Elsewhere
.

(8.15)

117

In this work, the simulations of the SCI problem are performed using the parameter
γ = 5

3 and the HLLD Riemann solver combined with the MC limiter. The GLM
formulation uses the factor αp = 0.4. All simulations are performed under CFL
condition σ = 0.4 until the final time t = 0.06.

This problem was simulated using different sizes of base meshes. In each one of
these cases, the AMR algorithm uses a number L of extra refinement levels so that
the finest level allowed is the correspondent of a mesh of 5123 cells. These AMR
simulations are performed with a threshold value ε = 0.001.

The L1 norm error obtained from these simulations in relation to a reference solution
from a full 5123 mesh, the CPU time and the number of cells and patches for each
case are presented in Table 8.17. These experiments present a slight change in the
number of cells in their adaptive meshes. However, the CPU time is the largest in
the case L = 2. This may be related with the memory access required for the 3D
simulations. The results with L = 3 presented the best gain due to besides having
the best precision, it presented a better CPU time than the case with L = 2.

In Figure 8.23 are presented cuts of the solution for p, the adaptive mesh for this
simulation with 3 levels and the mesh distribution among the 24 processors used.
The figure containing the refinement of the adaptive mesh is interpreted so that the
blue regions of the domain are represented in the coarsest level and the red region is
represented by the most refined scale. This adaptive mesh allows the localisation of
the bow shock, other structures and the centre of the explosion area and tail. In this
tridimensional case, the mesh distribution per processor is too complex. Roughly to
estimate the form of this distribution, it is used cuts.

Table 8.17 - SCI: Errors in p, memory consumption and CPU time obtained by using
several refinement levels.

Base Mesh L Accuracy Cells Patches CPU Time
L1 error (×10−1) # % # (min) %

643 4 1.196 83,081,640 61 15,723 11.0 36
1283 3 1.156 82,664,744 61 15,863 11.4 37
2563 2 1.173 82,986,448 61 16,207 14.4 48

Source: Author’s production.

118

Figure 8.23 - SCI: Results for p, the adaptive mesh and mesh distribution per processors.
This simulation was performed using 4 refinement levels with threshold value
ε = 0.001 and 24 processors.

p

Mesh refinement Mesh distribution per processor
Source: Author’s production.

119

8.4 Magnethosphere simulation

This problem is proposed in Ogino et al. (1992) is a numerical experiment to simu-
late the near Earth environment. It considers the Earth as a sphere with constant
density and pressure in time containing a magnetic dipole that will be compressed
or stretched by the solar wind, producing well know physical phenomena such as
Kelvin-Helmholtz instabilities and magnetic reconnections.

Physically, the modelling for this problem requires new parameters in relation to the
MHD formulation deducted in Chapters 2 and 3. In special, the acceleration term
a includes an external gravity field:

a = qα
mα

(E + v×B) + g, (8.16)

and the Ampère law is rewritten as:

J = ∇× (B−Bd) (8.17)

where Bd is the intrinsic dipole magnetic field of the Earth. The reason for subtract
the dipole field from the Ampère law is to allow the electric current to be generated in
the frontier between the two medium (interplanetary space and the outter terrestrial
region).

In addiction, Ogino et. al. (OGINO, 1986; OGINO et al., 1992) introduces a viscosity
term Φ = 10−5∇2u and an artificial diffusion over ρ and p to the model. These effects
are included in order to reduce the MHD fluctuations caused by the unbalanced
forces in the initial condition. In these works, the MHD equations for this problem
are presented in the primitive formulation. Thus, this work uses these assumptions
to deduce a MHD model, analogously as performed in Chapters 2 and 3, governed
by the system of equations in a semi-conservative formulation:

∂ρ

∂t
+∇ · (ρu) = D∇2ρ (8.18a)

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p+ B ·B

2

)
I−BB

]
= ρg + B× (∇×Bd)+Φ + uD∇2ρ

(8.18b)

120

∂E
∂t

+∇ ·
[(
E + p+ B ·B

2

)
u− (u ·B) B + (η∇×B)×B

]
= ρu · g + η‖∇ ×Bd‖2 + (∇×Bd) · (u×B− η∇×B)

+Dp∇2p

γ − 1 + ‖u‖
2

2 D∇2ρ+ u · Φ

(8.18c)

∂B
∂t

+∇ ·
[
uB−Bu + η

(
(∇B)T −∇B− (∇Bd)T +∇Bd

)]
= 0 (8.18d)

where the terms in red are deducted from the gravity term included in the particle
acceleration a and the dipole Bd from the Ampère law, and the terms written in blue
correspond to the viscosity and artificial diffusion as introduced by Ogino (1986).
These diffusion terms uses the constants D = Dp = 0.02.

The physical quantities included into the model, written in red, are proportional to
the distance to Earth, represented by ξ. Assuming the Earth located in the xy plane
origin, the distance ξ is defined as:

ξ =
√
x2 + y2. (8.19)

Thus, the external gravity g, defined by the vector field:

g(x, y) = −g0

ξ2


x

y

0

 , (8.20)

where g0 = 1.35× 10−6 and the line dipole magnetic field Bd is given by:

Bd(x, y) =


Bdx

Bdy

Bdz

 =


−2xyξ−4

ξ−4 (x2 − y2)
0

 . (8.21)

The resistivity term η is defined as:

η(x, y) = η0

(
T

T0

)− 3
2

(8.22)

with η0 = 10−2, T = p

ρ
and T0 = 5.4× 10−7.

The physical quantities in this problem are normalised so that unit of distance
correspond to the radius of the Earth (6.37×106 m), the unit of magnetic induction

121

correspond to the Earth magnetic field at the equator (3.12× 10−5 T) and the time
unit correspond to the Alfvén transit time (0.937 s), defined as the time required by
the Alfvén wave to go through the equivalent of the Earth radius.

Based on these quantities, the pressure unit correspond to 7.75 × 10−4 N/m2, the
velocity unit correspond to 6.80 × 106 m/s, the acceleration unit correspond to
7.26× 106 m/s2 and the current density unit correspond to 3.90× 10−6 A/m2.

Initial Conditions

The initial configuration for this problem consists in a steady state ionosphere which
describes the plasma in the Earth’s neighbourhood. This ionosphere is constructed
so that its pressure and density are proportional to ξ, while the initial magnetic field
is the dipole presented in Equation 8.21 (OGINO, 1986). Thus, the ionosphere initial
condition is given by:

q0(x, y) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



max (ξ−2, 10−4)
max (p00ξ

−1, 3.56× 10−8)
0
0
0
Bdx

Bdy

Bdz



(8.23)

where p00 = (γ−1)g0
γ

= 5.4× 10−7 for γ = 2.

Boundary Conditions

This problem is simulated inside the physical domain [−150, 450]×[−150, 150], which
is complemented with Neumann boundary conditions so that the derivative of the
physical quantities are zero at the boundaries xe = 450, ys = −150 and ye = 150.
The boundary at xs = −150 inputs the solar wind parameters, discussed in Section
8.4.

Furthermore, the physical domain also presents an internal boundary corresponding
to the near Earth region. Considering the Earth positioned at the origin, this internal
boundary removes the points which ξ < 16 from the computational domain. In order
to damp out all perturbations near the ionosphere, the near Earth neighbourhood is

122

smoothed in relation with the initial condition after every time step by the operation:

qn+1 = fqn+1
∗ + (1− f)q0 (8.24)

where qn+1
∗ is the solution obtained after the time evolution and q0 is the ionospheric

initial condition. The weight value f is computed as:

f̄ = 100
(

max
[(

ξ
16

)2
− 1, 0

])2

f = f̄2

f̄2+1

(8.25)

Solar wind setup

Defined the initial state of the ionosphere and the near Earth boundary condition,
the magnetosphere is configured by introducing the solar wind as the boundary
condition in xs = −150. In this work, the configuration of the magnetosphere is
performed in two steps. The first step introduces the hydrodynamic components of
the solar wind as:

q(xs, y, t < thydro) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



5× 10−4

3.56× 10−8

4.41× 10−2

0
0
0
0
0



(8.26)

These solar wind parameters are applied until the instant thydro = 92, 209.0, which
corresponds to approximately one day in the normalised time scale. This choice
expected to be enough to balance the hydrodynamic components of the magneto-
sphere. In Figure 8.24 is presented the result after this hydrodynamic step.

123

Figure 8.24 - Magnetosphere setup after the hydrodynamic step.
ρ

p with magnetic field lines

Source: Author’s production.

The next step introduces the magnetic effects into the solar wind, that became:

q(xs, y, thydro < t < tmag) =



ρ

p

ux

uy

uz

Bx

By

Bz



=



5× 10−4

3.56× 10−8

4.41× 10−2

0
0
0

1.5× 10−4

0



, (8.27)

where tmag = 184, 418.0 corresponds to the end of the second day in the normalised
time scale. This step is expected to balance the magnetic components of the magne-
tosphere. The Figure 8.25 presents a transitory configuration of the magnetosphere
and plasma density distribution. This solution is converging to a steady state so
that the magnetic dipole in the solar wind side is compressed and is elongated in
the downstream.

124

Figure 8.25 - Magnetosphere setup before the inclusion of the real solar wind data.
ρ

p with magnetic field lines

Source: Author’s production.

This magnetosphere configurations are expected in the near future to be used as
initial conditions for simulations of the near Earth environment using real satellite
data as the solar wind input.

125

9 LOCAL TIME STEPPING

In a different branch and complementary to the previous discussions in Section 6.3,
this chapter presents studies involving local time stepping in the wavelet context.
These methods improves the local time stepping approach presented in Domingues
et al. (2008) in the context of the adaptive multiresolution method, as proposed in
Harten (1995) in the CARMEN code developed in Roussel (2003) and Roussel et
al. (2003) using the otimisation presented in Deiterding et al. (2016).

The presented local time stepping method is based on the natural extensions for
Runge–Kutta methods, originated in Zennaro (1986). This formulation is used to
obtain high-order interpolations and extrapolations necessary to the execution, syn-
chronisation and update of the mesh hierarchy.

The proposed approach is an extension of the studies performed during the author’s
MSc dissertation (MOREIRA LOPES, 2014), that produced two articles. The first
article, published in 2018 in the Journal of Applied Nonlinear Dynamics, presents
a local time stepping formulation for a second order Runge-Kutta method. It is
referred as (MOREIRA LOPES et al., 2018b), namely:

• MOREIRA LOPES, M.; DOMINGUES, M.; MENDES, O.; SCHNEIDER,
K. An adaptive multiresolution scheme with second order local time-
stepping for reaction-diffusion equations. Journal of Applied Nonlinear
Dynamics, v. 7, n. 3, p. 287-295, 2018.

Annex B contains the second article that extends the results of the other article
to higher order formulations, it presents more detailed algorithms concerning syn-
chronisations in time and a discussion concerning the numerical stability of these
models. It is referred as (MOREIRA LOPES et al., 2019), namely:

• MOREIRA LOPES, M.; DOMINGUES, M.O.; SCHNEIDER, K.;
MENDES, O. Local time-stepping for adaptive multiresolution using nat-
ural extensions for Runge–Kutta methods. Journal of Computational
Physics, v. 382, p. 291-318, 2019.

127

10 CONCLUSIONS

Motivated by the increasing needs of space environment science, scientific com-
putation deals with mathematical-numerical methodologies to implement innova-
tive computational codes. The National Institute for Space Research, INPE, has
taken part in this kind of contribution to develop an efficient magnetohydrodynamic
(MHD) simulation code aiming at future space weather forecasting.

This thesis develops a new high performance multi-dimensional adaptive MHD
solver, as partially published in Moreira Lopes et al. (2018a). This solver uses the
Adaptive Mesh Refinement in Object oriented C++ (AMROC) framework that im-
plements a Structures Adaptive Mesh Refinement (SAMR) technique using a patch
based data structure that decomposes the computational mesh into independent
blocks with different refinement levels. The parallel MPI implementation applies a
workload balance algorithm that estimates the computational cost associated with
each submesh and distributes them into different processors. Moreover, the adaptive
methodology uses the wavelet based refinement idea (DOMINGUES et al., 2019b).

In order to contribute with the accuracy and quality of the solutions provided by
the MHD solver, this thesis presents a new divergence cleaning approach that com-
bines the parabolic-hyperbolic correction introduced in Dedner et al. (2002) and
the elliptic correction introduced in Munz et al. (2000), creating a triple parabolic-
hyperbolic-elliptic correction that applies a multigrid strategy to overcome the per-
formance limitations of the elliptic operator. This correction presented a reduction
in the global divergence of the magnetic field, without compromising the solver per-
formance. In the 2D problems the numerical simulations presented a large reduction
in the divergence in relation with the obtained results for the 3D cases. This result
is mainly due to the refinement of the 3D mesh, which is coarser than the ones used
in the 2D problems. Furthermore, we expect to improve soon the 3D results even
more by using finer meshes and optimising the multigrid parameters.

In the context of the adaptive modelling, the space and time adaptations are comple-
mentary approaches to perform accurate and fast simulations. However, combining
these approaches has many challenges and open questions. The NERK local time
methodology proposed in this thesis presented errors of about the same order of
magnitude as the MRLT computations using classical RK schemes with the advan-
tage of a significant gain in CPU time, with results published in Moreira Lopes et
al. (2019).

129

The original contribution of this thesis are:

• Adaptive MHD solvers developed and implemented in a high performance
environment (MOREIRA LOPES et al., 2018a).

• A mesh refinement criteria based on the wavelet formulation (DOMINGUES

et al., 2019b).

• A computationally accurate local time stepping strategy in the wavelet
context (MOREIRA LOPES et al., 2018b; MOREIRA LOPES et al., 2019).

• Approach to overcome the magnetic field numerical divergence problem.

Perspectives of work to be developed as consequence of this thesis:

• Extend the multigrid solver to support wavelet based adaptive meshes.

• Develop a multigrid solver for non-periodic boundaries in the AMROC
framework context.

• Perform an analysis focusing on the effects of different choices of the multi-
grid parameters in 3D problems.

• Study implementation strategies and develop the high order local time
stepping as presented (MOREIRA LOPES et al., 2019) in the AMROC frame-
work.

• Validate the MHD solver implemented in the AMROC framework using
satellite data as input to the Earth magnetosphere configuration in differ-
ent solar wind conditions and others space applications.

• Obtain a space weather numerical forecasting modelling on the AMROC
framework.

• Consider the eigenvalue system related to the resistive MHD quasi-linear
form in its respective flux computation.

• Compare and extend the developed GLM-MHD model to recent iGLM
formulation proposed by Derigs et al. (2018) conceived to conserve the
system entropy.

• Develop a control time step like Domingues et al. (2009) for the local time
stepping approach developed.

130

REFERENCES

AHRENS, J.; GEVECI, B.; LAW, C. ParaView: an end-user tool for large data
visualization. Los Alamos: Los Alamos National Laboratory, 2005. 17 p. 69

ALMGREN, A. S.; BECKNER, V. E.; BELL, J. B.; DAY, M. S.; HOWELL, L. H.;
JOGGERST, C. C.; LIJEWSKI, M. J.; NONAKA, A.; SINGER, M.; ZINGALE,
M. CASTRO: A new compressible astrophysical solver. I. hydrodynamics and
self-gravity. The Astrophysical Journal, v. 715, p. 1221–1238, 2010. 68

ARRARÁS, A.; GASPAR, F.; PORTERO, L.; RODRIGO, C. Domain
decomposition multigrid methods for nonlinear reaction-diffusion problems.
Communications in Nonlinear Science and Numerical Simulation, v. 20,
n. 3, p. 699–710, 2015. 56

ASSOUS, F.; DEGOND, P.; HEINTZE, E.; RAVIART, P. A.; SEGRE, J. On a
finite-element method for solving the three-dimensional Maxwell equations.
Journal of Computational Physics, v. 109, n. 2, p. 222–237, 1993. 44

BALSARA, D.; KIM, J. An intercomparison between divergence-cleaning and
staggered mesh formulations for numerical magnetohydrodynamics. The
Astrophysical Journal, v. 602, 10 2003. 2

BALSARA, D. S.; DUMBSER, M. Divergence-free MHD on unstructured meshes
using high order finite volume schemes based on multidimensional Riemann
solvers. Journal of Computational Physics, v. 299, p. 687–715, 2015. 21

BALSARA, D. S.; SPICER, D. S. A staggered mesh algorithm using high order
godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic
simulations. Journal of Computational Physics, v. 149, n. 2, p. 270–292, 1999.
87, 88

BASTING, M.; KUZMIN, D. An FCT finite element scheme for ideal MHD
equations in 1D and 2D. Journal of Computational Physics, v. 338, p.
585–605, 2017. 21

BELL, J.; BERGER, M.; SALTZMAN, J.; WELCOME., M. Three-dimensional
adaptive mesh refinement for hyperbolic conservation laws. SIAM Journal on
Scientific Computing, v. 15, n. 1, p. 127–138, 1994. 63, 65

131

BERGER, M. J. Adaptive mesh refinement for hyperbolic partial
differential equations. Thesis (PhD) — Stanford University, Stanford, 1982. 1,
2, 62

BERGER, M. J.; CORELLA, P. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, v. 82, n. 1, p. 64–84, 1989.
1, 2, 62, 69

BERGER, M. J.; OLIGER, J. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, v. 53, p. 484–512,
1984. 1, 2, 62

BITTENCOURT, J. A. Fundamentals of Plasma Physics. 3. ed. New York:
Springer–Verlag, 2004. 679 p. 5, 8, 146

BRACKBILL, J. U.; BARNES, D. C. The effect of nonzero ∇ ·B on the numerical
solution of the magnetohydrodynamic equations. Journal of Computational
Physics, v. 35, n. 3, p. 426–430, 1980. 2, 43, 50

BRIGGS, W. L.; HENSON, V. E.; MCCORMICK, S. F. A multigrid tutorial.
2. ed. Philadelphia: Society for Industrial and Applied Mathematics, 2000. 193 p.
55, 56, 57

BRIO, M.; WU, C. C. An upwind differencing scheme for the equations of ideal
magnetohydrodynamics. Journal of Computational Physics, v. 75, p. 400–422,
1988. 31

BURDEN, R. L.; FAIRES, J. D. Numerical analysis. Boston: PWS-Kent
Publishing, 1989. 841 p. 22, 39, 52, 54

CHEN, F. F. Introduction to plasma physics and controlled fusion.
Switzerland: Springer International, 2016. 490 p. 5

CHILDS, H.; BRUGGER, E.; WHITLOCK, B.; MEREDITH, J.; AHERN, S.;
PUGMIRE, D.; BIAGAS, K.; MILLER, M.; HARRISON, C.; WEBER, G. H.;
KRISHNAN, H.; FOGAL, T.; SANDERSON, A.; GARTH, C.; BETHEL, E. W.;
CAMP, D.; RÜBEL, O.; DURANT, M.; FAVRE, J. M.; NAVRÁTIL, P. VisIt: an
end-user tool for visualizing and analyzing very large data. In: BETHEL, E. W.;
CHILDS, H.; HANSEN, C. (Ed.). High performance visualization–enabling
extreme-scale scientific insight. 1. ed. New York: Chapman and Hall/CRC,
2012. chapter 16, p. 357–372. 69

132

CHRISTLIEB, A. J.; ROSSMANITH, J. A.; TANG, Q. Finite difference weighted
essentially non-oscillatory schemes with constrained transport for ideal
magnetohydrodynamics. Journal of Computational Physics, v. 268, p.
302–325, 2014. 21

COURTECUISSE, H.; ALLARD, J. Parallel dense Gauss-Seidel algorithm on
many-core processors. In: INTERNATIONAL CONFERENCE ON HIGH
PERFORMANCE COMPUTING AND COMMUNICATIONS, 11, 2009, Seoul,
South Korea. Proceedings... IEEE. Seoul, 2009. p. 139–147. 55

CUCINOTTA, F. A.; ALP, M.; ROWEDDER, B.; KIM, M.-H. Y. Safe days in
space with acceptable uncertainty from space radiation exposure. Life Sciences
in Space Research, v. 5, p. 31–38, 2015. 1

DAI, W.; WOODWARD, P. R. A simple finite difference scheme for
multidimensional magnetohydrodynamical equations. Journal of
Computational Physics, v. 142, n. 2, p. 331–369, 1998. 83

DAVIS, S. F. Simplified second-order Godunov-type methods. SIAM Journal on
Scientific and Statistical Computing, v. 9, p. 445–473, 1988. 33

DEDNER, A.; KEMM, F.; KRÖNER, D.; MUNZ, C.-D.; SCHNITZER, T.;
WESENBERG, M. Hyperbolic divergence cleaning for the MHD equations.
Journal of Computational Physics, v. 175, n. 2, p. 645–673, 2002. 2, 3, 43, 44,
45, 49, 80, 114, 129

DEITERDING, R. Block-structured adaptive mesh refinement - theory,
implementation and application. ESAIM: Proceedings, v. 34, p. 97–150, 2011.
2, 57, 62, 66, 68, 69

DEITERDING, R.; DOMINGUES, M. Evaluation of multiresolution mesh
adaptation criteria in the AMROC framework. Civil-Comp Press, v. 111, 2017.
2, 66

DEITERDING, R.; DOMINGUES, M.; SCHNEIDER, K. Comparison of adaptive
multiresolution and adaptive mesh refinement applied to simulations of the
compressible euler equations. SIAM Journal of Scientific Computing, v. 38,
p. S173–S193, 2016. 2, 3, 66, 127

. Multiresolution analysis as a criterion for effective dynamic mesh
adaptation - a case study for euler equations in the samr framework AMROC.
Computers and Fluids, 2018. (Submitted). 2, 66

133

DERIGS, D.; WINTERS, A. R.; GASSNER, G. J.; WALCH, S.; BOHM, M. Ideal
GLM-MHD: about the entropy consistent nine-wave magnetic field divergence
diminishing ideal magnetohydrodynamics equations. Journal of Computational
Physics, v. 364, p. 420–467, 2018. 2, 130

DHATT, G.; TOUZOT, G.; LEFRANCOIS, E. Finite element method.
London: John Wiley & Sons, 2012. 600 p. 21

DO, S.; LI, H.; KANG, M. Wavelet-based adaptation methodology combined with
finite difference weno to solve ideal magnetohydrodynamics. Journal of
Computational Physics, v. 339, p. 482–499, 2017. 21

DOLWITHAYAKUL, B.; CHANTRAPORNCHAI, C.; CHUMCHOB, N.
GPU-based total variation image restoration using sliding window Gauss-Seidel
algorithm. In: INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL
PROCESSING AND COMMUNICATIONS SYSTEMS, 2011, Chiang Mai,
Thailand. Proceedings... [S.l.], 2011. p. 1–6. 55

DOMINGUES, M.; DEITERDING, R.; MOREIRA LOPES, M.; GOMES, A.;
MENDES, O.; SCHNEIDER, K. Wavelet-based parallel dynamic mesh adaptation
for magnetohydrodynamics in the AMROC framework. (accepted,
10.1016/j.compfluid.2019.06.025). 2019b. 3, 66, 69, 77, 129, 130

DOMINGUES, M.; ROUSSEL, O.; K., S. An adaptive multiresolution method for
parabolic PDEs with time-step control. International Journal for Numerical
Methods in Engineering, v. 78, p. 652–670, 2009. 130

DOMINGUES, M. O.; GOMES, A. K. F.; GOMES, S. M.; MENDES, O.;
PIERRO, B. D.; SCHNEIDER, K. Extended generalised Lagrangian multipliers
for magnetohydrodynamics using adaptive multiresolution methods. ESAIM:
Proceedings, v. 43, p. 95–107, 2013. 2, 77, 78

DOMINGUES, M. O.; GOMES, S. M.; ROUSSEL, O.; SCHNEIDER, K. An
adaptative multiresolution scheme with local time-stepping for evolutionary PDEs.
Journal of Computational Physics, v. 227, n. 8, p. 3758–3780, 2008. 3, 68, 127

. Adaptive multiresolution methods. ESAIM: Proceedings, v. 34, p. 1–96,
2011. 2, 66

DOMINGUES, M. O.; MOREIRA LOPES, M.; DEITERDING, R.; MENDES, O.
Discussions on the MHD adaptive solvers in the AMROC framework for space
plasmas applications. In: INTERNATIONAL CONGRESS ON INDUSTRIAL

134

AND APPLIED MATHEMATICS, 2019, Valencia, Spain. Proceedings... [S.l.],
2019a. 3

EVANS, C. R.; HAWLEY, J. F. Simulation of magnetohydrodynamic flows - a
constrained transport method. Astrophysical Journal, v. 332, p. 659–677, 1988.
44

FELKER, K. G.; STONE, J. A fourth-order accurate finite volume method for
ideal MHD via upwind constrained transport. Journal of Computational
Physics, v. 375, p. 1365 – 1400, 2018. 21

FRYXELL, B.; OLSON, K.; RICKER, P.; TIMMES, F. X.; ZINGALE, M.;
LAMB, D. Q.; MACNEICE, P.; ROSNER, R.; TRURAN, J. W.; TUFO, H.
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical
thermonuclear flashes. The Astrophysical Journal Supplement Series,
v. 131, n. 1, p. 273–334, 2000. 68

GIACOMAZZO, B.; REZZOLLA, L. The exact solution of the Riemann problem
in relativistic magnetohydrodynamics. Journal of Fluid Mechanics, v. 562, p.
223–259, 2006. 31

GODUNOV, S. A difference method for numerical calculation of discontinuous
solutions of the equations of hydrodynamics. Matematicheskii Sbornik, v. 47,
n. 3, p. 271–306, 1959. 25

GOEDBLOED, J. P. H.; POEDTS, S. Principles of Magnetohydrodynamics:
With Applications to Laboratory and Astrophysical Plasmas. New York:
Cambridge University Press, 2004. 613 p. 8, 156

GOMES, A.; DOMINGUES, M. O.; SCHNEIDER, K.; MENDES, O.;
DEITERDING, R. An adaptive multiresolution method for ideal
magnetohydrodynamics using divergence cleaning with parabolic-hyperbolic
correction. Applied Numerical Mathematics, v. 95, p. 199–213, 2015. 2

GOMES, A. K. F. Análise multirresolução adaptativa no contexto da
resolução numérica de um modelo de magnetohidrodinâmica ideal.
Thesis (Master in Applied Computing) — Instituto Nacional de Pesquisas
Espaciais, São José dos Campos, 2012. 17

GOMES, A. K. F. Simulação numérica de um modelo
magneto-hidrodinâmico multidimensional no contexto da
multirresolução adaptativa por médias celulares. 171 p. Thesis (Doctor in

135

Applied Computing) — Instituto Nacional de Pesquisas Espaciais (INPE), São
José dos Campos, 2017. 2, 77, 80

HAPGOOD, M. Towards a scientific understanding of the risk from extreme space
weather. Advances in Space Research, v. 47, n. 12, p. 2059–2072, 2011. 1

HARTEN, A. Multiresolution algorithms for the numerical solution of hyperbolic
conservation laws. Communications on Pure and Applied Mathematics,
v. 48, n. 12, p. 1305–1342, 1995. 2, 3, 66, 69, 127

HARTEN, A.; LAX, P. D.; van LEER, B. On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws. SIAM Review, v. 25,
n. 1, p. 35–61, 1983. 31, 33

HELZEL, C.; ROSSMANITH, J. A.; TAEL, B. An unstaggered constrained
transport method for the 3D ideal magnetohydrodynamic equations. Journal of
Computational Physics, v. 230, n. 10, p. 3803–3829, 2011. 89

HOPKINS, P. F. A constrained-gradient method to control divergence errors in
numerical MHD. Monthly Notices of the Royal Astronomical Society,
v. 462, n. 1, p. 576–587, 2016. 2, 43

JIANG, R.-L.; FANG, C.; CHEN, P.-F. A new MHD code with adaptive mesh
refinement and parallelization for astrophysics. Computer Physics
Communications, v. 183, n. 8, p. 1617–1633, 2012. 110

KARNIADAKIS, G. E.; KIRBY II, R. M. Parallel scientific computing in
C++ and MPI: a seamless approach to parallel algorithms and their
implementation. Cambridge: Cambridge University Press, 2003. 628 p. 55

KAWAI, S. Divergence-free-preserving high-order schemes for
magnetohydrodynamics: an artificial magnetic resistivity method. Journal of
Computational Physics, v. 251, p. 292–318, 2013. 2

KIVELSON, M. G.; RUSSELL, C. T. Introduction to space physics.
Cambridge: Cambridge University Press, 1995. 588 p. (Cambridge atmospheric and
space science series). 1, 18

KOREN, B. A robust upwind discretization method for advection, diffusion and
source terms. In: VREUGDENHIL, C.; KOREN, B. (Ed.). Numerical methods
for advection-diffusion problems. Germany: Vieweg, 1993, (Notes on
Numerical Fluid Mechanics). p. 117–138. 27

136

LEVEQUE, R. Finite difference methods for ordinary and partial
differential equations: steady-state and time-dependent problems. Philadelphia:
Society for Industrial and Applied Mathematics, 2007. 357 p. 21

LEVEQUE, R. J. Numerical methods for conservation laws. Basel:
Birkhäuser Verlag, 1990. 220 p. 21, 22, 45

LI, L.; ZHENG, W. A robust solver for the finite element approximation of
stationary incompressible MHD equations in 3D. Journal of Computational
Physics, v. 351, p. 254–270, 2017. 21

LIU, X.-D.; OSHER, S.; CHAN, T. Weighted essentially non-oscillatory schemes.
Journal of Computational Physics, v. 115, n. 1, p. 200–212, 1994. 25

LONDRILLO, P.; ZANNA, L. D. High-order upwind schemes for multidimensional
magnetohydrodynamics. The Astrophysical Journal, v. 530, n. 1, p. 508–524,
2000. 83, 87

MENDES, O.; MENDES DA COSTA, A.; DOMINGUES, M. O. Introduction to
planetary electrodynamics: a view of electric fields and currents. Advances in
Space Research, v. 35, n. 5, p. 812–828, 2005. 1

MIGNONE, A.; TZEFERACOS, P.; BODO, G. High-order conservative finite
difference GLM-MHD schemes for cell-centered MHD. Journal of
Computational Physics, v. 229, n. 17, p. 5896–5920, 2010. 2, 21

MIYOSHI, T.; KUSANO, K. A multi-state HLL approximate Riemann solver for
ideal magnetohydrodynamics. Journal of Computational Physics, v. 208, p.
315–344, 2005. 35

. A comparative study of divergence-cleaning techniques for
multi-dimensional MHD schemes. Plasma and Fusion Research: Regular
Articles, v. 6, p. 2401124/1–2401124/5, 2011. 2, 44

MOREIRA LOPES, M. Método de alta ordem para ajuste de passo de
tempo local para a resolução numérica de equações diferenciais
evolutivas com uso de análise multiresolução adaptativa. Thesis (Master in
Applied Computing) — Instituto Nacional de Pesquisas Espaciais, São José dos
Campos, 2014. 3, 66, 68, 127

MOREIRA LOPES, M.; DEITERDING, R.; GOMES, A.; MENDES, O.;
DOMINGUES, M. An ideal compressible magnetohydrodynamic solver with

137

parallel block-structured adaptive mesh refinement. Computers and Fluids,
v. 173, p. 293–298, 2018. 3, 25, 77, 129, 130, 197

MOREIRA LOPES, M.; DOMINGUES, M.; MENDES, O.; SCHNEIDER, K. An
adaptive multiresolution scheme with second order local time-stepping for
reaction-diffusion equations. Journal of Applied Nonlinear Dynamics, v. 7,
n. 3, p. 287–295, 2018. 3, 68, 127, 130

MOREIRA LOPES, M.; DOMINGUES, M.; SCHNEIDER, K.; MENDES, O.
Local time-stepping for adaptive multiresolution using natural extension of
Runge–Kutta methods. Journal of Computational Physics, v. 382, p. 291–318,
2019. 3, 68, 127, 129, 130, 167

MUNZ, C.-D.; OMNES, P.; SCHNEIDER, R.; SONNENDRÜCKER, E.; VOSS, U.
Divergence correction techniques for Maxwell solvers based on a hyperbolic model.
Journal of Computational Physics, v. 161, n. 2, p. 484–511, 2000. 2, 3, 44, 129

OGINO, T. A Three-Dimensional MHD simulation of the interaction of the Solar
Wind with the Earth’s Magnetosphere: the generation of field-aligned currents.
Journal of Geophysical Research, v. 91, n. A6, p. 6791–6806, 1986. 120, 121,
122

OGINO, T.; WALKER, R. J.; ASHOUR-ABDALLA, M. A global
magnetohydrodynamic simulation of the magnetosheath and magnetosphere when
the interplanetary magnetic field is northward. IEEE Transactions on Plasma
Science, v. 20, n. 6, p. 817–828, 1992. 120

ORSZAG, S. A.; TANG, C.-M. Small-scale structure of two-dimensional
magnetohydrodynamic turbulence. Journal of Fluid Mechanics, v. 90, n. 1, p.
129–143, 1979. 83

POWELL, K.; ROE, P.; LINDE, T.; GOMBOSI, T.; ZEEUW, D. L. D. A
solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of
Computational Physics, v. 154, p. 284–309, 1999. 1

POWELL, K. G. An approximate riemann solver for magnetohydrodynamics. In:
HUSSAINI, M. Y.; van LEER, B.; van ROSENDALE, J. (Ed.). Upwind and
high-resolution schemes. Berlin, Heidelberg: Springer, 1997. p. 570–583. 1, 44

ROE, P. L. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, v. 43, n. 2, p. 357–372, 1981. 31

138

. Characteristic-based schemes for the Euler equations. Annual Review of
Fluid Mechanics, v. 18, n. 1, p. 337–365, 1986. 26

ROUSSEL, O. Devellopement d’un algorithme multiresolution adaptatif
tridimensionnel pour la resolution des equations aux derivees patielles
paraboliques: application aux instabilites thermodiffusives de flamme.
Thesis (Doctorat in Mécanique des Fluides) — Universite de la mediterranee,
Marseille, 2003. 66, 68, 77, 127

ROUSSEL, O.; SCHNEIDER, K.; TSIGULIN, A.; BOCKHORN, H. A
conservative fully adaptive multiresolution algorithm for parabolic PDEs. Journal
of Computational Physics, v. 188, n. 2, p. 493–523, 2003. 3, 127

RYU, D.; MINIATI, F.; JONES, T.; FRANK, A. A divergence-free upwind code
for multidimensional magnetohydrodynamic flows. The Astrophysical Journal,
v. 509, n. 1, p. 244–255, 1998. 83

SCHRIJVER, C. J.; KAURISTIE, K.; AYLWARD, A. D.; DENARDINI, C. M.;
GIBSON, S. E.; GLOVER, A.; GOPALSWAMY, N.; GRANDE, M.; HAPGOOD,
M.; HEYNDERICKX, D.; JAKOWSKI, N.; KALEGAEV, V. V.; LAPENTA, G.;
LINKER, J. A.; LIU, S.; MANDRINI, C. H.; MANN, I. R.; NAGATSUMA, T.;
NANDY, D.; OBARA, T.; OâBRIEN, T. P.; ONSAGER, T.; OPGENOORTH,
H. J.; TERKILDSEN, M.; VALLADARES, C. E.; VILMER, N. Understanding
space weather to shield society: a global road map for 2015–2025 commissioned by
COSPAR and ILWS. Advances in Space Research, v. 55, n. 12, p. 2745–2807,
2015. 1

SHAKERI, F.; DEHGHAN, M. A finite volume spectral element method for
solving magnetohydrodynamic (MHD) equations. Applied Numerical
Mathematics, v. 61, n. 1, p. 1–23, 2011. 21

STONE, J. M.; GARDINER, T. A.; TEUBEN, P.; HAWLEY, J. F.; SIMON, J. B.
Athena: a new code for astrophysical MHD. Available in
https://arxiv.org/pdf/0804.0402.pdf. 10 2018. 87

TAKAHASHI, K.; YAMADA, S. Exact Riemann solver for ideal
magnetohydrodynamics that can handle all types of intermediate shocks and
switch-on/off waves. Journal of Plasma Physics, v. 80, n. 2, p. 255–287, 2014.
31

139

https://arxiv.org/pdf/0804.0402.pdf

TITAREV, V.; TORO, E. Finite-volume WENO schemes for three-dimensional
conservation laws. Journal of Computational Physics, v. 201, n. 1, p. 238–260,
2004. 25

TORO, E. F. Riemann solvers and numerical methods for fluid dynamics:
a practical introduction. Berlin: Springer, 1999. 724 p. 24, 26, 35

TÓTH, G. The ∇ ·B constraint in shock-capturing magnetohydrodynamics codes.
Journal of Computational Physics, v. 161, p. 605–652, 2000. 2, 43

TÓTH, G.; ODSTRCIL, D. Comparison of some flux corrected transport and total
variation diminishing numerical schemes for hydrodynamic and
magnetohydrodynamic problems. Journal of Computational Physics, v. 128,
n. 1, p. 82–100, 1996. 86

TÓTH, G.; van der HOLST, B.; SOKOLOV, I. V.; ZEEUW, D. L. D.; GOMBOSI,
T. I.; FANG, F. Adaptive numerical algorithms in space weather modeling.
Journal of Computational Physics, v. 231, n. 3, p. 870–903, 2012. 1, 117

URBAN, K. Wavelet methods for elliptic partial differential equations.
New York: Oxford University Press, 2009. 482 p. 56, 58

van ALBADA, G.; van LEER, B.; ROBERTS, W. A comparative study of
computational methods in cosmic gas dynamics. In: HUSSAINI, M.; van LEER,
B.; van ROSENDALE, J. (Ed.). Upwind and high-resolution schemes. Berlin,
Heidelberg: Springer, 1997. p. 95–103. 26

van LEER, B. Towards the ultimate conservative difference scheme. II.
monotonicity and conservation combined in a second-order scheme. Journal of
Computational Physics, v. 14, n. 4, p. 361–370, 1974. 27

. Towards the ultimate conservative difference scheme III. upstream-centered
finite-difference schemes for ideal compressible flow. Journal of Computational
Physics, v. 23, n. 3, p. 263–275, 1977. 26

. Towards the ultimate conservative difference scheme. V. a second-order
sequel to Godunov’s method. Journal of Computational Physics, v. 32, n. 1,
p. 101–136, 1979. 25

VARGA, R. S. Matrix iterative analysis. 2. ed. Berlin Heidelberg: Springer,
1999. 358 p. (Springer Series in Computational Mathematics). 51

140

WESSELING, P. Introduction to multigrid methods. Portland: R.T.
Edwards, 2004. 296 p. 56

XU, Z.; BALSARA, D. S.; DU, H. Divergence-free WENO reconstruction-based
finite volume scheme for solving ideal MHD equations on triangular meshes.
Communications in Computational Physics, v. 19, n. 4, p. 841–880, 2016. 25

YANG, J.; HE, Y.; ZHANG, G. On an efficient second order backward difference
Newton scheme for MHD system. Journal of Mathematical Analysis and
Applications, v. 458, n. 1, p. 676–714, 2018. 21

YAVNEH, I. Why multigrid methods are so efficient. Computing Science and
Engineering, v. 8, p. 12–22, 2006. 56

ZACHARY, A. L.; MALAGOLI, A.; CORELLA, P. A higher-order Gudonov
method for multidimensional ideal magnetohydrodynamics. SIAM Journal on
Scientific Computing, v. 15, n. 2, p. 263–284, 1994. 87

ZENNARO, M. Natural continuous extensions of Runge–Kutta methods.
Mathematics of Computation, v. 46, n. 173, p. 119–133, 1986. 68, 127

141

ANNEX A - PROOFS OF THE THEOREMS

Theorem 1, page 10: The moments of the Boltzmann Equation produces the fol-
lowing set of equations:

∂nαmα

∂t
+∇ · (nαmαuα) = Sα (A.1a)

∂ (nαmαuα)
∂t

+∇ · [nαmαuαuα + Pα]− nαqα (E + uα ×B) = Aα. (A.1b)

1
2
∂nαmα‖uα‖2

∂t
+ ∂NdknαTα

∂t
+∇r ·

(1
2nαmα‖uα‖2uα + 1

2NdknαTαuα + uα · Pα + hα
)

−nαqαE · uα = uα ·Aα +Qα

(A.1c)
where qα is the electric charge of a particle α, Sα is rate per unit of volume which
the particles α are produced or lost due to collision effects, A is the rate of change
of the momentum of the particles α due to collisions with particles of another types,
Qα is generated heat per unit of volume of the particles α due to collisions with
another particles, B is the magnetic field and E is the electric field.

Proof. This proof is divided into three parts, which each one consist in taking a
different moment of the Boltzmann equation.

Proof part 1: Taking the 0th moment

The 0th moment of the Boltzmann Equation produces the following relation:

mα

∫
v

∂fα
∂t

d3v︸ ︷︷ ︸
I

+mα

∫
v

v · ∇rfαd
3v︸ ︷︷ ︸

II

+mα

∫
v

a · ∇vfαd
3v︸ ︷︷ ︸

III

= mα

∫
v

(
δfα
δt

)
coll

d3v︸ ︷︷ ︸
IV

,

(A.2)
In order to facilitate this proof, the integrals I, II, III and IV are treated separately.
Then, they are assembled in Equation A.19.

Integral I

Considering the relation presented in Equation 2.10, the integral I can be rewritten
as:

mα

∫
v

∂fα
∂t

d3v = mα
∂

∂t

∫
v
fαd

3v = ∂nαmα

∂t
. (A.3)

143

Integral II

Using the derivative product rule, the integral II can be splitted into:

mα

∫
v

v · ∇rfαd
3v = mα

∫
v
∇r · (fαv) d3v −mα

∫
v
fα (∇r · v) d3v. (A.4)

As the variables v and r of the phase space are independent, the linear operator ∇r

treats the variable v as a constant. Therefore the second integral of the right side is
null. Applying the Leibniz’s rule into the first integral, the integral II is rewritten
as:

mα

∫
v

v · ∇rfαd
3v = mα∇r ·

∫
v

(fαv) d3v. (A.5)

Lastly, using the definition given in Equation 2.12, the integral II is calculated as:

mα

∫
v

v · ∇rfαd
3v = mα∇r · (nαuα) = ∇ · (nαmαuα) . (A.6)

Integral III

In order to calculate the integral III, the acceleration term a is modelled by the
Newton’s second law F = mαa, where the force F is the Lorentz force. Thus, con-
sidering SI units, this term is given by:

a = qα
mα

(E + v×B) , (A.7)

where E is the external electric field and B is the magnetic field. Substituting this
acceleration into the integral III:

mα

∫
v

a · ∇vfαd
3v =

∫
v
qα (E + v×B) · ∇vfαd

3v. (A.8)

The right side integral can be splitted into the integrals denoted by III.a and III.b,
obtaining:

mα

∫
v

a · ∇vfαd
3v = qα


∫

v
E · ∇vfαd

3v︸ ︷︷ ︸
III.a

+
∫

v
(v×B) · ∇vfαd

3v︸ ︷︷ ︸
III.b

 . (A.9)

144

Using the derivative product rule, the integral III.a can be written as:
∫

v
E · ∇vfαd

3v =
∫

v
∇v · (fαE) d3v −

∫
v
fα (∇v · E) d3v. (A.10)

The second integral of the right side is null due to the electric field E being inde-
pendent of the velocity field v. Applying the Gauss’ divergence theorem at the first
integral in the right side, the integral III.a is rewritten as:

∫
v

E · ∇vfαd
3v =

∮
S

(fαE · n) dS, (A.11)

where S is a surface that bounds the entire space v, and n is a outward pointing
unit vector normal to the surface S. Considering the Maxwellian distribution, the
term fα vanishes quickly as it goes to the boundaries of the surface S. Therefore,
the integral III.a is calculated as:

∫
v

E · ∇vfαd
3v = 0 (A.12)

The integral III.b also can be decomposed by the derivative product rule, obtaining:
∫

v
(v×B) · ∇vfαd

3v =
∫

v
∇v · (fαv×B) d3v −

∫
v
fα∇v · (v×B) d3v (A.13)

The second integral at the right side is zero due to the operator ∇v being perpen-
dicular to v × B, while the first integral can be studied by applying the Gauss’
divergence theorem, obtaining:

∫
v

(v×B) · ∇vfαd
3v =

∮
S

(fαv×B) · ndS. (A.14)

Performing an analogous analysis as the surface integral obtained in Equation A.11,
the integral III.b became:

∫
v

(v×B) · ∇vfαd
3v = 0. (A.15)

Once the integrals III.a and III.b are null, the integral III is also null, i.e.:

mα

∫
v

a · ∇vfαd
3v = 0. (A.16)

Integral IV

145

Using the derivative product rule, the integral IV can be splitted into:

mα

∫
v

(
δfα
δt

)
coll

d3v = mα

(
δ

δt

∫
v
fαd

3v

)
coll

(A.17)

Using the definition of nα presented in Equation 2.10, the result of the integral IV ,
denoted by Sα is calculated as:

Sα = mα

∫
v

(
δfα
δt

)
coll

d3v =
(
δnαmα

δt

)
coll

(A.18)

This value represents the rate per unit of volume which the particles α are produced
or lost due to collision effects such as ionization, recombination, attachment, charge
transfer or other effects (BITTENCOURT, 2004).

Assembling the 0th moment integrals

Substituting the Equations A.3, A.6, A.16 and A.18 into Equation A.2 produces the
Equation 2.20a:

∂nαmα

∂t
+∇ · (nαmαuα) = Sα. (A.19)

This equation, called continuity equation, describes the transport of mass through
the medium.

Proof part 2: Taking the 1st moment

The 1st moment of the Boltzmann Equation produces the following relation:

mα

∫
v

v
∂fα
∂t

d3v︸ ︷︷ ︸
V

+mα

∫
v

v (v · ∇r) fαd3v︸ ︷︷ ︸
V I

+mα

∫
v

v (a · ∇vfα) d3v︸ ︷︷ ︸
V II

=

mα

∫
v

v
(
δfα
δt

)
coll

d3v︸ ︷︷ ︸
V III

,
(A.20)

Analogously as performed in the Part 1, the integrals V , V I, V II and V III are
treated separately. Then, they are assembled in Equation A.43.

Integral V

146

Using the derivative product rule, the integral V is decomposed as:

mα

∫
v

v
∂fα
∂t

d3v = mα

∫
v

∂

∂t
(vfα) d3v −mα

∫
v
fα
∂v
∂t
d3v. (A.21)

Considering that the phase space velocity v and t are independent variables, the
second integral of the right side is null. Using the Leibniz integral rule, the integral
V is written as:

mα

∫
v

v
∂fα
∂t

d3v = mα
∂

∂t

∫
v

vfαd3v. (A.22)

Applying the definition of nα presented in Equation 2.10, the integral V is calculated:

mα

∫
v

v
∂fα
∂t

d3v = ∂ (nαmαuα)
∂t

. (A.23)

Integral V I

Using some vector calculus identities, the integral V I became:

mα

∫
v

v (v · ∇r) fαd3v = mα

∫
v
∇r · (fαvv) d3v −mα

∫
v
fαv · ∇rvd3v

−mα

∫
v
fαv∇r · vd3v.

(A.24)

Due to the independence of the variables v and r in the phase space, the operator
∇r treats the variable v as a constant. Therefore the second and third integrals of
the right side are null, obtaining:

mα

∫
v

v (v · ∇r) fαd3v = mα

∫
v
∇r · (fαvv) d3v. (A.25)

Using the Leibniz integral rule, the right side term can be rewritten as:

mα

∫
v

v (v · ∇r) fαd3v = mα∇r ·
∫

v
(fαvv) d3v. (A.26)

As presented in Equation 2.11, the velocity term v can be decomposed into the sum
of the average fluid velocity uα and the thermal velocity wα, obtaining:

mα

∫
v

v (v · ∇r) fαd3v = mα∇r ·
∫

v
fα (uα + wα) (uα + wα) d3v. (A.27)

147

Distributing the terms, the right side integral is splitted into the sum:

mα

∫
v

v (v · ∇r) fαd3v = mα∇r ·
[∫

v
fαuαuαd3v +

∫
v
fαwαwαd

3v + 2
∫

v
fαuαwαd

3v
]

(A.28)

Considering that uα is an average value in the physical space and is independent
of the velocity space, it is treated as a constant by the integral operator over the
velocity space. Therefore:

mα

∫
v

v (v · ∇r) fαd3v = mα∇r ·
[
uαuα

∫
v
fαd

3v +
∫

v
fαwαwαd

3v + 2uα
∫

v
fαwαd

3v
]

(A.29)

The third integral of the right side is equivalent to the average < w >α, which is
equal zero according Equation 2.13. Using the definitions for nα and pressure tensor
Pα presented in the Equations 2.10 and 2.14c into the first and second integrals of
the right side, respectively, the integral V I is calculated as:

mα

∫
v

v (v · ∇r) fαd3v = ∇ · [nαmαuαuα + Pα] (A.30)

Integral V II

Using some vector calculus identities, the integral V II is expanded into the terms:

mα

∫
v

v (a · ∇vfα) d3v = mα

∫
v
∇v · (fαva) d3v −mα

∫
v
fαv∇v · ad3v

−mα

∫
v
fαa · ∇vvd3v

(A.31)

Applying the Gauss’ divergence theorem at the first integral in the right side, the
integral V II is rewritten as:

mα

∫
v

v (a · ∇vfα) d3v = mα

∮
S

(fαva) · ndS −mα

∫
v
fαv∇v · ad3v

−mα

∫
v
fαa · ∇vvd3v

(A.32)

Analogously as performed for the Equation A.11, the first integral of the right side
vanishes due to the Maxwellian distribution. The second integral also vanishes due
to the term:

∇v · a = qα
mα

∇v · (E + v×B) = qα
mα

∇v · E + qα
mα

∇v · (v×B) = 0, (A.33)

148

since E is independent of v and the operator∇v is perpendicular to v×B. Therefore,
the integral V II became:

mα

∫
v

v (a · ∇vfα) d3v = −mα

∫
v
fαa · ∇vvd3v (A.34)

Applying the acceleration term a presented in Equation A.7 and assuming ∇vv = I:

mα

∫
v

v (a · ∇vfα) d3v = −qα
∫

v
fα (E + v×B) d3v (A.35)

The right side integral can be splitted as:

mα

∫
v

v (a · ∇vfα) d3v = −qα
(∫

v
fαEd3v +

∫
v
fαv×Bd3v

)
(A.36)

Considering that E and B are independent of the velocity space, the integrals are
rewritten as:

mα

∫
v

v (a · ∇vfα) d3v = −qα
[
E
∫

v
fαd

3v +
(∫

v
fαvd3v

)
×B

]
(A.37)

Using the definitions of nα and uα presented in Equations 2.10 and 2.12, the integral
V II is calculated as:

mα

∫
v

v (a · ∇vfα) d3v = −nαqα (E + uα ×B) (A.38)

Integral V III

Using the derivative product rule, the integral V III can be splitted into:

mα

∫
v

v
(
δfα
δt

)
coll

d3v = mα

∫
v

(
δ(fαv)
δt

)
coll

d3v −mα

∫
v
fα

(
δv
δt

)
coll

d3v. (A.39)

The second integral in the right side integral is null due to the phase space velocity
v and t being independent variables. Therefore, the integral V III became:

mα

∫
v

v
(
δfα
δt

)
coll

d3v = mα

∫
v

(
δ(fαv)
δt

)
coll

d3v. (A.40)

149

Applying the Leibniz’s rule, the integral of the right side is rewritten as:

mα

∫
v

v
(
δfα
δt

)
coll

d3v = mα

(
δ

δt

∫
v
(fαv)d3v

)
coll

. (A.41)

Using the definition uα presented in Equation 2.12, the result of the integral V III,
denoted by Aα is calculated as:

Aα = mα

∫
v

v
(
δfα
δt

)
coll

d3v =
(
δnαmαuα

δt

)
coll

. (A.42)

This term represents the rate of change of the momentum of the particles α due
to collisions with particles of another types. This term does not consider collisions
between particles of the same type due to the momentum conservation, which causes
the collision between particles of the same type α not change the total quantity of
momentum among these particles.

Assembling the 1st moment integrals

Substituting the Equations A.23, A.30, A.38 and A.42 into the Equation A.20 pro-
duces the Equation 2.20b:

∂ (nαmαuα)
∂t

+∇ · [nαmαuαuα + Pα]− nαqα (E + uα ×B) = Aα. (A.43)

This equation, called momentum equation, describes the rate of change of the aver-
age momentum for each fluid unit.

Proof part 3: Taking the 2nd moment

The 2nd moment of the Boltzmann Equation produces the following relation:

mα

∫
v
‖v‖2∂fα

∂t
d3v︸ ︷︷ ︸

IX

+mα

∫
v
‖v‖2 (v · ∇r) fαd3v︸ ︷︷ ︸

X

+mα

∫
v
‖v‖2 (a · ∇vfα) d3v︸ ︷︷ ︸

XI

= mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v︸ ︷︷ ︸
XII

,
(A.44)

Analogously as performed in the previous parts, the integrals IX, X, XI and XII

150

are treated separately. Then, they are assembled in Equation A.81.

Integral IX

Using the derivative product rule, the integral IX can be splitted into:

mα

∫
v
‖v‖2∂fα

∂t
d3v = mα

∫
v

∂ (‖v‖2fα)
∂t

d3v −mα

∫
v
fα
∂‖v‖2

∂t
d3v. (A.45)

Considering that the phase space velocity v and t are independent variables, the
derivative in the second integral in the right side is null. Thus, the integral is also
null. Applying the Leibniz’s rule into the first integral in the right side, the integral
IX is rewritten as:

mα

∫
v
‖v‖2∂fα

∂t
d3v = mα

∂

∂t

∫
v
‖v‖2fαd

3v. (A.46)

Using the notation of average value presented in Equation 2.9, the integral in the
right side is rewritten as:

mα

∫
v
‖v‖2∂fα

∂t
d3v = ∂nαmα < ‖v‖2 >α

∂t
. (A.47)

Decomposing the velocity term v as discussed in Equation 2.11, the average value
became:

< ‖v‖2 >α = < ‖(uα + wα)‖2 >α . (A.48)

The norm in the right side can be distributed into the sum:

< ‖v‖2 >α = < ‖uα‖2 >α +2 < uα ·wα >α + < ‖wα‖2 >α . (A.49)

Once uα is already an average value, the second term of the right side is null since
< uα · wα >α = uα· < wα >α= 0. Thus, using the definition for Tα presented in
Equation 2.14a, the average value is calculated as:

< ‖v‖2 >α = ‖uα‖2 + Ndk

mα

Tα. (A.50)

151

Substituting this value into the Equation A.47, the integral IX is calculated as:

mα

∫
v
‖v‖2∂fα

∂t
d3v = ∂nαmα‖uα‖2

∂t
+ ∂NdknαTα

∂t
(A.51)

Integral X

Using the derivative product rule, the integral X can be splitted into:

mα

∫
v
‖v‖2 (v · ∇r) fαd3v = mα

∫
v
∇r ·

(
fα‖v‖2v

)
d3v −mα

∫
v
fα∇r ·

(
‖v‖2v

)
d3v.

(A.52)

Considering that the phase space variables v and r are independent, the operator
∇r treats the variable v as a constant. Therefore the second integral of the right side
is null. Applying the Leibniz’s rule into the first integral, the integral X is rewritten
as:

mα

∫
v
‖v‖2 (v · ∇r) fαd3v = mα∇r ·

∫
v
fα‖v‖2vd3v. (A.53)

Using the average notation presented in Equation 2.9, the integral in the right side
is rewritten as:

mα

∫
v
‖v‖2 (v · ∇r) fαd3v = nαmα∇r· < ‖v‖2v >α . (A.54)

Decomposing the velocity term v as discussed in Equation 2.11, the average value
became:

< ‖v‖2v >α = < ‖uα + wα‖2 (uα + wα) >α, (A.55)

which is equivalent to

< ‖v‖2v >α = < (uα + wα) · (uα + wα) (uα + wα) >α . (A.56)

This average value can be distributed as:

< ‖v‖2v >α = < ‖uα‖2uα >α + < 2 (uα ·wα) uα >α + < ‖wα‖2uα >α

+ < ‖uα‖2wα >α + < 2 (uα ·wα) wα >α + < ‖wα‖2wα >α .

(A.57)

152

Considering that uα is already an average value, these terms are rewritten as:

< ‖v‖2v >α = ‖uα‖2uα + 2uα· < wα >α uα+ < ‖wα‖2 >α uα
+ ‖uα‖2 < wα >α +2uα· < wαwα >α + < ‖wα‖2wα >α .

(A.58)
Using the definitions presented in the Equations 2.13, 2.14a, 2.14b and 2.14c, the
average value < ‖v‖2v >α became:

< ‖v‖2v >α = ‖uα‖2uα + Ndk

mα

Tαuα + 2uα · Pα
nαmα

+ 2hα
nαmα

. (A.59)

Substituting this value into Equation A.54, the integral X is calculated as:

mα

∫
v
‖v‖2 (v · ∇r) fαd3v = ∇r ·

(
nαmα‖uα‖2uα +NdknαTαuα + 2uα · Pα + 2hα

)
.

(A.60)

Integral XI

Using the derivative product rule, the integral XI can be splitted into:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = mα

∫
v
∇v ·

(
fα‖v‖2a

)
d3v −mα

∫
v
fα∇v ·

(
‖v‖2a

)
d3v.

(A.61)

Applying the Gauss’ divergence theorem at the first integral in the right side, the
integral XI is rewritten as:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = mα

∮
S

(
fα‖v‖2a

)
· ndS −mα

∫
v
fα∇v ·

(
‖v‖2a

)
d3v.

(A.62)

The terms of this surface integral vanishes as v→∞ due to the Maxwellian distri-
bution. Hence, the integral XI became:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −mα

∫
v
fα∇v ·

(
‖v‖2a

)
d3v. (A.63)

Using the acceleration term a presented in Equation A.7, the Integral XI can be
splitted into:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −qα

∫
v
fα∇v ·

(
‖v‖2E

)
d3v−qα

∫
v
fα∇v ·

(
‖v‖2v×B

)
d3v

(A.64)

153

The second integral at the right side is zero due to the operator ∇v being perpen-
dicular to v×B. Thus:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −qα

∫
v
fα∇v ·

(
‖v‖2E

)
d3v. (A.65)

Using the product rule, the right side term is rewritten as:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −qα

∫
v
fα‖v‖2 (∇v · E) d3v − qα

∫
v
fαE · ∇v‖v‖2d3v.

(A.66)

The variable E is independent of v, hence the first integral in the right side is zero.
Therefore, the Integral XI became:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −qα

∫
v
fαE · ∇v‖v‖2d3v. (A.67)

Applying the operator ∇v in the term ‖v‖2, the integral is rewritten as:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −qα

∫
v
fαE · (2v · ∇vv) d3v. (A.68)

By definition, the term ∇vv produces the identity matrix:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −2qα

∫
v
fαE · (v · I) d3v. (A.69)

Taking the inner product of v and the identity matrix:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −2qα

∫
v
fαE · vd3v. (A.70)

Considering that E is independent of v, the right side term is rewritten as:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −2qαE ·

∫
v
fαvd3v. (A.71)

Using the definition presented in Equation 2.12, the integral XI is calculated as:

mα

∫
v
‖v‖2 (a · ∇vfα) d3v = −2nαqαE · uα. (A.72)

154

Integral XII

Considering that the phase space velocity v is independent of t, the integral XII
can be rewritten as:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v = mα

∫
v

(
δfα‖v‖2

δt

)
coll

d3v. (A.73)

The integral operator in the right side can be reordered, obtaining:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v =
(
δ

δt
mα

∫
v
fα‖v‖2d3v

)
coll

. (A.74)

This integral term can be rewritten as an average value:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v =
(
δ

δt
mαnα < ‖v‖2 >α

)
coll

(A.75)

Using the average value < ‖v‖2 >α as calculated in Equation A.50:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v =
(
δ

δt
mαnα

(
‖uα‖2 + NdkTα

mα

))
coll

, (A.76)

which can be splitted into:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v =
(
δ

δt
mαnα‖uα‖2

)
coll

+
(
δ

δt
nαNdkTα

)
coll

. (A.77)

Using the derivative product rule in the first term of the right side, the Integral XII
became:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v = 2uα ·
(
δ

δt
mαnαuα

)
coll

+
(
δ

δt
nαNdkTα

)
coll

(A.78)

Using the definition of the term Aα, presented in Equation A.42, the integral XII
is calculated as:

mα

∫
v
‖v‖2

(
δfα
δt

)
coll

d3v = 2uα ·Aα + 2Qα (A.79)

155

where the term Qα is defined as:

Qα := 1
2

(
δ

δt
nαNdkTα

)
coll

. (A.80)

This term represents the generated heat per unit of volume of the particles α due to
collisions with another particles. The plasma heating may occur due to many effects
such as resistivity, viscosity, energy production from thermonuclear fusion, etc. In
opposition, there are effects such as radiation, which causes heat loss.

Assembling the 2nd moment integrals

Substituting the Equations A.51, A.60, A.72 and A.79 into the Equation A.44, and
dividing those terms by two, the Equation 2.20c is obtained:

1
2
∂nαmα‖uα‖2

∂t
+ ∂NdknαTα

∂t
+∇ ·

(1
2nαmα‖uα‖2uα + 1

2NdknαTαuα + uα · Pα + hα
)

−nαqαE · uα = uα ·Aα +Qα

(A.81)

Alternatively, in Goedbloed and Poedts (2004), this equation is rewritten in the
form:

Nd

2 nαk

(
∂Tα
∂t

+ uα · ∇Tα
)

+ Pα : ∇uα +∇ · hα = Qα (A.82)

Theorem 2, page 15: Applying the Ideal MHD properties to the fluid formulation
obtained in Section 2.2.2 produces the following equations:

∂ρ

∂t
+∇ · (ρu) = 0 (A.83a)

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p+ B ·B

2

)
I−BB

]
= 0 (A.83b)

∂E
∂t

+∇ ·
[(
E + p+ B ·B

2

)
u− (u ·B) B

]
= 0 (A.83c)

∂B
∂t

+∇ · [uB−Bu] = 0, (A.83d)

where this system is completed with the internal energy equation, given by the

156

combination of the hydrodynamic and magnetic energies:

E = p

γ − 1 + ρ
u · u

2 + B ·B
2 , (A.84)

and γ is the adiabatic index.

Proof. This proof is divided into four parts. The first three consists in summing the
effects of every type of particle α in every equation obtained from the Theorem 1.
The last part consist in obtaining an equation for the evolution of B in order to
close the system.

Proof part 1: MHD Continuity equation

Summing the terms of the Equation 2.20a for every type of particle α among the
plasma, the following relation is obtained:

∑
α

[
∂nαmα

∂t
+∇ · (nαmαuα)

]
=
∑
α

Sα. (A.85)

Assuming the mass conservation of the system, the sum ∑
α Sα must vanish. Besides

that, the summation in the left side can be rearranged as:

∂
∑
α nαmα

∂t
+∇ ·

(∑
α

nαmαuα
)

= 0 (A.86)

Using the definitions presented in the Equations 3.1a and 3.1c, the Continuity equa-
tion for MHD is obtained as:

∂ρ

∂t
+∇ · (ρu) = 0. (A.87)

Proof part 2: MHD Momentum equation

Summing the terms of the Equation 2.20b for every type of particle α among the
plasma, the following relation is obtained:

∑
α

[
∂ (nαmαuα)

∂t
+∇ · [nαmαuαuα + Pα]− nαqα (E + uα ×B)

]
=
∑
α

Aα (A.88)

157

Assuming the momentum conservation after the collision of particles of different
types, the sum ∑

α Aα vanishes. Besides that, the summation in the left side can be
rearranged as:

∂ (∑α nαmαuα)
∂t

+∇·
[∑
α

nαmαuαuα +
∑
α

Pα
]
−E

∑
α

nαqα−
(∑

α

nαqαuα
)
×B = 0.

(A.89)

According to the macroscopic neutrality assumption, the number of ions and elec-
trons in the system are similar, i.e., ni ≈ ne. Considering that these particles have
opposite charges, i.e., qi = −qe, the sum ∑

α nαqα is approximately zero. Using the
definitions presented in the Equations 3.1c and 3.1d, this equation is rewritten as:

∂ (ρu)
∂t

+∇ ·
[∑
α

nαmαuαuα +
∑
α

Pα
]
− J×B = 0, (A.90)

where the current density J can be substituted using the Ampère’s law presented in
Equation 2.21c. Besides that, neglecting the terms multiplied by the electron mass
and assuming the isotropic pressure, this equation became:

∂ (ρu)
∂t

+∇ ·
[
ρiuiui + I

∑
α

pα

]
− (∇×B)×B = 0. (A.91)

Assuming ρ ≈ ρi and u ≈ ui, then applying the pressure definition presented in
Equation 3.1e:

∂ (ρu)
∂t

+∇ · [ρuu + pI]− (∇×B)×B = 0. (A.92)

Using some vector calculus, the last term can be rewritten in a divergence form.
Thus:

∂ (ρu)
∂t

+∇ · [ρuu + pI]−∇ ·
(

BB− B ·B
2 I

)
= 0, (A.93)

which can be rearranged in order to obtain the MHD momentum equation:

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p+ B ·B

2

)
I−BB

]
= 0. (A.94)

Proof part 3: MHD Energy equation

Summing the terms of the Equation 2.20c for every type of particle α among the

158

plasma, the following relation is obtained:

∑
α

[1
2
∂nαmα‖uα‖2

∂t
+ ∂NdknαTα

∂t
+∇ ·

(1
2nαmα‖uα‖2uα + 1

2NdknαTαuα

+uα · Pα + hα
)
− nαqαE · uα

]
=
∑
α

[uα ·Aα +Qα]
(A.95)

Considering u ≈ ui ≈ ue, the term ∑
α [uα ·Aα] can be neglected due to the mo-

mentum conservation assumption. Furthermore, the diffusive term hα and the term
Qα are also neglected due to the adiabatic assumption. Thus, this equation can be
rearranged as:

1
2
∂
∑
α nαmα‖uα‖2

∂t
+ Nd

2
∂
∑
α knαTα
∂t

+∇ ·
(1

2
∑
α

nαmα‖uα‖2uα+

Nd

2
∑
α

knαTαuα +
∑
α

uα · Pα
)
− E ·

∑
α

nαqαuα = 0
(A.96)

Neglecting the terms multiplied by the electron mass and assuming the isotropic
pressure, this equation became:

1
2
∂nimi‖ui‖2

∂t
+ Nd

2
∂
∑
α knαTα
∂t

+∇ ·
(1

2nimi‖ui‖2ui+

Nd

2
∑
α

knαTαuα +
∑
α

uα · pαI
)
− E ·

∑
α

nαqαuα = 0
(A.97)

Assuming ρ ≈ ρi and u ≈ ui from the Equations 3.1a and 3.1c and using the
pressure definition presented in Equation 2.17:

1
2
∂ρ‖u‖2

∂t
+ Nd

2
∂
∑
α pα
∂t

+∇ ·
(1

2ρ‖u‖
2u + Nd

2
∑
α

pαuα +
∑
α

uα · pαI
)
− E · J = 0

(A.98)

Using the pressure definition presented in Equation 3.1e, this equation can be rewrit-
ten as:

1
2
∂ρ‖u‖2

∂t
+ Nd

2
∂p

∂t
+∇ ·

(1
2ρ‖u‖

2u + Nd

2 pu + pu
)
− E · J = 0 (A.99)

159

For simplicity, the term Nd
2 is calculated based on its inverse:

2
Nd

= 2
Nd

+ Nd

Nd

− Nd

Nd

= 2 +Nd

Nd

− 1 = γ − 1, (A.100)

hence
Nd

2 = 1
γ − 1 . (A.101)

Substituting this value into Equation A.99 and reordering some terms, the following
relation is obtained:

1
2
∂ρ‖u‖2

∂t
+ 1
γ − 1

∂p

∂t
+∇ ·

[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u
]
− E · J = 0. (A.102)

The last term in this equation can be rewritten using the Ampère’s law, presented
in Equation 2.21c:

E · J = E · (∇×B) . (A.103)

The product in the left side can be decomposed by using vector calculus identities,
obtaining:

E · J = −∇ · (E×B) + (∇× E) ·B (A.104)

Applying the Faraday law, presented in Equation 2.21b, this relation became:

E · J = −∇ · (E×B)− ∂B
∂t
·B, (A.105)

which can be rewritten using the derivative product rule as:

E · J = −∇ · (E×B)− 1
2
∂‖B‖2

∂t
(A.106)

Substituting this term into Equation A.102:

1
2
∂ρ‖u‖2

∂t
+ 1
γ − 1

∂p

∂t
+∇ ·

[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u
]

+∇ · (E×B) + 1
2
∂‖B‖2

∂t
= 0

(A.107)

160

The terms of this equation can be reordered as:

∂

∂t

(
ρ‖u‖2

2 + p

γ − 1 + ‖B‖
2

2

)
+∇ ·

[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u + E×B
]

= 0
(A.108)

The terms inside the time derivative defines the total internal energy:

E := p

γ − 1 + ρ
u · u

2 + B ·B
2 (A.109)

Substituting this definition into Equation A.108, the relation became:

∂E
∂t

+∇ ·
[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u + E×B
]

= 0 (A.110)

The electric field E can be rewritten using the Ohm’s law presented in Equation
2.22, obtaining:

∂E
∂t

+∇ ·
[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u + (ηJ− u×B)×B
]

= 0 (A.111)

Distributing the last term and applying a vector calculus identity, this equation
became:

∂E
∂t

+∇ ·
[(
ρ‖u‖2

2 + p

γ − 1 + p
)

u + (ηJ)×B− (u ·B) B + ‖B‖2u
]

= 0.
(A.112)

These terms can be reordered as:

∂E
∂t

+∇ ·
[(
ρ‖u‖2

2 + p

γ − 1 + p+ ‖B‖2
)

u− (u ·B) B + (ηJ)×B
]

= 0. (A.113)

Substituting the definition of internal energy E , given in Equation A.109, into this
equation produces:

∂E
∂t

+∇ ·
[(
E + p+ ‖B‖

2

2

)
u− (u ·B) B + (ηJ)×B

]
= 0 (A.114)

161

Neglecting the resistivity terms, the MHD energy equation is obtained:

∂E
∂t

+∇ ·
[(
E + p+ ‖B‖

2

2

)
u− (u ·B) B

]
= 0 (A.115)

Proof part 4: MHD Induction equation

The MHD Induction equation is obtained by taking the curl of the Ohm’s law:

∇× E +∇× (u×B) = ∇× (ηJ) . (A.116)

Using the Faraday’s law, presented in Equation 2.21b, and some vector calculus
identities, this equation is rewritten as:

− ∂B
∂t

+∇ · (Bu− uB) = ∇× (ηJ) . (A.117)

Neglecting the resistive term and reordering the terms, the MHD Induction equation
is obtained:

∂B
∂t

+∇ · (uB−Bu) = 0. (A.118)

Theorem 3, page 15: The pressure equation for Ideal MHD is given by:

∂p

∂t
+ (u · ∇) p = −γp∇ · u (A.119)

Proof. The pressure equation for Ideal MHD is obtained using an analogous pro-
cedure as performed to obtain the MHD energy equation. However, the pressure
equation is derived from the alternative formulation of the second moment of the
Boltzmann Equation, as presented in Equation A.82. Summing the terms of the
Equation A.82 for every type of particle α among the plasma, the following relation
is obtained:

∑
α

[
Nd

2 nαk

(
∂Tα
∂t

+ uα · ∇Tα
)

+ Pα : ∇uα +∇ · hα
]

=
∑
α

Qα (A.120)

This equation is rearranged by multiplying its terms for 2
Nd

and neglecting the terms

162

hα and Qα, obtaining:

∑
α

nαk
∂Tα
∂t

+
∑
α

nαkuα · ∇Tα + 2
Nd

∑
α

Pα : ∇uα = 0. (A.121)

Assuming the isotropic pressure and splitting first term using the derivative product
rule, the equation became:

∑
α

(
∂nαkTα
∂t

− kTα
∂nα
∂t

)
+
∑
α

nαkuα · ∇Tα + 2
Nd

∑
α

pαI : ∇uα = 0 (A.122)

Using the definition for pα presented in Equation 2.17 and a relation for the term
∂nα
∂t

obtained from Equation 2.20a:

∂
∑
α pα
∂t

−
∑
α

kTα

(
Sα
mα

−∇ · (nαuα)
)

+
∑
α

nαkuα · ∇Tα + 2
Nd

∑
α

pα∇ · uα = 0

(A.123)

Using the pressure definition presented in Equation 3.1e and distributing the sum-
mation in the second term, this equation can be rewritten as:

∂p

∂t
−
∑
α

Sα
mα

kTα +
∑
α

kTα∇ · (nαuα)︸ ︷︷ ︸
I

+
∑
α

nαkuα · ∇Tα︸ ︷︷ ︸
II

+ 2
Nd

∑
α

pα∇ · uα = 0

(A.124)

The terms Sα are neglected due to the mass conservation assumption. Furthermore,
the terms I and II can be grouped by the derivative product rule, obtaining:

∂p

∂t
+
∑
α

∇ · (nαkTαuα) + 2
Nd

∑
α

pα∇ · uα = 0. (A.125)

Using the pressure definition presented in Equation 3.1e, this equation became:

∂p

∂t
+
∑
α

∇ · (pαuα) + 2
Nd

∑
α

pα∇ · uα = 0 (A.126)

Assuming u ≈ ui ≈ ue, the second term is rewritten, obtaining:

∂p

∂t
+∇ · (u

∑
α

pα) + 2
Nd

∑
α

pα∇ · uα = 0 (A.127)

163

Using the definition for the single fluid isotropic pressure:

∂p

∂t
+∇ · (pu) + 2

Nd

p∇ · u = 0. (A.128)

The second term can be decomposed by the derivative product rule, obtaining:

∂p

∂t
+ p∇ · u + u · ∇p+ 2

Nd

p∇ · u = 0 (A.129)

These terms can be rearranged as:

∂p

∂t
+ u · ∇p+ 2 +Nd

Nd

p∇ · u = 0 (A.130)

Using the definition of the adiabatic index γ, presented in Equation 2.15, the Ideal
MHD pressure equation is obtained:

∂p

∂t
+ u · ∇p+ γp∇ · u = 0 (A.131)

Theorem 4, page 18: The resistive induction equation, obtained in Equation A.117,
can be rewritten in the conservative form as:

∂B
∂t

+∇ ·
[
uB−Bu + η

(
(∇B)T −∇B

)]
= 0 (A.132)

Proof. Applying the Ampère’s law into Equation A.117, the induction equation
became:

∂B
∂t

+∇ · (uB−Bu) = −∇× (η∇×B) . (A.133)

To represent this equation in the conservative formulation, the source term must
be written in the form ∇ · R, then be included in the flux term. The matrix R is
constructed based on the expansion of the term ∇× (η∇×B).

Initially, is considered the curl of B:

∇×B = i
(
∂Bz

∂y
− ∂By

∂z

)
+ j

(
∂Bx

∂z
− ∂Bz

∂x

)
+ k

(
∂By

∂x
− ∂Bx

∂y

)
(A.134)

164

In order to simplify the calculations, the values ξ1, ξ2 and ξ3 are used to represent
the components of the curl of B so that:

∇×B = ξ1i + ξ2j + ξ3k. (A.135)

Using this formulation, the source term is rewritten:

∇× (η∇×B) = i
[
∂ (ηξ3)
∂y

− ∂ (ηξ2)
∂z

]
+ j

[
∂ (ηξ1)
∂z

− ∂ (ηξ3)
∂x

]

+k
[
∂ (ηξ2)
∂x

− ∂ (ηξ1)
∂y

] (A.136)

These terms can be expressed in the form of a row matrix as:

∇× (η∇×B) =
[
∂ (ηξ3)
∂y

− ∂ (ηξ2)
∂z

; ∂ (ηξ1)
∂z

− ∂ (ηξ3)
∂x

; ∂ (ηξ2)
∂x

− ∂ (ηξ1)
∂y

]
.

(A.137)

This column matrix can be rewritten as the divergence of a 3× 3 matrix:

∇× (η∇×B) = ∇ ·


0 −ηξ3 ηξ2

ηξ3 0 −ηξ1

−ηξ2 ηξ1 0

 . (A.138)

Substituting the values ξ into the matrix:

∇× (η∇×B) = ∇ ·


0 η

(
∂Bx
∂y
− ∂By

∂x

)
η
(
∂Bx
∂z
− ∂Bz

∂x

)
η
(
∂By
∂x
− ∂Bx

∂y

)
0 η

(
∂By
∂z
− ∂Bz

∂y

)
η
(
∂Bz
∂x
− ∂Bx

∂z

)
η
(
∂Bz
∂y
− ∂By

∂z

)
0

 . (A.139)

The terms in the diagonal can be rewritten as:

∇× (η∇×B) = ∇ ·


η
(
∂Bx
∂x
− ∂Bx

∂x

)
η
(
∂Bx
∂y
− ∂By

∂x

)
η
(
∂Bx
∂z
− ∂Bz

∂x

)
η
(
∂By
∂x
− ∂Bx

∂y

)
η
(
∂By
∂y
− ∂By

∂y

)
η
(
∂By
∂z
− ∂Bz

∂y

)
η
(
∂Bz
∂x
− ∂Bx

∂z

)
η
(
∂Bz
∂y
− ∂By

∂z

)
η
(
∂Bz
∂z
− ∂Bz

∂z

)
 . (A.140)

165

This matrix is splitted into:

∇× (η∇×B) = ∇ ·



η ∂Bx
∂x

η ∂Bx
∂y

η ∂Bx
∂z

η ∂By
∂x

η ∂By
∂y

η ∂By
∂z

η ∂Bz
∂x

η ∂Bz
∂y

η ∂Bz
∂z

−

η ∂Bx
∂x

η ∂By
∂x

η ∂Bz
∂x

η ∂Bx
∂y

η ∂By
∂y

η ∂Bz
∂y

η ∂Bx
∂z

η ∂By
∂z

η ∂Bz
∂z


 (A.141)

Using the vector notation, this term became:

∇× (η∇×B) = ∇ ·
[
η
[
(∇B)T −∇B

]]
. (A.142)

Substituting this source term in the Equation A.133,

∂B
∂t

+∇ · (uB−Bu) = −∇ ·
[
η
[
(∇B)T −∇B

]]
. (A.143)

Reordering these terms, the resistive induction equation in the conservative formu-
lation is obtained:

∂B
∂t

+∇ ·
[
uB−Bu + η

(
(∇B)T −∇B

)]
= 0 (A.144)

166

ANNEX B - NERK LOCAL TIME STEPPING

In the following is annexed an article published in the Journal of Computational
Physics that presents the proposed extension of the Local Time stepping approach
to higher order formulations, together with the algorithms concerning the required
synchronisations in time and a discussion concerning the numerical stability of these
models. It is referred as (MOREIRA LOPES et al., 2019), namely:

• MOREIRA LOPES, M.; DOMINGUES, M.O.; SCHNEIDER, K.;
MENDES, O. Local time-stepping for adaptive multiresolution using nat-
ural extensions for Runge–Kutta methods. Journal of Computational
Physics, v. 382, p. 291-318, 2019.

167

Journal of Computational Physics 382 (2019) 291–318

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Local time-stepping for adaptive multiresolution using natural
extension of Runge–Kutta methods

Müller Moreira Lopes a,d,∗, Margarete Oliveira Domingues b,d, Kai Schneider e,
Odim Mendes c,d

a Graduate program in Applied Computing (CAP), Brazil
b Associate Laboratory of Applied Computing and Mathematics (LAC), Coordination of the Associated Laboratories (CTE), Brazil
c Space Geophysics Division (DGE), Coordination of Space Sciences (CEA), Brazil
d National Institute for Space Research (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil
e Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, CNRS, Centrale Marseille, 39 rue F. Joliot–Curie, 13453 Marseille
Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 March 2018
Received in revised form 20 August 2018
Accepted 22 October 2018
Available online 17 January 2019

Keywords:
Multiresolution analysis
Finite volume
Local time-stepping
Runge–Kutta

A space–time fully adaptive multiresolution method for evolutionary non-linear partial
differential equations is presented introducing an improved local time-stepping method.
The space discretisation is based on classical finite volumes, endowed with cell average
multiresolution analysis for triggering the dynamical grid adaptation. The explicit time
scheme features a natural extension of Runge–Kutta methods which allow local time-
stepping while guaranteeing accuracy. The use of a compact Runge–Kutta formulation
permits further memory reduction. The precision and computational efficiency of the
scheme regarding CPU time and memory compression are assessed for problems in
one, two and three space dimensions. As application Burgers equation, reaction–diffusion
equations and the compressible Euler equations are considered. The numerical results
illustrate the efficiency and superiority of the proposed local time-stepping method with
respect to the reference computations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Multiresolution (MR) methods improve the computational performance of numerical solvers of evolutionary partial differ-
ential equations when the solution exhibits localised structures, point-wise singularities, boundary layers, shocks, coherent
vortices such as encountered in combustion and turbulent flow applications [12,19,26].

In these methods, the fast wavelet transform is the key ingredient to speed-up computations. The wavelet coefficients are
employed to measure the local smoothness of the solution. Then, a thresholding strategy is used to remove non-significant
coefficients, obtaining a grid adapted to the solution. This grid is coarser in smooth regions and finer there where structures
and steep gradients are present. The locally refined grid can be rebuilt interactively to a regular grid with an expected
error directly related to the chosen threshold. With the use of this adaptive grid, the number of interface flux computations
during the time evolution can be significantly reduced, while controlling the error. The adaptive grid is checked before each

* Corresponding author at: National Institute for Space Research (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil.
E-mail addresses: muller.lopes@inpe.br (M. Moreira Lopes), margarete.domingues@inpe.br, margarete.oliveira.domingues@gmail.com (M.O. Domingues),

kai.schneider@univ-amu.fr (K. Schneider), odim.mendes@inpe.br (O. Mendes).

https://doi.org/10.1016/j.jcp.2018.10.052
0021-9991/© 2019 Elsevier Inc. All rights reserved.

292 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

time step to guarantee that it is sufficiently refined to represent possible new structures in the solution. Therefore, the
adaptive grid is dynamically adapted to track the solution in scale and space.

The next step to improve the computational performance associated with these adaptive grids is to use a local time-
stepping (LT) approach, especially when explicit time schemes are used. In this work, the combination of MR methods with
the local time-stepping approach is denoted as MRLT. LT consists in performing the time evolution of each cell on the adap-
tive grid independently according to its required time step. Therefore, each cell must have a time step proportional to its
refinement and consequently, a larger cell performs a larger time step.

Local time-stepping methods for space adaptive discretisations of partial differential equations have a long tradition, go-
ing back to the early work of Osher and Sanders [21]. Related to multiresolution, Müller and Stiriba [20] presented some
general MRLT schemes that could be applied either to an explicit time scheme, based on Lagrange projection, or an implicit
time scheme, for a reference finite-volume method in space. In [20] they applied LT to one-dimensional scalar conserva-
tion laws. Following this work, Coquel et al. [3] presented MRLT methods with both explicit and implicit Lagrange-projection
schemes, the latter is the novelty concerning [20]. Hejazialhosseini et al. combined in [13] first and second order RK schemes
to propose an LT approach for MR in blocks with finite volumes for multi-phase compressible flows implemented on multi-
core architectures.

More recently, LT methods have been proposed using different approaches for time interpolation required in the algo-
rithms for providing values at intermediate time steps. In [24], the authors use a high-order Taylor type integrator, while
a discontinuous Galerkin method with spectral elements is used for spatial discretization. In the context of finite elements
methods, Rietmann et al. [25] proposed an energy conserving LT algorithm based on a second-order leap-frog scheme.
Discussions on the proper choice of the time-step in LT schemes are still an important topic of discussion. To this end a
posteriori error estimators are used in [1,18], while Gnedin et al. (2018) [11] investigate their effect by enforcing the CFL
condition locally over every cell. In the context of finite volumes methods, the use of high-order schemes for local time-
stepping on adaptive mesh refinement grids were previously discussed in [8]. In that work, the accuracy order in space is
obtained through a WENO reconstruction, while the accuracy in the time discretization is achieved by a local space–time
discontinuous Galerkin predictor method. This approach yields up to fourth order for compressible Euler equations in 2D.
Similar and related works in this context were carried out in [15] and [2].

A detailed discussion on the stability of those MRLT schemes is presented in [14]. In the context of adaptive numerical
methods for partial differential equations, the derivation of explicit LT methods based on standard RK schemes typically
stays at orders smaller or equal to two [4–6]. The reason why LT methods are limited to low order in time is because a
time synchronization is required; for a discussion we refer to [6]. Recently, higher-order LT schemes have been proposed
in the context of discontinuous Galerkin methods. The works of Gassner et al. [9,10] in this context are based on natural
continuous extensions for Runge–Kutta methods (NERK). Such schemes have been introduced initially by Zennaro in the
late 1980’s for solving general ODEs, with application to delay equations [30]. The idea is to interpolate the intermediate
stages of the Runge–Kutta scheme to obtain the values at the requested intermediate time instants required for the time
synchronisation in LT schemes. This method is also called Natural Continuous Extension in [30], Continuous Extension
Runge–Kutta in [23], and in a general way Continuous Runge–Kutta, as discussed in [28].

Recently, an alternative for higher-order LT methods, again in the context of discontinuous Galerkin spectral element
schemes, has been proposed by Winters and Kopriva [29]. The underlying ideas are Adams–Bashforth multi-step schemes.

Moreover, Gassner et al. (2011) considered a family of explicit one-step time discretisations for finite volume (FV) and
discontinuous Galerkin schemes, which are based on a predictor–corrector formulation [9].

The aim here is to use the idea of Gassner et al. [10] using NERK for the first time in the context of MRLT meth-
ods to perform the synchronisation. Thus, an improvement in time accuracy can be obtained. In the current work, only
second and third-order schemes are used, but the extension to higher-order is in principle possible. Gassner et al. [10]
discussed that NERK is 10% slower than the Cauchy–Kovalevskaya scheme. However, to work with the latter is com-
plicated as the analytic solution of some nonlinear PDEs is required. The goal of the proposed approach is to perform
simulations using NERK schemes. Therewith, the synchronisation required for the LT approach is possible, and this new
class of MRLT methods, named MRLT/NERK, is created. This work presents the application and implementation of the
MRLT/NERK method for the second (RK2) and third (RK3) order time evolution, named MRLT/NERK2 and MRLT/NERK3,
respectively. The method proposed in this work is applied for solving the two-dimensional Burgers equation, one and three-
dimensional reaction–diffusion problems and the two-dimensional compressible Euler equations. The obtained results and
CPU times are compared with the MR method using classical RK2 and RK3 time evolution, named MR/RK2 and MR/RK3,
respectively. The results are also compared with the MRLT approach given in [6] based on RK2 time evolution, named
MRLT/RK2.

In Section 2, we summarise the adaptive multiresolution method proposed in [12]. Then, in Section 3, we discuss the
Runge–Kutta methods and the NERK methods used in the current work to perform the proposed MRLT/NERK approach
given in Section 4. A convergence analysis is conducted in Section 4.4. Performance comparisons, considering CPU time and
errors, among the FV, MR and MRLT approaches given in [6] and the MRLT/NERK approach introduced here, are presented
in Section 5. Conclusions are drawn in Section 6.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 293

Fig. 1. Dyadic grid hierarchy of MR methods and its implementation in a tree data structure. a) Example of nested unidimensional grids, the circles represent
the internal nodes of the tree structure, while the triangles represent the leaves of the tree. b) Example of an adapted grid using the tree structure from
a). The virtual leaves are represented by the triangles �. Adapted from [26].

2. Adaptive multiresolution methods using finite volumes

The following initial value problem for a vector-valued function Q(x, t) written in divergence form is considered:

∂Q

∂t
= −∇ · F(Q,∇Q) + S(Q), for (x, t) ∈ � × [0,+∞), � ⊂ Rd. (1)

This problem is given in d space dimensions, completed with initial conditions Q(x, t = 0) = Q0(x) and appropriate boundary
conditions. The terms ∇ · F(Q, ∇Q) and S(Q) denote the divergence and source term, respectively. The flux F can be decom-
posed into advective and diffusive contributions, i.e. F(Q, ∇Q) = f(Q) − ν∇Q, where the diffusion coefficient ν is positive
and assumed to be constant.

To discretise Equation (1) in space, we use a classical finite volume formulation written in standard form. The domain
� corresponds to a rectangular parallelepiped in d = 1, 2 or 3 dimensions in Cartesian geometry. It is partitioned into cells
(�i)i∈� , � = {0, . . . , imax} with � =⋃

i �i .
Defining the volume of the cell by |�i | =

∫
�i

dx, we compute the cell-average q̄i(t) of a given quantity Q on �i at time
instant t by,

q̄i(t) = 1

|�i |
∫
�i

Q(x, t)dx.

Considering the one-dimensional case, �i is an interval [xi− 1
2
, xi+ 1

2
] of length �xi = xi+ 1

2
− xi− 1

2
. Integrating Equation (1)

on �i then yields:

dq̄i

dt
(t) = − 1

�xi

(
F̄i+ 1

2
− F̄i− 1

2

)
+ S̄i, (2)

where F̄ is the numerical flux and S̄i is the source term of the cell �i . This formulation can be extended to two- and three
dimensional problems correspondingly.

The source term is approximated by S̄i ≈ S(q̄i), which yields also second-order accuracy in case of a linear source term.
The adaptive multiresolution (MR) analysis in the cell average context, proposed by Harten [12], consists in decomposing

the cell-averages of the solution into a multilevel representation. This representation, illustrated in Fig. 1a, consists of a
hierarchy of nested grids �� , where � is the grid refinement level. Each grid �� consists of a regular grid, as defined for the
FV formulation, with 2d� cells. A cell of refinement level � and position i is denoted by ��

i .
Fig. 1a shows the implementation of this structure as a binary tree, where the nodes of level � generate the grid �� . For

the two- and three-dimensional cases, this idea is extended by using a quadtree and an octree, respectively.

294 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

This sequence of nested grids corresponds to a scheme where a finer scale represents its subsequent coarser scale plus
a sum of details between these levels. These details are the wavelet coefficients. The construction of the adapted grid in
the MR method consists in representing the grid using only cells with significant wavelet coefficients. For this, the leaves
of the most refined level are checked, if their parent cell has a significant wavelet coefficient, larger than a predetermined
threshold ε , if not, the leaves are deleted. This process is repeated recursively starting from the finest level, going to coarser
and coarser levels. The procedure to obtain the projection of the solution on the coarser levels and the wavelet coefficients
is given in Section 2.1.

The grid generation procedure is mathematically supported by the fact that the magnitude of the wavelet coefficients
are small in regions where the solution is smooth, while they are significant in regions where the solution exhibits steep
gradients. Hence, high compression rates are expected when only a small number of cell-averages is present on the finest
scales.

In this work, the data structure for representing the solution is organized as a dynamic graded tree. This tree organization
requires that no hole is admitted inside the tree, which means that the connectivity in the tree structure has to be ensured.
Moreover, the tree can change in time to track the space-scale evolution of the solution as nodes can be added or removed
while guaranteeing its gradedness.

This dynamic graded tree organization implies that neighbours of each cell can have a difference of one refinement level
at most. This restriction allows the use of virtual leaves for the flux computations between leaves at different refinement
levels. These virtual leaves are auxiliary leaves placed as children nodes of the leaves which have an interface with finer
leaves. Their values are predicted using the prediction procedure used to compute the wavelet coefficients. A unidimensional
adaptive grid represented in a graded tree structure is shown in Fig. 1b.

The flux computations in the MR scheme are performed individually for each leaf. The numerical fluxes are computed be-
tween cells at the same refinement level. Using the adaptive grid of Fig. 1b, the following interface scenarios for computing
the numerical fluxes of a leaf can be identified:

• Leaf/Leaf or Virtual leaf: When both leaves belong to the same refinement level, the flux computation is performed in
the same way as in the FV method. The following cases can occur: Leaf/Leaf example: Flux between cells �3

0 and �3
1;

Leaf/Virtual leaf example: Flux between cells �4
5 and �4

6.
• Leaf/Internal node: In this scenario, the current leaf has an interface with a finer leaf. To perform the flux computation

in this case, the numerical flux is computed using the virtual children of the leaf and its adjacent leaves. Example: Flux
between cells �2

2 and �2
1.

The construction of the adaptive grid guarantees that the current solution is well represented. However, after the time
evolution process, the new solution should also be well represented on this grid, which a priori cannot be ensured. In
order to guarantee that the new solution after the time evolution is still well represented on this grid, the leaves with finer
neighbours are refined and neighbour cells are added. Further details of the MR scheme and its implementation can be
found in [26]. The Algorithms 1 and 2 given in Appendix A describe the adaptive grid creation and its update, respectively.

2.1. Projection and prediction operators

In order to perform the MR method, some operations for projection and prediction are required. For the MR scheme
with finite volumes, where the cell values are local averages, a coarser cell ��

i has its value estimated using the finer values
and a unique projection operator P�+1→� : q̄�+1 	→ q̄� . In this scheme, the projection operator to obtain the solution of a
coarser cell is given by the average value of its children. For the unidimensional case, the projection is performed by:

q̄�
i = P�+1→�

(
q̄�+1

2i , q̄�+1
2i+1

)
= 1

2

(
q̄�+1

2i + q̄�+1
2i+1

)
, (3)

where q̄�
i are the average value of the cell ��

i . The same idea is extended for the two and three-dimensional cases.
The prediction operators are used to perform the opposite path of the projection operators, they allow to obtain the

values of the finer cells using the values of the coarser ones. For each child cell to be predicted, there is a different prediction
operator, represented by P i

�→�+1 : q̄� 	→ q̄�+1 for the one-dimensional case, P i, j
�→�+1 : q̄� 	→ q̄�+1 for the two-dimensional

case and P i, j,k
�→�+1 : q̄� 	→ q̄�+1 for the three-dimensional case. These operators yield a non-unique approximation of q̄�+1

i
by interpolation. We use polynomial interpolation of second degree on the cell-averages, as proposed by Harten [12], which
yields third-order accuracy. For the one-dimensional case, it follows that,

q̃�+1
2i = P 0

�→�+1

(
q̄�

i−1, q̄�
i , q̄�

i+1

)
= q̄�

i − 1

8
(q̄�

i+1 − q̄�
i−1) (4a)

q̃�+1
2i+1 = P 1

�→�+1

(
q̄�

i−1, q̄�
i , q̄�

i+1

)
= q̄�

i + 1

8
(q̄�

i+1 − q̄�
i−1), (4b)

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 295

where q̃�
i is an approximation of the value q̄�

i . Interpolation operators for higher dimensions can be found in [26]. The oper-
ator must satisfy the properties of locality, requiring the interpolation for a child cell to be computed from the cell-averages
of its parent and its nearest uncle cells in each direction; and consistency, P�+1→� ◦ P�→�+1 = Identity.

The prediction operator is used to obtain the wavelet coefficients d�
i of the finer cells. These coefficients are given by the

difference between the cell average q̄�
i and the predicted value q̃�

i :

d�
i = q̄�

i − q̃�
i . (5)

The values d�
i are also used for reconstructing the finer levels without interpolation errors. Their norm yields the local

approximation error. Moreover, the information of the cell-average value of the two children is equivalent to the knowledge
of the cell-average value of the parent and one independent detail. This can be expressed by

(
q̄�+1

2i , q̄�+1
2i+1

)
←→

(
d�+1

2i , q̄�i
)

.
This procedure can be applied recursively from level L down to the level 0 creating thus a multiresolution transform of the
cell-average values as proposed by Harten [12]. Therefore, we have

q̄L 	−→ (D̄ L, D̄ L−1, . . . , D̄1, q̄0), (6)

where D̄� is the set of wavelet coefficients at level �. Accordingly, the information of the cell-average values of all the leaves
is equivalent to the knowledge of the cell-average value of the root and the wavelet coefficients of all the other nodes of the
tree structure. For two and three dimensions, respectively, the information of the cell-averages of four and eight children is
equivalent to the knowledge of three and seven wavelet coefficients in the different directions and the node value [12,26].

3. Runge–Kutta methods

After discretising in space the initial value problem given in Eq. (1), the following system of ordinary differential equa-
tions in time is obtained:

dq̄

dt
= f (t, q̄) , (7)

where Q(t = 0) = q̄0 is the given initial condition. This system yields an equation for each leaf of the grid. By abuse of or to
simplify notation the space discretised solution will be denoted again by q̄. The general formulation for an explicit s-stage
Runge–Kutta (RK) method can be expressed at time tn+1 as:

q̄n+1 = q̄n +
s∑

i=1

biki , (8)

with

ki = �tn f

⎛
⎝tn + ci�tn, q̄n +

i−1∑
j=1

aijk j

⎞
⎠ , (9)

where aij , bi and ci are the Runge–Kutta coefficients, and �tn is the time-step used to perform the time evolution from
the instant tn to tn+1. The actual convergence order of the RK method depends of the number of stages and a set of well
selected RK coefficients.

In this work we consider second order RK methods (RK2) with coefficients ci and aij in such a way that they are
the same coefficients used in the first and second steps of the RK3 method. Namely, the values of these coefficients are

c1 = 0 and c2 = a21 = 1. The other coefficients for RK2 are b1 = b2 = 1

2
. To perform RK3, further coefficients are c3 = 1

2
,

a31 = a32 = 1

4
, b1 = b2 = 1

6
and b3 = 2

3
.

3.1. Natural continuous Extension Runge–Kutta (NERK) method

The NERK method, originally introduced by [30], produces an approximation of the solution in the time interval
[tn; tn + �tn] using the same coefficients aij and ci as in the standard Runge–Kutta methods. The difference between NERK
and RK is the use of polynomials βi instead of the constant coefficients bi .

The NERK method can be expressed as,

q̄(tn + θ�tn) = q̄n +
s∑

i=1

βi(θ) ki, θ ∈ (0,1], (10)

where the polynomials βi are given as a function of the coefficients bi of the original RK method.

296 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Using the proposed RK2 coefficients, the following polynomials for the two-stage NERK method is obtained using the
methodology given in [23]:

β1(θ) = −1

2
θ2 + θ, β2(θ) = 1

2
θ2. (11)

In this work, the application of the NERK method consists in producing approximations of a solution at some intermedi-
ate time instants inside the interval [tn, tn + �tn], depending on the choice for RK2 or RK3 time evolution.

3.2. Compact formulation

In order to reduce the memory allocation per cell when performing the time evolution, the compact formulation of
the RK methods is of particular interest, used for example in [26]. Based on the standard RK methods, we can obtain the
following compact formulation for the two and three stage methods,

• RK2: q̄∗ = q̄n + �tn f (tn, ̄qn), q̄n+1 = 1
2 q̄n + 1

2 q̄∗ + 1
2 �tn f

(
tn + �tn, q̄∗).

• RK3: q̄∗ = q̄n + �tn f (tn, ̄qn), q̄∗∗ = 3
4 q̄n + 1

4 q̄∗ + 1
4 �tn f

(
tn + �tn, q̄∗),

q̄n+1 = 1
3 q̄n + 2

3 q̄∗∗ + 2
3 �tn f

(
tn + 1

2 �tn, ̄q∗∗
)

.

When performing the time integration using a local time-stepping approach, cf. Section 4, some intermediate values are
necessary. In this work, we propose to use the NERK method for that. However, the values ki are not stored in the RK
compact formulation. Hence the NERK solution must be adapted to be compatible with the compact RK method.

The following steps produce a NERK/RK2 approximation at the time instant tn + 1
2 �tn . Due to the memory management

of the numerical code, where the fluxes are stored at the same memory allocation, each one of the following steps is
executed immediately after its corresponding compact RK step:

q̄∗
θ= 1

2
= q̄n + 3

8
�tn f (tn, q̄n), q̄θ= 1

2
= q̄∗

θ= 1
2

+ 1

8
�tn f

(
tn + �tn, q̄∗) , (12)

where the values f (tn, ̄qn) and f
(
tn + �tn, q̄∗) are the same as those obtained for the compact RK formulation. In this

formulation, the values q̄θ= 1
2

and q̄∗
θ= 1

2
are stored at the same memory allocation.

For the RK3 time evolution, second order approximations at the time instants tn + 1
4 �tn and tn + 3

4 �tn become necessary.
These approximations are required to compute the third step of the RK3. However, the NERK/RK3 method only yields this
information after the third step. The proposed solution for this problem is to obtain these approximations via NERK/RK2.
Then, it is possible to obtain approximations at these desired instants immediately after the second step of the RK method,
under the condition that the coefficients aij and ci of both, RK2 and RK3, methods are the same. Therefore we use the
following approximations:

• at tn + 1
4 �tn: q̄∗

θ= 1
4

= q̄n + 7

32
�tn f (tn, ̄qn), q̄θ= 1

4
= q̄∗

θ= 1
4

+ 1

32
�tn f

(
tn + �tn, q̄∗),

• at tn + 3
4 �tn: q̄∗

θ= 3
4

= q̄n + 15

32
�tn f (tn, ̄qn), q̄

θ= 3
4

= q̄∗
θ= 3

4
+ 9

32
�tn f

(
tn + �tn, q̄∗).

These approximations can be performed using similar memory management ideas as for the RK2 evolution.

4. Local time-stepping

To improve further the computational efficiency of the MR method, a local time-stepping approach was proposed in [6].
This approach consists in using an adapted time-step for each leaf individually. This time step is obtained accordingly to
the spatial size of the leaf. Thus, small time steps are only used for fine scale leaves, while large time-steps can be used for
coarser leaves. This is possible without violating the stability condition of the explicit time discretisation, as shown in [6].

Solutions with point-like singularities are well adapted and yield highly efficient multiresolution representations. For
those, the MRLT approach is found to be most efficient. Besides, the adaptive grid created for the MRLT scheme is the same
graded tree structure used in the MR scheme [26]. The update procedure for the trees during MRLT schemes is discussed in
Section 4.3.1.

We suppose that the CFL condition implies a time-step �t for the most refined level. In the LT scheme, each cell of level
� performs its time evolution with a proper time step given by:

�t� = 2L−��t, (13)

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 297

Fig. 2. LT evolution of adjacent cells at different scales. The finer cells in this representation need a second time evolution to reach the instant tn+2.

where L is the finest level of the grid. From this point, the notation is adjusted in order to facilitate the understanding.
Moreover, considering the Courant number σ depending on the ratio between �t� and �x� , and using the relations between
the cell size and the time-step of different levels, the value σ obtained for every cell will thus be the same.

As illustrated in Fig. 2, due to the scale dependent time-stepping of the LT scheme, not all leaves of the coarser scales
will be evolved during an iteration of the time evolution. We define the coarsest level where the leaves must be evolved
in a certain iteration n to be the minimum scale level in which the modulo operator between n and 2L−� is zero and we
denote it as �min.

The above approach is restricted to second order time accuracy, because the internal steps of standard Runge–Kutta
schemes are not compatible with the dyadic grid size. The reason is that the intermediate time steps of higher order RK
schemes (order larger than two) do not correspond to the time instants of the solution obtained by the RK method when
using the dyadic grid size [6]. A possible solution to overcome this limitation is to use NERK schemes. Their polynomial
approximation in time is used to evaluate the solution at the intermediate time instants imposed by the dyadic spatial grid
size.

The implementation of high order LT schemes leads to three synchronization challenges during the time evolution of a
leaf with a neighbour at a different refinement level. Those challenges are discussed in the following subsections. The whole
LT method, as proposed in this work, is performed as given in Algorithm 3.

4.1. Synchronization during the Runge–Kutta iteration

Considering the restriction that during an iteration of LT schemes only leaves of refinement level greater or equal �min
are evolved, we know that all of these leaves have their solutions at the same time instant tn , requiring no synchronization
to perform the first RK step. Thus, the first RK step can be done with the MR method using the proper �t� value. After
performing the first step of the Runge–Kutta method, the leaves at each level are evolved with their own time step, obtaining
a first order solution at time instant tn + �t� . Using the fluxes obtained in this step, the values q̄∗

θ= 1
2

, for RK2, or q̄∗
θ= 1

4
and

q̄∗
θ= 3

4
for RK3, are computed at the leaves of every level evolved in this iteration.

However, for the next RK steps, due to the different time step size, the solution values after the RK step are given in a
different time instant for each refinement level. This implies that some synchronization has to be performed.

4.1.1. Second Runge–Kutta step synchronization
In order to perform the second step of the RK method, it is necessary to compute the flux f (tn + �t�, ̄q∗). This flux can

be interpreted as the flux between leaves at the time instant tn + �t� , where the leaf value is a first order approximation
q̄∗ = q̄n + a21k1. The challenge here lies in the fact that when this approximation is obtained at a finer scale, due to the
different time step size used, it is located at an earlier time instant with respect to the approximation at a coarser scale.
This situation implies that the flux computation for each scale has to be performed at a different time instant, as shown in
the scheme presented in Fig. 3. The values required for both cases of the second RK step are not available after the first RK
step, requiring thus a synchronization procedure to obtain those values for each scale. Then the second RK step in this scale
can be performed. To obtain the missing values to compute the fluxes in the situation given in Fig. 3(a), a tree refreshing
procedure, described in Section 4.2, must be performed in order to project the solution for scales � > �min at time instant
tn + �t� onto the scale � − 1 at instant tn + �t�−1.

The proposed synchronization methodology to perform the second RK step consists in using a first order approximation
q̄n

� + 1
2 a21k1 as a solution at the time instant tn + 1

2 �t� for every � �= L. This approximation is in the same time instant as
the solution in the next finer level. The use of this approximation consists in predicting the values of the virtual leaves at
level � + 1, at the proper time instant, before performing the flux computations of the leaves at level � + 1. This approach
is illustrated for the situation presented in Fig. 3(a).

298 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Fig. 3. Schematic view of the synchronization issues for the second RK step. a) Presents the evaluation of flux computations F̄ at instant tn + �t . For
adjacent leaves at the same level we can compute the fluxes directly. However, to compute the fluxes between different levels, we need the virtual leaves
of the coarser leaf at the same time instant of the finer leaves. For that, first, we interpolate the coarser leaf q̄ at instance tn +�t from its respective values
at tn and tn + 2�t . Then, we predict its value at the finer level and obtain its virtual leaves. After that, we evaluate the flux, and then, the RK step for the
finer leaves. b) Presents the evolution of the flux at tn + 2�t of the coarser leaf. First, we predict the virtual leaves of the coarse leaf, then we compute
q̄∗ + k2, i.e. a RK1 step of the finer leaves, which yields a first order approximation. After that, we can compute the flux and evaluate the leaves.

In order to simplify the algorithm, the prediction of the virtual leaves at the coarser scales at the proper time instant,
necessary to update the next finer level, is performed during the tree refreshing process, explained in detail for every RK
step, in Section 4.2. In this Section, we focus on the update of the virtual leaves at level � + 1 in order to perform the flux
computations on leaves of level �, as presented in Fig. 3(b).

Initially, the flux computations for the second RK step are performed on the leaves of level L. This choice is due to the
fact that at this level, there are no interfaces of the type leaf/internal node, avoiding thus the situation shown in Fig. 3(b).

Having updated the level L, the same process is repeated recursively for the levels L − 1 down to L = �min. However, due
to the leaf/internal node scenario, the leaves and virtual leaves of the previously updated level � + 1 must be synchronized
at the instant tn + �t� , which is equivalent to the instant tn + 2�t�+1, in order to perform the flux computations of the
next coarser level. For that we propose the use of an extrapolated value, resulting in the situation presented in Fig. 3(b).

In this work, we suggest to obtain an extrapolation at time instant tn + 2�t�+1, which allows to compute the fluxes for
the second step of the RK method. To this end, the value k2 is used as the value k1 in a second RK1 time evolution. The
first order approximation of the solution at the instant tn + 2�t�+1 is computed as:

q̄�+1
(
tn + 2�t�+1

)= q̄∗
�+1 + �t�+1 f

(
t + �t�+1; q̄∗

�+1

)= q̄n
�+1 + k1 + k2 (14)

where q̄∗
�+1 is the first RK step, and �t�+1 f

(
t + �t�+1; q̄∗

�+1

)
is the flux of the second RK step. Note that this approximation

is only possible due to the choice of the coefficients a11 = b1 = 1.
Once the leaves of level � +1 are extrapolated to the instant tn +2�t�+1, the virtual leaves of this level are also updated.

However, in order to predict the value of the virtual leaves at level � + 1, the values of the virtual leaves and internal nodes
of level � must be synchronized at instant tn + �t� first.

The solution of the virtual leaves and internal nodes of level � in this time instant is obtained during the tree refreshing
process. However, in order to improve the solution of the internal nodes, their values at time instant tn + �t� are updated
after the evolution of the leaves of level � +1. This update is performed via projection of the extrapolated solution at instant
tn + 2�t�+1 from the level � + 1 to �. In contrast to the leaves, which have an approximation at this instant, the internal
nodes do not. The values for the internal nodes are obtained via linear extrapolation:

q̄�+1
(
tn + 2�t�+1

)= 2q̄∗
�+1 − q̄n

�+1. (15)

This approximation is used to perform the projection of the solution of the internal node to the next finer level �. The
projection procedure is given in Algorithm 4. After the projection procedure, the virtual leaves of level � + 1 have their
predicted values. Then, the flux computations and the update of the leaves at level � can be performed. The second step of
the RK method is given in Algorithm 5.

During the second RK step, the fluxes are also used for computing the second step of the NERK approximation with
second order at the time instants tn + 1

2 �t� for RK2 or tn + 1
4 �t� and tn + 3

4 �t� for RK3 time evolution.
As stated before, the NERK approximation for the RK2 time evolution is used to solve the synchronization according the

time evolution problem given in Section 4.3. For the RK3 time evolution, the NERK approximations are used to perform the
third RK step.

After the second step of the RK evolution, a solution at the time instant tn + �t� for the RK2 method, and at tn + 1
2 �t�

for the RK3 method is obtained. In order to prepare the tree structure for the next RK2 iteration and for the next RK3

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 299

Fig. 4. Scheme of the obtained values and its respective time instants for cells in each level after performing the second RK step in the LT method: a) for
RK2 and b) for the RK3 time evolution. The filled, crossed and clear circles represent an available solution, of first, second and third order, respectively, at
the corresponding time instant.

step, another tree refreshing procedure must be applied. This procedure is given in detail in Section 4.2. After this process,
the information obtained for the cells (internal nodes, leaves and virtual leaves) in every refinement level are illustrated in
Fig. 4.

4.1.2. Third Runge–Kutta step synchronization
The third step is done only in the case of the RK3 time evolution. As for the second step of the RK evolution, in the third

step, the evolution must be done first on the finest scale in order to obtain the necessary values to perform the evolution
on the next coarser scale. However there are, indeed, slightly different synchronization issues in this case which we discuss
in the following.

As performed in the second RK step, the virtual leaves and the internal nodes have their values updated during the tree
refreshing process, the details are discussed in the next section.

To perform the third RK step, the fluxes of level L are computed in the proper time instant tn + 1
2 �tL . Then, the third

RK step yields a third order solution at the time instant tn + �tL .
Again as for the second step, this solution is projected onto the next coarser level in order to update the virtual leaves

at level L at the instant tn + �tL , where the fluxes for the third step of the level L − 1 shall be computed.
The projection procedure for the third RK step is, as mentioned above, slightly different from the projection procedure

in the second step. In this case, the solution at the leaves at level � after the third RK step matches with the time instant
where the fluxes of level � − 1 are computed. Then, the solution is projected from level � onto level � − 1 by simple aver-
aging, obtaining thus a solution at tn + 1

2 �t�−1. This solution is used as an approximation for q̄∗∗ . Then, the value of the
internal nodes at the instant tn + �t�−1 should be updated with a second order solution in order to continue the projec-
tions recursively during the third RK step. This update is performed using the following relation obtained from the NERK
scheme:

q̄�(t
n + �t�) = q̄n

� + 2
(

q̄
�,θ= 3

4
− q̄�,θ= 1

4

)
. (16)

This projection procedure inside the third RK step is given in Algorithm 6, and the execution of the third step of the RK
evolution in Algorithm 7.

4.2. Tree refreshing with time synchronization

In the MR scheme, due to the same time step for every scale, the leaves of every scale store values corresponding to the
same time instant. Therefore, projections of the leaves onto internal nodes receive values at the same time instant. However,
in the LT approach, due to fact that leaves of different scales are evolved with different time steps, the tree refreshing may
project values at different time instants related to the leaves at the same scale. Accordingly, we need a procedure before
each RK step internally to the time cycle, to project the solution to an internal node at its corresponding time instant.

Moreover, these synchronizations are necessary to predict the values of the virtual leaves for the next steps of the RK
method, at the required time instant. Only after that, the flux computations can be performed.

Before the first RK step, every scale of level �min or greater, which must be evolved, has its solution at the same time
instant. Therefore, the values of the virtual leaves can be predicted normally, except at level �min, which has its virtual
leaves predicted using the solution at tn + 1

2 �t�min−1 from the level �min − 1.
After the first step of the RK method, each leaf yields a first order solution at the time instant tn + �t� , which corre-

sponds to the time instant tn + 1
2 �t�−1. This implies that the projection of the leaves from level � to � − 1 produces an

300 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Fig. 5. Projection scheme before the third RK step.

approximation at that time instant. The value of an internal node at this instant is given by the mean value of its children:

q̄�−1

(
tn + 1

2
�t�−1

)
= q̄n

�−1 + 1

2
�t�−1 f

(
tn, q̄n

�−1

)= 1

2d

2d∑
i=1

[
q̄n

�, i + �t� f
(
tn, q̄n

�, i

)]
(17)

where d is the number of dimensions of the problem and q̄n
�, i is the solution of the children cell i. This value is stored

in order to predict the values of the virtual leaves of level � for the second RK step. Furthermore, this value must be
extrapolated to the instant tn + �t�−1, obtaining the value q̄∗

�−1. This value, used to update the virtual leaves of level �
during the second RK step, is obtained by linear extrapolation:

q̄∗
�−1 = 2q̄�−1

(
tn + 1

2
�t�−1

)
− q̄n

�−1, (18)

where the value q̄n
�−1 is the solution before the time evolution. This value should be stored for every node before the RK

procedure. The tree refreshing procedure after the first RK step is given in Algorithm 8.
When performing the RK3 time evolution, before the third RK step, besides the solution, the values q̄θ= 1

4
and q̄

θ= 3
4

must
be obtained for the internal nodes. The solutions in those instants are required to predict the solution of the virtual leaves
in the next finer level at the instant required for this RK step.

Those values are obtained through projections from the level L down to the level �min, initially by projecting the solution
q̄∗∗

� at the time instant tn + 1
2 �t� , obtaining thus a value at tn + 1

4 �t�−1, which is used as an approximation for q̄�−1, θ= 1
4

.

Using this solution, the Equation (10) and the value q̄∗
� , computed during the projection before the second RK step, we

obtain the following relation to reconstruct the solution inside the interval [tn; tn + �tn]:

q̄�

(
tn + θ�t�

)=
[

1 − θ − 12θ2
]

q̄n
� +

[
θ − 4θ2

]
q̄∗

� + 16θ2q̄�, θ= 1
4
. (19)

This expression is based on the NERK scheme presented in Section 3.1. Using the value θ = 3
4 , we have:

q̄
�, θ= 3

4
= −13

2
q̄n

� − 3

2
q̄∗

� + 9q̄�, θ= 1
4

(20)

Subsequently, using these values, the value q̄∗∗ can be computed as:

q̄∗∗
� = −11

2
q̄n

� − 3

2
q̄∗

� + 8q̄�, θ= 1
4

(21)

The solution q̄∗∗
� allows to continue the projection procedure recursively by obtaining the value q̄�−1, θ= 1

4
at the next

coarser level, while the solution q̄
�, θ= 3

4
is used to compute the value of the virtual leaves at level � + 1 on the following

iterations, as explained in Section 4.1.
The tree refreshing procedure, illustrated in Fig. 5, consists in projecting the solution q̄∗∗

L from the level L onto the level
L − 1. This solution is approximated as q̄L−1, θ= 1

4
. Then, using the previously obtained value q̄∗

L−1, the values q̄L−1, θ= 3
4

and
q̄∗∗

L−1 can be obtained using Equations (20) and (21). This procedure is recursively repeated down to the coarsest scale �min.

In the third RK step, the fluxes are computed at the intermediary time instant tn + 1
2 �t� . For an adjacent coarser leaf,

this instant is tn + 1
4 �t�−1 or tn + 3

4 �t�−1, depending on the current iteration number. Basically, if the current scale is �min

then the NERK value used to compute the virtual leaves is available at time instant tn + 3
4 �t�min−1. Otherwise, the value at

the time instant tn + 1
4 �t�−1 is used.

The choice which value of the NERK approximation shall be used in the flux computations is shown in Fig. 6, where we
choose �min = L − 2.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 301

Fig. 6. Scheme of the choice of the NERK solution to predict the virtual leaves for the third RK step in a LT iteration with �min = L − 2. The solution q̄
θ= 3

4

is used to predict the q̄∗∗ values at level �min. For the other scales, the solution q̄∗∗ is predicted with the values q̄θ= 1
4

.

Once the projections have been performed from the level L until the level �min, the virtual leaves have their values ¯q∗∗
�

predicted using the values q̄
�−1, θ= 3

4
, in case of � = �min; or using q̄�, θ= 1

4
, otherwise.

Then, the values q̄�, θ= 1
4

and q̄
�, θ= 3

4
for these virtual leaves are obtained using the Equations (20) and (21). Those values

are required here to predict the values of the virtual leaves at the next finer scale.
The tree refreshing procedure before the third RK step is detailed in Algorithm 9.

4.3. Synchronization after the time evolution

After finishing the RK steps, the leaves at level � perform a complete time evolution with a time step that is twice the
time step of the leaves at level � + 1. In order to perform the next time evolution at scale �, the finer scale leaves must
reach the same time instant. For that, a second time evolution is required for this finer scale leaf.

Moreover, in the next iteration of the time evolution, a new value for �min is obtained. To predict the virtual leaves at
the new scale �min at the proper time instant, the values q̄�min−1, θ= 1

2
for RK2 or q̄∗∗

�min−1 for RK3 are used. For the scales
finer than �min, the virtual leaves are predicted with the MR method.

To solve this synchronization challenge and to maintain the approximation order, a high order approximation at time
step tn + 1

2 �t� , where � is the refinement level of the leaf, is required. In this case, in the tree terminology, it means that
for the coarser leaves, an approximation of its virtual children at the instant tn + 1

2 �t� is needed.
To obtain these values, it is necessary to obtain approximations at the instant tn + 1

2 �t� during the Runge–Kutta evolution
for every cell of refinement level � �= L and its neighbours, including internal nodes. Then, the values of the virtual children
are obtained by the prediction procedure.

For the RK2 time evolution, we use the NERK approach to obtain the approximation with θ = 1
2 . However, the implemen-

tation of the MRLT/NERK approach for the RK3 time evolution requires extra memory. Hence we use the approximation q̄∗∗ ,
obtained after the second step of the compact RK, which is at the instant tn + 1

2 �t� , instead of the NERK approximation
with θ = 1

2 in order to reduce the number of variables to be stored in the problem.
Besides those values, the updated solution, at time instant tn +�t� , is projected onto the coarser level at the time instant

tn + 1
2 �t�−1 by simple averaging. This solution is then used as an approximation for q̄�−1, θ= 1

2
, in the RK2 time evolution,

or q̄∗∗
�−1 for the RK3 time evolution. Using the NERK equations given in Section 3.2 and the current value of the internal

node at tn + �t�−1 (RK first step), the solution at instant tn + �t� is obtained by the following relation:

q̄�

(
tn + �t�

)= −2q̄n
� − q̄∗

� + 4q̄�, θ= 1
2
. (22)

This value is used to compute the value of the virtual leaves at level �min + 1 in the following iterations at the second
RK step, as explained in Section 4.1.1.

4.3.1. Adapting the grid during local time-stepping
During the LT scheme, in most parts of the numerical simulation, some scales have results at different time instants.

Therefore, in order to avoid errors to be caused by converting a cell with a solution value at a determined time instant
to another scale where its cells are in a different time instant, there is a need for a criterion when adapting the solution
during the LT scheme.

This criterion consists in combining or splitting only leaves from a scale to another scale whose leaves are at the same
time instant. These scales can be easily detected due to the fact that the time evolution procedure is applied only in scales
at the same time instant. In other words, to split a cell into more refined ones, both scales must be included into the current
time evolution iteration. The same is valid to combine cells into a coarser one.

302 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Moreover, beyond this restriction, the remeshing process is identical to the remeshing process of the multiresolution
method.

4.4. Some remarks on the convergence and stability of MRLT/NERK schemes

In this section, we perform a stability analysis to check the convergence order of the MRLT/NERK3 method. For that, we
compute the interpolation and extrapolation errors in each approximation required for the method, considering the interface
between cell of different levels.

To analyze the stability typically a simple linear ODE,

dq

dt
= λu (23)

where a constant complex-valued coefficient λ ∈ C with negative or zero real part, is considered. The above equation is
completed with an initial condition. Using Fourier analysis of linear PDEs it can be shown that imaginary values of λ
correspond to pure advection, while real (negative) values correspond to pure diffusion equations.

One-step schemes, including Runge–Kutta methods can then be written in the following form,

q̂n+1 = g(λ�t) q̂n (24)

where g is a polynomial. In particular, for RK1, RK2 and RK3 we respectively have g(λ�t) = 1 + λ�t , g(λ�t) = 1 + λ�t +
1
2 λ2�t2 and g(λ�t) = 1 +λ�t + 1

2 λ2�t2 + 1
6 λ3�t3, which correspond to the truncated Taylor series of exp(λ�t). A method

is called of convergence order n if its polynomial g(λ�t) reconstructs the Taylor series up to the λn�tn term.
To compute the polynomial g for the MRLT/NERK methods, the analysis is performed by computing and inserting each

error εi obtained in every approximation required to perform the MRLT method.
The errors obtained in those approximations are inserted into the flux computations of the stability model as follows:

f (q̄) = f (q̂ − ε) , (25)

where q̄ is an approximation obtained during the MRLT/NERK method and q̂ is the solution that would be obtained by the
regular RK method.

In the following, we obtain the errors ε for each approximation used for the first RK evolution on both finer and coarser
scales. In this evolution, both scales are initially at the same time instant, so there is no approximation error for the first
RK step (k1). In other words, it means that q̄n = q̂n .

In this section, we consider the RK3 scheme as given in Section 3.2.
Considering that the solution q̄n is at the same instant for every scale to be updated in the time evolution, the first RK

stage reads,

q̄∗ = q̄n + �tn f (tn, q̄n) (26)

and yields no interpolation errors due to the LT approach for both scales. That leads to q̄∗ = q̂∗ .

4.4.1. Approximations after the first RK step
Here we compute the errors obtained from the predictions and projections after the first RK step, as performed in

Section 4.1.1. The solution of the intermediary solution q̄∗ is at a different time instant for each refinement level, requiring
thus a series of interpolations and extrapolations, which introduces errors ε1 and ε2 into the scheme.

• ε1: Prediction error in the finer leaf.

Error obtained in the prediction of q̄∗ in the finer leaf using the values of the solution in the lower level with half of the
time-step.

ε1 = q̂∗
� − P�−1→�

[
q̄n

�−1 − �t�−1

2
f (q̄n

�−1)

]
= 0. (27)

Proof. Considering f (q̄n
�−1) = λq̄n

�−1

ε1 = q̂n
� + �t�λq̂n

� − P�−1→�

[
q̄�−1 − �t�−1

2
λq̄�−1

]
(28)

ε1 = q̂n
� + �t�λq̂n

� − q̄� − �t�−1

2
λq̄� (29)

ε1 = 0 (30)

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 303

• ε2: Projection error in the coarser leaf.
Error obtained in the projection to obtain q̄∗ in the coarser level. This solution is a first order extrapolation to the time
instant tn + �t�−1 for the leaves in the finer level.

ε2 = q̂∗
� − P�+1→�

⎡
⎢⎢⎣q̄n

�+1 + �t�+1 f (q̄n
�+1)︸ ︷︷ ︸

First RK step on finer leaf

+ �t�+1 f (q̄∗
�+1)︸ ︷︷ ︸

extrapolation to tn+�t�−1

⎤
⎥⎥⎦= −�t2

�λ
2

4
q̂n

� (31)

Proof. Here we consider the errors caused in the previous approximations in the flux terms. Using q∗ = q + �t f (q) − ε1

inside the flux term:

ε2 = q̂n
� + �t� f (q̂n

�) − P�+1→�

[
q̄n

�+1 + �t�+1 f (q̄n
�+1) + �t�+1 f (q̂n

�+1 + �t�+1 f (q̂n
�+1) − ε1)

]
(32)

Considering f (q̄n
�+1) = λq̄n

�+1 we have

ε2 = q̂n
� + �t�λq̂n

� − P�+1→�

[
q̂n

�+1 + �t�+1λq̂n
�+1 + �t�+1λ(q̂n

�+1 + �t�+1λ(q̂n
�+1))

]
(33)

Applying the projection operator we get

ε2 = q̂n
� + �t�λq̂n

� − q̂n
� − �t�+1λq̂n

� − �t�+1λ
(
q̂n

� + �t�+1λq̂n
�

)
(34)

ε2 = �t�λq̂n
� − �t�

2
λq̂n

� − �t�
2

λ

(
q̂n

� + �t�
2

λq̂n
�

)
(35)

ε2 = −�t2
�λ

2

4
q̂n

� (36)

Once the interpolation errors are obtained, the second Runge–Kutta step is performed for the finer scale:

q̄∗∗ = 3

4
q̄n + 1

4
q̄∗ + 1

4
�tn f

(
tn + �tn, q̄∗) (37)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗ − ε1

)
(38)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗) (39)

q̄∗∗ = q̂∗∗ (40)

We observe that the q̄∗∗ solution does not have any interpolation errors due to the LT scheme. Then the second order RK
step is performed for the coarser scale:

q̄∗∗ = 3

4
q̄n + 1

4
q̄∗ + 1

4
�tn f

(
tn + �tn, q̄∗) (41)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗ − ε2

)
(42)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tnλq̂∗ − 1

4
�tnλε2 (43)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + z

4
q̂∗ − �t�λ

4
ε2 (44)

q̄∗∗ = q̂∗∗ − �t�λ

4
ε2 (45)

Here, the approximation has an error of −�t�λ
4 ε2.

4.4.2. Approximations after the second RK step
In the following, we compute the errors obtained from the predictions and projections after the second RK step, as

performed in Section 4.1.2. The approximations here are the NERK solution at tn + 1
4 �t�−1 to predict the solution q̄∗∗

� on
finer scales and the projections of the RK3 evolution of the finer leaves to approximate q̄∗∗

�−1. The first one is given by:

• ε3: Prediction error using NERK approximation

ε3 = q̂∗∗
� − P�−1→�

[
q̄n

�−1,θ= 1
4

]
=
(

�t2
�λ

2

8
− �t3

�λ
3

16

)
q̂n

� (46)

304 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Proof. Considering the NERK equation for θ = 1

4
given in Section 3.2 we get,

ε3 = q̂∗∗
� − P�−1→�

[
q̄n

�−1 + 7

32
�t�−1 f (q̄n

�−1) + 1

32
�t�−1 f (q̄∗

�−1)

]
(47)

Then, we consider the error ε2 in the flux computations for the coarser scale:

ε3 = q̂n
�

(
1 + �t�λ

2
+ �t2

�λ
2

4

)
− P�−1→�

[
q̄n

�−1 + 7

32
�t�−1λq̄n

�−1 + 1

32
�t�−1λ

(
q̂∗

�−1 − ε2
)]

(48)

ε3 = q̂n
�

(
�t�λ

16
+ �t2

�λ
2

4

)
− �t�λ

16
P�−1→�

[
q̂∗

�−1 − ε2
]

(49)

ε3 = q̂n
�

(
�t�λ

16
+ �t2

�λ
2

4

)
− �t�λ

16
P�−1→�

[
q̂n

�−1 + �t�−1 f (q̂n
�−1) + �t2

�−1λ
2

4
q̂n

�−1

]
(50)

ε3 = �t2
�λ

2

4
q̂n

� − �t2
�λ

2

8
q̂n

� − �t�λ

16
P�−1→�

[
�t2

�−1λ
2

4
q̂n

�−1

]
(51)

ε3 =
(

�t2
�λ

2

8
− �t3

�λ
3

16

)
q̂n

� (52)

Afterwards we perform the third RK step for the finer leaf.

q̄n+1 = 1

3
q̄n + 2

3
q̄∗∗ + 2

3
�tn f

(
tn + 1

2
�tn, q̄∗∗) (53)

q̄n+1 = 1

3
q̂n + 2

3
q̂∗∗ + 2z

3

(
q̂∗∗ − ε3

)
(54)

q̄n+1 = 1

3
q̂n + 2

3

(
1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n + 2�t�λ

3

[(
1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n − ε3

]
(55)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

6

)
q̂n − 2�t�λ

3

(
�t2

�λ
2

8
− �t3

�λ
3

16

)
q̂n (56)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

12
+ �t4

�λ
4

24

)
q̂n (57)

This shows that the third order accuracy is lost in the evolution of the finer leaf.

• ε4: Projection error using finer leaf evolution.

ε4 = q̂∗∗
� − P�+1→�

[
q̄n+1

�+1

]
=
(

�t2
�λ

2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

� (58)

Proof. Using Equation (57) to represent the time evolution for the finer leaf, we have,

ε4 = q̂∗∗
� − P�+1→�

[(
1 + �t�+1λ + (�t�+1λ)2

2
+ (�t�+1λ)3

12
+ (�t�+1λ)4

24

)
q̂n

�+1

]
(59)

ε4 = q̂∗∗
� − P�+1→�

[(
1 + �t�λ

2
+ (�t�λ)2

8
+ (�t�λ)3

96
+ (�t�λ)4

384

)
q̂n

�+1

]
(60)

ε4 =
(

1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n

� −
(

1 + �t�λ

2
+ �t2

�λ
2

8
+ �t3

�λ
3

96
+ �t4

�λ
4

384

)
q̂n

� (61)

ε4 =
(

�t2
�λ

2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

� (62)

And finally, performing the third RK step for the coarser leaf, we get

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 305

Table 1
Convergence order for the FV, MR and MRLT methods.

�t

(×10−4)

Method

FV/RK2 MR/RK2 MRLT/RK2 MRLT/NERK2 FV/RK3 MR/RK3 MRLT/NERK3

1.6 1.9991 1.9984 1.0794 2.0154 3.0000 3.0030 1.7895
0.8 2.0003 2.0010 0.9433 2.0002 3.0077 3.0017 1.9152

q̄n+1 = 1

3
q̄n + 2

3
q̄∗∗ + 2

3
�t� f

[
tn + 1

2
�t�, q̄∗∗

]
(63)

q̄n+1 = 1

3
q̂n + 2

3

(
q̂∗∗ − �t�λ

4
ε2

)
+ 2�t�λ

3

[
q̂∗∗ − ε4

]
(64)

q̄n+1 = 1

3
q̂n + 2

3

(
q̂∗∗ + �t3

�λ
3

16
q̂n

�

)
+ 2�t�λ

3

[
q̂∗∗ −

(
�t2

�λ
2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

�

]
(65)

q̄n+1 = q̂n+1 + �t3
�λ

3

24
q̂n

� +
(

−�t3
�λ

3

12
+ �t4

�λ
4

144
+ �t5

�λ
5

576

)
q̂n

� (66)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

8
+ �t4

�λ
4

144
+ �t5

�λ
5

576

)
q̂n. (67)

This result also shows a loss of the third order accuracy, since the third order term of the Taylor series �t3
� λ3

6 is not
found.

4.5. Discussion on the numerical convergence

To study the numerical convergence of local time stepping we consider the advection equation

∂ Q

∂t
+ ∂ Q

∂x
= 0 x ∈ [0,1] (68)

with periodic boundary conditions and a Gaussian initial condition, given by Q (x) = exp
(−100 (x − 0.25)2). The simulation

is performed for one time cycle. In order to avoid errors due to the MR scheme, we performed the adaptive simulations
using two fixed grids in the domain. The first one in the interval [0, 0.5] with �x = 1/512, and the second in the interval
[0.5, 1.0] with �x = 1/256, are both fixed during the entire simulation. We also use a centred numerical flux.

The convergence orders is computed using a self convergence method, obtaining the rate for which the solution of the
MR and MRLT methods converges to a solution as �t → 0. For that, we perform simulations using subsequently smaller
time steps, each one having half of the time step used in the previous simulation. The convergence rate is obtained from
the following ratio:∥∥∥∥∥

q̄�t − q̄ �t
2

q̄ �t
2

− q̄ �t
4

∥∥∥∥∥= C�t p − C
(

�t
2

)p + O (�t p+1)

C
(

�t
2

)p − C
(

�t
4

)p + O (�t p+1)
= 1 − 2−p + O (�t)

2−p − 2−2p + O (�t)
= 2p + O (�t) (69)

where q̄�t is the solution of a simulation using a time step �t and p is the order of the method, which is approximated
using the logarithm:

p ≈ log2

∥∥∥∥∥
q̄�t − q̄ �t

2

q̄ �t
2

− q̄ �t
4

∥∥∥∥∥ . (70)

The convergence order obtained for the FV, MR and MRLT methods are given in Table 1. In order to check that p → 0
as �t → 0, we perform this test using two different values for the coarsest �t . We observe that FV/RK2 and FV/RK3 yield
second and third order time discretisations, respectively, as expected. For MRLT/NERK2 and MRLT/NERK3 we obtained the
expected second order, in particular for the MRLT/NERK3 the second order is justified by the approximation errors ε3 and ε4
which caused the loss of the third order, as shown in the Equations (57) and (67). Another reason for this loss in accuracy
was the fact that due to the order barrier for NERK methods [22], a third order solution at instant tn + �t�

2 could not be
produced by a three stage method. Thus, when a leaf performs its second time evolution inside the LT cycle, it may use the
second order solution from a coarser leaf, causing the loss from third to second order. This issue also justifies the observed
loss in accuracy for the MRLT/RK2 method. Here, the coarser leaf produces a first order solution at instant tn + �t�

2 to be
used in the second evolution of the finer leaf.

306 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

5. Numerical experiments

In this section we present some comparative results of the proposed MRLT/NERK method with the MR, MRLT methods
given in [6] and also the traditional FV method on a uniform grid. These methods are applied to solve the two-dimensional
Burgers equation, one and three-dimensional reaction–diffusion equations and finally the two-dimensional compressible
Euler equations. We use the AUSM+ scheme [17] to compute the numerical flux in Burgers and Euler equations. To compute
the advective term for the reaction–diffusion equation, we use the McCormack scheme [27]. The errors are computed in the
discrete L1 norm on the fine grid as:

emethod
L1

= 1

2Ld

2Ld−1∑
i=0

∥∥∥q̄ref
i − q̄method

i

∥∥∥ (71)

where q̄ref is the FV/RK3 reference solution of the corresponding problem and q̄method is the solution obtained with the
analyzed method.

To compare the performance of two adaptive methodologies in terms of CPU time reduction versus accuracy loss, a cost
value μmethod is defined for each adaptive method as:

μmethod = emethod
L1

· tmethod
CPU

tFV
CPU

, (72)

where tmethod
CPU is the CPU time obtained for the analyzed method and tFV

CPU is the CPU time of the F V method with the same
number of scales L and Runge–Kutta of the same order.

The ratio between the cost of different adaptive methods yields the parameter λ, used to measure the advantage of one
method compared with the other. In this work, the parameter λ is used to compare the proposed MRLT/NERK methods with
the MR and MRLT methods, defined as:

λmethod
MRLT/NERK = μmethod

μMRLT/NERK
. (73)

If the parameter λ is larger than 1, the MRLT/NERK approach is considered to be advantageous over the other method. In
case of λ < 1, the MRLT/NERK approach is considered to be disadvantageous over the other method, and in case of λ = 1,
the methods are considered to be equivalent.

All the simulations are performed using a fixed threshold value ε in order to simplify the experiments. In [7] computa-
tions are presented using a MR methodology with ε values which depend of the refinement level.

5.1. Two-dimensional Burgers equation

The Burgers equation is a non-linear PDE which represents a simple model for turbulence and is used in astrophysical
applications. The inviscid model, in the two-dimensional case, is given by the following equation:

∂ Q

∂t
+ 1

2

(
∂(Q 2)

∂x
+ ∂(Q 2)

∂ y

)
= 0 (x, y) ∈ � = [0,1] × [0,1]. (74)

The initial condition used in this work is Q 0(x, y) = sin(2πx) sin(2π y), with Dirichlet boundary conditions given by
Q (x, 0) = Q (x, 1) = Q (0, y) = Q (1, y) = 0.

All simulations are performed with a Courant number σ = 0.5 and a threshold ε = 0.01 until the time instant t f = 0.9.
The reference solution for this case is obtained using refinement level L = 12.

Fig. 7 shows the reference solution and the solution obtained with the MRLT/RK2 and MRLT/NERK2. The respective
difference, in modulus, with respect to the reference solution and adaptive grids at the end of the computation are also
shown. The method MRLT/RK2 case exhibits larger errors close to the shocks, especially in the peak of the structure and in
its background. The other methods present solutions closer to the one obtained with the MRLT/NERK2 method.

The results are compared with the solution in an uniform grid at the same level using a L1 norm, showing perturbation
errors. These errors, CPU time and memory compression are summarized in Table 2. The CPU time and memory of the
adaptive methods are given in percentage of the number of leaves used in the FV method with the same number of scales
and the same Runge–Kutta scheme. For the two-dimensional Burgers equation, the proposed MRLT/NERK methods present
a slight gain in precision and a significant gain in CPU time in relation to the other adaptive methodologies. However, the
MRLT schemes with NERK time integration require more memory, which decreases when increasing the resolution, i.e. for
increasing L.

The parameters λ obtained for the MRLT/NERK methods compared to the MR and MRLT methods are presented in Table 3.
For most of the experiments, the proposed methods yield values of λ between 2 and 3. This shows that the NERK-based
methods are significantly more efficient than the RK-based MR and MRLT methods.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 307

Fig. 7. Reference solution for the two-dimensional Burgers equation a), the solutions obtained by the MRLT/RK2 b) and MRLT/NERK2 c) methods with its
respective errors and the corresponding adaptive grids. For all cases we use L = 10 and the time instant is t f = 0.9.

5.2. Reaction–diffusion equations

We consider reaction–diffusion equations in one and three space dimensions and study the formation of a flame front
ignited with a spark in an environment with flammable premixed gas. This kind of problem is a prototype of non-linear
parabolic equations with a non-linearity in the source term, see e.g. [6,26].

5.2.1. One-dimensional case
In the one-dimensional case, considering equal mass and heat diffusion, this problem can be modelled by the following

equation:

308 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Table 2
Two-dimensional Burgers equation: L1 errors, CPU time and memory compression.

Finest scale level Method Error (×10−2) Q CPU time (% FV) Memory (% FV)

L = 8 MR/RK2 1.5032 68.4 19.5
MRLT/RK2 1.7701 67.8 19.5
MRLT/NERK2 1.2958 40.3 24.2

MR/RK3 1.5045 184.9 19.4
MRLT/NERK3 1.2932 94.7 24.2

L = 9 MR/RK2 1.3615 34.7 8.9
MRLT/RK2 1.6645 32.5 8.9
MRLT/NERK2 1.1457 16.7 10.3

MR/RK3 1.3614 95.4 8.9
MRLT/NERK3 1.1423 42.7 10.3

L = 10 MR/RK2 1.2890 14.7 4.1
MRLT/RK2 1.6016 13.5 4.1
MRLT/NERK2 1.0740 6.7 4.4

MR/RK3 1.2893 15.3 4.1
MRLT/NERK3 1.0699 6.4 4.4

Note: All adaptive computations use ε = 10−2; the final time is t f = 0.9. The computations have been carried out on an Intel Core™ i7 CPU 2.67 GHz.
FV/RK2 CPU time: 2.0 min (L = 8); 15.7 min (L = 9); 2.3 h (L = 10). FV/RK3 CPU time: 1.2 min (L = 8); 8.0 min (L = 9); 3.3 h (L = 10).

Table 3
Two-dimensional Burgers equation: computational gain λ of the MRLT/NERK methods with respect to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 8 MRLT/NERK2 1.96 2.29 –
MRLT/NERK3 – – 2.27

L = 9 MRLT/NERK2 2.46 2.82 –
MRLT/NERK3 – – 2.66

L = 10 MRLT/NERK2 2.63 3.00 –
MRLT/NERK3 – – 2.88

∂T

∂t
+ v f

∂T

∂x
= ∂2T

∂x2
+ ω(T) for x ∈ (−15,15) (75)

where the function T (x, t) is the dimensionless temperature normalized between 0 (unburned gas) and 1 (burned gas),
v f = ∫

ω dx is the flame velocity and ω(T) is the chemical reaction rate, given by:

ω(T) = Ze2

2
(1 − T)exp

(
Ze(1 − T)

τ (1 − T) − 1

)
(76)

where Ze is a dimensionless activation energy, known as Zeldovich number, and τ is the burnt-unburnt temperature ratio. In
this one-dimensional case, where we use unitary Lewis number, the unburned gas concentration Y is defined as Y = 1 − T .

In the numerical experiments, the following initial condition is used:

T (x,0) =
{

1, if x ≤ 1

exp(1 − x), otherwise
(77)

with boundary conditions given by:

∂T

∂x
(−15, t) = 0, T (15, t) = 0 (78)

The subsequent simulations are performed with the parameters Ze = 10, τ = 0.8 and a Courant number σ = 0.5 until
the final time instant t f = 5.0. The adaptive simulations are performed with a threshold ε = 0.01. The reference solution for
this case is obtained using the same Courant number and a refinement level L = 13. Fig. 8 shows the reference solution and
the solution obtained by the MRLT/RK2 and MRLT/NERK2 methods with its respective errors and the corresponding final
grids. In this one-dimensional case, the adaptive grid is represented by the position of each cell (x-axis) and its refinement
level (y-axis).

The adaptive methods present a larger error in the flame front region, especially for the variable ω. Among the adaptive
methods, MRLT/RK2 has the smallest errors, while the other methods present very similar errors. However, the MRLT/NERK
methods still requires the lowest CPU time. These times and L1 errors are assembled in Table 4.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 309

Fig. 8. Reference solution of the one-dimensional reaction–diffusion equations a) and the solutions obtained by the MRLT/RK2 (b) and MRLT/NERK2 (c) meth-
ods with its respective errors (d), (e) and final adaptive grids (f), (g). For all cases we use L = 13.

The computational gain of the MRLT/NERK methods compared to the MR and MRLT methods are given in Table 5. In this
case, the MRLT/NERK methods yields the most expressive results compared to the MR methods in terms of computational
gain. The gain of the MRLT/NERK2 method compared with the MRLT/RK2 method is small for the cases L = 12 and 13. The
corresponding results are presented in Table 5.

5.2.2. Three-dimensional case
In the three-dimensional case, the reaction–diffusion equations read:

∂T

∂t
= ∇2T + ω − s (79a)

∂Y

∂t
= 1

Le
∇2Y − ω (79b)

where Le denotes the Lewis number, which defines the ratio of mass and heat diffusion and with the chemical reaction
rate ω:

ω(T , Y) = Ze2

2Le
Y exp

(
Ze(T − 1)

1 + τ (T − 1)

)
(80)

310 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Table 4
One-dimensional reaction–diffusion equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−4) CPU time Memory

T Y ω (%FV)

L = 11 MR/RK2 5.045 5.045 24.564 31.9 3.1
MRLT/RK2 5.666 5.666 30.192 18.0 3.1
MRLT/NERK2 4.380 4.380 21.308 7.2 3.1

MR/RK3 5.045 5.045 24.566 31.3 3.1
MRLT/NERK3 4.543 4.543 22.173 5.3 3.1

L = 12 MR/RK2 5.043 5.043 24.559 15.9 1.5
MRLT/RK2 1.780 1.780 14.256 8.0 1.5
MRLT/NERK2 4.728 4.728 23.107 2.8 1.5

MR/RK3 5.043 5.043 24.560 16.0 1.5
MRLT/NERK3 4.755 4.755 23.261 2.3 1.5

L = 13 MR/RK2 5.054 5.054 24.609 7.9 0.7
MRLT/RK2 2.904 2.904 15.062 3.9 0.7
MRLT/NERK2 4.900 4.900 23.903 1.4 0.7

MR/RK3 5.054 5.054 24.609 7.9 0.7
MRLT/NERK3 4.904 4.904 23.923 1.1 0.7

Note: All adaptive computations use ε = 10−2; final time: t f = 5.0. Computed on an Intel Core™ i7 CPU 2.67 GHz. FV/RK2 CPU time: 51.4 min (L = 11);
6.9 h (L = 12); 54.6 h (L = 13). FV/RK3 CPU time: 51.4 min (L = 11); 6.9 h (L = 12); 54.6 h (L = 13).

Table 5
One-dimensional reaction–diffusion equations: computational gain, for the variable T , of the proposed
MRLT/NERK methods compared to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 11 MRLT/NERK2 5.10 3.23 –
MRLT/NERK3 – – 6.55

L = 12 MRLT/NERK2 6.05 1.07 –
MRLT/NERK3 – – 7.37

L = 13 MRLT/NERK2 5.82 1.65 –
MRLT/NERK3 – – 7.40

According to the Stefan–Boltzmann law, the heat loss due to radiation s is modelled by:

s(T) = κ
[
(T + τ−1 − 1)4 − (τ−1 − 1)4

]
(81)

where κ is a dimensionless radiation coefficient. In this work, we use κ = 0.1.
The initial condition, described in spherical coordinates, is:

T (r,0) =
{

1, if r ≤ r0

exp
(

1 − r
r0

)
, otherwise

(82)

Y (r,0) =
{

0, if r ≤ r0

1 − e
(

Le(1 − r
r0

)
)

, otherwise
(83)

where r0 = 1 is the initial radius of the ellipsoidal flame ball and r =
√

X2

a2 + Y 2

b2 + Z 2

c2 with:

X = x cos(θ) − y sin(θ) (84)

Y = [x sin(θ) + y cos(θ)] cos(φ) − z sin(φ) (85)

Z = [x sin(θ) + y cos(θ)] sin(φ) + z cos(φ) (86)

The boundary conditions are of homogeneous Neumann type. In these simulations we use the parameters Ze = 10,
τ = 0.64, Le = 0.3, θ = π

3 , φ = π
4 , a = 3

2 , b = 3
2 , c = 3, a threshold factor ε = 0.01 and a Courant number σ = 0.1 until

the final time instant t f = 5.0. The reference solution for this case is obtained using the same Courant number and the
refinement level L = 7. Fig. 9 shows the isosurface of T for the reference and the MRLT/NERK2 and MRLT/NERK3 methods.
It also shows the solutions, difference from the reference solution in modulus, and projections of every cell centre at the
plane xz. The adaptive methodologies present higher errors close to the flame ball fronts, which are more rounded in
comparison to the FV solutions. The adaptive grids are similar for all adaptive methodologies, with a higher concentration
of refined cells in the region of the front and inside the flame ball.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 311

Fig. 9. Isosurface and xz plane reference solution for the variable T in three-dimensions at t f = 5.0. The solutions are obtained with the MRLT/NERK2 and
MRLT/NERK3 methods with its respective errors in the xz plane and projections of the centre of the adaptive grid cell onto the xz plane. The isosurface
plots were built using 5 linearly scaled values.

312 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Table 6
Three-dimensional reaction–diffusion equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−4) CPU time Memory

T Y ω (%FV)

L = 7 MR/RK2 4.516 7.338 21.831 15.6 2.5
MRLT/RK2 4.511 7.267 21.798 14.9 2.5
MRLT/NERK2 4.513 7.636 22.038 10.9 7.7

MR/RK3 4.516 7.338 21.831 14.4 2.5
MRLT/NERK3 4.526 7.369 21.856 5.5 2.5

Note: All adaptive computations use ε = 10−2; final time: t f = 5.0. Computed on a Quad-Core AMD Opteron™ CPU 2.4 GHz. FV/RK2 CPU time: 25.8 h
(L = 7). FV/RK3 CPU time: 38.5 h (L = 7).

Table 7
Three-dimensional reaction–diffusion equations: computational gain, for the variable T , of the MRLT/NERK meth-
ods compared to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 7 MRLT/NERK2 1.43 1.36 –
MRLT/NERK3 – – 2.61

Table 8
Initial condition for two-dimensional Euler equations.

Variables Quadrant

1st 2nd 3rd 4th

Density, ρ 1.00 2.00 1.00 3.00
Pressure, p 1.00 1.00 1.00 1.00
x-velocity, vx 0.75 0.75 −0.75 −0.75
y-velocity, v y −0.50 0.50 0.50 −0.50

The L1 errors, CPU time and memory compression are summarized in Table 6. In this case, the proposed MRLT/NERK
methods present a loss in precision and memory usage with a gain in CPU time in relation to the other adaptive methodolo-
gies. However, the parameters λ obtained for the MRLT/NERK methods compared to the MR and MRLT methods, presented
in Table 7, still yield favourable values, especially for the third order methods. Thus we find that the MRLT/NERK methods
are slightly more efficient than the MR and MRLT methods for the three-dimensional flame ball case, besides a small loss
in precision.

5.3. Compressible two-dimensional Euler equations

The Euler equations, which describe the dynamics of a non-ionized gas, are given by the following relations:

∂ρ

∂t
+ ∇ · (ρ�v) = 0 (87a)

∂ρ�v
∂t

+ ∇ · (ρ�v �v) + ∇p = 0 (87b)

∂ E

∂t
+ ∇ ·

(
�v(E + p)

)
= 0 (87c)

where �v = (vx, v y) is the velocity, ρ is the fluid density, p is the pressure, and the energy per mass unity E is given by
E = ρe + ρ‖�v‖2

2 . This system is completed by the equation of state of an ideal gas p = ρT
γ Ma2 , where γ is the specific heat

ratio, T is the temperature and Ma is the Mach number.
The initial condition used in this numerical test is the classical Lax–Liu configuration #6 [7,16]. In this initial condition

configuration, the domain is divided into four quadrants, ordered from 1st to 4th, and defined by the subdomains [0.5;1] ×
[0.5;1], [0;0.5] × [0.5;1], [0;0.5] × [0;0.5] and [0.5;1] × [0;0.5], respectively. The initial values for each quadrant are given
in Table 8. This problem is simulated until the final instant t f = 0.25, using homogeneous Neumann boundary conditions.
The numerical parameters are the Courant number σ = 0.5, Ma = 1, and γ = 1.4 inside the domain [0; 1] × [0; 1].

Fig. 10 shows the reference solution and the solution obtained with the MRLT/RK2, MRLT/NERK2 methods and its respec-
tive difference, in modulus, from the reference. Furthermore, the corresponding adaptive grid using L = 12 with CFL σ = 0.5
is shown.

The L1 errors, CPU time and memory compression are presented in Table 9. In this case, the proposed MRLT/NERK
methods yield a slight gain in precision with a significant gain in CPU time in relation to the other adaptive methodologies.
The memory usage of all adaptive methodologies is quite similar. Due to the gain in both precision and CPU time, the
parameters λ for the MRLT/NERK methods compared with the MR and MRLT methods, presented in Table 10, have expressive
values, around 3 for most of the experiments. Thus, using this metric, the proposed methods for the two-dimensional Euler
case are significantly more efficient than the MR and MRLT methods.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 313

Fig. 10. Reference solution for the two-dimensional Euler equations (a), the solutions obtained by the MRLT/RK2 (b) and MRLT/NERK2 methods, using L = 10
scales, with its respective errors (d), (e), and corresponding adaptive grids (f), (g) at final time t f = 0.25.

6. Conclusions

In this work, we introduced a new local time-stepping for adaptive multiresolution methods using NERK time integra-
tion schemes [30]. Interpolating values of the intermediate Runge–Kutta stages yield the required values at intermediate
time steps, which are necessary for the time evolution. Hence the current limitation of local time stepping to second order
schemes can be overcome, and the required synchronised solution can be obtained. The proposed new methodology has
been implemented and validated for two and three stage NERK schemes. In principle the extension of MRLT/NERK schemes
to even higher order is possible, but the computational cost would increase due to the order barrier discussed in [22]. For
NERK methods of order larger or equal to three, Owren and Zennaro [23] have shown that the order of approximation is
reduced concerning the underlying RK method. This order reduction implies that increasing the order of NERK schemes
beyond three would become less efficient and thus further research is indeed necessary to obtain well performing local
time-stepping schemes with order larger than three. With the presented numerical experiments we assessed the precision
and efficiency of the proposed two and three stage MRLT/NERK approach for different classical nonlinear evolution equa-
tions, i.e., for Burgers, reaction–diffusion and the compressible Euler equations considering Cartesian geometries in one, two

314 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Table 9
Two-dimensional Euler equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−1) CPU time Memory

ρ p T E vx v y (%FV)

L = 8 MR/RK2 2.2095 0.6075 0.9581 2.0499 1.7521 0.7180 40.7 26.4
MRLT/RK2 2.2085 0.6049 0.9572 2.0463 1.7510 0.7167 33.7 26.0
MRLT/NERK2 2.2096 0.6077 0.9582 2.0503 1.7521 0.7183 12.9 26.6

MR/RK3 2.2093 0.6075 0.9580 2.0498 1.7520 0.7180 46.3 26.4
MRLT/NERK3 2.2095 0.6078 0.9581 2.0504 1.7522 0.7182 14.6 26.6

L = 9 MR/RK2 1.1365 0.3133 0.5217 1.0470 0.9012 0.3934 24.4 14.0
MRLT/RK2 1.1369 0.3133 0.5219 1.0483 0.9012 0.3931 22.6 13.9
MRLT/NERK2 1.1355 0.3128 0.5216 1.0458 0.9012 0.3931 7.4 14.2

MR/RK3 1.1364 0.3133 0.5217 1.0469 0.9012 0.3934 27.3 14.0
MRLT/NERK3 1.1355 0.3130 0.5216 1.0461 0.9013 0.3931 8.0 14.2

L = 10 MR/RK2 0.5835 0.1604 0.2765 0.5353 0.4611 0.2115 14.7 7.2
MRLT/RK2 0.5864 0.1643 0.2782 0.5441 0.4622 0.2131 12.8 7.2
MRLT/NERK2 0.5821 0.1596 0.2762 0.5335 0.4609 0.2110 4.1 7.3

MR/RK3 0.5834 0.1604 0.2765 0.5352 0.4611 0.2115 11.2 7.2
MRLT/NERK3 0.5821 0.1598 0.2762 0.5338 0.4610 0.2109 3.6 7.3

Note: All adaptive computations use ε = 10−2; final time: t f = 0.25. Computed on an Intel Core™ i7 CPU 2.67 GHz. FV/RK2 CPU time: 10.1 min (L = 8);
73.3 min (L = 9); 8.8 h (L = 10). FV/RK3 CPU time: 11.7 min (L = 8); 91.7 min (L = 9); 13.8 h (L = 10).

Table 10
Two-dimensional Euler equations: Computational gain, for the variable ρ , of the proposed MRLT/NERK methods
compared with the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 8 MRLT/NERK2 3.15 2.61 –
MRLT/NERK3 – – 3.17

L = 9 MRLT/NERK2 3.30 3.05 –
MRLT/NERK3 – – 3.41

L = 10 MRLT/NERK2 3.59 3.14 –
MRLT/NERK3 – – 3.11

and three space dimensions. In all adaptive computations, we observed a significant gain in CPU time in comparison with
uniform grid computations where the efficiency is increasing with the grid resolution. Nevertheless, the precision of the
uniform grid computations is controlled in the MRLT/NERK schemes, and the order of convergence is maintained. Regarding
memory consumption, we observed for the MRLT/NERK schemes no necessary increase, compared to MR and classical MRLT
methods.

The precision of the MRLT/NERK computations is very reasonable, and in all cases, we found errors about the same order
of magnitude as for the MRLT computations using classical RK schemes.

In conclusion, we showed that the MRLT/NERK methods are advantageous compared to the MR and MRLT approaches
in all studied cases, obtaining even significant performance gains in some examples. For the two-dimensional Euler equa-
tions, for instance, the MRLT/NERK simulations only required one-third of the CPU time necessary for the MR and MRLT
computations. Most of these gains are due to the significant reduction in CPU time obtained in the MRLT/NERK methods.

Acknowledgements

The authors are indebted to Prof. Claus-Dieter Munz who motivated the use of NERK methods for local time-stepping.
We thank Dr. Olivier Roussel for developing the original Carmen Code and fruitful scientific discussions during the years. ML
thankfully acknowledges financial support from CAPES grant 88881.132489/2016-01 and CNPq grant 140626/2014-0, Brazil.
MD thankfully acknowledges financial support from Ecole Centrale Marseille, CNPq grants 306038/2015-3, 302226/2018-4
and FAPESP grant 2015/25624-2. OM thankfully acknowledges financial support from CNPq grants 307083/2017-9 and
424352/2018-4, and FINEP grant 01.120527.00, Brazil. KS acknowledges financial support from the ANR Grant 15-CE40-0019
(AIFIT), France.

Appendix A. Algorithms

Algorithm 1 Construction of the adaptive grid.
Do Algorithm 2 {Compute the leaves that will belong to the adaptive grid}
– Refine each leaf with a finer neighbour leaf.
– Set these new leaves as virtual leaves;

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 315

Algorithm 2 Grid adaptation.
Require: Finest scale level L of the solution.
Require: Solution at level L.
Require: Threshold value ε .

{Selection of the nodes in the adaptive grid}
for � = L −1 → 0, � = � −1 do

– Project the solution from the grid ��+1 to ��;
– Predict the solution of the grid ��+1 based on the project solution in �� ;
– Compare the original solution of the grid ��+1 with the predicted one, and then obtain the wavelet coefficients D̄�+1, as the difference with these
solutions;
{Elimination of the unnecessary nodes and the imposition of a graded tree}
for every leaf ∈ ��+1 do

if |d�+1| ≤ ε and adjacent leaves are inside ��+1 or �� then
– Remove the leaf from the grid ��+1;

end if
end for

end for

Algorithm 3 Single iteration of the LT scheme.
Require: Coarsest scale �min to be evolved in this time evolution;
Require: Current iteration number n;

Compute �min = min
�

[mod (n, 2L−�) = 0];
for � = L → �min, � =� −1 do

for Every internal node ∈ �� do
Obtain the solution q̄n

� by projecting the solution from its child nodes via simple averaging;
end for

end for
if �min is not the coarsest scale of the grid then

for Every internal node ∈ ��min−1 do
Obtain the NERK solution with θ = 1

2 by projecting q̄n
�min

.

Extrapolate this solution to the instant tn+2L−�min (Section 4.3).
end for
for Every virtual leaf ∈ ��min do

Predict q̄n
� using the NERK (RK2) or q̄∗∗

�min−1 (RK3) solutions of the cells ∈ ��min−1 at instant tn .
end for

end if
for � = �min + 1 → L, � =� +1 do

for Every virtual leaf ∈ �� do
Predict q̄n

� using the values of the cells ∈ ��−1 at time instant tn .
end for

end for
Remeshing process of cells with refinement level greater or equal than �min;
for � = L → �min, � =� −1 do

for Every leaf ∈ �� do
Perform flux computations at instant tn;
First RK step;
First order interpolation of the RK evolution at instant tn + 1

2 �t�;
if we are computing RK2 time evolution then

Compute q̄∗
θ= 1

2
;

else if we are computing RK3 time evolution then
Compute q̄∗

θ= 1
4

;

Compute q̄∗
θ= 3

4
;

end if
end for

end for
Tree refreshing before the second RK step (Algorithm 8):
Second RK step of the time evolution (Algorithm 5);
if Performing RK3 time evolution then

Tree refreshing before the third RK step (Section 4.2):
Third RK step of the time evolution (Algorithm 7);

end if

316 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

Algorithm 4 Projection procedure inside the second RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for Every internal node ∈ �� do
q̄∗

� = 0; {result after RK1, set here to zero to store the projection}
for Every child cell ∈ ��+1 do

if The cell is a leaf then
q̄∗

� ← q̄∗
� + q̄�+1

(
tn + 2�t�+1

)
; {Add the already extrapolated value q̄�+1 at tn + 2�t�+1 }

else if The cell is an internal node then
q̄∗

� ← q̄∗
� + 2q̄∗

�+1 − q̄n
�+1; {Add a linear extrapolation of the values q̄�+1 at tn + 2�t�+1 }

end if
end for

q̄∗
� ← 1

2d
q̄∗

� ;

end for

Algorithm 5 Performing the second RK step in the LT approach.
for � = L → �min, � = � −1 do

if � �= L then
Project the leaves and internal nodes from level � + 1 onto level � (Algorithm 4);
Predict the values of the virtual leaves of level � + 1 at instant tn + 2�t�+1;
{These two steps compute the update in time of the virtual leaves}

end if
for every leaf ∈ �� do

Flux computation using the values at instant tn + �t�;
Second step of compact RK;
Perform the approximation at instant tn + 2�t� given in Equation (14);
if we are computing RK2 time evolution then

Compute q̄θ= 1
2

;

else if we are computing RK3 time evolution then
Compute q̄θ= 1

4
;

Compute q̄
θ= 3

4
;

end if
end for

end for

Algorithm 6 Projection procedure inside the third RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for every internal node ∈ �� do
q̄�

(
tn + 1

2 �t�
)= 0; {result after RK2, set here to zero to store the projection}

for Every child cell ∈ ��+1 do
q̄�

(
tn + 1

2 �t�
)← q̄�

(
tn + 1

2 �t�
)+ q̄�+1

(
tn + �t�+1

)
; {Add value q̄�+1 from RK3 3rd step }

end for

q̄�

(
tn + 1

2 �t�
)← 1

2d
q̄�

(
tn + 1

2 �t�
)

q̄∗∗
� ≈ q̄�

(
tn + 1

2 �t�
)
;

To obtain a 2nd order approximation for q̄�(tn + �t�), use Equation (16).
end for

Algorithm 7 Performing the third RK step in the LT approach.
for � = L → �min, � =� −1 do

if � �= L then
– Project the leaves and internal nodes from level � + 1 onto level � (Algorithm 6);
– Predict the values of the virtual leaves of level � + 1 at instant tn + �t�+1;
{These two steps compute the update in time of the virtual leaves}

end if
for Every leaf ∈ �� do

– Flux computation using the values at instant tn + 1
2 �t�;

– Third step of compact RK;
end for

end for

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 317

Algorithm 8 Tree refreshing before the second RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for � = L − 1 → �min, � =� −1 do
for Every internal node ∈ �� do

q̄�

(
tn + 1

2 �t�
)= 0; {Set the solution equal zero to perform the averaging of its children cells.}

for Every child cell i ∈ ��+1 do
q̄�

(
tn + 1

2 �t�
)← q̄�

(
tn + 1

2 �t�
)+ q̄∗

�+1, i ;
end for
q̄�

(
tn + 1

2 �t�
)← 1

2d q̄�

(
tn + 1

2 �t�
)

Obtain a 1st order approximation for q̄∗
� using Equation (18).

end for
end for
for � = �min → L, � =� +1 do

for Every virtual leaf ∈ �� do
Use the approximated solution at level � − 1 at time instant tn + 1

2 �t�−1 to predict the solution q̄∗
� .

Obtain the solution q̄�

(
tn + 1

2 �t�
)

by linear interpolation. {These two steps predict the solution of the virtual leaves in the proper time instant to
update the level �.}

end for
end for

Algorithm 9 Tree refreshing before the third RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for � = L − 1 → �min, � =� −1 do
for Every internal node ∈ �� do

q̄�, θ= 1
4

= 0;

for Every child cell i ∈ ��+1 do
q̄�, θ= 1

4
← q̄�, θ= 1

4
+ q̄∗∗

�+1, i ;

end for
q̄�, θ= 1

4
← 1

2d q̄�, θ= 1
4

Compute q̄
�, θ= 3

4
using Equation (20).

Compute q̄∗∗
� using Equation (21).

end for
end for
for � = �min → L, � =� +1 do

for Every virtual leaf ∈ �� do
if � = �min then

Use the solution q̄
�−1, θ= 3

4
, at time instant tn + 1

2 �t� , to predict the solution q̄∗∗
� .

else
Use the solution q̄�−1, θ= 1

4
, at time instant tn + 1

2 �t� , to predict the solution q̄∗∗
� .

end if
Compute q̄�, θ= 1

4
using Equation (21).

Compute q̄
�, θ= 3

4
using Equation (20).

end for
end for

References

[1] W. Auzinger, O. Koch, An improved local error estimator for symmetric time-stepping schemes, Appl. Math. Lett. 82 (2018) 106–110.
[2] W. Boscheri, M. Dumbser, O. Zanotti, High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on

unstructured triangular meshes, J. Comput. Phys. 291 (2015) 120–150.
[3] F. Coquel, L.Q. Nguyen, M. Postel, Q.H. Tran, Local time stepping applied to implicit–explicit methods for hyperbolic systems, SIAM Multiscale Model.

Simul. 8 (2) (2010) 540–570.
[4] J. Díaz, M.J. Grote, Conserving explicit local time-stepping for second-order wave equations, SIAM J. Sci. Comput. 31 (3) (2009) 1985–2014.
[5] J. Díaz, M.J. Grote, Multi-level explicit local time-stepping methods for second-order wave equations, Comput. Methods Appl. Mech. Eng. 291 (2015)

240–265.
[6] M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider, An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput.

Phys. 227 (8) (2008) 3758–3780.
[7] M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider, Space–time adaptive multiresolution techniques for compressible Euler equations, in: C.A. de

Moura, C.S. Kubrusly (Eds.), The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After Its Discovery, Birkhäuser, 2012, pp. 101–117.
[8] M. Dumbser, O. Zanotti, A. Hidalgo, D.S. Balsara, ADER–WENO finite volume schemes with space–time adaptive mesh refinement, J. Comput. Phys. 248

(2013) 257–286.
[9] G. Gassner, M. Dumbser, F. Hindenlang, C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based

on local predictors, J. Comput. Phys. 230 (11) (2011) 4232–4247, Special issue High Order Methods for CFD Problems.
[10] G.J. Gassner, F. Hindenlang, C.-D. Munz, A Runge–Kutta based discontinuous Galerkin method with time accurate local time stepping, Adv. Comput.

Fluid Dyn. 2 (2011) 95–118.

318 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318

[11] N.Y. Gnedin, V.A. Semenov, A.V. Kravtsov, Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes, J.
Comput. Phys. 359 (2018) 93–105.

[12] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math. 48 (1995) 1305–1342.
[13] B. Hejazialhosseini, D. Rossinelli, M. Bergdorf, P. Koumoutsakos, High order finite volume methods on wavelet-adapted grids with local time-stepping

on multicore architectures for the simulation of shock-bubble interactions, J. Comput. Phys. 229 (22) (2010) 8364–8383.
[14] N. Hovhannisyan, S. Müller, On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruc-

tion strategies, IMA J. Numer. Anal. 30 (4) (2010) 1256–1295.
[15] L. Krivodonova, An efficient local time-stepping scheme for solution of nonlinear conservation laws, J. Comput. Phys. 229 (2010) 8537–8551.
[16] P.D. Lax, X-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput. 19 (2) (1998) 319–340.
[17] M.-S. Liou, A sequel to ausm: ausm+, J. Comput. Phys. 129 (1996) 364–382.
[18] M. Mayr, W.A. Wall, M.W. Gee, Adaptive time stepping for fluid–structure interaction solvers, Finite Elem. Anal. Des. 141 (2018) 55–69.
[19] S. Müller, Adaptive Multiscale Schemes for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 27, Springer, Heidelberg,

2003.
[20] S. Müller, Y. Stiriba, Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput. 30 (3) (2007)

493–531.
[21] S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comput. 41 (1983)

321–336.
[22] B. Owren, M. Zennaro, Order barriers for continuous explicit Runge–Kutta methods, Math. Comput. 56 (1991) 645–661.
[23] B. Owren, M. Zennaro, Derivation of efficient, continuous, explicit Runge–Kutta methods, SIAM J. Sci. Statist. Comput. 13 (6) (1992) 1488–1501.
[24] H. Qi, X. Wang, J. Zhang, J. Wang, An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics, Comput. Phys.

Commun. 229 (2018) 106–115.
[25] M. Rietmann, M. Grote, D. Peter, O. Schenk, Newmark local time stepping on high-performance computing architectures, J. Comput. Phys. 334 (2017)

308–326.
[26] O. Roussel, K. Schneider, A. Tsigulin, H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs, J. Comput. Phys. 188

(2003) 493–523.
[27] B. Van Leer, Towards the ultimate conservative difference scheme, iii: upstream-centered finite-difference schemes for ideal compressible flow, J.

Comput. Phys. 23 (3) (1977) 263–275.
[28] R. Vermiglio, M. Zennaro, Multistep natural continuous extensions of Runge–Kutta methods: the potential for stable interpolation, Appl. Numer. Math.

12 (6) (1993) 521–546.
[29] A.R. Winters, D.A. Kopriva, High-order local time stepping on moving DG spectral element meshes, J. Sci. Comput. 58 (1) (2014) 176–202.
[30] M. Zennaro, Natural continuous extensions of Runge–Kutta methods, Math. Comput. 46 (173) (1986) 119–133.

ANNEX C - AMROC MHD SOLVER DISCUSSIONS

In the following is annexed an article published in the Computers and Fluids that
presents the AMROC MHD solver and discuss about this performance for adaptive
and parallel simulations for both bidimensional and tridimensional problems. It is
referred as (MOREIRA LOPES et al., 2018a), namely:

• MOREIRA LOPES, M.; DEITERDING, R.; GOMES, A.; MENDES, O.;
DOMINGUES, M. An ideal compressible magnetohydrodynamic solver
with parallel block-structured adaptive mesh refinement.Computers and
Fluids, v. 173, p. 293-298, 2018.

197

Computers and Fluids 173 (2018) 293–298

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

An ideal compressible magnetohydrodynamic solver with parallel

block-structured adaptive mesh refinement

Muller Moreira Lopes a , Ralf Deiterding

b , ∗, Anna Karina Fontes Gomes a , Odim Mendes a ,
Margarete O. Domingues a

a National Institute for Space Research (INPE), São José dos Campos, São Paulo, 12.227-010, Brazil
b Aerodynamics and Flight Mechanics Research Group, University of Southampton, SO17 1BJ, United Kingdom

a r t i c l e i n f o

Article history:

Received 31 October 2017

Accepted 23 January 2018

Available online 1 February 2018

Keywords:

AMROC

Magnetohydrodynamics

Finite-volume

Mesh refinement

a b s t r a c t

We present an adaptive parallel solver for the numerical simulation of ideal magnetohydrodynamics in

two and three space dimensions. The discretisation uses a finite volume scheme based on a Cartesian

mesh and an explicit compact Runge–Kutta scheme for time integration. Numerically, a generalized La-

grangian multiplier approach with a mixed hyperbolic-parabolic correction is used to guarantee a control

on the incompressibility of the magnetic field. We implement the solver in the AMROC (Adaptive Mesh

Refinement in Object-oriented C ++) framework that uses a structured adaptive mesh refinement (SAMR)

method discretisation-independent and is fully parallelised for distributed memory systems. Moreover,

AMROC is a modular framework providing manageability, extensibility and efficiency. In this paper, we

give an overview of the ideal magnetohydrodynamics solver developed in this framework and its capa-

bilities. We also include an example of this solver’s verification with other codes and its numerical and

computational performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical simulation of plasma plays an important role in

astrophysics and space physics due to its scale variabilities [1] . For

studying macroscopic space plasma phenomena, the ideal mag-

netohydrodynamics (MHD) theory is a handy tool that treats the

plasma as a perfect electrically conducting fluid under the influ-

ence of a magnetic field [2] . Since the last decades, a variety of

numerical algorithms for multidimensional MHD based on finite

volume method have been developed, for instances the ones dis-

cussed in [3] .

These algorithm have two significant extensions compared to

the primary hydrodynamical case: the first is an extension of the

Riemann solver used to compute the fluxes of each conserved

quantity, and the second is the method that assures a control of

the divergence-free constraint, i.e. , ∇ · B = 0 . In general, realistic

MHD simulations in the context of space weather forecast are per-

formed under prohibitive computational costs, which remains a

core challenge to be overcome. Therefore, in practice for multiscale

space MHD applications very efficient frameworks are essential. As

∗ Corresponding author.

E-mail addresses: muller.lopes@inpe.br (M.M. Lopes), r.deiterding@soton.ac.uk (R.

Deiterding), anna.gomes@inpe.br (A.K.F. Gomes), odim.mendes@inpe.br (O. Mendes),

margarete.domingues@inpe.br (M.O. Domingues).

proposed here, a new MHD solver has been developed upon our

serial Carmen–MHD code, cf. [4,5] and references therein. The cur-

rent solver is an ideal compressible MHD model with finite vol-

ume adaptive mesh in two and three space dimensions developed

in the parallel AMROC framework, incorporating recent advances

in the area of SAMR.

We organise the content as follows: in Section 2 , we describe

the governing equations, the finite volume method, and briefly the

main ideas of the block-based adaptive mesh refinement (AMR)

approach as implemented in AMROC. In Section 3 , we develop

the numerical experiments. Then, we draw the conclusions in

Section 4 .

2. Numerical methods

2.1. Governing equations

In the solution of hyperbolic conservation laws given by partial

differential equations such as ∂ t q + ∇ · f (q) = 0 , different length

scales are ubiquitous. It is well established that for nonlinear flux

functions f (q) even continuous initial data can develop into discon-

tinuities over time [6] . In particular, we consider the compressible

inviscid ideal magnetohydrodynamic equations, in Cartesian coor-

dinates [2] , that describe the physics of an ideal conducting fluid

under the influence of a magnetic field. Basically this system is

https://doi.org/10.1016/j.compfluid.2018.01.032

0045-7930/© 2018 Elsevier Ltd. All rights reserved.

294 M.M. Lopes et al. / Computers and Fluids 173 (2018) 293–298

composed of the continuity, energy, momentum equations, and in-

duction equations as

q =

⎛

⎜ ⎝

ρ
E
ρu

B

⎞

⎟ ⎠

, f (q) =

⎛

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

ρu (
E + p +

B · B

2

)
u − B (u · B)

ρuu +

(
p +

B · B

2

)
I − BB

uB − Bu

⎞

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

. (1)

In the latter, ρ is the density, u the fluid velocity vector, B the

magnetic field vector, and E the total energy density defined as

E =

p

γ − 1
+

ρu 2

2
+

B 2

2
, where p is the gas pressure considering

the state equation assuming an ideal gas plasma. All variables de-

pend on the spatial location x and time t and these equations are

represented in non-dimensional form such that the magnetic per-

meability μ is normalised to one.

Due to Gauss’ law of magnetism, this system has also a phys-

ical constraint in the magnetic field, given by ∇ · B = 0 . In nu-

merical simulations the divergence constraint is not always satis-

fied as first realised by Brackbill and Barnes [7] . In order to min-

imize this effect, several types of corrections have been used, as

described in [3] and references therein. Here, we have chosen a

divergence transport approach known as parabolic-hyperbolic di-

vergence cleaning proposed by Dedner et al. in [8] in combina-

tion with the correction proposed by Mignone and Tzeferacos in

[9] . This correction consists in adding a differential operator D =

1

c 2
h

∂

∂t
+

1

c 2 p

to the divergence constraint of the B field, resulting in

a new system composed basically of the continuity, energy, mo-

mentum equations, and the additional equations

∂B

∂t
+ ∇ · (uB − Bu + ψ I) = 0 ,

∂ψ

∂t
+ c 2 h ∇ · B = − c 2

h

c 2 p

ψ (2)

where ψ is a scalar-valued function, I the identity tensor, and c p
and c h are the parabolic and hyperbolic constants, respectively. The

constant c h is defined as

c h = max

[
ν

�h

�t
, max

(| u i | ± c f
)]

, (3)

where �h = min (�x, �y, �z) , �x, �y, �z are the mesh sizes in

each direction, ν the Courant number, u i is the velocity of the

i th component, and c f is the fast magnetoacoustic wave of the

MHD model. The c p value is defined in terms of the parameter

αp = �h
c h

c 2 p

, where αp ∈ [0, 1], as described in [9] . We also have γ

denoting the specific heat ratio. This system is well known as the

Generalized Lagrange Multiplier (GLM) approach, and it reduces to

the usual MHD system when ψ = 0 .

In practical MHD cases, discontinuous shock and contact waves

can develop, which requires the use of shock-capturing methods.

In particular, the finite volumes method have been constructed

to handle particularly this behaviour in a robust and oscillation

free way [10] . Since in inviscid problems discontinuities and con-

tact waves are usually very localised, a local increase of mesh

resolution is beneficial to represent these jumps as accurately as

possible.

In the computations presented here, we use a finite volume

scheme based on a Cartesian mesh with HLLD numerical flux in-

troduced by Miyoshi and Kusano [11] with monotonised central

(MC) symmetric limiter discussed in [12] and an explicit second

order Runge–Kutta scheme for time integration. We apply the di-

vergence control parameter αp = 0 . 4 and ψ ≡ 0 in the initial con-

ditions.

2.2. Block-structured AMR and AMROC framework

The structured adaptive mesh refinement method for finite vol-

ume methods introduced by Berger and Collela [13] follows a

patch-oriented refinement approach, where non-overlapping rect-

angular sub-meshes G 	 , m

define by G 	 :=

⋃ M 	

m =1
G 	,m

the domain of

an entire level with index 	 = 0 , · · · , L .

As the construction of refinement proceeds recursively, a hierar-

chy of sub-meshes successively contained within the next coarser

level domain is created. This method has become an important

mesh adaptation approach for hyperbolic conservation laws.

The characteristic of the SAMR algorithm is that refinement

patches overlay coarser mesh data structures, instead of being em-

bedded, thereby avoiding data fragmentation. Values of cells cov-

ered by finer sub-meshes are subsequently overwritten by aver-

aged fine mesh values, which, in general, would lead to a loss of

conservation on the coarser mesh. A remedy to this problem is to

replace the coarse mesh numerical fluxes at refinement boundaries

with the sum of fine mesh fluxes along the corresponding coarse

cell boundary, cf. [13,14] .

The recursive nature of the algorithm allows only the addi-

tion of one new level in each refinement operation. The patch-

based approach does not require special coarsening operations;

sub-meshes are simply removed from the hierarchy. The coarsest

possible resolution is thereby restricted to the level zero mesh.

It is assumed that all mesh widths on level 	 are r 	 -times finer

than on the level 	 − 1 , which ensures that a time-explicit finite

volume scheme remains stable under a CFL-type condition on all

levels of the hierarchy. The numerical update is applied on the

level 	 by calling a single-mesh routine implementing the uniform

scheme in a loop over all the sub-meshes. The regularity of the

input data allows a straightforward implementation of the scheme

and further permits optimisation to take advantage of high-level

caches, and pipelining, for instance. New refinement meshes are

initialised by interpolating the vector of conservative quantities Q

from the next coarser level. However, data in cells already refined

is copied directly from the previous refinement patches. Ghost cells

around each patch are used to decouple the sub-meshes compu-

tationally. Ghost cells outside of the root domain G 0 are used to

implement physical boundary conditions. Ghost cells in G 	 have

a unique interior cell analogue and are set by copying the data

value from the patch where the interior cell is contained (syn-

chronisation). For 	 > 0, internal boundaries can also be used. If

recursive time step refinement is employed, ghost cells at the in-

ternal refinement boundaries on the level 	 are set by time-space

interpolation from the two previously calculated time steps of

level 	 −1 . Otherwise, spatial interpolation from the level 	 −1 is

sufficient.

AMROC implements the SAMR method discretisation-

independent in one to three space dimensions and is fully

parallelised for distributed memory systems [14,15] . With its

parallel distribution strategy the overlapping ghost cell regions

of neighbouring patch blocks are synchronised over processor

borders as boundary conditions are applied. The communication

between processors is achieved through the MPI-library and a

space filling curve algorithm is used for load-balanced data distri-

bution as the refinement mesh is evolving during the course of a

simulation. The parallel distribution is accomplished as a rigorous

mesh decomposition in entities of the base level mesh, but note

that the workload of all higher refinement levels including time

step refinement is considered [16] .

Adaptation along discontinuities can be achieved by evaluating

gradients multiplied by the step size in all directions (scaled gradi-

ent). Cell(j, k) is flagged for refinement if at least one of the three

relations

M.M. Lopes et al. / Computers and Fluids 173 (2018) 293–298 295

Table 1

Kelvin–Helmholtz instability: initial condition for u x and u y .

u x 5 [tanh (20 y + 10) − (tanh (20 y − 10) + 1)]

u y
1
4

sin (2 πx)
(
e −100(y + 1 2)

2 − e −100(y − 1
2)

2
)

| w (Q j+1 ,k) − w (Q j,k) | > εw , | w (Q j,k +1) − w (Q j,k) | > εw ,

| w (Q j+1 ,k +1) − w (Q j,k) | > εw

is satisfied for an arbitrary scalar quantity w , which is derived from

the numerical vector of state Q

	 (t) on level 	 . The constant εw de-

notes the prescribed refinement threshold.

Central to the block-structured mesh refinement approach is

the utilisation of a dedicated cluster algorithm to create blocks

from individual cells tagged for refinement. We use a recursive

algorithm proposed by Bell et al. [17] for this purpose. The algo-

rithm starts with the steepest zero crossing and uses recursively

weaker ones, until the ratio between flagged and all cells in every

new mesh is above the prescribed value 0 < η ≤ 1. In practice, we

use η = 0 . 7 on the present computations. A buffer zone of one cell

is added around tagged cells to avoid degradation of results from

interpolation. More details about these strategies can be found

in [14] .

3. Results

3.1. Kelvin–Helmholtz instability

In the context of space sciences, the Kelvin–Helmholtz (KH) in-

stability appears in many phenomena such as the solar corona,

the ionosphere and astrophysical objects. This instability is a phe-

nomenon which occurs in single continuous fluids with a velocity

shear layer or at the interface of two fluids with different veloci-

ties [18] . In this test, in order to study KH symmetry, two velocity

shear layers in opposite directions are inserted at the lines y = 0 . 5

and y = −0 . 5 . Along with these shear layers, a perturbation in the

u y component is inserted in order to create a vortex. The pertur-

bations in u y around y = 0 . 5 and y = −0 . 5 are in opposite direc-

tion, hence the vortices will be counter-rotating. The initial con-

figuration is described in [8] by the values ρ = 1 , p = 50 , B x = 1 ,

u z = B y = B z = 0 . The settings for u x and u y are given in Table 1 .

The computational domain is [0 , 1] × [−1 , 1] with periodic

boundary conditions and the computations reach time t end = 0 . 5 .

The simulation parameters are ν = 0 . 4 , γ = 1 . 4 . As refinement cri-

teria for the SAMR algorithm, we used the scaled gradient thresh-

old ερ = 0 . 01 , as applied to the density field only. Note that in

these tests the finest level is always at a resolution equivalent to

a uniform mesh with 2048 2 cells but the number of levels used is

varied between one and three, using a refinement factor 2 on all

levels.

The numerical solution at t end obtained for the variable pres-

sure in the case of three refinement levels running on eight pro-

cessors is given in Fig. 1 (left). This picture uses ten contour curves,

from minimum value to maximum pressure value. Super-imposed

are the refinement levels of the mesh, where red is the most re-

fined and blue is the coarsest level. We observe that the refine-

ment zones agree with the isolines and the symmetry of the insta-

bility is almost preserved. Fig. 1 (right) shows the distribution of

the cells updated by each processor related to this solution.

The L

1 errors for the physical variables ρ , p , and the maximum

of the errors among all the components of the magnetic field B i
and velocity field u i are presented in Table 2 . The errors double be-

tween the refinement levels for all variables, which is expected as

the computations with higher refinement use consecutively coarser

Fig. 1. Kelvin–Helmholtz instability: contour plot of pressure with background

colour according to refinement level (left). Mesh distribution in each processor at

t end (right).

Table 2

Kelvin–Helmholtz instability: L 1 errors considering uniform mesh of

2048 2 cells using two processors.

Levels Variables

ρ p max (B i) max (u i)

2 0.01 0.65 0.12 0.13

3 0.02 1.49 0.25 0.29

Table 3

Kelvin–Helmholtz instability: elapsed time, in minutes, of the computa-

tions using one to three refinement levels as a function of the number

of processors. Simulations were performed using two nodes in a cluster

with processors Intel Xeon 2.20 GHz with 20 cores each, dividing the

processes equally among the two nodes.

Processors

1 2 4 8 16

1 5790 3214 1597 825 573

Levels 2 1187 627 300 165 113

3 411 235 129 82 66

cells on the base mesh. The errors in the density are the smallest,

whilst pressure has the largest ones, as expected.

To verify the scalability of the parallel algorithm, we consider

simulations with one to three refinement levels, where the most

refined mesh is 2048 2 cells for every number of levels, using 2 n

processors, with n = 0 to 4. The computational time in minutes of

those experiments are given in Table 3 . As expected, considering

the uniform mesh there is a time decay of roughly 1
2 between 2 n

and 2 n +1 processors. Similar results can be observed for varying

refinement levels.

3.2. Orszag and Tang vortex

This test problem has been introduced by Orszag and Tang [19] .

Since then, it has been extensively used in verification tests of ideal

MHD simulations, for instance, in [20–22] . Due to its physical char-

acteristics it is also a well-known model for 2D turbulence, as de-

scribed in [23] using Fourier spectral methods. In detail, it verifies

296 M.M. Lopes et al. / Computers and Fluids 173 (2018) 293–298

Table 4

Orszag–Tang vortex: initial condition for velocity field.

2D 3D

u x − sin (y) −[1 + ε p sin (z)] sin (y)

u y sin (x) [1 + ε p sin (z)] sin (x)

u z 0 εp sin (z)

Fig. 2. 1D cut comparison of pressure solutions at y = 0 . 64 π at t end obtained

from our simulations (line) with other simulations: Londrilllo–Del Zanna (cross),

Miyoshi–Kusano (dot), and FLASH eight-wave (circle).

the transitions in MHD structures, and consequently how robust

the code is at handling the formation of MHD shocks, shock-shock

interactions, and moreover, it helps in the identification of how

significant magnetic monopoles affect the numerical solutions.

The initial conditions are for both cases ρ = γ 2 , p = γ , B x =

− sin (y) , B y = sin (2 x) , and B z = 0 . The values for the velocity

components are given in Table 4 . Note that in the 3D case a per-

turbation parameter ε p = 0 . 2 is included in addition into all com-

ponents, following the example presented in [24] .

The computational domain is [0, 2 π] in every direction with

periodic boundary conditions until the final time t end = π . These

simulations are done using γ =

5
3 , and ν = 0 . 4 , and 0.3, with

scaled gradient threshold applied to the density field of ερ = 0 . 1

and 0.5 for 2D, and 3D cases, respectively.

To visualize the local convergence of the Orszag–Tang vortex,

we present a cut of the pressure field at y = 0 . 64 π and com-

pare it to the results obtained in the literature (Fig. 2). All exper-

iments were run with a 200 2 mesh, except the Miyoshi–Kusano

one, which used a mesh size of 192 2 . The FLASH solutions are com-

puted using the HLLD flux and the eight-wave divergence cleaning

scheme. The Londrilllo–Del Zanna result uses the third order LF–

CENO scheme and staggered collocation for the magnetic field [22] .

The Miyoshi–Kusano results used the HLLD flux and the mixed

GLM divergence cleaning [11] as we do. Our results are obviously

in good agreement with respect to the main structures of the so-

lution.

For the parallel tests, our simulations are performed with one

to three refinement levels, where the most refined mesh is 2048 2

(2D) and 128 3 (3D). In Fig. 3 , we present similar graphs as in

Fig. 1 for this 2D case. As desired, the refinement agrees with the

structures present in the solutions, and there is a uniform distri-

bution among the processors considering the refinement regions.

The errors, using a L

1 norm in relation with the solution in a uni-

form mesh are presented in Table 5 . In this case, density and pres-

Fig. 3. 2D Orszag–Tang vortex: contour plot of pressure with background colour

according to refinement level (left) and mesh distribution in each processor at the

final iteration (right).

Table 5

Orszag–Tang vortex: L 1 errors for 2D cases.

Levels Variables

ρ p max (B i) max (u i)

2D 2 0.62 0.64 0.32 0.23

3 1.24 1.39 0.68 0.48

Fig. 4. 3D Orszag–Tang vortex: solution for pressure (left) and mesh distribution in

each processor (right) at t end .

Table 6

Orszag–Tang vortex: elapsed time of the computations using one to three re-

finement levels as a function of the number of processors. Simulations were

performed using two nodes in a cluster with processors Intel Xeon 2.20 GHz

with 20 cores each. Here, we divided the processes equally among the two

nodes.

Level Processors

1 2 4 8 16

2D 1 1174 632 306 160 98

2 409 240 136 77 41

3 351 176 89 49 29

3D 1 99 69 28 17 11

2 68 41 21 12 8

3 69 50 20 12 8

sure present similar errors and the largest values are for two and

three refinement levels. Again, for three decomposition levels the

error roughly doubles in relation to the second refinement level. In

Fig. 4 , the pressure solution and the mesh distribution among the

processors are presented at t end . The solution symmetries are al-

most preserved, as desired, and the processor distributions follow

well-balanced patterns observed already in the 2D cases.

The computational time in minutes for 2 n processors with n = 0

to 4 of those experiments are given in Table 6 . In the 2D experi-

ments after four processors the scalability is close to two. In 3D,

all experiments present scalability near two, except for 16 proces-

sors, where probably the communication costs dominate due to

the small problem size.

M.M. Lopes et al. / Computers and Fluids 173 (2018) 293–298 297

Table 7

3D Shock-Cloud interaction: L 1 errors.

Levels Variables

ρ p max (B i) max (u i)

2 0.04 1.47 0.07 0.08

3 0.13 6.24 0.20 0.40

Fig. 5. 3D Shock-Cloud interaction: pressure plotted over the adapted mesh (left),

and mesh distribution in each processor (right) at t end .

3.3. Shock-Cloud iteration

To check the performance of the numerical scheme when deal-

ing with super-fast flows, this problem presents a disruption of a

high-density magnetic cloud by a strong shock wave, as described

in [1] . The initial condition is constructed by considering two re-

gions, the first one defines the advancing plasma – which causes

the shock – and the other is a stationary state where the shock

advances. These regions are limited by the domain boundaries and

a plane parallel to the yz plane at x = 0 . 05 . Inside the second re-

gion, we define the cloud as a high density region in hydrostatic

equilibrium with the surrounding plasma.

We consider the cloud region as a sphere with centre at (0.25,

0.5, 0.5) and radius r 0 = 0 . 15 . The advancing plasma initial condi-

tion is given by ρ = 3 . 86859 , p = 167 . 345 , v x = 11 . 2536 , v y = v z =

B x = 0 , B y = 2 . 1826182 and B z = −B y . The initial configuration of

the stationary state is given by p = 1 , u = 0 , B y = B z = 0 . 56418958 .

The density ρ is 10 inside the cloud and 1 otherwise. The com-

putational domain is [0, 1] 3 with outlet boundaries until the time

t end = 0 . 06 . These simulations use the parameters ν = 0 . 3 , γ =

5

3
,

and the scaled gradient threshold ερ = 8 . 0 .

As in the other two configurations, the simulations were per-

formed with one to three refinement levels, where the most re-

fined mesh is 128 3 cells, using 2 n processors with n from one to

three. The pressure solution on the adaptive mesh at t end is pre-

sented in Fig. 5 (left). We can observe that the symmetry is al-

most perfectly preserved and the adaptive mesh refines all rele-

vant structures, particularly the bow shock. The mesh distribution

is well balanced considering, again, the difference in computational

costs required by the adaptive meshes. Similar to the KH instabil-

ity, density has the lowest errors and pressure the largest values as

usual for these cases. Similarly to the other configurations, the er-

rors increase when more aggressive mesh adaptation, i.e. , a higher

number of levels, is employed.

The computational times in minutes of those experiments are

given in Table 8 . We observe that in these experiments the maxi-

mum scalability is near 1.8 for one level and one to two processor,

and it reduces to a factor of 1.2 for level two and comparing the

one and two processor cases.

Table 8

3D Shock-Cloud interaction: elapsed time of the computations using one to

three refinement levels as a function of the number of processors. Simulations

were performed in a workstation with processors Intel Xeon 2.20 GHz with 12

cores each.

Processors

1 2 4 8

1 79.8 43.1 24.0 17.0

Levels 2 8.2 6.5 3.4 2.5

3 3.1 2.3 1.5 1.0

4. Conclusions

In this paper we presented some widely used verification tests

for compressible ideal MHD in our new MHD solver in the AM-

ROC framework. For one test case with available results, our solu-

tions are in good agreeement with predictions from similar codes.

Moreover, the accuracy of the numerical solutions also exhibits the

expected behaviour comparing the uniform mesh and the adaptive

meshes. Scalability and accuracy of the new MHD solver were par-

ticularly investigated. In general, all test cases show good parallel

performance, confirming the quality of the implementation.

Acknowledgments

The authors thank the FAPESP SPRINT – University of

Southampton (Grant: 16/ 50016-9), FAPESP (Grant: 2015/ 25624-

2), CNPq (Grants: 306038/2015-3 , 140626/ 2014-0 , 141741/2013-9),

and FINEP (Grant: 0112052700) for financial support of this re-

search. ML thankfully acknowledges financial support from CAPES

(Grant: 88881.132489/2016-01) for his doctorate sandwich stage at

the University of Southampton. We also thank M. Banik and V. E.

Menconi for their helpful computational assistance.

References

[1] Tóth G , van der Holst B , Sokolov IV , De Zeeuw DL , Gombosi TI , Fang F .
Adaptive numerical algorithms in space weather modeling. J Comput Phys

2012;231(3):870–903 .

[2] Bittencourt J . Fundamentals of plasma physics. Springer; 2004 .
[3] Hopkins PF . A constrained-gradient method to control divergence errors in nu-

merical MHD. Mon Notices R Astron Soc 2016;462(11):576–87 .
[4] Gomes AKF , Domingues MO , Schneider K , Mendes O , Deiterding R . An

adaptive multiresolution method for ideal magnetohydrodynamics using di-
vergence cleaning with parabolic-hyperbolic correction. Appl Numer Math

2015;95:199–213 .

[5] Domingues MO , Gomes AKF , Gomes SM , Mendes O , Di Pierro B , Schneider K .
Extended generalized lagrangian multipliers for magnetohydrodynamics using

adaptive multiresolution methods. ESAIM: Proc 2013;43:95–107 .
[6] Majda A . Compressible fluid flow and systems of conservation laws in several

space variables. Springer; 1984 .
[7] Brackbill JU , Barnes DC . The effect of nonzero ∇ · B on the numerical solution

of the magnetohysdrodynamic equations. J Comput Phys 1980;35:426–30 .

[8] Dedner A , Kemm F , Kröner D , Munz C-D , Schnitzer T , Wesenberg M .
Hyperbolic divergence cleaning for the MHD equations. J Comput Phys

2002;175(2):645–73 .
[9] Mignone A , Tzeferacos P . A second-order unsplit Godunov scheme for cell-cen-

tered MHD: the CTU-GLM scheme. J Comput Phys 2010;229(6):2117–38 .
[10] Leveque RJ . Finite volume methods for hyperbolic systems. Cambridge Univer-

sity Press; 2002 .

[11] Miyoshi T , Kusano KA . A multi-state HLL approximate Riemann solver for ideal
magnetohydrodynamics. J Comput Phys 2005;208:315–44 .

[12] Toro EF . Riemann solvers and numerical methods for fluid dynamics. Springer;
1999 .

[13] Berger M , Colella P . Local adaptive mesh refinement for shock hydrodynamics.
J Comput Phys 1989;82:64–84 .

[14] Deiterding R . Block-structured adaptive mesh refinement – theory, implemen-
tation and application. ESAIM: Proc 2011;34:97–150 .

[15] Deiterding R . Parallel adaptive simulation of multi-dimensional detonation

structures. Brandenburgische Technische Universität Cottbus; 2003. Ph.D.
thesis .

[16] Deiterding R . Construction and application of an AMR algorithm for distributed
memory computers. In: Plewa T, Linde T, Weirs VG, editors. Adaptive mesh

refinement – theory and applications. Springer; 2005. p. 361–72 .

298 M.M. Lopes et al. / Computers and Fluids 173 (2018) 293–298

[17] Bell J , Berger M , Saltzmann J , Welcome M . Three-dimensional adaptive mesh
refinement for hyperbolic conservation laws. SIAM J Sci Comput 1994;15:

127–138 .
[18] Frank A , Jones TW , Ryu D , Gaalaas JB . The magnetohydrodynamic Kelv-

in–Helmholtz instability: a two-dimensional numerical study. Astrophys J
1996;460:777–93 .

[19] Orszag SA , Tang C-M . Small-scale structure of two-dimensional magnetohydro-
dynamic turbulence. J Fluid Mech 1979;90(1):129–43 .

[20] Ryu D , Miniati F , Jones T , Frank A . A divergence-free upwind code for multidi-

mensional magnetohydrodynamic flows. Astrophys J 1998;509(1):244–55 .

[21] Dai W , Woodward PR . A simple finite difference scheme for multidimensional
magnetohydrodynamical equations. J Comput Phys 1998;142(2):331–69 .

[22] Londrillo P , Del Zanna L . High-order upwind schemes for multidimensional
magnetohydrodynamics. Astrophys J 20 0 0;530(1):508–24 .

[23] Picone JM , Dahlburg RB . Evolution of the Orszag–Tang vortex system in a com-
pressible medium. II. Supersonic flow. Phys Fluids B 1991;3(1):29–44 .

[24] Helzel C , Rossmanith JA , Taetz B . An unstaggered constrained transport
method for the 3D ideal magnetohydrodynamic equations. J Comput Phys

2011;230(10):3803–29 .

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	CONTENTS
	1 INTRODUCTION
	2 PLASMA PHYSICS
	2.1 Plasma characteristics
	2.2 Mathematical description of plasma phenomena
	2.2.1 Kinetic model
	2.2.2 Fluid model

	3 MAGNETOHYDRODYNAMICS
	3.1 Ideal MHD
	3.1.1 System eigenvalues

	3.2 Resistive MHD

	4 NUMERICAL FORMULATION
	4.1 Finite Volumes method
	4.2 Numerical Fluxes
	4.2.1 High-Resolution Schemes

	4.3 Riemann problem
	4.3.1 Rankine–Hugoniot relations
	4.3.2 HLL Riemann solver
	4.3.3 HLLD Riemann solver

	4.4 Runge-Kutta methods
	4.5 Courant-Friedrich-Lewy Condition

	5 DIVERGENCE CLEANING
	5.1 Generalised Lagrange Multipliers approach
	5.1.1 Splitting methods
	5.1.2 Parabolic correction
	5.1.3 Hyperbolic correction
	5.1.4 Parabolic-hyperbolic correction
	5.1.5 Elliptic correction

	5.2 Relaxation Methods
	5.3 Multigrid methods
	5.4 Combining the elliptic and parabolic-hyperbolic corrections

	6 PATCH-STRUCTURED ADAPTIVE MESH REFINEMENT
	6.1 Mesh Hierarchy
	6.1.1 Patch boundaries

	6.2 Flagging algorithm
	6.3 Time evolution

	7 COMPUTATIONAL ASPECTS
	7.1 Generic SAMR solver
	7.2 Base MHD module
	7.3 Specific MHD module
	7.4 Multigrid solver module
	7.5 Running test cases
	7.6 Building new test cases

	8 RESULTS: VERIFICATION
	8.1 Accuracy experiments
	8.2 Divergence cleaning performance experiments
	8.2.1 Results: GLM parabolic-hyperbolic correction
	8.2.2 Results: GLM elliptic correction
	8.2.3 Results: GLM triple correction
	8.2.4 Comparison between the GLM methods

	8.3 Adaptive mesh experiments
	8.4 Magnethosphere simulation

	9 LOCAL TIME STEPPING
	10 CONCLUSIONS
	REFERENCES
	 ANNEX A - PROOFS OF THE THEOREMS
	 ANNEX B - NERK LOCAL TIME STEPPING
	 ANNEX C - AMROC MHD SOLVER DISCUSSIONS

