
sid.inpe.br/mtc-m21c/2019/04.15.15.09-TDI

IDENTIFYING EFFICIENT APPROACHES TO
AUTOMATICALLY GENERATE TEST CASES IN

MODEL BASED TESTING

Matheus Monteiro Mariano

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs.
Nandamudi Lankalapalli
Vĳaykumar, and Érica Ferreira de
Souza, approved in April 26, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3T5LM62>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2019/04.15.15.09-TDI

IDENTIFYING EFFICIENT APPROACHES TO
AUTOMATICALLY GENERATE TEST CASES IN

MODEL BASED TESTING

Matheus Monteiro Mariano

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs.
Nandamudi Lankalapalli
Vĳaykumar, and Érica Ferreira de
Souza, approved in April 26, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3T5LM62>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy

Cataloging in Publication Data

Mariano, Matheus Monteiro.
M337i Identifying efficient approaches to automatically generate test

cases in model based testing / Matheus Monteiro Mariano. – São
José dos Campos : INPE, 2019.

xvi + 58 p. ; (sid.inpe.br/mtc-m21c/2019/04.15.15.09-TDI)

Dissertation (Master in Applied Computing) – Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 2019.

Guiding : Drs. Nandamudi Lankalapalli Vĳaykumar, and Érica
Ferreira de Souza.

1. Software testing. 2. Model-based testing. 3. Systematic
mapping. 4. Graph-based algorithms. 5. Finite state machine.
I.Title.

CDU 004.415.53

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

ACKNOWLEDGEMENTS

First of all, I would like to gratefully thank to God, who guided me in my footsteps.
I would like to thank my father Edvaldo dos Santos Mariano, my mother Romilda
da Silva Monteiro Mariano, my brothers Rodrigo Monteiro Mariano and Rafael
Monteiro Mariano, and all my friends of INPE for their support, encouragement
and patience during the time I devoted to this work.

Next, I need to sincerely thank my advisors Dr. Érica Ferreira de Souza and Dr.
Nandamudi Lankalapalli Vijaykumar, for their guidance, understanding, and most
important, friendship during the development of this work. Without their mentor-
ship, I may never have gotten to where I am today. It was crucial so I could have
the strength to go ahead.

I must also express my gratitude to the Brazilian Institute for Space Research
(INPE), specially to LABAC, for it valued institutional support and the necessary
human and physical resources essential to perform all the research activities.

And finally, my sincere recognition and gratefulness to Coordination for the Im-
provement of Higher Education Personnel (Coordenação de Aperfeiçcoamento de
Pessoal de Nível Superior, CAPES), for providing the funding which allowed me to
undertake this research, and all my friends that believed in my work and support
me on my crowdfunding, sharing it or financing it, that provided me the experience
in presenting this work in Chile.

v

ABSTRACT

Context: Model Based Testing (MBT) has attracted a lot of attention from re-
searchers since it has proved efficient in using formal models to represent reactive
systems’ behavior in order to guide test case generation. Such systems are mostly
specified and verified using Finite State Machine (FSM), a formal modeling tech-
nique commonly used to represent systems’ behavior. There is a plethora of test
generation algorithms in the literature. Most of them are graph-based once a FSM
can be considered as a graph. Nevertheless, there is a lack of studies on analyz-
ing cost and efficiency of FSM-based test generation algorithms. Objective: This
dissertation aims to investigate and compare graph-based algorithms employed to
generate test cases from FSM models. In particular, we compare the Chinese Post-
man Problem (CPP) and H-Switch Cover (HSC) algorithms with the well-known
breadth-first and depth-first search (BFS, DFS) algorithms in the context of cover-
ing all-transitions (AT) and all-transition-pairs (ATP) criteria in a FSM. Method:
First, a systematic literature mapping was conducted to summarize the methods
that have been adopted in MBT, considering FSM. Second, the main methods found
were implemented and analyzed on random and real-world FSMs that represent em-
bedded systems of space applications. For the evaluation of studies, we considered
analyses in terms of cost (time), efficiency (mutant analysis) and coverage of the
generated test cases (number of test cases, average length of test cases, largest and
smallest test cases, etc.). Results: In general, CPP presented the best results with
the FSMs used in terms of number of test cases and test suite size. In addition, CPP
also presented low distribution of average length compared to other algorithms.

Keywords: software testing, model-based testing, systematic mapping, graph-based
algorithms, finite state machine.

vii

IDENTIFICANDO ABORDAGENS EFICIENTES DE BUSCA EM
GRAFO PARA GERAÇÃO AUTOMÁTICA DE CASOS DE TESTE

PARA TESTE BASEADO EM MODELO

RESUMO

Contexto: Teste Baseado em Modelo (TBM) tem atraído muita atenção de
pesquisadores da área de Teste de Software, uma vez que se mostrou eficaz usando
modelos formais para representar o comportamento do sistema a fim de orientar a
geração de casos de teste. Estes software são geralmente especificados e verificados
usando uma técnica de modelagem formal chamada Máquina de Estados Finitos
(MEF). Existem diversos algoritmos de geração de casos de teste na literatura. A
maioria são baseadas em grafo, uma vez que uma MEF pode ser considerada como
um grafo. No entanto, há falta de estudos que analisam o custo e a eficiência de al-
goritmos de geração de casos de teste baseado em MEF. Objetivo: Esta dissertação
tem como objetivo investigar e comparar algoritmos baseados em grafo aplicados á
geração de casos de teste a partir de modelos MEFs. Em particular, comparamos
os algoritmos do Problema do Carteiro Chinês (PCC) e o H − SwitchCover com
os algoritmos clássicos da literatura, Busca em Largura e Busca em Profundidade
(BL e BF), no contexto de cobrir uma MEF com os critérios todas-as-transições
(TT) e todos-os-pares-de-transições (TPT). Método: Primeiro, um mapeamento
sistemático da literatura foi conduzido para sumarizar os métodos que tem sido
adotados em TBM, considerando as MEFs. Segundo, os principais métodos foram
implementados e analisados com MEFs aleatórias e reais que representam sistemas
embarcados de aplicaÇões espaciais. Para a avaliação dos estudos, foram considera-
dos análises em termos de custo (tempo), eficiência (análise de mutante) e cobertura
dos casos de teste gerados (número dos casos de teste, tamanho médio dos casos de
teste, os maiores e menores casos de teste, etc.). Resultados: No geral, o PCC
apresentou os melhores resultados para as MEFs usadas em termo de número dos
casos de teste e tamanho da suíte de teste. Além disso, o PCC também apresentou
baixa distribuição do tamanho médio comparado aos outros algoritmos.

Palavras-chaves: teste de software, teste baseado em modelo, mapeamento sis-
temático, algoritmos baseados em grafo, máquina de estado finito.

ix

LIST OF FIGURES

Page

2.1 Example of a FSM with three states (W, P, C) and five transitions (a/0,
c/2, b/1, f/2, r/0). Source: (AMARAL, 2005) 9

2.2 An example of Statecharts. Source: Harel (1987) 11
2.3 An example of FSM. Source: (MARIANO et al., 2016) 15
2.4 Creation of the dual graph from the original FSM. Source: (MARIANO et

al., 2016) . 16
2.5 Balanced graph by classic Switch Cover algorithm. 17
2.6 Graph balanced by HSC algorithm. Source: (MARIANO et al., 2016) 17

3.1 Selection process . 24
3.2 Distribution of studies by year. 25
3.3 Methods identified in the selected studies 25
3.4 Criteria identified in the selected studies 27
3.5 UML models . 28
3.6 Formal models used . 28

4.1 Study overview . 35
4.2 Number of test cases results. 37
4.3 Test suite size results. 37
4.4 Length of smallest test cases results. 38
4.5 Length of largest test cases results. 38
4.6 Average length of test cases results. 39
4.7 Standard deviation of average of test cases results. 39
4.8 Dispersion of average length of test cases by BFS. 40
4.9 Dispersion of average length of test cases by DFS. 40
4.10 Dispersion of average length of test cases by HSC. 41
4.11 Dispersion of average length of test cases by CPP. 41
4.12 Generation time results. 42
4.13 Efficiency results. 42
4.14 Results for APEX product by each criterion. 43
4.15 Efficiency results for APEX product by each criterion. 43
4.16 Average results for 20 scenarios of SWPDC product. 44
4.17 Average mutantion score results for 20 scenarios of SWPDC product. . . 45
4.18 Generation time results for real-world FSMs. 45

xi

LIST OF TABLES

Page

2.1 Relation between test criteria and test methods 14

3.1 Keywords for the search string . 22

xiii

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Motivation . 2
1.2 Purpose of work . 3
1.3 Dissertation Structure . 4

2 THEORETICAL FOUNDATION 5
2.1 Software Testing concepts . 5
2.1.1 Testing levels . 6
2.1.2 Testing techniques . 6
2.2 Model-Based Testing - MBT . 8
2.2.1 Finite State Machine - FSM . 8
2.2.2 Statecharts . 10
2.3 Test criteria and methods to FSM . 12
2.3.1 Test criteria . 12
2.3.2 Methods . 13
2.3.2.1 Switch Cover and H-Switch Cover 15
2.4 Related work . 18

3 APPROACHES TO GENERATE TEST CASES IN MODEL-
BASED TESTING: A SYSTEMATIC MAPPING 21

3.1 Research Protocol . 21
3.1.1 Research Questions . 21
3.1.2 Inclusion and Exclusion Criteria . 22
3.1.3 Keywords and Search String . 22
3.1.4 Source . 23
3.1.5 Assessment . 23
3.2 Conducting the mapping study . 23
3.3 Data Extraction and Synthesis . 24
3.4 Discussion . 30

4 GRAPH-BASED METHODS EMPLOYED TO GENERATE
TEST CASES FROM FSMS: AN EXPERIMENTAL STUDY . 33

4.1 Criteria and methods analyzed . 33

xv

4.2 Experimental Study . 34
4.3 Results of test cases . 36
4.3.1 Results for randomly generated FSMs 36
4.3.2 Results for real FSMs . 42
4.4 Discussion . 44

5 CONCLUSION . 47
5.1 General consideration . 47
5.2 Contributions . 47
5.3 Threats to validity and main limitations 48
5.4 Future work . 49

REFERENCES . 51

xvi

1 INTRODUCTION

With the growing evolution of computing, the development of software has become
more complex to meet the demands for new and efficient technologies. Today, newest
techniques that solve specific problems come up frequently, both for facilitating the
development of applications and delivering quickly software with more quality. In the
context of software development companies, software engineers need to invest more
in looking for methods, techniques or tools to ensure the quality in their software
and set up a competitive edge with their competitors.

In order to assure software quality, several efforts in academia and industry have
been dedicated for more refined test strategies (SOUZA et al., 2017). The mission of
National Institute for Space Research (INPE) is to produce science and technology
in space activities and terrestrial environment, offering products and services that
benefit the nation. Most of the products developed at INPE need software in systems
considered critical and complex. The systems developed at INPE are considered
critical because, if they present some defect, even simple ones, it may lead to serious
damage or loss both financially and socially. For example, if a software that sends
an alert of landslide fails, its alert will not be duly delivered to its intended audience
and there might be several negative consequences. Similarly, if a software embedded
in a satellite fails, the ground stations may not receive proper information to be
used in several applications, causing financial losses and affecting research that need
such data. So, space missions require organized and manageable activities of testing
in the development of reliable software (ARANTES et al., 2014).

In such scenarios, activities related to Verification, Validation and Testing (VV&T)
have been used throughout the software development process. These activities ana-
lyze the compliance of the developed software with the specification (MYERS; SAN-

DLER, 2004). So, software testing can be defined as an execution process of a program
with intention of finding errors (MYERS et al., 1976). During the testing activity, a
model can be created to guide the test process, analyzing the stimulus (or input
values) to verify whether the behavior of implemented software is in conformance
with its specification. The inputs are known, and they are triggered on the imple-
mentation. Then, after applying the input values on original software, it is necessary
to observe whether the output values of the software implementation are according
to the specified model. According to El-Far and Whittaker (2001), software testing
requires the use of a model to guide efforts on generation and selection of test cases.
In this context, Model-Based Testing (MBT) has attracted a lot of attention of re-

1

searchers in the area, since there are several advantages in using models to represent
the behavior of a system to guide generation of test cases (UTTING; LEGEARD, 2010;
ZANDER et al., 2017). MBT can bring some benefits, such as high rate of failure
detection, reduction of cost and time, traceability, and ease of updating software
requirements (UTTING; LEGEARD, 2010).

One of the main features of MBT is the automated generation of test cases from a
formal test model. In this sense, several formal techniques have been investigated to
specify the system behavior as a test model, such as Statecharts (HAREL, 1987), Fi-
nite State Machine (FSM) (LEE; YANNAKAKIS, 1996), Specification and Description
Language (SDL) (ELLSBERGER et al., 1997) and Labelled Transition Systems (LTS)
(TRETMANS, 2008). Each modeling technique has specific methods and criteria to
traverse a model and automatically generate test cases. However, depending on the
nature of the system, the test sequence generated can be very large or even infinite,
exceeding capacity of exercising the generated test cases on the implementation
(BLACK, 2008; RAPPS; WEYUKER, 1985).

1.1 Motivation

Currently, the Laboratory of Computing and Applied Mathematics (LABAC) at
INPE works with formal models for software specification. The Laboratory has de-
veloped a tool called WEB-PerformCharts that generates steady-state probabilities
based on Markov Chains represented in Statecharts and also generates test cases
when the system is modeled in Statecharts or FSMs (VIJAYKUMAR, 1999; ARANTES

et al., 2013; SOUZA et al., 2008).

FSM is a formal modeling technique normally used for testing due to its rigor and
simplicity. FSM considers states, inputs, outputs and transitions between states.
When an input (or event) is stimulated, a transition occurs generating a change
from a state to another and optionally, an output. Also, one can say that a FSM
represents the behavior of a reactive system due to the fact that changes of states
are based on stimulus (PINHEIRO et al., 2014; PONTES et al., 2014).

Among the different methods to generate test cases from FSM, one can cite: Tran-
sition Tour (TT), Unique Input/Output Sequence (UIO), Distinguishing Sequence
(DS) (SIDHU; LEUNG, 1989) and Switch Cover (PIMONT; RAULT, 1976). The Switch
Cover method, in particular, also known as edge-pair coverage, defines that all ad-
jacent pairs of transitions are covered at least once and it is based on graph-based
algorithms (AMMANN; OFFUTT, 2008). Switch Cover is one of the oldest methods

2

and has been investigated by different research groups (PIMONT; RAULT, 1976; MAR-

TINS et al., 1999), including INPE (ARANTES et al., 2013; SOUZA et al., 2008). A new
version of this method, H-Switch Cover (HSC), was recently created (SOUZA et al.,
2017). The main change of HSC method is the performance and the capacity in
dealing with more complex FSM.

Literature shows the efforts of the scientific community in the analysis of cost and
efficiency of test cases generated from different models (SOUZA et al., 2008; AO et al.,
2009; DOROFEEVA et al., 2010; ENDO; SIMAO, 2013; SOUZA et al., 2017). Also, there
is a lot of effort in development and evaluation of methods and criteria that select
a set of test cases more efficiently from FSMs. The main motivation of this work
is to identify and analyze graph-based algorithms employed to generate test cases
from FSMs, consequently contributing to LABAC’s research, for example, with the
advancement of the WEB-PerformCharts tool, making the tool more updated and
relevant .

1.2 Purpose of work

The objective of this dissertation is to compare graph-based algorithms employed
to generate test cases from FSMs in the context of MBT. This work is divided in
two main steps:

1. In order to determine which algorithms would be analyzed in this study, we
conducted a systematic mapping to identify which are the main approaches
used in the context of MBT, such as methods, criteria, formal models
and evaluation of test cases generated. A mapping study provides a broad
overview of a research area in order to determine whether there is research
evidence on a particular topic. Results of a mapping study help identifying
gaps in order to suggest future research (KITCHENHAM, 2007).

2. With the results from systematic mapping, the main algorithms found
were analyzed with experiments. In particular, we compare the Chinese
Postman Problem (CPP) and H-Switch Cover (HSC) algorithms with the
well-known Depth-First Search (DFS) and Breadth-First Search (BFS)
algorithms in the context of covering all-transitions (AT) and all-transition-
pairs (ATP) criteria in FSMs. The study was conducted on random and
real-world MEFs that represent embedded systems of space applications.
For the evaluation of studies, we considered the number of test cases, test
suite size, average length of sequences, standard deviation and distribution,

3

generation time and mutant analysis.

1.3 Dissertation Structure

This document is structured as follows. Chapter 2 presents the main underlying
concepts of this dissertation, with main concepts of Software Testing, Model-Based
Testing, methods and test criteria to FSM and related work. Chapter 3 formally
introduces the methods and procedures used to conduct the systematic mapping. In
Chapter 4, the experimental study is presented with the methods and criteria iden-
tified. Lastly, conclusions, remarks, and future directions are described in Chapter
5.

4

2 THEORETICAL FOUNDATION

In this chapter, some of the most important concepts in the research areas studied
are briefly discussed. Section 2.1 presents the main concepts about Software Testing;
Section 2.2 presents the Model-Based Testing approach; Section 2.3 presents the
main methods and test criteria from FSM; and Section 2.4 presents the works related
to this project.

2.1 Software Testing concepts

Despite the software testing area being old in Software Engineering, there is much
debate about which would be the best definition about testing a system. Many
definitions about Software Testing were proposed in the literature, but one of the
most well-know definitions was proposed by Myers et al. (1976) that defines testing
as an execution process of a program with intention of finding errors.

Another definition with different interpretations in Software Engineering is the con-
cepts about Fault, Error and Failure. This work will use the definition given by
Institute of Electrical and Electronics Engineers (IEEE) 610.12-1990 (INSTITUTE

OF ELECTRIC AND ELECTRONIC ENGINEERS, 1990). According to this standard,
the definitions are:

• Fault: is the lowest level, being a software’s reaction due to the difference
between the value obtained and an expected value. For example, a logic
problem.

• Error: the syntactic manifestation of the fault, in which, software moves to
a state from an incorrect instruction or command. For example, an object
calls a method, but this object is void, so the program will manifest a “Null
Pointer Exception”.

• Failure: when the software responds differently from the one expected by
user. As a result, the program will manifest a fault or error to the user. For
example, a calculator should make a sum, but it shows a division result to
user.

System problems can occur in several ways, but the main cause is the human er-
ror (DELAMARO et al., 2007). To avoid such problems, some activities can help in
finding errors before the systems are finalized, such as Validation, Verification and
Testing (VV&T). VV&T dedicates efforts to make a software model cohesive with

5

the implementation and an approach to make this is to check if the system will be-
have as expected. This activity should not be limited only in the final product, but
from the initial conception of the project to secure the quality of software developed
(MARUCCI et al., 2002).

VV&T activities can be divided in two types: static and dynamic. Static activities
are conducted through technical reviews and inspections, and do not require the
execution of code. Dynamic activities involve the code execution, being the main
objective inserting input values and to check if the output matches with the ex-
pected result. So, testing a software dynamically involves analyzing the behavior of
program from a finite set of test cases (INSTITUTE OF ELECTRIC AND ELECTRONIC

ENGINEERS, 2004). IEEE defines “test case” as a set of inputs, condition of exe-
cution and expected results developed for a specific goal. For example, test a path
of a program or check the conformity of a software requirement (INSTITUTE OF

ELECTRIC AND ELECTRONIC ENGINEERS, 1990).

2.1.1 Testing levels

Test can be applied in different levels of software. Each level analyzes a specific
behavior of a program, and for each level a specific technique can be applied. The
three main levels are (PRESSMAN, 2005):

• Unit testing: focuses in identifying faults in small and independent com-
ponents of software, such as methods, functions or classes.

• Integration testing: responsible in testing the combination of small units
of software, avoiding that unforeseen circumstances may lead to a commu-
nication error among the units;

• System testing: verifies if the behavior of software is in conformance with
requirements, analyzing the internal flow of a program.

2.1.2 Testing techniques

There are several testing techniques that a developer can apply in a testing level.
The three main testing techniques are: Structural testing, Functional testing and
Fault-Based Testing.

Structural testing has the objective of analyzing the software based on the program
code. It checks how the code flows. So, a test group learns about the algorithm, checks

6

its data flow, creates test cases to check the methods or functions and makes changes
in the code based on this analysis. A common representation of this technique is
Control Flow Graph (CFG) (ENDO; SIMAO, 2013), which indicates a flow of program
by nodes and edges. Nodes represent a code block and an edge is a possible branch
from this block code to another. The main criteria used in the Structural testing
are:

• all-nodes: requires that all nodes of CFG are traversed at least once. This
criterion indicates that all lines of code are executed and covered.

• all-edges: requires that all edges of CFG are traversed at least once. This
indicates that all the code is covered and all deflections of system are
executed and covered.

Functional testing is a technique that generates tests without the code, analyzing if
the behavior of software is in accordance with the specification (MALDONADO, 1991).
This technique might employ an abstraction of software, based on its specification,
that represents the behavior of system. When an input value is applied in the model,
it will produce a specific output. So, a test case is applying a input value set that
will produce a specific output. This output will be evaluated and compared to the
outputs generated in the final implementation by applying the same input values,
thus analyzing whether the system conforms to what was specified. The higher
the input set, the better the test result is. But it is impossible to check all the
possible inputs. So, it is important to define a input set, based on some criteria,
that maximizes all the possibilities. The main criteria for this technique are:

• Partitioning in equivalence classes: partitions the input domain in a finite
number of equivalence classes. The tester chooses any input values of a class
and assumes that any other value of this class behaves in an equivalent way
in the software.

• Boundary value analysis: this is a complement to equivalence partitioning,
which focuses on improving the test cases by checking the borders of the
class values, analyzing the values below the limit, above the limit and at
the limit.

• Cause and effect chart: defines test requirements from the combination of
input conditions. A graph represents the relations of cause (input condi-
tions) and effects (actions). This graph is converted into a decision table,

7

considering a model that charts the situations of system and the combina-
tions of input values to generate test cases.

Fault-Based Testing is a technique that uses the knowledge about the more common
failures in the development to define test cases. This knowledge varies in function of
used resources (as language and techniques) in the software development. Its main
criterion is the mutant analysis. In this criterion, a test case set is analyzed if it
can identify the difference of behavior between an original program and a mutant
program (DELAMARO et al., 2007). This criterion generates, from a program P, a
mutant set P’, that is similar to the original program, but has some faults inserted
in the code. Each mutant is executed using a test case set. If a mutant shows a
different behavior from the original program, and if test case identifies the mutant
P’ then the mutant is considered “dead”. Otherwise, the mutant is considered “alive”.
But if there is no test case that distinguishes the mutant in the original program,
it is considered “equivalent”. Therefore, the mutation analysis relates the number of
dead mutants with the number of mutants generated minus the equivalent.

2.2 Model-Based Testing - MBT

MBT is an approach that represents the behavior of a system as a model (DALAL

et al., 1999), using an abstraction of software. Software modeling is important to
conduct the test activity because it enables to identify the behavior and its expected
result. In MBT, the model can be designed using a modeling technique that needs
to be formal, that is, it must have no ambiguity (UTTING; LEGEARD, 2010). And
also, the model needs to be accurate to support relevant test cases. Some of the
most well-known techniques to represent test models for a system are Finite State
Machine (FSM) (LEE; YANNAKAKIS, 1996), Statecharts (HAREL, 1987), Specification
and Description Language (SDL) (ELLSBERGER et al., 1997), and Labelled Transition
Systems (LTS) (TRETMANS, 2008). Since INPE uses FSMs and Statecharts formal
models for software specification and generation of test cases, these models will
receive more details in the next subsections.

2.2.1 Finite State Machine - FSM

FSM is a formal model used to represent the behavior of a system based on software’s
specification. A FSM has a set of states and transition arcs between these states
(GILL et al., 1962; LEE; YANNAKAKIS, 1996). Transition arcs have labels known as
events (or inputs). When an event is stimulated, a change from one state to another
takes place. A state is the representation of a system aspect. A transition is a reaction

8

of FSM from a specific input value stimulated in a state, that changes the current
state to another. A test case (or test sequence) is a path starting from the initial
state and returning to itself, listing the input values along this path. A sequence can
be obtained by means of a method or test criterion. This sequence must be exercised
in the final software to check if the output obtained after running the code is the
same specified in FSM model. That is, if the behavior of software is in accordance
with the specification.

Figure 2.1 - Example of a FSM with three states (W, P, C) and five transitions (a/0, c/2,
b/1, f/2, r/0). Source: (AMARAL, 2005)

The formal notations herein are based on Dorofeeva et al. (2005). Figure 2.1 will be
used as an example. Formally, a FSM M is a 7-tuple(S, s0, I, O,D, δ, λ), where:

• S is a finite set of states with initial state s0 (W, P and B, with W being
the initial state);

• I is a finite set of inputs (a, c, f, r and b);

• O is a finite set of outputs (0, 1 and 2);

• D ⊆ S × I is a specification domain;

• δ : D → S is a transition function; and

• λ : D → O is an output function.

FSMs have some properties that are mentioned below:

• Mealy and Moore machines: the theory from both machines are similar,
but the Mealy machine is processed as a finite automaton, which generates

9

an output for each transition and depends on the current state and its
inputs (BRITO et al., 2003), whereas the Moore machine generates a output
for each state of machine that can be a null value, and depends only of
current state of machine. Despite this, the processing of both machines is
the same. In this work, we only use Mealy machines.

• Completely specified: a FSM is completely specified if it treats all possible
inputs in all states of the machine, being that the FSM has transitions to
all possible types of inputs in a state. Otherwise, it is considered partially
specified.

• Strongly connected: a FSM is defined as strongly connected if for each
pair of states there is a connection between them. It is considered initially
connected if from the initial state it is possible to access all other states of
FSM.

• Minimal or reduced: a FSM is defined as minimal if there are no two
equivalent states, that is, different inputs which generates same outputs.

• Deterministic and nondeterministic: a FSM is considered deterministic if
any state of machine has only one possible transition from an input to
another state. Otherwise, it will be nondeterministic, because a state will
have more than one transition from the same input, producing several
distinct outputs.

2.2.2 Statecharts

Statecharts is a formal modeling technique used to specify complex reactive systems
(HAREL, 1987). It can be considered as an evolution of state-transition diagrams.
It ends up in a cleaner representation of system behavior based on the following
features:

• Hierarchy of states: states can be encapsulated as super states and sub
states;

• Orthogonality: Concurrent activities can be represented, i.e., there may be
parallel states;

• Entry by history: Once a State becomes active, its initial state is activated.
However, in some situations, it may be interesting to return to the last
active state. This is possible by means of Entry by History feature; and

10

• Broadcasting: allows synchronization between orthogonal states of a sys-
tem. A broadcasting occurs when an internal event associated with a tran-
sition is triggered, this event most likely will fire other transitions, making
a chain reaction.

Statecharts also describes states, events and transitions, besides conditions, actions,
expressions and variables. A state can be divided in two groups: basic states, that
have no substates, and non-basic states, that have substates. A superstate (a non-
basic state) can be decomposed in two types: XOR, when this state cannot be
simultaneously in more than one substate, and AND, when the state is simultane-
ously in more than one substate. These two state types describe depth or hierarchy
and concurrent representation.

Figure 2.2 shows an example represented in Statecharts. The example has a super-
state root Sys, of type AND, with three substates: A, D and H. These substates of
Sys will be activated at any instant at the same time. A, D and H are considered
XOR substates, because when they are activated only one of their basic substates
can become active. These basic states are: B and C (of substate A); E, F and G (of
substate D); and, I and J (of substate H). The initial states of each substate A, D
and H are B, F and J, respectively. Each component has its own logic where the
reaction occurs based on events e, f, g, n, k and m. For example, the initial state
of component D is F. However, the initial state of example as a whole, is B, F, J.
To avoid a confusion between initial states of each component or superstate and
global state, the term “configuration” is used to indicate the active basic state in
each superstate.

Figure 2.2 - An example of Statecharts. Source: Harel (1987)

11

2.3 Test criteria and methods to FSM

As the MBT approach depends on a model, consisting of a set of states and tran-
sitions among these states, FSMs are convenient to represent the behavior of a
software. As previously presented, there are other types of models that can be used
to represent the behavior of system and generate test cases, but due to its simplicity
and similarity with graphs, FSM will be used within the scope of this work.

FSM describes the dynamics of software based on input stimuli present in the transi-
tion arcs. But, depending on input set or length it becomes impracticable to analyze
all the possibile transitions. So, strategies are needed to traverse a FSM and, at the
same time, maintain a significant coverage. There are several approaches to gener-
ate test cases in a software represented in FSM. But, to do this, it is essential to
understand some concepts of test criteria and methods that will be presented next.

2.3.1 Test criteria

A test criterion (or coverage criterion) is a definition of which elements of FSM
should be covered to generate a test sequence (or transition sequence). Usually, a
method has an objective to reach a coverage criterion, but a coverage criterion does
not necessarily need to be attached to a method. This is an important step of test
case generation, because depending on the criterion, different means can be used to
traverse a graph. The main test criteria (AMMANN; OFFUTT, 2008; MATHUR, 2008)
are:

• all-nodes: all reachable nodes of graph (or states of FSM) must be covered.
Using Figure 2.1, a path that complies this criterion is:W → P → B → W .

• all-edges: all edges of graph (or transitions of FSM) must be covered. So,
naturally, all nodes will be covered. An output to this criterion by Figure
2.1 is: [a/0]→ [b/1]→ [r/0]→ [b/1]→ [f/2]→ [c/2]→ [f/2].

• edge-pairs: this criterion requires all reachable paths of length 2 of a graph
are covered. So, it verifies if there is an edge pair that is reachable. An
output to this criterion using Figure 2.1 is: [a/0 − b/1] → [b/1 − r/0] →
[b/1− f/2]→ [c/2− r0]→ [c/2− f/2].

• fault model: the test cases are generated from the model to cover all fault
types identified in the domain. In FSMs, a fault model can be defined from
four categories of faults: operation error, transfer error, extra-state error

12

and absent-state error.

2.3.2 Methods

Over the years, several algorithms for automatic generation of test cases from FSM
model were proposed. In this dissertation, we consider a method an approach used
to find a set of test cases, and an algorithm is an implementation of this method. In
general, a method aims to achieve a test criterion by covering a model. Some known
methods are presented below:

Distinguished Sequence (DS) is a method proposed by Gonenc (1970) that uses dis-
tinguished sequences to generate test cases. These sequences, when inserted as input
to each state of FSM, will produce distinct outputs, called distinguished sequences.
If one analyzes the output produced by FSM from a specific distinguished sequence,
it one can infer which state the machine was originally. The ideal situation is that
there is a smaller sequence to generate a smaller number of test cases. It is possible
to use this method only on deterministic, complete, strongly related and minimal
FSMs.

W-method was proposed by Chow (1978) and is one of the oldest test methods.
This method generates a test sequence set that, when tested, analyzes if the model
is in conformity with specification. This method generates two test sets: description
(W) and transition coverage (P). This method needs that FSMs be deterministic,
complete, initially connected and minimal.

Transition Tour (TT or T-method) was proposed by Naito (1981) and traverses a
FSM departing at the initial state and visiting all transitions at least once, returning
to its initial state, generating a unique test sequence. In this method, the test se-
quence (or transition tour) is generated when randomly applying the input values in
the FSM, until all transitions are covered. TT can be applied only on deterministic,
strongly related and fully specified FSMs.

Unique Input/Output (UIO) (SIDHU; LEUNG, 1989) is a method that, such as DS,
generates a distinguished sequence among the states of FSM. But the analysis is
conducted from the input and output of a certain state with respect to all other
states of FSM, checking if the input and output are unique in the FSM. From the
sequence generated, one can verify if the FSM was in a particular state. So, for each
verification of a state the sequence can be unique. This method is applied only on
deterministic, partially connected, complete and minimal FSMs.

13

HSI method (DOROFEEVA et al., 2010) emerged as an improvement of W-method to
cover complete and partial FSM with lower cost. The difference between W-method
and HSI is in the generation of description set of states that will be tested. The
set of HSI is generated by separation sequence that distinguishes each state pair of
FSMs.

In graph theory (BONDY; MURTY, 2008), BFS is a search algorithm in graphs used
to perform a search or traverse a graph in spanning tree format. It starts at a root
vertex and explores all the neighboring vertices before moving to the next level
neighbors. Similar to BFS, DFS is also an algorithm for traversing a graph. DFS
visits each vertex of a graph, starting at a root vertex. Then, it traverses as far as
possible along each branch before backtracking, that is, the algorithm moves along
a spanning tree of that graph.

CPP is a classical optimal-path algorithm that solves the problem of finding the
best path in a graph visiting all edges (EDMONDS; JOHNSON, 1973). This problem
is focused on graphs that are not balanced, that is, the number of input and output
edges on a vertex is not the same. This algorithm has three major steps if the graph
is not balanced: 1) find the minimal path from a state to any another state; 2) find
the maximal matching between the unbalanced states; and 3) insert the minimal
path between two unbalanced states to balance the graph. If graph is balanced, a
Eulerian cycle search algorithm can be used to find the minimal path that visits all
edges.

Tabel 2.1 presents which test criteria is part of each method previously presented.

Table 2.1 - Relation between test criteria and test methods

Criterion Method
all-state (node) BFS, DFS

all-transition (edge) BFS, DFS, TT
edge-pair BFS, Switch Cover, H-Switch Cover

fault model W, HSI, DS, UIO

Since H-Switch Cover method is an update version of switch cover classic algorithm
developed at INPE (SOUZA et al., 2008), this method will be presented with more
details in next subsection.

14

2.3.2.1 Switch Cover and H-Switch Cover

Switch Cover is a classic method that specifies all edge-pair transitions must be
executed at least once (PIMONT; RAULT, 1976). The level of complexity of this
method depends on the size of FSM, because the greater the number of states,
more is the time it will take to traverse the FSM.

One of the main characteristics of Switch Cover criterion is to generate a graph from
an FSM, known as Dual Graph. Formally, a graph is an ordered pair G = (V, E)
consisting of a set V of vertices (or nodes) and a set E of edges (or arcs). Each edge
in a graph connects two vertices (BONDY; MURTY, 2008). From the Dual Graph,
methods for graphs can be used to generate test sequences. The classical Switch
Cover algorithm, for example, after obtaining the Dual Graph, has to balance the
graph. Then the balanced graph is traversed, generating test cases always starting
at an initial vertex and returning to it. Using the FSM shown in Figure 2.3, the
dual graph is constructed as follows:

Figure 2.3 - An example of FSM. Source: (MARIANO et al., 2016)

a) Create vertices from the original FSM. The transitions of the original
FSM of Figure 2.3 must be converted into vertices (or nodes) (Figure
2.4(a)), in which W is the initial state. So, in this new graph, the new
vertices “a” and “c” become the initial vertices for the method, because
they were the transitions leaving state W.

b) Add vertices. Based on the transitions of the original FSM, the graph
vertices must be created. For example, in the original FSM, there is a
transition a from state W to state P (Figure 2.4(b)), and there is a
transition b leaving state P. Therefore, in the new graph that is being
created, an edge is added connecting the new vertices a and b (Figure

15

2.4(c)). The same procedure is applied to all other pairs of transitions
of the original FSM. Figure 2.4(c) shows the complete graph. After this
process a directed graph is obtained. A directed graph or digraph is formed
by vertices connected by directed edges.

Figure 2.4 - Creation of the dual graph from the original FSM. Source: (MARIANO et al.,
2016)

(a) Constructing the Dual
Graph.

(b) Edges creation from original
FSM.

(c) New edges and ver-
tices of graph.

c) Balacing. The graph must be balanced analyzing the polarities of vertices.
Balancing is obtained by duplicating the edges in such a way that the
number of incoming edges is equal to the number of outgoing edges of the
vertex (i.e. the degree of the vertex is zero). In practice, each vertex must
have the same number of input and output arcs, permitting the graph to
posses an Eulerian cycle where each edge is visited only once (LIPSCHUTZ;

LIPSON, 1997). For the classic Switch Cover algorithm, an example of this
increased number of edges can be seen in Figure 2.5, which shows the
balanced Dual Graph. The dashed edges mean the addition of new edges
due to balancing process.

This work will use a new version of this method, H-Switch Cover (HSC) (SOUZA et

al., 2017). Its main feature is the ability to cope up with complex FSMs, improved
performance and the use of Hierholzer algorithm (NEUMANN, 2004) as a heuristic to
ensure that all edges are visited exactly once. The Hierholzer algorithm is based on
the Euler theorem (NAITO, 1981) that generates an Eulerian cycle. The algorithm
steps are:

16

Figure 2.5 - Balanced graph by classic Switch Cover algorithm.

1. Start with any edge of the initial vertex and select edges not yet visited
until a cycle is closed;

2. If there are still any unvisited edges, start with an edge that is a part of
an already existing cycle and create a new cycle as in the first step; and

3. If there are no more edges to be visited, an Eulerian cycle must be con-
structed from the existing cycles, joining them from a common edge.

Figure 2.6 shows the result of balancing by HSC. Noticeably the graph resulted by
the balance step with HSC is smaller than the one obtained by classic version of
algorithm. An example can be analyzed in the vertex r, in which it has two edges of
inputs and one of output. This vertex needs a new edge for vertex b to be balanced.

Figure 2.6 - Graph balanced by HSC algorithm. Source: (MARIANO et al., 2016)

17

Finally, there is now a need to generate the test sequences traversing the Dual Graph,
starting at any initial vertex and returning to itself. Using the state a as being initial,
the following Eulerian cycle (and test sequences) are generated: abfcfcrbrbfa.

2.4 Related work

The first step of this master’s work was conducting a systematic mapping in order
to identify which are the main approaches used in the context of MBT. Therefore,
we present below some studies that have conducted other secondary studies (sys-
tematic mappings or systematic literature reviews) in the same context. Next, we
present some work that conducted experiments to compare different FSM methods
to generate test cases.

Barmi et al. (BARMI et al., 2011) conducted a systematic mapping with respect to the
alignment of specification and testing of functional and non-functional requirements
to identify gaps in the literature. The map summarizes studies and discusses them
within sub categories with MBT and traceability. The main results showed that the
papers that have linked the specification with test requirements focused on model-
centric approaches, code-centric approaches, traceability, formal approaches and test
cases, with focus on problems of MBT and traceability.

Siavashi and Truscan (SIAVASHI; TRUSCAN, 2014) conducted a systematic review
in order to understand how an environment model can be used in MBT and chal-
lenges. Environment modeling is an activity that specifies a part of the real world,
in which the system is integrated. From the characteristics and advantages, the au-
thors conclude that using environment models can be helpful in robustness testing,
safety testing and regression testing. However, methodological aspects of creating
environment models are only discussed in a limited number of studies.

Gurbuz and Tekinerdogan (GURBUZ; TEKINERDOGAN, 2017) presented a systematic
mapping to describe the advances in MBT for software safety. The results show that
the safety area of MBT is broad and applicable to several domains with focus on
reducing costs and increasing test coverage. Nevertheless, the solutions proposed are
focused on specific domains, making the solution less generic and less reusable.

More recently, Khan et al. (KHAN et al., 2017) showed a systematic review in order
to analyze the quality of empirical studies with MBT. The results identified that
the community of MBT needs to provide more details in reporting guidelines, and
few papers were applied in industry artifacts.

18

Each presented study conducted some kind of secondary study on MBT, but with
different purposes. In the same way as related works, we also conducted a secondary
study on MBT, however, our focus was to systematically map the methods, criteria,
formal models for generating test cases and the evaluation strategies of the generated
test cases.

So, now we will show other publications from the literature that propose and com-
pare methods that generate test cases from FSM. Souza et al. (2008) presented an
empirical evaluation of cost and efficiency between two test criteria of the Statechart
Coverage Criteria Family (FCCS) (SOUZA, 2000) all-transitions and all-simple-paths
criteria, and the Switch Cover criterion for FSMs. Mutation analysis was used to
evaluate the criteria. Cost is defined according to the size of test suite and the time
needed by a test suite to kill a mutant. Efficiency is related to the ability a test suite
has to kill mutants (mutation score). The results showed that two FCCS criteria and
Switch Cover method presented the same efficiency. But, all-simple-paths criterion
presented a better cost because its test set is smaller and was faster in identifying
the mutants than other test sets, meaning that the criterion can detect software
faults faster than other criteria.

In Simao et al. (AO et al., 2009), the authors describe an experimental comparison
among different coverage criteria for FSMs, such as state, transition, initialization
fault, and transition fault coverage. To this, an approach was developed to generate
suitable test cases for each one of the criteria without depending on the chosen
method. First, a test suite that suits a chosen criterion was generated, and then
it is minimized using a generalized greedy algorithm. The results showed that the
proposed approach was faster than others found in the literature, despite a little loss
in the reduction power.

Dorofeeva et al. (2010) presented an overview and an experimental evaluation of
FSM methods: DS, W, Wp, HSI, UIO, and H. They analyzed the criteria on different
aspects, such as test suite length and derivation time. The experiments are conducted
on randomly generated specifications and on two real-world protocols. The results
showed that the methods, except UIO, produce a test set almost independent of
specification length, and W-method produces a larger test set than other methods.
About complete test set, H method overcomes the other methods with its test set
being 40% of the W-method test set.

Endo and Simao (2013) presented an experimental study that compared the com-
plete test sets generated automatically using the methods W, HSI, SPY, H, and

19

P. They analyzed the number of test cases and their length, the total cost (i.e.,
the length) of each test suite, and the effectiveness of the methods using mutation
testing for FSMs. In order to conduct the study, FSMs were randomly generated
varying number of states, inputs, outputs, and transitions. The results showed that
SPY produced, on average, greater test cases and HSI had smaller test cases. This
indicates that the most recent methods in the literature produce a smaller test suite
than traditional methods. The P method generates a shorter test set. And also, it
was identified that all methods had a rate of 92% of fault detections.

Mariano et al. (2016) conducted an experiment that compared classic algorithms
of generation of test cases for FSM models, such as Depth-First Search (DFS) and
Breadth-First Search (BFS), with H-Switch Cover method. This experimental study
considered randomly generated and real-world FSMs. The analysis considered the
number of test cases, length of test suite, average of test sequences and generation
time of test cases. Generally, the three algorithms showed similar results when com-
pared with randomly and real-world FSMs. In terms of number of test cases and
length, H-Switch Cover method presented better results. But, considering the aver-
age length of test cases, DFS presented the best result. Finally, in terms of time to
generate test cases, DFS and BFS presented better performance.

Finally, in Souza et al. (2017), an investigation of cost and efficiency was conducted
comparing the FSM criteria: H-Switch Cover, UIO and DS. In order to analyze the
test cases’ efficiency, mutation analysis (mutation score) was adopted. With respect
to cost, the size of the test set generated (number of events) was considered. The
investigation was conducted considering two embedded software products (space
applications). As a result, in terms of efficiency, the three methods presented good
performances about score mutation. In terms of cost, considering the quantity of
events, in the first case study UIO and DS were better; but in the second case study,
H-Switch Cover was better. Also, in the second case study, H-Switch Cover got a
better performance in relation to the average and standard deviation of mutation
scores and quantity of events of test cases generated. In relation to cost (time to
detect a fault), H-Switch Cover was the fastest, because it presented smaller number
of test cases.

20

3 APPROACHES TO GENERATE TEST CASES IN MODEL-BASED
TESTING: A SYSTEMATIC MAPPING

The first step to achieve the objective of this dissertation is to investigate approaches
to automatically generate test cases in MBT, such as methods, criteria, formal mod-
els for generating test cases. To achieve this, we conducted a systematic mapping
to summarize the main approaches used in such a context. A systematic mapping
provides a broad overview of an area of research, determining whether there is re-
search evidence on a particular topic (KITCHENHAM, 2007; PETERSEN et al., 2015).
Conducting the mapping study and its results can be referred to in MARIANO et
al. (2019). This chapter is divided in the following sections: Section 3.1 shows the
protocol of systematic mapping. Section 3.2 shows the how the mapping was con-
ducted. Section 3.3 shows the results of this systematic mapping. Section 3.4 shows
the discussion of results.

3.1 Research Protocol

The research method was defined based on the guidelines given in Kitchenham
(2007) and in Petersen et al. (2015). The method involves three main phases: (i)
Planning: refers to the pre-review activities, and establishes a protocol, defining the
research questions, inclusion and exclusion criteria, sources of studies, search string,
and mapping procedures; (ii) Conducting: focuses on searching and selecting the
studies in order to extract and synthesize data from included ones; (iii) Reporting:
is the final phase and it writes up the results and circulates them to potentially
interested parties. Following, the main parts of the mapping protocol used in this
work are presented.

3.1.1 Research Questions

This mapping study aims at answering the following Research Questions (RQs):

RQ1. When and where have the studies been published?

RQ2. What are the methods used in the generation of test cases?

RQ3. What are the test criteria used in the generation of test cases?

RQ4. What modeling technique is presented for generating test cases?

RQ5. What evaluation strategy is carried out in the selected study?

21

3.1.2 Inclusion and Exclusion Criteria

The selection criteria are organized in one inclusion criterion (IC) and seven ex-
clusion criteria (EC). The inclusion criterion is: (IC1) The study must present an
empirical approach for test case generation in MBT. The exclusion criteria are:
(EC1) The study is published as a short paper or extended abstract; (EC2) The
study is not written in English; (EC3) The study is an older version (less updated)
of another study already considered; (EC4) The study is not a primary study, such
as editorials, summaries of keynotes, workshops, and tutorials; (EC5) The study
does not present an empirical approach to generate test cases; (EC6) The full paper
is not available; and (EC7) Studies published before the year 2000. The EC7 was
defined based on Offutt and Abdurazik (1999) study. This study is referred to as
one of the first MBT approaches. Thus, in this mapping we consider only studies
published after that date.

3.1.3 Keywords and Search String

The search string considered two areas, MBT and test case generation (Table 3.1),
and it was applied in three metadata fields (namely, title, abstract and keywords).
The search string was modified to be adapted to particularities of each source.

Table 3.1 - Keywords for the search string

Areas Keywords
MBT “MBT”, “model based test”, “model based testing”, “model based

tests”, “MDT”, “model driven test”, “model driven testing”, “model
driven tests”

Test Case “test criteria”, “test criterion”, “testing criteria”, “testing crite-
rion”, “generation method”, “generation algorithm”, “test cases
generation”

Search String: (“MBT” OR “model based test” OR “model based testing”
OR “model based tests” OR “MDT” OR “model driven test” OR “model
driven testing” OR “model driven tests”) AND (“test criteria” OR “test
criterion” OR “testing criteria” OR “testing criterion” OR “generation

method” OR “generation algorithm” OR “test cases generation”)

22

3.1.4 Source

We chose to work with Scopus1 database, since this source is considered the largest
abstract and citation database of peer-reviewed literature, with more than 60 mil-
lion records. In addition, Scopus attaches papers of other international publishers,
including Cambridge University Press, Institute of Electrical and Electronics Engi-
neers (IEEE), Nature Publishing Group, Springer, Wiley-Blackwell, and Elsevier.

The studies returned from sources in the searching phase were cataloged and stored
appropriately. This catalog helped us in the classification and analysis procedures.
With the studies remained after applying IC and EC, the snowballing process was
conducted. First, referring to papers cited in these remaining studies (backward
snowballing) and second, referring to those studies that cited these remaining studies
(forward snowballing).

3.1.5 Assessment

Before conducting the mapping study, we tested the mapping protocol. This test
was conducted in order to verify its feasibility and adequacy, based on a pre-selected
set of studies considered relevant to our investigation. First, the review process was
conducted by the author of this dissertation, and, only then, three specialists carried
out the review validation. The specialists analyzed the studies using three different
samples.

3.2 Conducting the mapping study

In this section the main steps that we performed in this mapping study are discussed.
Then we followed a selection process as shown in Figure 3.1.

We considered the studies published until March 2018. As a result, 385 publications
were returned by Scopus. The selection process was divided into two stages. In the
1st stage, inclusion and exclusion criteria were applied considering the title, abstract
and keywords, so 156 publications (approximately 41%) were eliminated. Although
the publications mention, in the abstract, the terms contained in the search string,
they did not present an approach of test case generation in MBT context. In the 2nd

stage, the exclusion criteria were applied considering the entire text, resulting in 45
studies (approximately 12% of total articles).

Over these 45 studies considered relevant, we performed backward and forward snow-

1https://www.scopus.com/home.uri

23

Figure 3.1 - Selection process

balling. The backward snowballing resulted in 1173 studies. From these 1173 studies,
the selection criteria were applied considering the title, abstract and keywords. Next,
the selection criteria were applied considering the full text. This stage was carried in
an iterative form. Three iterations were conducted and 18 new studies were selected.
The forward snowballing returned 670 studies. Four iterations were conducted, re-
sulting in 34 new studies. As a result, we got a final set of 97 studies2.

3.3 Data Extraction and Synthesis

After selecting the primary studies, we analyzed each one in order to answer the
research questions. Next, we present the main findings from data extraction and
synthesis. The complete mapping of individual studies and its categories can be
accessed at: https://goo.gl/MGfa9f .

In data extraction and synthesis, notice that for some RQs the sum of all classifica-
tions might be greater than the total number of papers in the systematic mapping.
This occurs because a given paper can answer a RQ with more than one target
(models, methods) of our investigation. For instance, a given paper may answer
RQ2 with more than one mentioned method and, for example, answer RQ3 with 3
mentioned criteria.

RQ1. When and where have the studies been published?

Figure 3.2 shows the distribution of the studies by years. The results suggest that
research on MBT has been increasing, with a significant increase from 2014 to 2017.
In fact, the period between 2011-March 2018 represents 72.2% of all publications of

2The references of the 97 selected studies can be accessed at: https://goo.gl/MGfa9f.

24

this mapping. That indicates the increased interest in MBT recently. In addition,
in relation to the publication vehicle, Conferences are the sources with most publi-
cations representing 54.6% and Journals 41.2%. 4.1% of total number of papers we
did not identify the source of publication.

Figure 3.2 - Distribution of studies by year.

RQ2. What are the methods used to generate test cases?

This RQ led us to identify the methods that have been used in MBT. Figure 3.3
shows the main methods identified in the systematic mapping. A total of 33 types of
methods were identified. Most of the papers propose a new method (24.1%), always
to improve an existing method in terms of efficiency and coverage. For example,
Hessel and Pettersson (HESSEL; PETTERSSON, 2007) proposed a new global algo-
rithm that uses less memory and time to generate a test suite. In Dorofeeva and
Koufareva (DOROFEEVA; KOUFAREVA, 2002), there was a proposal of a new modifi-
cation of W-method that has some improvements to the classic algorithm. Despite
based on a classic method, it is considered as a new method proposed by the author.
The same occurs in Souza et al. (SOUZA et al., 2017) by proposing a new method
called H-Switch Cover based on a classic algorithm n-switch set cover. So, both
methods were classified in this research question (H-Switch Cover and n-switch set
cover).

Figure 3.3 - Methods identified in the selected studies

25

Optimal-path methods have also been used in the generation of test cases (13.5%),
as shown in Figure 3.3. These methods are very useful to generate test cases with
maximum coverage of a system model, while optimizing the number of test cases.
Different types of methods were selected in this group. For example, Belli and Holl-
mann (BELLI; HOLLMANN, 2008) employed the k-transition coverage to generate a
test case for each of length k. Then, it is minimized using the Floyd-Warshall al-
gorithm to generate the shortest path. In Julliand et al. (JULLIAND et al., 2018), a
method was proposed to generate test cases from a predicate abstraction of a system
specified as an event-based system. This method uses the Chinese Postman Problem
to cover the transitions of the given model.

Finally, we also identified that the well-known classic methods continue to be used
in MBT. Depth-First Search (DFS) method, for instance, was the most mentioned
(12%). This method was used to generate a complete and fast coverage of the model,
since it is well-known and very simple to implement. Many studies used the DFS con-
currently with another criterion or method, such as Takagi et al. (TAKAGI et al., 2010)
that uses DFS to satisfy the n-switch coverage criterion or applied in a tool to auto-
mate all the MBT process like (CARTAXO et al., 2008). We also found other studies
that do not focus on generation of test cases, but recommend or cite the method to
be used for test case generation. For example, Rocha and Martins (ROCHA; MARTINS,
2008) focus on the generation of stubs to execute the test cases in an environment,
and recommend that DFS, for example, can be used to generate test cases.

RQ3. What are the criteria used in the generation of test cases?

RQ3 focuses on verifying the criteria used in the studies identified. Figure 3.4 shows
the main criteria found in the selected studies. We identified 29 types of criteria,
and the three most mentioned criteria are related to graph coverage: All-edges of
a graph (or equivalent representation, such as transitions of an FSM) with 36.5%,
followed by all-states (13.9%) and all-paths (12.4%).

Many methods identified in RQ2 use a single criterion to generate test cases. For
instance, Belli et al. (BELLI et al., 2009) propose a method that uses an optimal-
path finding algorithm to generate test cases covering all transitions. Devroey et
al. (DEVROEY et al., 2014) proposed an approach to generate a suite of abstract test
cases that satisfies the all-states criterion. In Vu et al. (VU et al., 2015), the authors
proposed a method to automate test data generation and generated all possible test
scenarios. That study does not directly mention the criterion used by algorithm, but

26

Figure 3.4 - Criteria identified in the selected studies

it is implicit that all-paths is used.

Other studies adopt a method to cover two or more criteria. For instance, Hessel
and Pettersson (HESSEL; PETTERSSON, 2007) apply both all-transitions and all-
states to generate test cases using the global algorithm. Belli et al. (BELLI et al.,
2014) introduce an event-oriented approach to MBT of Web Service Compositions.
In order to do this, their algorithm uses three different criteria to generate test
cases: 2-length sequences (all edges), 3-length sequences (all edge-pairs), and 4-
length sequences.

RQ4. What formal model is presented for generating test cases?

A large number of formal models for generating test cases were observed. However,
a large number of Unified Modeling Language (UML) models used in the papers
drew our attention. So, we analyzed this RQ in two steps. First, we analyzed only
UML models, in order to identify which UML diagram was the most used. Then, all
other formal modeling techniques were analyzed.

Figure 3.5 shows the distribution of UML models. State diagram is the most used.
Some studies convert a UML diagram to another formal model to generate test
cases. For example, in Anbunathan and Basu (ANBUNATHAN; BASU, 2013), a state
diagram is converted into Extended FSM (EFSM), and then to Control Flow Graph
(CFG), to generate test cases applying some criteria like transition coverage, path
coverage, or dataflow coverage. In other studies, the authors use state diagrams to
generate test cases directly. For instance, Li and Offutt (2017) analyze the ability of
test oracles in revealing failures. To do so, test suites are generated from UML state
diagrams applying ten elicited test oracle strategies.

Figure 3.6 presents the main identified formal models. In general, similar to UML
diagrams, formal models based on states are very much accepted in the literature,

27

Figure 3.5 - UML models

with FSM being the most used to represent a system. In Majeed and Ryu (MAJEED;

RYU, 2016), for instance, a novel testing approach is proposed to combine OS-level
replay mechanism with MBT and generate test cases applying the n-switch set cover
in an FSM. Also, other studies proposed an extended version of FSM for a specific
problem; for example, Yao et al. (YAO et al., 2014) proposed a new model (Pipelined
EFSM) for Software-Defined Networking data plane. Despite state diagram repre-
sentation in general (e.g., FSM, Statecharts, UML state diagram) can be considered
as a graph representation, other formal models based on graphs (like event-driven
models) are also popular in literature.

Figure 3.6 - Formal models used

RQ5. What evaluation strategy is carried out in the selected study?

Finally, RQ5 verifies what are the most used evaluation strategies in the literature.
This evaluation strategy is related to the test cases generated and also the model
used. We separated the evaluations into two categories (test case and model), because
we observed that these were the most used in the selected studies.

28

Evaluations related to test cases were more commonly used in the selected studies.
Some evaluations are: number of test cases (18.2%), fault detection (11.5%) and mu-
tants analysis (7.4%). In Belli et al. Belli et al. (2013), for instance, a mutation-based
approach was proposed in order to test Go-Back functions modeled by pushdown
automata. In Ali et al. (2007), a technique is proposed that combines UML dia-
grams and Statecharts to generate an intermediate model (SCOTEM) to generate
test paths, also defining coverage criteria to be used in the model. Validation of this
technique analyzes fault detection capability, generating mutant programs. Belli et
al. (2012) proposes a framework that uses PDA related to context-free language to
generate a small test set, proposing new mutation operators and a novel criterion to
generate negative test cases. Evaluation of the framework is based on the analysis
of the number of negative and positive test cases generated, as well as their average
length, number of events executed, number of faults and the performance of fault
detection.

With respect to model evaluations, they were based mainly on number of edges
(7.4%), number of states (6.8%) and fault coverage (4.1%) in a model. For example,
in Satpathy et al. (SATPATHY et al., 2012), they propose a method to cover parallel
and hierarchical stateflow model, without flattening the components of the model,
and generate test cases. The approach is evaluated comparing the tool proposed
with another commercial tool in coverage of states and transitions. Cartaxo et al.
(CARTAXO et al., 2011) propose using a similarity function to generate less redundant
test suite, for the purpose of effectiveness. The approach is compared with a random
selection and uses the transition coverage to evaluate it.

Finally, we identified evaluations for both test cases and models, such as time (24.3%)
and memory used (2.7%). The time is the most mentioned evaluation in this system-
atic mapping. Some studies use the time as a performance metric of computation
time. For example, Dang and Nahhal (DANG; NAHHAL, 2009) proposed a framework
to use conformance testing in continuous and hybrid systems and a method based
on Rapidly-exploring Random Tree, called RRT, to generate test cases. The time
is used to analyze the efficiency of the method in linear systems, comparing both
methods. Another study that also uses RRT algorithm is presented by Proch and
Prabhat (PROCH; MISHRA, 2014) in which they proposed an approach to generate
directed test cases in hybrid systems. In order to validate the approach, time is
used to compare RRT proposed with the state-of-art RRT technique. In Wang et al.
(WANG et al., 2016) time is used in an empirical evaluation of a tool, Tansuo, that
uses a proposed approach to generate navigation graphs for dynamic web applica-

29

tions using combinatorial testing. The paper also analyzes how much time is needed
to generate a navigation graph and to generate test cases using the t-way coverage
criterion.

3.4 Discussion

In this Section, directions to several approaches associated to MBT have been iden-
tified. Some relevant points are discussed as follows.

MBT is a research topic that shows itself in a constant growth, as can be seen in
RQ1. This can also be confirmed by the number of secondary studies that have been
conducted. We have identified ten secondary studies with different purposes and
each with a considerable number of primary studies returned, which we believe are
in the strong interest in this research area.

Another result that makes us infer the constant growth of interest in this area of
research is the number of contributions on new methods proposed for the generation
of test cases. As can be observed in RQ2, there is a great effort spent in developing
new test methods; out of the 97 selected studies, 32 proposed a new method for
generating test cases from formal models. We also identified 29 test criteria in RQ3.
The formal models used were also quite varied with more than 24. And, with respect
to RQ5 we identified 145 types of evaluations conducted in the selected studies
considering the test cases generated and models used.

One of the main features of MBT is the automated generation of test cases usually
based on a formal representation of the software specification. We noted by the sys-
tematic mapping that the industry has an inclination to employing UML models (22
UML models), due to the approximation with user and focus on systems that need
the user control. On the other hand, in the case of academy, models like FSM (26)
and Statecharts (4) are more used. In particular, FSMs have been heavily adopted to
generate test cases for different kinds of applications, such as Web applications and
embedded systems, specially reactive systems. FSM is commonly used for testing
due to its rigor and simplicity. Great effort has been spent on the development of
methods and criteria for FSM that select or generate effective test sets capable of
revealing all faults from a given domain, as can be seen in RQ4. In general, these
models (FSM and Statecharts) apply graph methods to generate test cases, either
to obtain the best path or high coverage.

With respect to the evaluation strategy carried out in the selected studies, we have

30

identified that the researchers usually divide the evaluations into two main cate-
gories: test cases and formal models. Evaluations related to test cases are more com-
monly used (39 different type of evaluations). Different analyses in the test cases
are conducted to understand the behavior of the test methods. A tester can identify
the trade-offs between test case characteristics, such as test suite length, and fault
detection ratio, as shown in RQ5, and consequently choose the best method to fit
for a given project.

It is important to emphasize that our focus was on studies that addressed, mainly,
methods for test case generation. We identified 97 studies addressing methods, for-
mal models and evaluation strategies on MBT. The major contribution of this Sec-
tion was to summarize and highlight the main aspects associated to MBT, but
focused on the methods, formal models and evaluation strategies most used in the
existing literature. These results could be of interest to several researchers involved
with MBT. We believe that our summarization can help to direct researchers in
their future research providing a pointer to appropriately position new activities in
this research topic.

31

4 GRAPH-BASED METHODS EMPLOYED TO GENERATE TEST
CASES FROM FSMS: AN EXPERIMENTAL STUDY

The second step of this dissertation was to compare graph-based methods employed
to generate test cases from FSM models considering the mapping results presented
before. It is divided in the following sections: Section 4.1 shows which methods and
criteria we used for evaluation. Section 4.2 defines how the experimental study was
conducted in this work. Section 4.3 presents the results of this study. Section 4.4
shows the discussion of results.

4.1 Criteria and methods analyzed

In this study, considering the results found by the systematic mapping, we decided to
investigate two criteria and four methods, divided by two main groups of methods,
employed to generate test cases from FSM models: graph-search methods (Breadth-
First Search, Depth-First Search) and Eulerian methods (H-Switch Cover and Chi-
nese Postman Problem). BFS, DFS and CPP were chosen due to the results obtained
from Systematic Mapping. On the other hand, HSC was chosen as it is an Eulerian
method and moreover it is already being used in the WEB-PerformCharts (SOUZA

et al., 2008).

In graph theory (BONDY; MURTY, 2008), BFS and DFS are used to perform search
for a particular vertex or traverse a graph. BFS focuses on traversing a graph,
represented in the format of a spanning tree, exploring all the neighboring vertices
of a certain level and moving to the neighbors of the next level. On the other hand,
DFS visits each vertex, of a given level, starting at the root and traverses each
branch before backtracking and moving on to the next branch.

As presented in Section 2.3.2.1, HSC (SOUZA et al., 2017) is a method, based on
the classical Switch Cover (PIMONT; RAULT, 1976), that specifies the ATP criterion
must be executed at least once. One of the main characteristics of Switch Cover is
to generate a transition-pair balanced graph from a FSM, known as Dual Graph.
The main feature of HSC is the ability to cope with complex FSMs and the use of
Hierholzer algorithm (NEUMANN, 2004) as a heuristic to ensure that all edges are
visited exactly once. The Hierholzer algorithm is based on Euler theorem (NAITO,
1981) that generates an Eulerian cycle.

CPP is a classical optimal-path method that solves the problem of finding the best
path in a graph visiting all edges (EDMONDS; JOHNSON, 1973). This problem is

33

focused on graphs that are not balanced, that is, the number of input and output
edges on a vertex is not the same. This method has three major steps if the graph is
not balanced: 1) find the minimal path from a state to any another state, using the
Floyd-Warshall algorithm; 2) find the maximal matching between the unbalanced
states, with the Hungarian Method; and 3) insert the minimal path between two
unbalanced states to balance the graph. In this last step, BFS algorithm was used to
search the path between two unbalanced nodes. If the graph is balanced, an Eulerian
cycle search algorithm can be used to find the minimal path that visits all edges.

All the four methods were implemented using Java language (version 1.8). While
BFS, DFS and H-Switch Cover were implemented using tree data structures, sep-
arating the states and transitions of a FSM in different classes, CPP used matrix,
a simple data structure, mapping each row and column of the matrix as a state of
FSM. All the code can be accessed at GitHub1.

4.2 Experimental Study

Figure 4.1 shows the study overview of this work. From a FSM, a criterion can be
chosen to define how the FSM will be covered. In all-transitions there is no need
for another step, but in all-transition-pairs it is necessary to cover the original FSM
and generate a Dual Graph. After this step, it is necessary yo choose a method
to generate test cases: graph-search methods or Eulerian methods. In graph-search
methods, there is for another step. So, with all-transitions criterion, the graph-search
method will generate test case from the original FSM, or with all-transition-pairs,
from the Dual Graph. On the other hand, for Eulerian methods it is necessary to
balance the graph. In all-transitions, the Eulerian methods will balance the original
FSM, but in all-transition-pairs they will balance the Dual Graph. After this, the
method selected will generate test cases and the results will be compared with certain
evaluations.

The methods were evaluated with 875 randomly generated FSMs and twenty-one
from the real-world systems. We adopted reduced and deterministic FSMs generated
in (ENDO; SIMAO, 2013) for the random case. We selected machines with four inputs,
four outputs and the number of states ranging from four to twenty. For each FSM
configuration, approximately 100 different FSMs were adopted, and the average
metrics were calculated to reduce the influence of particular FSM characteristics on
the results.

1https://github.com/MatheusMMariano/H-Switch_Cover

34

https://github.com/MatheusMMariano/H-Switch_Cover

Figure 4.1 - Study overview

With respect to the real-world FSMs, two software products embedded into com-
puters of space projects under development at National Institute for Space Research
(INPE) were used in this experiment. The first software is Alpha, Proton and Elec-
tron monitoring eXperiment in the magnetosphere (APEX). The second software is
Software for the Payload Data Handling Computer (SWPDC), which was developed
in the context of the Quality of Space Application Embedded Software) (QSEE) re-
search project. Details for the two software products used and their FSMs can be
found in (SOUZA et al., 2017).

Evaluation of methods is not an easy task, because it is necessary to analyze pa-
rameters before defining if a method is more efficient than other. Each method has
its peculiarities, which can be of advantage in some cases and a problem in others.
So, evaluating a method does not only check if a method is more efficient, but also
checks in which cases a method can be more or less advantageous. In our study, each
method generated test cases by AT and ATP criteria. The methods were applied in
graphs generated from FSMs (AT) and in a Dual Graph (ATP). The choice of these
criteria was guided by the systematic mapping, which showed the most used meth-
ods and criteria in test case generation from FSMs. With respect to test algorithm
evaluation, we analyzed:

• Number of test cases. We consider the number of test cases as the
number of resets in a test suite, that is, number of test sequences.

• Test suite size. The number of input events as the test suite size was
considered.

35

• Length of smallest and largest test cases. Length of the smallest and
largest test cases for each FSM configuration. An average is calculated
since each FSM configuration have approximately 100 FSMs.

• Average length of sequences. This considers the sum of number of input
values in each test cases divided by the total number of test sequences.

• Standard deviation and Distribution. These metrics are calculated in
relation to average length of test sequences.

• Generation time. This refers to the time (in milliseconds) needed to
generate a test suite. Each configuration was executed 100 times and the
average generation time was measured.

• Efficiency. The efficiency of a test case is related with the capacity in
finding a fault in the code. Fault-Model Testing, for example, uses the
information of most common types of faults in the software development
to derive the test requirements. The mutant analysis criterion, shown in
Section 2.1, inserts faults in the original software and generates mutants as
a means to find the difference between the behavior of the original software
with mutant, and a certain test case generated by original model. In this
study, the test cases generated for each method and criterion was modified
from a

This experiment was run on a iMac computer (21.5-inch, Mid 2011), with an Inter
Core i5 processor running at 2.7 GHz, memory of 8 GB (1333 MHz DDR3) and
running macOS High Sierra on Version 10.13.6.

4.3 Results of test cases

4.3.1 Results for randomly generated FSMs

Number of test cases. Figure 4.2(a) shows how many test cases were generated
by the methods for each FSM configuration with AT and Figure 4.2(b) by ATP
criterion. BFS generated more test cases due to the construction of a spanning tree
and number of leaf nodes increasing as graph size increases. The result of HSC and
CPP is always the smallest number and the same in all FSM configurations since
both produce a single Eulerian cycle for each initial state.

36

Figure 4.2 - Number of test cases results.

(a) (b)

Test suite size. Figures 4.3(a) and 4.3(b) show how the test suite size varies con-
sidering the number of states. CPP ended up turning out the best method in AT
and ATP criteria, generating a minimum number of inputs with and without resets.
DFS, on the other hand, generates more input values due to the nature of the depth
of the graph right at the first time. Despite HSC and CPP balancing the graph and
generating an Eulerian sequence, this result was expected since CPP generates a
minimum balanced graph and smaller than the one generated by HSC.

Figure 4.3 - Test suite size results.

(a) (b)

Length of smallest and largest test cases. Figures 4.4(a) and 4.4(b) show the
average length of shortest test case of each FSM configuration, and Figures 4.5(a),
4.5(b) show the average length of largest test case. In all cases, BFS produced test
cases with the shortest length. With respect to methods that generate Eulerian
cycle, CPP was better than HSC, since its balancing process generates a minimum
graph. Also, the shortest and largest test case results are the same as HSC and CPP

37

since Eulerian cycle generates a minimum sequence that visits all transitions.

Figure 4.4 - Length of smallest test cases results.

(a) (b)

Figure 4.5 - Length of largest test cases results.

(a) (b)

Average length of test cases. Figures 4.6(a) and 4.6(b) show the average length
of test cases generated by each FSM configuration. First, for each test suite an
average was calculated and then the same process was repeated for each FSM con-
figuration. BFS was the method that generated the smallest set of test sequences.
Analyzing Eulerian methods, CPP generated a smaller sequence set than HSC, once
this method generates a minimum balanced graph and, then, an Eulerian path. Also,
all sequences of CPP are smaller than or equal to HSC.

Standard deviation. Figures 4.7(a) and 4.7(b) show the standard deviation for
each method by FSM configuration. In all scenarios, DFS has high standard devia-
tion and high variance of test cases. CPP has 0 standard deviation and variance in
all the cases, indicating that the test cases generated had the same length without

38

Figure 4.6 - Average length of test cases results.

(a) (b)

any change among them.

Figure 4.7 - Standard deviation of average of test cases results.

(a) (b)

Distribution of average length of test sequences. Figures 4.8, 4.9, 4.10 and
4.11 show the distribution of average length of test sequences by number of states.
This result is presented as a violin plot, a style that shows the dispersion of data set
between the maximum and minimum points. The larger is the curve, higher is the
number of sequences that have a similar length. White point represents an average
value for all graphs. In general, CPP has a similar distribution in both AT and
ATP, with length between minimum and maximum less than HSC. These results
show how the balancing step of Eulerian algorithm can affect the performance of
method. BFS shows a tendency in generating test sequences with length too long
or too small as the number of states grow. In DFS the average seems to be varying,
but the scale of DFS is larger than BFS. So, results show the behavior of standard
variation in DFS.

39

Figure 4.8 - Dispersion of average length of test cases by BFS.

(a) AT criterion. (b) ATP criterion.

Figure 4.9 - Dispersion of average length of test cases by DFS.

(a) AT criterion. (b) ATP criterion.

Generation time. Figures 4.12(a) and 4.12(b) show the generation time of test
cases of each method. For AT criterion, BFS, DFS and CPP methods had simi-
lar time, with CPP being the method with smallest oscillation as the number of
states increases, with HSC having a higher increase in time. These results are not
repeated with ATP criterion, with BFS showing a higher growth than HSC. In both
cases, CPP was the least oscillating algorithm in relation to generation time and,
on average, it was the fastest to generate all test cases.

At a glance, it may seem strange to see CPP, naturally a costlier algorithm, to
outperform BFS and DFS. But it is valid to mention that data structures of the
three algorithms are different. CPP uses a matrix, a simple data structure, while
BFS and DFS use graph structure. So, this aspect may be an impact factor for

40

Figure 4.10 - Dispersion of average length of test cases by HSC.

(a) AT criterion. (b) ATP criterion.

Figure 4.11 - Dispersion of average length of test cases by CPP.

(a) AT criterion. (b) ATP criterion.

the behavior of the algorithm. The implementation of CPP was not in graph due
to the complex formula of Hungarian Method to analyze the maximal-matching of
unbalanced nodes, which would be more complex to implement.

Efficiency. Figures 4.13(a) and 4.13(b) show the efficiency of test cases applying
some mutant criteria. These results show the percentage of mutation score obtained
by each method’s test set. CPP performed better for AT and ATP criteria, but HSC
had similar results as CPP, despite HSC generating a large test case compared with
CPP. BFS in AT criterion showed not to be efficient with a decreased mutation score
as the number of states increases.

41

Figure 4.12 - Generation time results.

(a) (b)

Figure 4.13 - Efficiency results.

(a) (b)

4.3.2 Results for real FSMs

Figure 4.14(a) shows the results of APEX with the four methods with AT criterion.
BFS and DFS achieved the best results in four case studies, but regarding number
of test cases, HSC and CPP naturally had the best results. Eulerian methods also
had 0 standard deviation and variance, similarly as in the case of random FSMs.
This scenario is repeated with ATP criterion, as shown in Figure 4.14(b), except
with test suite size that HSC and CPP were better than BFS and DFS.

Figure 4.15 shows the results of efficiency analyses of each method applied in the
APEX product. In general, CPP and HSC were better than DFS and BFS, with a
small difference in ATP criterion. In ATP, HSC and CPP obtained the same result.
Curiously, BFS performed better than DFS in ATP criterion, being the only case
that this happens.

Figure 4.16 shows the average results of second case study referring to the 20 scenar-

42

Figure 4.14 - Results for APEX product by each criterion.

(a) AT criterion. (b) ATP criterion.

Figure 4.15 - Efficiency results for APEX product by each criterion.

ios of SWPDC. We generated an average of 20 FSMs of SWPDC for each method.
HSC and CPP achieved the best results in 4 out of 7 analyses. Between the graph-
search methods, BFS presented the worst results. Eulerian methods, again, achieved
the smaller number of test cases and test suite size. The length of smallest, largest
test cases and the average length of test cases from Eulerian methods is the same
because they generate a unique sequence with all transitions of FSM. Again, these
2 methods present 0 standard deviation and variance values. These scenarios are
repeated in AT criterion. In ATP criterion, the results of BFS in test suite size
analysis is much higher than others. In general, Eulerian methods results did not
present a high variation among applied criteria.

Figure 4.17 shows the efficiency analyses of 20 scenarios of SWPDC. This result
presents the distribution of mutation score resulting from applying each method and
criterion. It should be noted that the outliers of violin plot are only a representation
and do not represent the maximum and minimum values of this result (the maximum

43

and minimum are represented by vertical straight line in the center, with the white
point being the average). CPP and HSC obtained similar results in AT and ATP
criterion, with a higher range of distribution in comparison with BFS and DFS.
In fact, one can see that the distribution of results is close to the maximum and
minimum values. Due to this, the BFS and DFS methods were better than HSC
and CPP. This happens because SWPDC has two particular cases of models: 1)
when its states have only one transition to another state, without any branch; and
2) when only one state has a branch. In this case, DFS and BFS can outperform HSC
and CPP. In ATP, this situation is more evident with the DFS result in comparison
to others.

Figure 4.16 - Average results for 20 scenarios of SWPDC product.

(a) AT criterion. (b) ATP criterion.

Figures 4.18(a) and 4.18(b) show the generation time in milliseconds. DFS was the
fastest method with the AT criterion, and CPP was the best with AT pairs criterion.
In relation to Eulerian methods, CPP was better than HSC in all cases, needing less
time to generate test cases.

In relation to average distribution, Eulerian methods behave similarly with all cri-
teria. BFS and DFS have the same distribution in AT criterion, but in ATP the
average is different; for BFS the average is close to the maximum limit.

4.4 Discussion

This Section presented a comparative study of test case generation from four graph-
based methods, considered the most investigated in the literature, according to the
systematic mapping. Two methods are classic-search graphs: BFS and DFS, and
other two are Eulerian methods: HSC, CPP. The criteria used are AT and ATP.
The methods used the original graph to apply AT criterion, whereas a Dual Graph

44

Figure 4.17 - Average mutantion score results for 20 scenarios of SWPDC product.

(a) BFS method (b) DFS method

(c) HSC method (d) CPP method

Figure 4.18 - Generation time results for real-world FSMs.

(a) (b)

was used to apply the ATP criterion. 875 random FSMs and two real-world FSMs
from embedded software of spatial applications were used in the experiment.

In general, CPP presented better results in all FSMs, both with AT and ATP. This
method provides the best results in terms of number of test cases and test suite size,

45

having a better or similar behavior than HSC in all results. Also, CPP presents low
distribution of average length, since its algorithm generates a minimum balanced
graph and, so, a minimum test sequence. This method loses to BFS and DFS in
terms of length of smallest and largest test case and the average length, but these
results were expected since Eulerian methods generate a unique sequence with all
transitions of graph.

Looking just at the results of APEX, CPP loses to BFS and DFS. Since APEX
represents a unique FSM and this result does not repeat in ATP criterion, it is an
indication that for small FSMs, CPP may not be a better choice than other methods.
This happens because CPP is a brute-force algorithm. But, analyzing the generation
time that CPP used to generate test cases, it is practically the same as BFS. So,
even for this case, it is valid to say that BFS and CPP tied in results.

In general, we observed that Eulerian methods (mainly CPP) performed better when
applied to large FSMs, and search graphs are better to smaller FSMs. It is valid to
mention that, in all cases, CPP was better than HSC. This is because the balancing
process of CPP is better than HSC, generating a minimum balanced graph. In our
empirical analysis, the balanced graph of CPP is around three times smaller than
the balanced graph generated by HSC.

The analyses of this study are not focused in showing, explicitly, what is the best
method and criterion to generate test cases, but can guide a test analyst in evalu-
ating which is the best for a particular problem. For example, for space application
software, it is more important to generate as many test cases as possible, and in less
time. So, CPP may be a better method to be used. If more precision is important,
that is more test cases are necessary to cover the model, ATP can be used as an
alternative. But, in general, these results showed that the behavior of algorithms
naturally always depends on the structure of graph, as shown by the results of ran-
dom and real-world FSMs. So, even to a space application, it is important to analyze
how much precision is needed for test cases and what is the size of graph to generate
test cases.

46

5 CONCLUSION

5.1 General consideration

In general, this dissertation is a conclusion of four years of research in MBT with
objective of finding new methods for generation of test cases from FSMs. Initially,
this research started with an experimental study investigating switch cover test sets
and classic-graph methods (BFS, DFS) from the literature. With this research, we
identified that the balacing heuristic of H-Switch Cover was not optimized. Initially,
it was necessary to identify other methods for FSMs in the literature that balance
the graph. But we generalized our work for other methods that generate test cases
from a FSM with the purpose to see what methods are being used in MBT for
generation of test cases from FSM. So, for this purpose a Systematic Mapping was
conducted. Finally, condiering only graph-based algorithms, an experimental study
was conducted for comparing the most used graph-based methods for MBT.

5.2 Contributions

The main contributions of this work are a systematic mapping made to summarize
the MBT literature to investigate what are the most used methods to generate test
cases for FSM. Besides that, a comparison of the most used methods in random and
real-world FSMs was made to define what is the best method in certain cases.

The different analyses about the methods’ behavior can support the choice of the
best method to fit in a given project. The test expert can identify the trade offs
between test case characteristics. It is at the discretion of the testing specialist to
decide which algorithm can be used considering the experiment results and charac-
teristics of the system being tested. So, we believe that the results of this dissertation
can guide a test analyst, whether in INPE or in industry, to define what is the best
method for a problem.

During this work, scientific papers were published in the following events:

MONTEIRO, M. M. ; Souza, E. F. ; ENDO, A. T. ; VIJAYKUMAR, N. L. .
A comparative study of algorithms for generating switch cover test sets. In: XV
Simpósio Brasileiro de Qualidade de Software (SBQS 2016), 2016, Maceió, Alagoas.
XV Simpósio Brasileiro de Qualidade de Software (SBQS 2016), 2016. p. 1-15.

MONTEIRO, M. M. ; Souza, E. F. ; ENDO, A. T. ; VIJAYKUMAR, N. L. .

47

Analyzing graph-based algorithms employed to generate test cases from finite state
machines (to appear). In: 20th IEEE Latin-American Test Symposium (LATS),
2019, Santiago. 20th IEEE Latin-American Test Symposium (LATS), 2019. p. 1-6.

MONTEIRO, M. M. ; Souza, E. F. ; ENDO, A. T. ; VIJAYKUMAR, N. L. .
Identifying approaches to generate test cases in model-based testing: a systematic
mapping (to appear). In: The 22nd Iberoamerican Conference on Software Engi-
neering (CIbSE) - Experimental Software Engineering Track, 2019, Havana, Cuba.
The 22nd Iberoamerican Conference on Software Engineering (CIbSE), 2019. p.
1-14. (Best Paper Award).

5.3 Threats to validity and main limitations

The study selection and data extraction stages were initially performed by the au-
thor. In order to reduce some subjectivity, the advisors performed these same stages
over a sample of studies. The samples were compared in order to detect possible
bias.

Our review was limited by the search terms used in the Scopus database. Although
Scopus is considered the largest abstract and citation database, we tried to overcome
possible limitations by using backward and forward snowballing. We also considered
papers from a control group to calibrate the string. The categorization of papers
was based on research questions (method, criterion, formal model and evaluation
strategies). Even so, we are possibly leaving some valuable studies out of our anal-
ysis, since we considered papers indexed just by the Scopus database, and those
obtained from snowballing. However, the studies discussed in this mapping provide
an overview of empirical research on outcomes of existing research on MBT.

The limitation of this dissertation is the FSM used in comparing methods. We
can not claim that experimental results are true for all FSMs, since the random
FSMs do not cover all types of FSMs. Also, even the real-world FSMs are space
applications, they are relatively small compared to other experiments of INPE and
other institutes. So, it is important to perform other studies with more real-world
FSMs. But, we expect that these results show a tendency of methods’ behavior with
big and small FSMs in the use cases shown.

48

5.4 Future work

As future work we intend to implement the methods investigated in this project in
WEB-PerformCharts1 (ARANTES et al., 2014), a tool created in the Laboratory of
Computng and Applied Mathematics (LABAC), at INPE, that uses formal models
to specify a reactive system and generates test cases from a software specification.
The following methods are already implemented: DS, UIO, TT and HSC. With
incorporation of new methods on the tool, we expect this will allow other researchers
conduct new experiments, and use it to generate test cases on their systems.

1https://webperformcharts.lcc.unifesspa.edu.br/nova.html

49

REFERENCES

ALI, S.; BRIAND, L. C.; REHMAN, M. J.-u.; ASGHAR, H.; IQBAL, M. Z. Z.;
NADEEM, A. A state-based approach to integration testing based on uml models.
Information and Software Technology, v. 49, n. 11-12, p. 1087–1106, 2007. 29

AMARAL, A. Geração de casos de testes para sistemas especificados em
Statecharts. 2005. 162 p. (INPE-14215-TDI/1116). Dissertação (Mestrado em
Computação Aplicada) — Instituto Nacional de Pesquisas Espaciais (INPE), São
José dos Campos, 2005. Available from:
<http://urlib.net/sid.inpe.br/MTC-m13@80/2006/02.14.19.24>. Access in:
2017. xi, 9

AMMANN, P.; OFFUTT, J. Introduction to software testing. [S.l.]:
Cambridge University Press, 2008. 2, 12

ANBUNATHAN, R.; BASU, A. Dataflow test case generation from uml class
diagrams. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL
INTELLIGENCE AND COMPUTING RESEARCH, 2013. Proceedings... IEEE,
2013. p. 1–9. 27

AO, A. S.; PETRENKO, A.; MALDONADO, J. Comparing finite state machine
test coverage criteria. IET Software, v. 3, n. 2, p. 91–105, 2009. 3, 19

ARANTES, A. O.; SANTIAGO, V. A. de; VIJAYKUMAR, N. L.; SOUZA, E. F.
D. Tool support for generating model-based test cases via web. International
Journal of Web Engineering and Technology iiWAS, v. 9, n. 1, p. 62–96,
2014. 1, 49

ARANTES, A. O.; VIJAYKUMAR, N. L.; JUNIOR, V. A. de S.; GUIMARAES,
D. Test case generation for critical systems through a collaborative web-based tool.
In: IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL
INTELLIGENCE FOR MODELLING CONTROL AND AUTOMATION, 2008.
Proceedings... IEEE, 2013. p. 163–168. 2, 3

BARMI, Z. A.; EBRAHIMI, A. H.; FELDT, R. Alignment of requirements
specification and testing: a systematic mapping study. In: INTERNATIONAL
CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND
VALIDATION WORKSHOPS, 2011. Proceedings... IEEE, 2011. p. 476–485. 18

51

http://urlib.net/sid.inpe.br/MTC-m13@80/2006/02.14.19.24

BELLI, F.; BEYAZIT, M.; TAKAGI, T.; FURUKAWA, Z. Model-based mutation
testing using pushdown automata. IEICE Transactions on Information and
Systems, v. 95, n. 9, p. 2211–2218, 2012. 29

. Mutation testing of “go-back” functions based on pushdown automata. In:
INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,
VERIFICATION AND VALIDATION, 2011. Proceedings... IEEE, 2013. p.
249–258. 29

BELLI, F.; ENDO, A. T.; LINSCHULTE, M.; SIMAO, A. A holistic approach to
model-based testing of web service compositions. Software: Practice and
Experience, v. 44, n. 2, p. 201–234, 2014. 27

BELLI, F.; HOLLMANN, A. Test generation and minimization with basic
statecharts. In: SYMPOSIUM ON APPLIED COMPUTING, 2008.
Proceedings... ACM, 2008. p. 718–723. 26

BELLI, F.; HOLLMANN, A.; KLEINSELBECK, M. A graph-model-based testing
method compared with the classification tree method for test case generation. In:
INTERNATIONAL CONFERENCE ON SECURE SOFTWARE INTEGRATION
AND RELIABILITY IMPROVEMENT, 3., 2009. Proceedings... IEEE, 2009. p.
193–200. 26

BLACK, R. Advanced software test design techniques state diagrams, state tables,
and switch coverage. Testing Experience Magazine, 2008. 2

BONDY, J.; MURTY, U. Graduate texts in mathematics: graph theory.
USA: Springer, 2008. 14, 15, 33

BRITO, R. C.; MARTENDAL, D. M.; OLIVEIRA, H. E. M. de. Máquinas de
estados finitos de mealy e moore. 2003. Available from: <http://www.inf.
ufsc.br/~j.barreto/trabaluno/TC_roberta_diogo_henrique.pdf>. 10

CARTAXO, E. G.; ANDRADE, W. L.; NETO, F. G. O.; MACHADO, P. D.
Lts-bt: a tool to generate and select functional test cases for embedded systems.
In: SYMPOSIUM ON APPLIED COMPUTING, 2008. Proceedings... ACM,
2008. p. 1540–1544. 26

CARTAXO, E. G.; MACHADO, P. D.; NETO, F. G. O. On the use of a similarity
function for test case selection in the context of model-based testing. Software
Testing, Verification and Reliability, v. 21, n. 2, p. 75–100, 2011. 29

52

http://www.inf.ufsc.br/~j.barreto/trabaluno/TC_roberta_diogo_henrique.pdf
http://www.inf.ufsc.br/~j.barreto/trabaluno/TC_roberta_diogo_henrique.pdf

CHOW, T. S. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, n. 3, p. 178–187, 1978. 13

DALAL, S. R.; JAIN, A.; KARUNANITHI, N.; LEATON, J.; LOTT, C. M.;
PATTON, G. C.; HOROWITZ, B. M. Model-based testing in practice. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 21.,
1999. Proceedings... ACM, 1999. p. 285–294. 8

DANG, T.; NAHHAL, T. Coverage-guided test generation for continuous and
hybrid systems. Formal Methods in System Design, v. 34, n. 2, p. 183–213,
2009. 29

DELAMARO, M. E.; MALDONADO, J. C.; JINO, M. Introdução ao teste de
software. [S.l.]: Elsevier, 2007. 5, 8

DEVROEY, X.; PERROUIN, G.; SCHOBBENS, P.-Y. Abstract test case
generation for behavioural testing of software product lines. In:
INTERNATIONAL SOFTWARE PRODUCT LINE CONFERENCE, 2., 2014.
Proceedings... 2014. p. 86–93. 26

DOROFEEVA, M.; KOUFAREVA, I. Novel modification of the w-method.
Bulletin of the Novosibirsk Computing Center. Series: Computer
Science, n. 18, p. 69–80, 2002. 25

DOROFEEVA, R.; EL-FAKIH, K.; MAAG, S.; CAVALLI, A. R.;
YEVTUSHENKO, N. Fsm-based conformance testing methods: a survey
annotated with experimental evaluation. Information and Software
Technology, v. 52, n. 12, p. 1286–1297, 2010. 3, 14, 19

DOROFEEVA, R.; EL-FAKIH, K.; YEVTUSHENKO, N. An improved
conformance testing method. In: INTERNATIONAL CONFERENCE ON
FORMAL TECHNIQUES FOR NETWORKED AND DISTRIBUTED
SYSTEMS, 2005. Proceedings... 2005. p. 204–218. 9

EDMONDS, J.; JOHNSON, E. L. Matching, euler tours and the chinese postman.
Mathematical Programming, v. 5, n. 1, p. 88–124, 1973. 14, 33

EL-FAR, I. K.; WHITTAKER, J. A. Model-based software testing. In:
MARCIANIK, J. J. E. (Ed.). Encyclopedia of software engineering. [S.l.]:
Wiley, 2001. 1

ELLSBERGER, J.; HOGREFE, D.; SARMA, A. SDL: formal object-oriented
language for communicating systems. [S.l.]: Prentice Hall, 1997. 2, 8

53

ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and
effectiveness of fsm-based testing methods. Information and Software
Technology, v. 55, n. 6, p. 1045–1062, 2013. 3, 7, 19, 34

GILL, A. et al. Introduction to the theory of finite-state machines. [S.I.]:
McGraw-Hill, 1962. 8

GONENC, G. A method for the design of fault detection experiments. IEEE
transactions on Computers, v. 100, n. 6, p. 551–558, 1970. 13

GURBUZ, H. G.; TEKINERDOGAN, B. Model-based testing for software safety:
a systematic mapping study. Software Quality Journal, p. 1–46, 2017. 18

HAREL, D. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, v. 8, n. 3, p. 231–274, 1987. xi, 2, 8, 10, 11

HESSEL, A.; PETTERSSON, P. A global algorithm for model-based test suite
generation. Electronic Notes in Theoretical Computer Science, v. 190, n. 2,
p. 47–59, 2007. 25, 27

INSTITUTE OF ELECTRIC AND ELECTRONIC ENGINEERS. IEEE Standard
610.12-1990: standard glossary of software engineering terminology. New York,
1990. 5, 6

. IEEE Standard 1012-2004: standard for software verification and
validation. New York, 2004. 6

JULLIAND, J.; KOUCHNARENKO, O.; MASSON, P. A.; VOIRON, G. Test
generation from event system abstractions to cover their states and transitions.
Programming and Computer Software, v. 44, n. 1, p. 1–14, 2018. 26

KHAN, M. U.; IFTIKHAR, S.; IQBAL, M. Z.; SHERIN, S. Empirical studies omit
reporting necessary details: a systematic literature review of reporting quality in
model based testing. Computer Standards & Interfaces, 2017. 18

KITCHENHAM, B. A. Guidelines for performing systematic literature
reviews in software engineering. Durham: Keele University, 2007. Technical
Report EBSE-2007-01. 3, 21

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, v. 84, n. 8, p. 1090–1123, 1996. 2,
8

54

LI, N.; OFFUTT, J. Test oracle strategies for model-based testing. IEEE
Transactions on Software Engineering, v. 43, n. 4, p. 372–395, 2017. 27

LIPSCHUTZ, S.; LIPSON, M. Matemática discreta. 2. ed. Porto Alegre:
Bookman, 1997. 16

MAJEED, S.; RYU, M. Model-based replay testing for event-driven software. In:
ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 31., 2016.
Proceedings... ACM, 2016. p. 1527–1533. 28

MALDONADO, J. C. Critérios potenciais usos: uma contribuição ao teste
estrutural de software. [S.I.]: FEE, 1991. 7

MARIANO, M. M.; SOUZA, É. F.; ENDO, A. T.; VIJAYKUMAR, N. L. A
comparative study of algorithms for generating switch cover test sets. In:
SIMPÓSIO BRASILEIRO DE QUALIDADE DE SOFTWARE, 15., 2016.
Anais... Maceió, 2016. xi, 15, 16, 17, 20

MARIANO, M. M.; SOUZA, E. F.; ENDO, A. T.; VIJAYKUMAR, N. L.
Identifying approaches to generate test cases in model-based testing: a systematic
mapping. In: IBEROAMERICAN CONFERENCE ON SOFTWARE
ENGINEERING, 22., 2019. Proceedings... Havana, 2019. p. 1–14. 21

MARTINS, E.; SABIÃO, S. B.; AMBROSIO, A. M. Condata: a tool for
automating specification-based test case generation for communication systems.
Software Quality Journal, v. 8, n. 4, p. 303–320, 1999. 3

MARUCCI, R. A.; FABBRI, S.; MALDONADO, J. C.; TRAVASSOS, G. H.
Oorts/prodes: definição de técnicas de leitura para um processo de software
orientado a objetos. In: SIMPÓSIO BRASILEIRO DE QUALIDADE DE
SOFTWARE, 1., 2002. Anais... 2002. 6

MATHUR, A. P. Foundations of software testing. [S.l.]: Pearson Education,
2008. 12

MYERS, G. J.; SANDLER, C. The art of software testing. [S.l.]: John Wiley
& Sons, 2004. 1

MYERS, G. J.; SANDLER, C.; BADGETT, T. The art of software testing.
[S.l.]: John Wiley & Sons, 1976. 1, 5

NAITO, S. Fault detection for sequential machines by transition-tours.
[S.l.: s.n.], 1981. 13, 16, 33

55

NEUMANN, F. Expected runtimes of evolutionary algorithms for the eulerian
cycle problem. In: CONGRESS ON EVOLUTIONARY COMPUTATION, 2001.
Proceedings... IEEE, 2004. p. 904–910. 16, 33

OFFUTT, J.; ABDURAZIK, A. Generating tests from uml specifications. In:
INTERNATIONAL CONFERENCE ON THE UNIFIED MODELING
LANGUAGE, 2., 1999, Fort Collins, CO. Proceedings... 1999. p. 416–429. 22

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting
systematic mapping studies in software engineering: an update. IEEE
Transactions on Visualization and Computer Graphics, v. 64, p. 1–18,
2015. 21

PIMONT, S.; RAULT, J.-C. A software reliability assessment based on a
structural and behavioral analysis of programs. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 2., 1976. Proceedings...
IEEE, 1976. p. 486–491. 2, 3, 15, 33

PINHEIRO, A. C.; SIMÃO, A.; AMBROSIO, A. M. Fsm-based test case
generation methods applied to test the communication software on board the
Itasat university satellite: a case study. Journal of Aerospace Technology and
Management, v. 6, n. 4, p. 447–461, 2014. 2

PONTES, R. P.; VÉRAS, P. C.; AMBROSIO, A. M.; VILLANI, E. Contributions
of model checking and cofi methodology to the development of space embedded
software. Empirical Software Engineering, v. 19, n. 1, p. 39–68, 2014. 2

PRESSMAN, R. S. Software engineering: a practitioner’s approach. [S.l.]:
Palgrave Macmillan, 2005. 6

PROCH, S.; MISHRA, P. Directed test generation for hybrid systems. In:
INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, 15.,
2014. Proceedings... 2014. p. 156–162. 29

RAPPS, S.; WEYUKER, E. J. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, n. 4, p. 367–375,
1985. 2

ROCHA, C. R.; MARTINS, E. A method for model based test harness generation
for component testing. Journal of the Brazilian Computer Society, v. 14,
n. 1, p. 7–23, 2008. 26

56

SATPATHY, M.; YEOLEKAR, A.; PERANANDAM, P.; RAMESH, S. Efficient
coverage of parallel and hierarchical stateflow models for test case generation.
Software Testing, Verification and Reliability, v. 22, n. 7, p. 457–479, 2012.
29

SIAVASHI, F.; TRUSCAN, D. Environment modeling in model-based testing:
concepts, prospects and research challenges: a systematic literature review. In:
INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN
SOFTWARE ENGINEERING, 19., 2015, New York. Proceedings... ACM, 2014.
p. 30:1–30:6. Available from:
<http://doi.acm.org/10.1145/2745802.2745830>. 18

SIDHU, D. P.; LEUNG, T.-K. Formal methods for protocol testing: a detailed
study. IEEE Transactions on Software Engineering, v. 15, n. 4, p. 413–426,
1989. 2, 13

SOUZA, É. F.; JÚNIOR, V. A. S.; GUIMARAES, D.; VIJAYKUMAR, N. L.
Evaluation of test criteria for space application software modeling in statecharts.
In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL
INTELLIGENCE FOR MODELLING CONTROL AND AUTOMATION, 2008.
Proceedings... 2008. p. 157–162. 2, 3, 14, 19, 33

SOUZA, É. F.; JÚNIOR, V. A. S.; VIJAYKUMAR, N. L. H-switch cover: a new
test criterion to generate test case from finite state machines. Software Quality
Journal, v. 25, n. 2, p. 373–405, 2017. 1, 3, 16, 20, 25, 33, 35

SOUZA, S. d. R. S. d. Validação de especificações de sistemas reativos:
definição e análise de critérios de teste. Tese (Doutorado em Física
Computacional) — Universidade de São Paulo, São Carlos, 2000. Available from:
<http:
//www.teses.usp.br/teses/disponiveis/76/76132/tde-27112008-085629/>.
19

TAKAGI, T.; OYAIZU, N.; FURUKAWA, Z. Concurrent n-switch coverage
criterion for generating test cases from place/transition nets. In:
INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION
SCIENCE, 9., 2010. Proceedings... 2010. p. 782–787. 26

TRETMANS, J. Model based testing with labelled transition systems. In:
HIERONS, R.M.; BOWEN, J.P.; HARMAN, M. (Ed.). Formal
methods and testing. [S.l.]: Springer, 2008. p. 1–38. 2, 8

57

http://doi.acm.org/10.1145/2745802.2745830
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112008-085629/
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112008-085629/

UTTING, M.; LEGEARD, B. Practical model-based testing: a tools
approach. San Francisco, CA, USA: Morgan Kaufmann, 2010. 2, 8

VIJAYKUMAR, N. Statecharts: their use in specifying and dealing with
Performance Models. Tese (Doutorado em Informática) — Instituto
Tecnológico de Aeronáutica, São José dos Campos, 1999. 2

VU, T.-D.; HUNG, P. N.; NGUYEN, V.-H. A method for automated test data
generation from sequence diagrams and object constraint language. In:
INTERNATIONAL SYMPOSIUM ON INFORMATION AND
COMMUNICATION TECHNOLOGY, 2015. Proceedings... 2015. p. 335–341. 26

WANG, W.; SAMPATH, S.; LEI, Y.; KACKER, R.; KUHN, R.; LAWRENCE, J.
Using combinatorial testing to build navigation graphs for dynamic web
applications. Software Testing, Verification and Reliability, v. 26, n. 4, p.
318–346, 2016. 29

YAO, J.; WANG, Z.; YIN, X.; SHIYZ, X.; WU, J. Formal modeling and systematic
black-box testing of sdn data plane. In: INTERNATIONAL CONFERENCE ON
NETWORK PROTOCOLS, 22., 2014. Proceedings... IEEE, 2014. p. 179–190. 28

ZANDER, J.; SCHIEFERDECKER, I.; MOSTERMAN, P. J. Model-based
testing for embedded systems. [S.l.]: CRC press, 2017. 2

58

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Purpose of work
	1.3 Dissertation Structure

	2 THEORETICAL FOUNDATION
	2.1 Software Testing concepts
	2.1.1 Testing levels
	2.1.2 Testing techniques

	2.2 Model-Based Testing - MBT
	2.2.1 Finite State Machine - FSM
	2.2.2 Statecharts

	2.3 Test criteria and methods to FSM
	2.3.1 Test criteria
	2.3.2 Methods
	2.3.2.1 Switch Cover and H-Switch Cover

	2.4 Related work

	3 APPROACHES TO GENERATE TEST CASES IN MODEL-BASED TESTING: A SYSTEMATIC MAPPING
	3.1 Research Protocol
	3.1.1 Research Questions
	3.1.2 Inclusion and Exclusion Criteria
	3.1.3 Keywords and Search String
	3.1.4 Source
	3.1.5 Assessment

	3.2 Conducting the mapping study
	3.3 Data Extraction and Synthesis
	3.4 Discussion

	4 GRAPH-BASED METHODS EMPLOYED TO GENERATE TEST CASES FROM FSMS: AN EXPERIMENTAL STUDY
	4.1 Criteria and methods analyzed
	4.2 Experimental Study
	4.3 Results of test cases
	4.3.1 Results for randomly generated FSMs
	4.3.2 Results for real FSMs

	4.4 Discussion

	5 CONCLUSION
	5.1 General consideration
	5.2 Contributions
	5.3 Threats to validity and main limitations
	5.4 Future work

	REFERENCES

