
sid.inpe.br/mtc-m21c/2019/08.28.23.03-TDI

A 40-YEAR PERSPECTIVE ON THE CONTRIBUTION
OF OBSERVATIONS TO FORECAST ERROR

REDUCTION

Fábio Luiz Rodrigues Diniz

Doctorate Thesis of the Graduate
Course in Meteorology, guided
by Drs. Dirceu Luis Herdies,
and Ricardo Todling, approved in
August 26, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3TTLN6B>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy


PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

pubtc@sid.inpe.br


sid.inpe.br/mtc-m21c/2019/08.28.23.03-TDI

A 40-YEAR PERSPECTIVE ON THE CONTRIBUTION
OF OBSERVATIONS TO FORECAST ERROR

REDUCTION

Fábio Luiz Rodrigues Diniz

Doctorate Thesis of the Graduate
Course in Meteorology, guided
by Drs. Dirceu Luis Herdies,
and Ricardo Todling, approved in
August 26, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3TTLN6B>

INPE
São José dos Campos

2019

http://urlib.net/xx/yy


Cataloging in Publication Data

Diniz, Fábio Luiz Rodrigues.
D615f A 40-year perspective on the contribution of observations to

forecast error reduction / Fábio Luiz Rodrigues Diniz. – São José
dos Campos : INPE, 2019.

xxx + 112 p. ; (sid.inpe.br/mtc-m21c/2019/08.28.23.03-TDI)

Thesis (Doctorate in Meteorology) – Instituto Nacional de
Pesquisas Espaciais, São José dos Campos, 2019.

Guiding : Drs. Dirceu Luis Herdies, and Ricardo Todling.

1. Numerical weather prediction. 2. Data assimilation.
3. Observation impact. I.Title.

CDU 551.509.313.3

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/






“I’m a greater believer in luck,

and I find the harder I work
the more I have of it.”

Thomas Jefferson

v





To my parents, for their love, endless support and encouragement

throughout my life and to my wife, Aline, for the same.

vii





ACKNOWLEDGEMENTS

First, I would like to thank my two advisors, Dr. Dirceu L. Herdies and Dr. Ricardo
Todling, for their support, guidance, and enthusiasm. I am grateful to them for
allowing me to work on this thesis, and also grateful for the opportunity to have been
associated with both of them. I would like also to thank the committee members:
Dr. Fabrício P. Harter, Dr. José A. Aravéquia, Dr. Pedro L. da Silva Dias, and Dr.
Simone M. S. C. Coelho; for taking the time to participate in my committee and
provide valuable feedback and suggestions.

My thesis work benefited from the United States of America National Aeronau-
tics and Space Administration (NASA) Global Modeling and Assimilation Office
(GMAO) group effort in keeping a state-of-the-art data assimilation system. I would
like to thank Dr. Steven Pawson, Dr. Oreste Reale, Dr. Stephen E. Cohn and the
GMAO administrative team, for their support and generosity during my one-year
visit at NASA GMAO while most of the results for this thesis have been obtained.

This work has been supported by grants 1474545 and 88881.134472/2016-01 from
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of Brazil
and 147298/2016-4 from Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq) of Brazil. Support was also provided through the NASA’s Model-
ing, Analysis and Prediction (MAP) program. The computational work was carried
out on the Linux Discover Cluster through cooperation with the NASA Center for
Climate Simulation (NCCS) at Goddard Space Flight Center (GSFC).

Last, but not least, I thank all of my family and many friends for providing constant
support and encouragement.

Thank you very much!

ix





ABSTRACT

Operational and quasi-operational weather prediction centers have been routinely
assessing the contribution from various observing systems to reducing errors in short-
range forecasts for a number of years now. The original technique, Forecast Sensitiv-
ity Observation Impact (FSOI), involves definition of a forecast error measure and
evaluation of sensitivities with respect to changes in the observations that require
adjoint operators of both the underlying tangent linear model and corresponding
analysis technique. The present work applies FSOI to reanalysis and aims at provid-
ing an expanded view of the contribution of various observing systems over nearly 40
years of assimilation. Specifically, this study uses MERRA-2 given that its support-
ing software includes all ingredients necessary to calculate FSOI. Part of this work
shows how the quality of forecasts improves over the course of the reanalysis, and
examines forecast sensitivities relevant to FSOI. The global assessment here finds,
for example, that: conventional observations are a major player in reducing forecast
error throughout the 40 years of reanalysis, even when their volume reduces from
45% in the earlier periods to about 5% in the modern era; satellite radiances, es-
pecially microwave instruments, are major contributors to error reduction from the
early single platform TIROS-N days to the current multi-platform scenario; though
their fractional contribution reduces slightly from the early 2000’s onward after the
increased availability of wind observation from aircraft and atmospheric motion vec-
tor (AMV), and the introduction of GPSRO; infrared instruments play a secondary
role to microwave but are significant still, with the peculiar result of fractional im-
pacts contribution from modern hyperspectral instruments being roughly similar
to those from early infrared instruments. This work also provides an assessment of
these impacts over the Amazon basin. Over this region, under self-verification, fore-
cast errors are found to slightly increase from the early data-sparse days to more
recent years, when data dramatically increases. Throughout the reanalysis, satellite
radiances dominate in volume, but only in before 1999 they dominate the impacts.
Beyond 1999, over 50% of forecast error reduction is associated with conventional
observations (radiosondes). AMVs are also found to be large contributors to error
reduction, but their contribution reduces in dry periods. In opposition to AMVs,
satellite radiances tend to contribute more in the dry season. Results provide mo-
tivation for additional conventional observations and the use of all-sky treatment
of radiances. The dependence of results on the chosen error measure is emphasized
throughout.

Keywords: Numerical weather prediction. Data assimilation. Observation impact.
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UMA PERSPECTIVA DE 40 ANOS SOBRE AS CONTRIBUIÇÕES
DAS OBSERVAÇÕES À REDUÇÃO DOS ERROS DAS PREVISÕES

RESUMO

Centros de previsão de tempo operacionais e quase-operacionais tem avaliado
rotineiramente a contribuição de vários sistemas de observação para reduzir os erros
das previsões de curto prazo há vários anos. A técnica original, denominada Impacto
Observação Sensibilidade Previsão (FSOI), envolve a definição de uma medida de
erro de previsão e a avaliação das sensibilidades com relação às condições iniciais
e observações, as quais requerem operadores adjuntos de ambos: o modelo linear
tangente e a técnica de análise correspondente. O presente trabalho aplica a técnica
FSOI em uma reanálise e visa fornecer uma perspectiva da contribuição de vários
sistemas de observação ao longo de quase 40 anos de assimilação. Especificamente,
este estudo utiliza o MERRA-2, uma vez que seus utilitários incluem todos os in-
gredientes necessários para calcular a técnica FSOI. Parte deste trabalho mostra
como a qualidade das previsões melhora ao longo da reanálise, e examina as sen-
sibilidades das previsões relevantes para a técnica FSOI. A avaliação global aqui
encontra, por exemplo, que: as observações convencionais são as mais importantes
na redução dos erros de previsão ao longo dos 40 anos de reanálise, mesmo quando
o seu volume diminui de 45% nos períodos iniciais para aproximadamente 5% na
era moderna; radiâncias de satélites, especialmente instrumentos de microondas, são
os principais contribuidores para a redução de erros desde a época da plataforma
única TIROS-N até o atual cenário de multiplataformas; embora sua contribuição
fracional diminua ligeiramente a partir do início dos anos 2000, após o aumento da
disponibilidade de observação de vento de aviões e de Vetores de Movimento At-
mosférico (AMVs) e a introdução das observações de Radio Ocultação do Sistema
de Posicionamento Global (GPSRO); instrumentos infravermelho desempenham um
papel secundário com relação aos instrumentos de microondas, mas ainda assim sig-
nificativos, com o resultado peculiar da contribuição dos impactos fracionais dos in-
strumentos hiperespectrais modernos ser semelhante aos dos primeiros instrumentos
infravermelho. Este trabalho também fornece uma avaliação desses impactos sobre a
bacia amazônica. Nesta região, os erros de previsão aumentam ligeiramente desde os
primeiros dias, os quais eram esparsos de dados até o período mais recente, quando
os dados aumentam dramaticamente. Ao longo da reanálise, radiâncias de satélite
dominam em volume, porém somente dominam os impactos antes no período prévio
à 1999. A partir dos anos 2000, mais de 50% da redução dos erros das previsões está
associada às observações convencionais (principalmente radiossondas). AMVs tam-
bém são considerados grandes contribuidores para a redução dos erros, porém sua
contribuição apresenta sazonalidade, reduzindo sua contribuição nos períodos secos.
Ao contrário dos AMVs, as radiâncias de satélites tendem a contribuir mais durante
a estação seca. Os resultados fornecem motivação para adição de observações con-
vencionais e o tratamento das radiâncias por meio da técnica todo-o-céu (do inglês
all-sky). A dependência dos resultados à medida de erro escolhida é enfatizada.

Palavras-chave: Previsão numérica de tempo. Assimilação de dados. Impacto das
observações.
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1 INTRODUCTION

The word assimilation has a variety of meanings in a variety of sciences (e.g., physics,
biological, social), but in every science, assimilation presents the concept of incorpo-
ration (LEWIS et al., 2009). In the context of numerical weather prediction (NWP),
this concept of incorporation is in the sense of combining data and laws. The way
to combine data and laws has been in constant evolution, also the way to obtain the
proper data and the way to represent the proper laws. Currently, this incorporation
process represents strategies to blend observations with model, commonly known
as data assimilation, and, as in many branches of science, the increase of computa-
tional capacity helped to advance the techniques involved in this process. Recently,
these advancements in NWP were classified as a “quiet revolution” in the review
article of Bauer et al. (2015), mostly because it happened due to an accumulation of
scientific knowledge and technological advances. Such advances turned possible that
NWP centers use more and more observations from a variety of observing systems1.
Roughly speaking, the numerical models used to predict the weather have histori-
cally evolved from simplified, but consistent, representations of the atmosphere to
comprehensive representations, currently known as Earth system models, including
interactions between its various components. It started from coupling atmosphere
and surface models, both land and marine, to coupling really complex interactions
between atmosphere and chemistry models. In parallel, data assimilation has played
and still has room to play, an essential role in this evolution transforming what has
been used as boundary conditions by simplified models in the historical past of de-
velopments to what is currently being used as initial conditions by new components
of Earth system models.

Undoubtedly, observations had a good portion of the contribution to our under-
standing of the structure and dynamics of the Earth system, and consequently pro-
viding bases to the development of these modeling systems. Although contributions
brought by observations to the developments involved in this evolution are incom-
mensurable, their contributions to generating the initial conditions and subsequent
forecasts are not. The traditional longest established way to measure it is through
forecast verification of a given metric. An example along the lines of the evolution
in NWP over the years can be objectively and quantitatively assessed using forecast
skill scores. A typical metric adopted over several years by NWP centers to assess
the performance of their systems is the correlation between the forecasts and the

1We use the definition of observing system in this study as an instrument or group of instruments
that can be used to generate a set of observational data.
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verifying analysis of the geopotential height at the 500 hPa level, expressed as the
anomaly with respect to the climatological height. An example of it is presented in
the panels of Figure 1.1. This figure is extracted from the work of Dee et al. (2013,
Figure 1), but a number of variations of this quantity can be found elsewhere. This
figure illustrates the aforementioned measure for various forecast lead times (3-, 5-,
7-, 10-days), from January 1973 to May 2013, averaged for different lead times over
the extratropical hemispheres, obtained for the operational system at the European
Centre for Medium-Range Weather Forecasts (ECMWF) in panel (a) of Figure 1.1,
that is the Integrated Forecasting System (IFS). Over the long-time history pre-
sented here, model performance has significantly improved for IFS2, reaching un-
precedented levels of accuracy. This improvement in forecast skill has been brought
by the cumulative improvement of the various components of the IFS, for example:
model physics, model dynamics, and data assimilation (e.g., Rabier, 2005). From
a data assimilation perspective, the IFS assimilation scheme changed from the op-
timal interpolation (OI) to the three-dimensional variational (3D-Var) scheme in
January 1996 (COURTIER et al., 1998; RABIER et al., 1998; ANDERSSON et al., 1998),
and later on from the 3D-Var to the four-dimensional variational (4D-Var) scheme
in November 1997 (RABIER et al., 2000; MAHFOUF; RABIER, 2000; KLINKER et al.,
2000).

Certainly, changes to the IFS helped the system to better use the available obser-
vations, but in addition to it, the observing system has also changed quite a lot
throughout the whole time series. ECMWF is one of the few NWP centers that
periodically reprocess a long-time history of analyses using a frozen configuration
of its operational system — the so-called reanalysis processing. Forecasts for lead
times longer then the necessary for the reanalysis production are not a common
product in these datasets. However, at ECMWF they are produced in an attempt
to obtain a measurement of how newer versions of their systems perform over a
long-time history. An example of it is presented in panel (b) of Figure 1.1 for fore-
casts derived from two versions of ECMWF reanalysis (ERA) datasets: ERA-40
(UPPALA et al., 2005) and ERA-Interim (DEE et al., 2011). It is important to note
that the frozen configurations of IFS used to generate each of these reanalyses are
closely related to one of the multiple configurations used to create the time series
in panel (a) of Figure 1.1. For example, ERA-40 and -Interim were produced using
3D-Var and 4D-Var analysis schemes, respectively. Although not as pronounced as

2The forecast skill score presented on this figure is bounded by -100 to 100%, with a perfect
score equal to 100%. There is a consensus in the scientific community that values greater than 60%
indicate useful forecasts.
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Figure 1.1 - Twelve-month running mean anomaly correlations of 3- (blue), 5- (red), 7-
(green) and 10-day (yellow) 1200 UTC forecasts of 500 hPa geopotential height
for the extratropical Northern (thick line) and Southern Hemispheres (thin
line) from (a) ECMWF operational system from January 1980 to May 2013
and (b) two ECMWF reanalysis (ERA) datasets, the ERA-Interim (colored)
from January 1979 to April 2013 and the ERA-40 (grey) from January 1973
to December 2001. The shading shows the difference in scores between the
two hemispheres at the forecast ranges indicated. The units are %.

SOURCE: Dee et al. (2013).

in the IFS curves, the forecast skill of reanalyses also improved throughout its time
series. Common in both panels of Figure 1.1 is the convergence of the curves for
the extratropical hemispheres about late 1990’s and early 2000’s. The convergence
of the curves is even better noticed for shorter leading times, indicating the benefit
brought by observations for short-range forecasts. The forecast skill presented in
panel (b) of Figure 1.1 clears out changes due to the system, being affected only
by changes in the observing system, allowing one to associate changes in forecast
skill with, for example, the introduction of new observing systems (e.g., advanced
satellite instruments). It is also important to note that these changes in skill are
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related to the set of observations being used all at once when producing the initial
conditions from where forecasts were issued. This holds even when new observing
systems take place. In other words, improvements (or degradation) in forecast skill
are due to the new observing systems in the presence of all other observations. Al-
though the major changes in the observing system are well known, it is difficult
to attribute improvements (or degradation) in forecast skill to a specific observing
system mostly due to two main reasons: (i) the need to find a relationship between
changes in the forecast with changes in the initial conditions; and later on how these
changes in initial conditions are related to changes in observations. In science gen-
erally and NWP specifically, it is extremely valuable to know the sensitivity of a
model’s output to changes in model’s inputs. These reasons are typically studied
in terms of sensitivity analysis experiments, having its origins in trial experiments.
This kind of experiment is a central problem in predictability studies that involve
forecast impact. A lot of effort has been done on this research area focusing on how
initial condition perturbations evolve in time, mostly motivated by the systematic
theoretical study of forecast error growth performed by Lorenz (1965).

One possible approach to obtain forecast sensitivity is to measure changes in a
forecast aspect that result from systematically perturbing any degree of freedom in
the initial condition. This leads to an infinity of solutions, being impossible to obtain.
In practice, what is commonly performed is to define a finite set of perturbations
in the initial conditions and evaluate how the forecast aspect of each perturbed
forecast performs with respect to a non-perturbed forecast. These perturbations
can be inserted explicitly in the initial conditions. Nonetheless, data assimilation
systems provide an environment to perturb the initial conditions through the usage
of observations. This can be done in a variety of ways, but the simplest, in agreement
with the aforementioned possibility of perturbing any degree of freedom in the initial
condition, is perturbing each observation. Leading again to an infinity of solutions
and impossible to obtain. The forecast sensitivity obtained using these procedures
is related to the introduced perturbations and provides an understanding about
the “consequences” of the introduced perturbations. However, what one could be
interested in extract from forecast sensitivity is to obtain an understanding of the
“causes” that led to a forecast aspect. During many years, sensitivity methods have
been exploited in the NWP context with the goal of identifying dynamic links in
evolving weather patterns. This kind of estimate has been extensively investigated
during the 1990’s and 2000’s in a variety of field campaigns aiming to find regions
where would be beneficial to add extra observations (e.g., deployment of dropsondes)
— the so-called targeted observations. The article of Majumdar (2016) provides an
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overview about the variety of available strategies adopted over the years. Among
those, an efficient method of obtaining this kind of estimate is through the usage
of the so-called adjoint models, which are built on adjoint operators that determine
sensitivities at the initial time related to all possible perturbations in the initial
condition.

If the forecast models are used to step perturbations forward in time, one can say
that the adjoint models are used to step sensitivities backward in time. A num-
ber of studies have demonstrated how the adjoint models can be used to provide a
gradient of some aspect of the forecast to a change in the initial conditions (e.g.,
Errico and Vukicevic, 1992; Rabier et al., 1996). This procedure helps to solve the
problem stated in reason (i) above, but still remains to find a relationship between
the changes (perturbations) initial conditions are related to changes in observations.
A similar solution can be used for reason (ii). Although not backward in time as the
aforementioned adjoint associated with the forecast model, the adjoint of the anal-
ysis scheme can also be explained as backward procedures. If the data assimilation
scheme is able to map the contribution of the observations to the initial conditions
of the forecast model, one can say that its adjoint is able to map perturbations
in the initial conditions back to the observations. The desire in obtain a measure
diagnosing impacts from observations is closely linked to forecast verification. The
combinations of the adjoints of the forecast model and analysis scheme may be used
together to objectively determine the contribution brought by observations to nu-
merical weather forecasts — the so-called observation impact. The term observation
impact can be used in many different contexts. In this study, we use this term refer-
ring to how much a NWP forecast is changed due to the observations assimilated.
The observation impact is a very specific measure of forecast impact, as it depends
upon the choice of forecast metrics, the suite of observations assimilated, the data
assimilation system, and the NWP forecast model. The work of Langland and Baker
(2004) can be considered the seminal study efficiently attributing to each assimilated
observation its contribution in reducing a forecast-error aspect, using the adjoints
of the forecast model and data assimilation scheme. This has been introduced un-
der the nomenclature of adjoint-based procedure to observation impact, and later
has been termed in different ways3. Currently, this procedure is commonly known
as Forecast Sensitivity Observation Impact (FSOI) and this nomenclature will be

3This procedure can be found over the literature under different acronyms, for example: Forecast
Sensitivity to Observations (FSO: Cardinali (2009a), Cardinali (2009b)); Forecast Error Contri-
bution (FEC: Cardinali and Prates (2011)); Forecast Error Reduction (FER: Cardinali and Healy
(2014)); Forecast Sensitivity approach to Observation Impact (FSOI: Lupu et al. (2015)).
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adopted throughout this document. In this study, these adjoints are used to effi-
ciently estimate the reductions of a forecast-error measure due to arbitrary sets of
observations used by the data assimilation system.

1.1 Objectives

The present thesis aims to understand the impact of observations on short-range
forecasts in the broader context of yearly to decadal time scales of reanalysis, be-
ing explored through a state-of-the-art modeling framework using a robust method
capable of obtaining a quantitative measurement of the contribution of the observa-
tions to reduce forecasts errors. Specifically, this thesis is conducted for the following
purposes:

a) Analyse the observation impact technique applied to a multi-year reanal-
ysis;

b) Investigate the forecast skill in the light of the observation impact metrics,
as a corroboration to forecasts results from other reanalysis using different
metrics;

c) Investigate the contributions from various observing system components
in reducing forecast errors along the reanalysis period;

d) Obtain a quantitative estimate of the contribution of new observing sys-
tems to reanalysis forecasts;

e) Evaluate the contribution of the so-called conventional observations;

f) Evaluate the contribution of radiance instruments and how they evolve in
a long-time history;

g) In the light of the global evaluation, assess the impact of observations in
short-range forecasts over the Amazon basin in South America;

h) Identify an overview of the evolution of the global observing system.

In order to achieve the objectives proposed here, this document is organised as
follows: Chapter 2 provides the theoretical background information necessary to
understand the issues addressed in this thesis; Chapter 3 describes the methods
and data used; Chapters 4 and 5 refer to results and discussions; and finally, we
summarise the work conducted in this thesis and draw conclusions in Chapter 6,
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including suggestions for further work that could be carried out following on from
work conducted to date.

This thesis is a contribution to observation impact studies, being a unique study
in the sense that this is the first study assessing observation impacts in a multi-
year reanalysis framework, using the Langland and Baker (2004) approach. The
results are segregated into two chapters. Preliminary results of Chapter 4 are already
published in the Joint Center for Satellite Data Assimilation (JCSDA) Newsletter,
Diniz and Todling (2019b), and an article is under minor revision by the Quarterly
Journal of the Royal Meteorological Society (QJRMS), Diniz and Todling (2019a).
Another article, presenting results of Chapter 5, has been submitted for the Earth
and Space Science (ESS), Diniz et al. (2019).
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2 THEORETICAL BACKGROUND

This chapter aims to provide the theoretical background of particular importance to
this thesis. It gives a brief general overview of the fundamental processes involved
in the estimation of observation impact on short-range forecasts, in the context of
NWP, focusing on the FSOI technique. It presents the connection to the primary
studies found over the literature. Additional specific background information is pre-
sented in the following chapters of this document. For simplicity and ease of under-
standing, the modeling framework adopted in this chapter uses a general nonlinear
forecast model with a linear analysis scheme providing the initial conditions for this
model. This choice does not deter the extendability of the introduced fundamentals
to specific frameworks.

2.1 Observation impact on the forecast

It is the desire to forecast with accuracy, which demands a better usage of the avail-
able resources. The contribution that observing systems have in NWP systems is a
so important theme that the World Meteorological Organization (WMO) frequently
promotes a workshop designed to drawn conclusions concerning the contributions of
the various components of the observing system to forecast skill at short and medium
range (e.g., the reports of Pailleux, 1997; Pailleux and Böttger, 2000; Böttger et
al., 2004; Pailleux et al., 2008; Andersson and Sato, 2012; and Sato and Riishoj-
gaard, 2016). The workshop is designed to discuss the major topics on this theme,
for global and regional applications, encouraging the scientific community to present
the latest results assessing observation impacts and also to monitor the WMOGlobal
Observing System (GOS). This series of workshops helps data providers and users to
measure the current value to NWP of different observing systems, according to the
ability of each application in effectively extracting useful information from observa-
tions, providing some guidance for future developments. According to the last report
of this series, there is a clear trend throughout the NWP centers toward monitoring
the GOS with advanced tools.

The assessment of contributions from observations to analysis and forecasts is a
challenging diagnostic in NWP. As briefly introduced in Chapter 1, a possible ap-
proach to estimate impact of observations on forecasts, is to systematically run a
NWP system for a prolonged period perturbing the set of observations, then ver-
ify forecast against a reference the skill of the forecast. Historically, the traditional
techniques used in this assessing was (and still is) the so-called Observing System
Experiment (OSE) and Observing System Simulation Experiment (OSSE). Atlas
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(1997) provides an overview about this kind of experiment. In OSEs and OSSEs, a
data assimilation system and model forecast run is conducted using a baseline set of
observations, commonly defined as a control, and further runs are done but denying
or adding observations — the so-called data denial and data add-on experiments,
respectively — to measure forecast impact through a standard set of verification
scores. However, the main difference between them is that OSSE is performed in
an idealized environment to simulate different observing systems (e.g., a proposal
for a new satellite instrument), while the OSE technique uses the already in place
observing systems (e.g., a new instrument which is already on board a satellite).
The assessment of the value of a given observing system can become quite expensive
if a full investigation of the different components of the GOS is performed. This
kind of experiment provides a measure representing what would happen if the NWP
system did not have (or did have for the add-on case) the observations selected
to be denied (or added). In general it is assumed that a positive impact happens
when forecast skill increases, while negative impact when it is reduced, regardless of
whether the metric is positive or negative defined. For example, an increase in skill
for anomaly correlation is obtained with an increase in its value, while an increase
in skill for root-mean-squared error is obtained with a decrease in its value. As this
study is focused on deriving observation impacts using the FSOI technique, readers
are referred to the study of Daescu (2009) for a comprehensive comparison of OSE
and FSOI through a mathematical framework. In addition to it, the study of Gelaro
and Zhu (2009) presents a systematical comparison between OSE and FSOI using
a robust NWP system. Although both measures obtain an estimate of impact of
observations on forecast, these techniques are found to complement the results from
each other.

As briefly introduced in Chapter 1, the FSOI represents a technique that uses both
adjoints (forecast model and analysis scheme) to obtain a measure of how much
each assimilated observation helped change a given forecast aspect. The adjoint-
based method was introduced by Langland and Baker (2004) in a observation space
variational data assimilation system. Interpretations of some basic properties of the
method are described in Errico (2007), Gelaro et al. (2007), Trémolet (2007), and
Daescu and Todling (2009). Adaptation of the method to model space variational
data assimilation systems is described in Trémolet (2008). Zhu and Gelaro (2008)
and Cardinali (2009b) present results applying this technique for 3D-Var and 4D-
Var systems, respectively. Errico (2007), Gelaro et al. (2007), and Trémolet (2008)
treated cross terms among observations as second-order effects. It is possible that
bad observations could alter the estimated impacts of nearby good observations,
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or vice versa, mostly due to the nonlinearity involved on the process. Ishibashi
(2011) studied the cross terms between observation impacts of different datasets,
showing that these cross terms between neighboring channels of satellite radiance
observations are not negligible.

Baker and Daley (2000) derived the equations of the forecast sensitivity to observa-
tions and the background state in terms of the adjoint of the data assimilation sys-
tem. Subsequently, these techniques have been extended to incorporate the forecast
error sensitivity to observation and background error covariances. Daescu (2008)
extended the adjoint-based method to assess forecast sensitivity with respect not
only to observations, but to observation-error and background-error covariance ma-
trices. The study provides a theoretical framework to diagnose the impact of for
further diagnostic tool development not only to evaluate the observation impact on
the forecast but also the impact of the other analysis parameters. This method was
latter applied by Daescu and Todling (2010), Daescu and Langland (2013), Cardinali
and Healy (2014), and Lupu et al. (2015) to optimize the usage of error covariance
matrices. The FSOI technique was also applied to an ensemble Kalman filter frame-
work, where adjoint operators are approximated by ensemble forecasts. This was
first proposed by Liu and Kalnay (2008, see also Li et al., 2010) in a local ensemble
transform Kalman filter environment, presenting promising results when comparing
with the traditional adjoint method. Later, the ensemble-based method has been
simplified by Kalnay et al. (2012) to any approximation of ensemble Kalman filter.
The FSOI variations using ensemble were introduced under the nomenclature of
ensemble-based procedure to observation impact, but currently they are known as
Ensemble FSOI (EFSOI). Buehner et al. (2018) introduced a variation of the FSOI
for hybrid ensemble-variational analysis schemes. The study of Todling (2013) rigor-
ously examined the caveats involved in the FSOI technique introduced by Langland
and Baker (2004). In addition to it, the study introduced an alternative to the FSOI
estimates using observation-minus-forecasts residuals.

As mentioned in Chapter 1, the present work follows the approach of Langland and
Baker (2004) to derive observation impacts. Briefly, the approach requires defining
an error measure, e, and obtains observation impacts as the outcome of evaluating
how (infinitesimal) changes to the observations change the error measure. The er-
ror measure is typically chosen to be a weighted, quadratic, sum of forecast errors
calculated with respect to a given verification, that is,

11



e ≡ (xf − xv)TPTCP(xf − xv), (2.1)

where xf and xv are n-dimensional vectors representing the forecast and verification
fields, respectively, C is a positive definite weighting matrix, P is a projection op-
erator allowing for confinement of the measure within a desired region, defined 1 in
the region of interest and zero elsewhere, and T stands for the transpose operation.

Infinitesimal changes to e can be traced back to changes in the forecast initial con-
dition x0 and subsequently to the observations yo that lead to a particular initial
condition. Specifically, variational calculus allow us to write, the so-called observa-
tion impact δe, as in

δe = dT ∂e

∂yo
= dT

(
∂x0

∂yo

)T (
∂xf

∂x0

)T
∂e

∂xf
= dTKTg, (2.2)

with d being the observation-minus-background (OmB) residual p-dimensional vec-
tor, the underlying analysis operator being represented by the matrix K, and
g ≡

(
∂xf

∂x0

)T
∂e

∂xf amounting to a forecast sensitivity vector whose approximation
leads to all kinds of formulae. For example, Errico (2007) shows how the Langland
and Baker (2004) formulation can be derived from a Taylor expansion of the dif-
ferentiation involved in the forecast sensitivity calculation, thus leading to various
approximations associated with different levels of truncation in the expansion. While
Daescu and Todling (2009) introduce a parametric approach that uses either Taylor
series or numerical quadrature methods to obtain various orders of approximations
for the observation impacts.

As discussed in Daescu and Todling (2009), the Langland and Baker (2004) for-
mulation corresponds to a second-order approximation of the forecast sensitivity
component. This can be written as

g ≡ 1
2
(
MT

a PTCPεa + MT
b PTCPεb

)
, (2.3)

where the matrix MT represents the adjoint of a tangent linear model of the nonlin-
ear model associated with the forecasting model used to obtain xf , εf ≡ xf − xv is
the forecast error, and the subscripts f = a and f = b correspond to linearization,
and error evaluation, of model predictions issued from analysis and corresponding
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background states, respectively, as follows:

MT
a =

(
∂xf

a

∂xa

)T

, (2.4)

and

MT
b =

(
∂xf

b

∂xb

)T

. (2.5)

As suggested by Trémolet (2008), the impact of observations in a model space vari-
ational data assimilation system implemented with several outer loops can be ob-
tained through:

δe =
J∑

j=1
dT

j KT
j HT

j+1KT
j+1zj+1, (2.6)

where J represents the number of outer loops, and zJ = g. The infinitesimal per-
turbation representation of observation impact in (2.2) has typically been given the
interpretation of being a proxy for a finite perturbation definition of impact de-
scribed as that improvement (or deterioration) obtained when predicting the state
at certain time from two consecutive analyses of a cycling assimilation system. This
is illustrated in Figure 2.1. In other words, the infinitesimal perturbation impact δe
is equated with the finite perturbation impact ∆e as in

δe ∼ ∆e ≡ ea − eb. (2.7)

Though ∆e can be easily and explicitly calculated, it is not possible to use it to as-
sess the individual contribution from sub-components of the observing system; this
is where the infinitesimal representation of impact, δe, becomes handy: expressions
following the right-hand side of (2.2) can easily be split into the various components
of the observing system. It is pertinent to mention that the ensemble-based observa-
tion impact approach of Liu and Kalnay (2008, see also Li et al., 2010) and Kalnay
et al. (2012), typically referred to as EFSOI, obtains a direct approximation to the
finite perturbation impact ∆e, that can just as well be split into the sub-components
of the observing system. In other words, FSOI ∼ ∆e ≈ EFSOI. This is a subtle point
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that has no immediate consequence to comparing FSOI and EFSOI results unless
high order terms are sought out in these approximations. The advantage of δe is that
it can be split into the sub-components of the observing system by simply noticing
that (2.2) can be written as δe = ∑

I δeI , and that δeI is given by

δeI =
I∑

i=1
dig̃i (2.8)

where di is the i-th element of the residual vector, g̃i ≡ (KTg)i is the i-th element
of the analysis sensitivity vector, and I represents any possible partitioning of the
background residual vector d.

Figure 2.1 - Schematic of the observation impact procedure. Relevant times in procedure
are: analysis time (ta), background time (tb), and forecast verification time
(tv).

e

t
tb

eb

ta

ea

tv

∆e ≡ ea − eb ∼ δeyo

SOURCE: Author’s production.

The metric e can be evaluated for any length of forecast, including for a very short-
range 6-hour background. In practice, since FSOI typically employs self verifica-
tion, where xv is an analysis obtained with the underlying cycling data assimilation
system, the forecast length must be long enough to reduce the effect of spurious
correlations affecting the results — see Todling (2013) for an explicit expression
for the correlated terms and a discussion of its consequences. At the same time,
forecasts cannot be too long in extent since FSOI relies on an infinitesimal pertur-
bation approach and depends on the validity of the tangent linear approximation.
As such, it has become typical to evaluate FSOI for 24-hour forecasts. This is the
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situation depicted in the finite perturbation illustration of Figure 2.1, when the im-
pact of observations is seen as the difference between the errors on 24- and 30-hour
forecasts.

The procedures involved in the FSOI technique are summarized in Figure 2.2. In this
figure we show the schematic of the necessary data assimilation procedures involved
in FSOI studies. The figure is divided in two main regions. The top row represents
the steps involved in a typical data assimilation system when producing analysis
— the so-called forward procedures. The bottom row represents the steps involved
also in a data assimilation system, but when producing sensitivities — the so-called
backward procedures.

Figure 2.2 - Schematic representation of a data assimilation scheme and its and its Fore-
cast Sensitivity Observation Impact (FSOI) tool.
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SOURCE: Author’s production.

Also associated with the metric e is the weighting matrix C. In global applications
such as the present one, this is typically chosen to represent a linearized total energy
quantity meant to unify the varied units of temperature (T ), zonal and meridional
horizontal wind components (u and v, respectively), surface pressure (ps) and specific
humidity (q) forming the components of the forecasting and verification vectors, into
a single consistent unit, for instance, J kg−1. The typical norm definition adopted
in these studies is the total energy norm of Talagrand (1981, see also Lorenz, 1960),
being easily calculated and dynamically relevant, as well as comprehensive in that
it measures contributions from u, v, T and ps, augmented by a term accounting for
q contribution as in Ehrendorfer et al. (1999), with its continuous formulation being
expressed as a symmetric inner-product matrix C, implemented as an integral of
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the total energy over the model horizontal (Σ) and vertical (σ) domains as follows:

e = 1
2xTCx = 1

2

∫
Σ

∫ 1

0

[
u′2 + v′2 + cpd

Tr

T ′2 + εq
L2

c

cpdTr

q′2
]
dσdΣ +

1
2

∫
Σ
RdTr

(
p′s
pr

)2

dΣ, (2.9)

where the prime superscript (�′) represents perturbations, and cpd =
1004.64 J K−1 kg−1, Rd = 287.05 J K−1 kg−1, Lc = 2.499× 106 J kg−1, Tr = 280 K,
and psr = 1000 hPa, are the specific heat of dry air at constant pressure, the gas
constant for dry air1, the latent heat of condensation at 273.15 K, and the reference
temperature and surface pressure2, respectively. The q contribution term involves
the εq parameter3, which defines a relative weight given to the water contribution.
When εq 6= 0 we obtain the moist total energy norm, and when εq = 0 we obtain
the dry total energy norm.

The caveats associated with the choice of the total energy norm for FSOI purposes
have been discussed in Todling (2013). One of these relates to the choice of vertical
weights used to form the total energy operator: one choice is mass weighting; another,
is based on height. The former provides negligibly small weights in the stratosphere
(basically above 10 hPa); the latter, provides weights that increase with height
about a certain level, thus putting a lot of emphasis on the stratosphere and not
much in the troposphere. Neither of these options is quite ideal, though most FSOI
works use the mass-weighted option, and as such focus on tropospheric results. An
illustration of these choices is shown in Figure 2.3. Alternative weights formed on the
basis of the inverse of the observation error covariance matrix used in the analysis
procedure have been proposed and examined in Todling (2013); such weights produce
impacts treated in a form consistent with how the analysis procedure utilizes the
observations; this relates to the approach of degrees of freedom for signal of Lupu
et al. (2011). The present work, however, follows the traditional choice of mass-
weighted total energy weights, focusing thus on tropospheric contributions from the
observing system.

1Here calculated assuming the universal gas constant R∗ = 8.31447 × 103 J K−1 kmol−1 and
the effective molecular weight of dry air md = 28.965 kg kmol−1.

2According to Errico et al. (2007), these reference values of temperature and surface pressure
can be prescribed, location-independent (e.g., mean).

3Also denoted as ωq over the literature.
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Figure 2.3 - The (a) fractional and its (b) accumulated vertical mid-layer weights based
on mass (∆σ, thin continuous curve) and on height (∆z, thick continuous
curve). The dotted vertical line indicates the 72 model levels. All calculated
at a point where ps = 1000 hPa and model-top pressure is 0.01 hPa. Values
of ∆σ and ∆z are similar to those presented in Figure 1 of Errico (2007) and
Figure 2 of Todling (2013). The units of fractional weight are %.
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The abundance of recent studies regarding FSOI applications is too numerous to
cover here. Readers are advised to peruse the proceedings of the WMO Workshop
on the Impact of Various Observing Systems for a more complete sample in mete-
orology and related Earth sciences (e.g., the references in the introduction of this
chapter). However, a few notable studies should be highlighted to illustrate the main
variations of approaches of FSOI. Figure 2.4 presents a timeline of the FSOI stud-
ies introducing variations of this technique. We define dates as the year that the
research was published. Indeed, developments and discussions started earlier. The
omission of studies may reflect the imperfection of this timeline, rather than the
intrinsic merit of that study.

Figure 2.4 - Timeline of the studies introducing the main variations of approaches for
FSOI.

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Buehner et al. (2018)

Todling (2013)

Kalnay et al. (2012)

Liu and Kalnay (2008)

Langland and Baker (2004)

Baker and Daley (2000)

SOURCE: Author’s production.

As briefly introduced in Chapter 1, the work of Langland and Baker (2004) can
be considered the seminal study related to the FSOI technique. An example of the
results obtained by Langland and Baker (2004) is presented here in Figures 2.5 and
2.6. These results are for two single-month periods, namely June and December
of 2002. In Figure 2.5, the dark solid line represents the forecast error reduction
calculated using ∆e, while the grey solid line represents the corresponding adjoint-
based observation impact estimate δe; see (2.7), page 13. It is important notice that
the forecast error reduction presents negative values due to ea being smaller then
eb. This is a clear effect of the benefit that observations brought to the analysis
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at time ta, and as a consequence to the forecasts at time tv. It is also important
notice how the estimate δe follows the variability of ∆e. An example of the possible
splitting of δe according to the observation categories used to generate the analysis
is presented in Figure 2.6. In this figure, grey and dark bars represents results for
June and December of 2002, respectively. Positive values represent the observation
counts for each category and negative values represent the total impact. The sum of
the bars for each period in Figure 2.6 equates with the total impact grey solid line
presented in Figure 2.5.

The results of Langland and Baker (2004) encouraged a number of meteorological
centers to implement the FSOI technique in its operational systems to routinely
diagnose the usage of the observations. As a consequence, this led to the first FSOI
intercomparison study, presented in Gelaro et al. (2010), in which were compared
FSOI results obtained from three global NWP systems. The three systems were set
to use a common set of observations during the month of January 2007. Participated
in this intercomparison the systems from: the Naval Research Laboratory (NRL); the
National Aeronautics and Space Administration (NASA) Global Modeling Assimi-
lation Office (GMAO); and the Environment Canada (EC). Despite the differences
explained in details in Gelaro et al. (2010), it is important to notice the similar-
ity among the three centers. Currently, an extended and update intercomparison of
Gelaro et al. (2010) including contributions from additional NWP centers is being
spearheaded by the Joint Center for Satellite Data Assimilation (JCSDA)4, from
December 2014 to February 2015, and the participating NWP centers are (LANG-

LAND et al., 2016; AULIGNE et al., 2017; MAHAJAN et al., 2018): the NRL (LANGLAND;

BAKER, 2004); the GMAO (GELARO et al., 2010); the United Kingdom Met Office
(LORENC; MARRIOTT, 2014); the Météo-France (BOULLOT et al., 2016); the Japan
Meteorological Agency (JMA) (ISHIBASHI, 2018); and, the Environmental Modeling
Center (EMC) of the United States National Center for Environmental Prediction
(NCEP) (OTA et al., 2013).

4Results for this intercomparison are available online at: http://ios.jcsda.org.
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Figure 2.5 - Time series of ea − eb (∆e, dark solid line) and corresponding adjoint-based
observation impact estimate (δe, grey solid line) calculated for the global
domain in (a, left) for June and (b, right) for December of 2002. The units
are J kg−1.

SOURCE: Langland and Baker (2004).

Figure 2.6 - Summed global observation impact (δe, negative values) and observation
counts (positive values) for June and December 2002, partitioned by instru-
ment type. Includes all observations assimilated at 0000 UTC. The key is as
follows: ATOVS temperature retrievals; RAOB, rawindsondes; SATW, cloud
and feature-track winds; AIRW, commercial aircraft observations; LAND,
land surface observations; SHIP, ship surface observations; AUSN, synthetic
sea level pressure data (Southern Hemisphere only).

SOURCE: Langland and Baker (2004).
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3 METHODS AND DATA

This chapter presents two main sections dedicated to describing the methods (Sec-
tion 3.1) and data (Section 3.2) used in this thesis.

3.1 Methods

This section describes the modeling framework adopted to obtain the results of this
thesis, as well as the specific nomenclature and definition of observation impact
measures involved in the present study. Additional information about the particular
configuration of the modeling framework used to obtain the results of this thesis is
presented in each of the following chapters within the results.

3.1.1 Modeling framework

This study benefited from the NASA Goddard Space Flight Center’s GMAO group
and partners’ efforts in developing and maintaining state-of-the-art tools in Earth
system modeling and data assimilation. The GMAO uses the Goddard Earth Ob-
serving System (GEOS) modeling and data assimilation system to produce estimates
of the Earth system state to support NASA’s Earth observation missions and var-
ious field campaigns, and as a consequence, the scientific community benefits from
it. The GEOS system development is built around the modular concept of the Earth
System Modeling Framework (ESMF; Theurich et al., 2016), which allows the sys-
tem to be easily adapted for various purposes. This enables us to say that GEOS can
be considered a system of subsystems. As an Earth system model, GEOS presents
components for atmospheric and ocean circulation, land surface processes, atmo-
spheric composition, and biogeochemistry. Each of its components can be switched
on and off according to its application. This system can be adaptable for a range of
applications, from cloud-resolving applications through a global mesoscale model, to
a seasonal-to-decadal climate model to perform simulations at coarser resolutions.
A broad overview of this system can be found in Rienecker et al. (2008), which
provides details and points to references for various components of this system.

The most recent validated version of GEOS runs routinely near-real time at GMAO
producing analyses and forecasts, under the name of GEOS Forward Processing
(FP). While GEOS FP is under continuous development, with regular updates and
upgrades, reflecting the major developments in Earth system modeling, sometimes
a clone copy of this system is generated and kept unchanged to reprocess analysis
over a historical period. Along the years, this system has been used to generate three
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reanalysis datasets: the first, presented in Schubert et al. (1993); second, Modern-
Era Retrospective Analysis for Research and Applications (MERRA; Rienecker et
al., 2011); and third, the most recent, still running, the MERRA-2 presented in
details by Gelaro et al. (2017).

The results of this thesis are based on the MERRA-2 modeling framework. The
study of Gelaro et al. (2017) presents an overview of MERRA-2, including a system
description and various measures of performance, providing an introduction for a
series of studies that evaluate MERRA-2 products and their uses in particular appli-
cations. A number of assessments for specific components of the system can be found
over the literature, for example: Randles et al. (2017) and Buchard et al. (2017) the
aerosol analysis component; Reichle et al. (2017a), Reichle et al. (2017b) and Draper
et al. (2018) the process in the land surface component (e.g., precipitation, hydrol-
ogy, and energy budget); Bosilovich et al. (2017) the global water balance and water
cycle variability.

3.1.1.1 Brief summary of MERRA-2

The MERRA-2 is a follow up to MERRA that is primarily aimed at providing an
improved water cycle as compared not only to MERRA but also to other available
reanalyses. MERRA-2 most distinguishing feature is the use of the dry mass conser-
vation constraint approach of Takacs et al. (2016). MERRA-2 replaces the MERRA
0.5◦ regular grid finite-volume hydrodynamics of Lin (2004) with a cubed-sphere
finite-volume hydrodynamics (PUTMAN; LIN, 2007) at comparable resolution; both
operating on 72 hybrid vertical coordinate levels. Additionally, MERRA-2 incorpo-
rates a radiatively active Goddard Chemistry, Aerosol, Radiation, and Transport
(GOCART; Chin et al., 2002; Colarco et al., 2010) aerosol component that benefits
from the assimilation of aerosol optical depth (AOD), and thus represents a step for-
ward into coupling aerosols to the meteorology of reanalysis by integrating the offline
MERRAero analysis (BUCHARD et al., 2015) into a full online procedure (RANDLES

et al., 2017, and references therein), which employs a local displacement ensemble ap-
proach to update its corresponding aerosol fields concentration by assimilating AOD
through the Physical-space Statistical Analysis System of Randles et al. (2016). An-
other feature of MERRA-2 is its implementation of a land precipitation correction
procedure applied from low- to mid-latitudes that rely on the offline MERRA-Land
of Reichle et al. (2017b) and its assimilated precipitation product. The procedure is
an attempt to reduce model biases in land precipitation and to ground MERRA-2
to realistic levels of precipitation, especially when affecting aerosol deposition. This
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precipitation correction procedure ensures, in particular, that anomalous precipita-
tion events are reasonably well represented in MERRA-2. Other major upgrades in
MERRA-2 include: a revised and retuned version of its general circulation model
(see Molod et al., 2015, and Cullather et al., 2014); and a revised version of its sea ice
concentration and sea surface temperature boundary conditions, this latter relying
on a merge of the daily 1⁄4◦ resolution Reynolds et al. (2007) product from 1982 to
March 2006 with the Donlon et al. (2012) 1⁄20◦ resolution Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA) data set covering the modern period.

Just as in MERRA, the atmospheric analysis uses the Grid-point Statistical Inter-
polation (GSI), but MERRA-2 incorporates considerable upgrades in its science and
software (see Kleist et al., 2009b). Specifically, the MERRA-2 atmospheric analysis
relies on an improved version of the Community Radiative Transfer Model (CRTM,
release 2.1.3; Han et al., 2006; Chen et al., 2008). Furthermore, the MERRA-2 GSI
replaces the weak-constraint balance operator of the MERRA GSI with the strong-
constraint tangent linear normal mode formulation of Kleist et al. (2009a) for in-
cremental balance adjustment. The MERRA-2 GSI also invokes the bi-conjugate
gradient procedure of El Akkraoui et al. (2013); a three-dimensional variational
data assimilation (3D-Var) algorithm incorporates a middle-loop strategy — lin-
earization of the observation operator — with two outer-loops, each with 100 inner
iterations. The variational procedure operates at a resolution of 0.5◦ on 72 verti-
cal hybrid eta levels and uses a first-guess at the appropriate time strategy and
a climatological background error covariance derived on the basis of the National
Meteorological Center (NMC; now named the NCEP) method (PARRISH; DERBER,
1992), which is unchanged throughout the reanalysis period. The Derber and Wu
(1998) variational bias correction procedure is applied to satellite radiance obser-
vations, to estimate air-mass and viewing-angle-dependent biases, whereas biases
in the scan-angle are estimated offline using an exponential moving average filter
applied to the observation-minus-background residuals (R. Treadon, pers. comm.).
A cycling offline bias correction procedure is implemented to correct temperature
biases in aircraft observations (see Sec. 3.2 of McCarty et al., 2016, for details).

For simplification, the present work calculates observation impacts only for the
0000 UTC analysis cycles, and only for the months of January and July. Conse-
quently, Figure 3.1 counts only observations used at these times over the period
from 1980 to 2017 (thus, this is only a similar figure to Figure 1 of McCarty et
al., 2016, but not identical). Gelaro et al. (2010) provides an understanding for how
observation impacts change at different synoptic times in 6-hourly-cycled systems

23



Figure 3.1 - Time series of monthly mean stacked observation count (top) and its frac-
tional (bottom) for 0000 UTC analyses during months of January and July.
The scale factor for observation count is 106 and the units for fractional obser-
vation count are %. Numerical values in the legends represent the mean value
of a given observation category over the course of its availability. The vertical
shaded and non-shaded areas represent the four streams of MERRA-2. Nu-
merical values in the legend represent mean. Observation count is similar, but
not identical to Figure 1 of McCarty et al. (2016).
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such as MERRA-2; typically, the impact of satellite observations is significantly in-
creased at times when the impact-dominating radiosonde network is considerably
reduced (i.e., at 0600 and 1800 UTC). As briefly introduced in Section 1.1 (page 6),
the objective of the present study is to provide a comprehensive view of the impact
of observations in the broader context of yearly to decadal time scales of reanalysis.

3.1.1.2 Forecast errors and sensitivities in MERRA-2

To derive observation impacts following the approach described in the previous
chapter requires evaluation of the gradient (2.3), page 12, and thus the availability
of 30- and 24-hour forecasts from two consecutive analyses. Forecasts, however, are
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not readily available products of MERRA-2, and certainly neither are the forecast
sensitivity vectors resulting from the corresponding adjoint operations in (2.3). It
is worthwhile noticing that, in situations when forecasts and sensitivities are only
derived for the purpose of calculating observation impacts, and forecast are not
readily available, the midpoint approximation of Daescu and Todling (2009) provides
the same order of accuracy on the impacts at half the cost by referring only to
forecasts and model adjoint integrations issued from midpoint initial conditions,
defined as half of the sum of the analysis and background fields. The midpoint
formulation would have saved us computational resources, however, the desire to
examine the long term behavior of the nonlinear impact, derived from the finite
perturbation approach (2.7), page 13, motivated us to stick with the traditional
Langland and Baker (2004) formulation. The strategy adopted here to reduce cost
is to evaluate FSOI for the 0000 UTC analyses. Additionally, FSOI is produced for
the months of January and July. Ultimately, 24-hour forecasts were obtained for
analyses over each of these times, and 30-hour forecasts were obtained for each of
the corresponding preceding 1800 UTC analyses.

All nonlinear forecasts were generated at the full MERRA-2 cubed-sphere horizon-
tal grid resolution of 0.5◦, roughly corresponding to 50 km, and with 72 vertical
levels with a top pressure at 0.01 hPa. The adjoint model of the forecasting model
includes the adjoint of the cubed-sphere hydrodynamical finite-volume core (Jong
Kim, pers. comm.), simple vertical diffusion and boundary layer, and the simplified
large-scale moist processes of Holdaway et al. (2014). All versions of the FSOI appli-
cations in GEOS ignore the effect of the Incremental Analysis Update (IAU; Bloom
et al., 1996) in the adjoint model integration. Forecast sensitivities are generated on
a 1◦ horizontal grid resolution and the 72 vertical levels of the MERRA-2 nonlinear
model. The matrix C corresponding to a linearized total energy norm accounts for
moist perturbations as in Equation (10) of Holdaway et al. (2014), with the latent
heat term weighted by a factor of 0.3, as in this study; see (2.9), page 16. Hold-
away et al. (2014) argues that this value produces approximately equal weighting
between the temperature and specific humidity components of the norm. The ma-
trix P incorporates a projection operator that simply amounts to a diagonal matrix
with ones along most of its diagonal except for some zeroes to exclude perturba-
tion contributions roughly above the 60-th level of the model (roughly 0.6168 hPa)
to steering results away from sponge layer effects. Recall that the version of total
energy weights used in the present work emphasizes the troposphere and as a con-
sequence the inclusion of such projection operator makes no significant difference to
the results.
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The MERRA-2 reanalysis production was split into four parallel streams running
simultaneously in order to have a timely production. Each stream was spun up for
a year previously to its distribution. With streams 1-3 completed, the fourth stream
is still being produced near-real-time until the present. A summary of the dates is
presented in Table 3.1. Although MERRA-2 is still running, we made a choice to
evaluate the impacts from the beginning of the reanalysis until 2017.

Table 3.1 - Production dates of the four streams of MERRA-2.

Stream Beginning Distribution Final
1 1 Jan 1979 1 Jan 1980 31 Dec 1991
2 1 Jan 1991 1 Jan 1992 31 Dec 2000
3 1 Jan 2000 1 Jan 2001 31 Dec 2010
4 1 Jan 2010 1 Jan 2011 Present

3.1.2 Observation impact in MERRA-2

As mentioned above, all results that follow have been obtained for the 0000 UTC
analysis of the January and July months of MERRA-2 from 1980 to 2017. It should
be noted that the results that follow do not provide an assessment of the impact
of precipitation and ozone observations used in MERRA-2. To be able to reliably
provide such assessment the adjoint of the model and that of the analysis must
account for these quantities properly, as well as the norm defined by the weighting
matrix C in (2.1). Although the adjoint of the GSI carries ozone perturbations in
a matter consistent with the forward analysis, the moist total energy norm does
not weight perturbations in ozone, and more importantly, the linear model only
transports ozone, but does not account for any other process represented in the
nonlinear model1. When it comes to precipitation, the simplified physics in the
linear model does not allow for its adequate representation, and the use of retrieved
rain rates (such as those from SSM/I and TMI) are known not to influence the
GSI analysis, nor subsequent backgrounds, in any significant manner. These factors
dismiss any possible assessment of precipitation-related observation in MERRA-2.

A remaining issue in the FSOI approach in general, and in the implementation for
this work in particular, is associated with how well nonlinearities are approximated
by the tangent linear and its corresponding adjoint components. When it comes to
the adjoint of the nonlinear general circulation model, the study of Holdaway et

1Note that modifying C to account for ozone is simple, but not much worth given the model
adjoint lack of related processes representation.
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al. (2014), and the upgrades then implemented in the simplified physics, indicates
that the linear impact is capable of recovering roughly 80% of the nonlinear error
reduction. This is essentially an upper limit for how much of the nonlinear impact
can be recovered by its linear counterpart, for global applications using GEOS. Their
work validated the implementation of a 1◦ adjoint, using a 1◦ nonlinear (trajectory)
model, and a fully consistent adjoint analysis setting. When it comes to the analysis
adjoint, consistency refers to use of similar minimization options in the backward
and forward modes of doing the analysis. The GSI software supports a number of
minimization strategies. Some are based on preconditioning with the full background
error covariance (B), such as the double conjugate gradient (CG) of Derber and
Rosati (1989) and the bi-CG algorithm of El Akkraoui et al. (2013); others are
based on preconditioning with the square-root of B. The analysis adjoint machinery
of Trémolet (2008), represented in (3.1), was originally implemented for the latter
preconditioning strategy, and it is capable of handling multiple middle (outer) loops.
No adjoint option is available for the double CG algorithm and the adjoint of the bi-
CG, originally coded after Trémolet (2008) for a single middle loop (as currently used
in GEOS FP), was extended in this work to accommodate multiple middle loops.
The present work is thus consistent in that its adjoint 3D-Var analysis employs as
many middle loops as those employed in the forward analysis. The adjoint is also
consistent in the sense that it deals with a similar cost function as that of the forward
problem, thus, as for example, employing an FGAT strategy.

The work of Holdaway et al. (2014) is consistent in the sense that it employs a
square-root preconditioning minimization option, with two outer loops, in both the
forward and backward analyses. As briefly introduced in Chapter 2, the observation
impact in an incremental variational data assimilation scheme implementing multiple
outer-loops can be obtained through (2.6), page 13. MERRA-2 implements a two
outer-loop procedure in its forward analysis, this results in (2.6) using J = 2, being
expressed as below:

δe = dT
1 KT

1 HT
2 KT

2 g + dT
2 KT

2 g. (3.1)

3.1.3 Region definitions

As briefly introduced in Chapter 1, this study presents global results in Chapter 4
and a closer look into these results over the Amazon basin in Chapter 5. We conve-
niently split our global results into four subregions, namely, the Northern Hemisphere
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Extratropics (NHX, north of 20◦N), Southern Hemisphere Extratropics (SHX, south
of 20◦S), Tropics (TRP, between 20◦S and 20◦N), and the Amazon basin in South
America. In this study, we define Amazon basin as a region between the segments
20◦S and 4◦N in latitude and between 78◦W and 45◦W in longitude. The actual
resulting basin is thus defined as the union of six boxes corners, which are presented
in Table 3.2. When these six boxes are combined, the external boundary results in
the polygon defined by the black contour in Figure 5.5 (page 79). This is an attempt
to cover the major part of a more formally defined basin while excluding adjacent
oceans and high altitudes areas of the Andean Cordillera.

Table 3.2 - Boxes corners of the defined regions and the main chapters in which they are
used.

Main Usage Region Latitude Longitude
Min. Max. Min. Max.

Chapter 4

Global 90.0◦S 90.0◦N 180.0◦W 180.0◦E
NH Extratropics 20.0◦N 90.0◦N 180.0◦W 180.0◦E
SH Extratropics 90.0◦S 20.0◦S 180.0◦W 180.0◦E
Tropics 20.0◦S 20.0◦N 180.0◦W 180.0◦E

Chapter 5 Amazon basin

14.5◦S 2.0◦S 53.0◦W 45.0◦W
20.0◦S 4.0◦N 63.0◦W 53.0◦W
15.0◦S 3.0◦N 70.0◦W 63.0◦W
13.0◦S 2.0◦N 72.0◦W 67.0◦W
11.0◦S 2.0◦N 76.0◦W 72.0◦W
8.0◦S 1.0◦N 78.0◦W 76.0◦W

3.2 Data

As briefly explained in the previous section, this thesis derives observation impact in
the context of a state-of-the-art data assimilation system over a long-time history.
This system has the ability of handling a variety of observing systems. An example
to illustrate it is presented in Figure 3.2. This figure shows spatial distributions of
observations over the western hemisphere during two distinct periods, January of
1980 and January of 2018. These periods represents the early single platform days
(top panel) and the current multi-platform scenario (bottom panel).

3.2.1 Observations

The data considered in this study is the input meteorological observations to the
GSI, which is at the heart of the MERRA-2 reanalysis. As MERRA-2 is a successor
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Figure 3.2 - Spatial distribution of observations at 0001 UTC of 1 January 1980 (top) and
1 January 2018 (bottom).

SOURCE: NASA’s Scientific Visualization Studio (2018).

to MERRA, it incorporates a considerable revision of the observing system used in
MERRA; a detailed description is provided in McCarty et al. (2016). The MERRA-2
observing system includes the so-called conventional observations; remotely-sensed
ground based observations; satellite-derived wind observations; satellite retrieved
observations; radio occultation observations; and satellite radiance observations.

Remotely-sensed ground based observations includes observations from profilers and
radar. Satellite-derived wind observations include winds obtained from a variety of
satellites through the Atmospheric Motion Vector (AMV) technique and scatterom-
eter. Satellite retrieved observations include the ozone, rain rate and temperature
from a variety of satellites. Radio occultation includes the bending angle observa-
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tions derived from various satellites. Radiance observations are also obtained from a
variety of satellites. The complete set of input observations assimilated in MERRA-
2 is presented in Table 3.3 in addition to the beginning and ending dates of each
category.

Table 3.3 - Dates of observation data types assimilated in MERRA-2. Underlined rows
refer to instruments not considered in this study.

Data type Begin date End date
Radiosonde, Pilot Balloon and Dropsonde 1 Jan 1980 Present
AIREP, PIREP, ASDAR, and MDCRS aircraft 1 Jan 1980 Present
PAOB 1 Jan 1980 17 Aug 2010
Surface Land 1 Jan 1980 Present
Surface Ship and Buoy 1 Jan 1980 Present
Wind Profiler 14 May 1992 Present
NEXRAD VAD wind 16 Jun 1997 Present
GMS, MTSAT, and Himawari AMV 1 Jan 1980 Present
MeteoSat AMV 1 Jan 1980 Present
GOES AMV 1 Jan 1980 Present
AVHRR AMV 1 Oct 1982 Present
MODIS AMV 2 Jul 2002 Present
SSM/I and SSMI/S surface wind speed 9 Jul 1987 29 Oct 2013
ERS-1 surface wind vector 5 Aug 1991 21 May 1996
ERS-2 surface wind vector 19 Mar 1996 29 Mar 2011
QuikSCAT surface wind vector 19 Jul 1999 22 Nov 2009
WindSat surface wind vector 13 Aug 2007 4 Aug 2012
ASCAT surface wind vector 15 Sep 2008 Present
SBUV and SBUV/2 ozone 1 Jan 1980 31 Sep 2004
SSM/I rain rate 9 Jul 1987 16 Sep 2009
TMI rain rate 1 Jan 1998 8 Apr 2015
MLS temperature 13 Aug 2004 Present
MLS ozone 1 Oct 2004 Present
OMI total column ozone 1 Oct 2004 Present
GPSRO bending angle 14 Jul 2004 Present
TOVS 1 Jan 1980 10 Oct 2006
SSM/I 9 Jul 1987 4 Nov 2009
ATOVS 21 Jul 1998 Present
Sounder 24 Apr 2001 Present
AMSU-A (Aqua) 1 Sep 2002 Present
AIRS 1 Sep 2002 Present
IASI 17 Sep 2008 Present
ATMS 16 Nov 2011 Present
SEVIRI 15 Feb 2012 Present
CrIS 7 Apr 2012 Present
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The observations presented in Table 3.3 will be further partitioned for convenience
in different categories when presenting the results in Chapters 4 and 5. The parti-
tioning of the observations follows mostly those in McCarty et al. (2016). However,
a few categories comes from the observing system classification of the predecessor of
MERRA-2, the MERRA categories introduced in Rienecker et al. (2008) (e.g., for
aircrafts). A rough, high-level look at the MERRA-2 observing system is presented
in Figure 3.1. The abbreviations on the figure stand for: observations of temper-
ature, specific humidity, surface pressure and horizontal wind components (zonal
and meridional) from surface and upper-air in situ instruments (Conventional); ob-
servations of temperature and horizontal wind components from aircraft in situ
instruments (Aircraft); radiance observations from advanced microwave (MW) in-
struments [Advanced MW, e.g., AMSU-A, AMSU-B, Microwave Humidity Sounder
(MHS), Advanced Technology Microwave Sounder (ATMS)]; radiance observations
from the Atmospheric Infrared Sounder (AIRS); satellite-derived horizontal wind
components from atmospheric motion vectors technique (AMV); radiance obser-
vations from the Cross-track Infrared Sounder (CrIS); infrared radiance observa-
tions from geostationary satellites (Geo IR); bending angle observations obtained
using the global positioning system radio occultation technique (GPSRO); radi-
ance observations obtained from early infrared (IR) instruments [Heritage IR, e.g.,
Stratospheric Sounding Unit (SSU), High-resolution Infrared Radiation Sounder-2
(HIRS-2), HIRS-3, HIRS-4] and early microwave instruments [Heritage MW, e.g.,
Microwave Sounding Unit (MSU)]; radiance observations from the Infrared Atmo-
spheric Sounding Interferometer (IASI); surface horizontal wind speed and compo-
nents from scatterometers (Surface Wind); and radiance observations from SSM/I.
Notice that precipitation and ozone observations are not included in the figure since
this work does not provide an estimate of impacts from these types of data (more
on this below). For ease of reference, Table 3.4 provides a summary of the start and
end dates for the observation data types used in MERRA-2.

The changes in observing systems taking place over the near 40 years of reanalysis
are quite dramatic. For a good part of the 1980’s, conventional observations make up
nearly half of all available instruments used in the assimilation. In this initial decade,
the other sources of dominant observations are the early microwave and infrared in-
struments on board of TIROS-N and the NOAA satellites 06 through 14. In the late
1980’s we see the introduction of remote-sensed surface winds observations, with
a noticeable increase in the fractional count of spaceborne measurements. A sub-
stantial change in satellite-based instrumentation comes when AMSU is introduced
in 1998. Its main contribution coming from the refinement in vertical resolution as
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Table 3.4 - Descriptions of the main abbreviated observation categories.

Category Variable Source
Conventional u, v, T , q, ps Surface and upper-air in situ instruments
Aircraft u, v, T Aircraft in situ instruments
AMV u, v Atmospheric Motion Vectors (AMV) technique
Surface Wind u, v, V Surface wind from scatterometers
Heritage MW Tb MSU
SSM/I Tb SSM/I
Advanced MW Tb AMSU-A, AMSU-B, MHS, ATMS
Heritage IR Tb SSU, HIRS-2, HIRS-3, HIRS-4
Geo IR Tb GOES, SEVIRI
AIRS Tb AIRS
IASI Tb IASI
CrIS Tb CrIS
GPSRO α GPS radio occultation

The variables are defined as: u, zonal wind component; v, meridional wind component;
V , horizontal wind speed; T , temperature; q, specific humidity; ps, surface pressure; Tb,
brightness temperature; and α, bending angle.

compared to MSU. As the reanalysis enters the EOS era and moves toward current
times, the introduction of various hyperspectral IR instruments amounts to a dra-
matic increase in the volume of observations, even though only a few more than 100
channels are typically assimilated out of the couple of thousand channels available
from these instruments (and are not counted in Figure 3.1). These instruments are
associated with aiding temperature and humidity fields, but the EOS era also sees
a considerable increase in satellite-derived wind observations, aircraft observations
of temperature and winds, and the introduction of GPS radio occultation. Though
not visible in Figure 3.1, the reanalysis period sees a steady drop in the global count
of its most conventional component, namely, radiosonde observations.

Radiance observations are from a variety of platforms and instruments. These ob-
servations can be categorized according to its platforms following the categories
presented in Table 3.5. In addition to it, the same observations can be also cate-
gorized according to its instruments. The instruments classification is presented in
Table 3.6.

A summary of the quantity of channels assimilated for each of the instruments
presented in Table 3.6 is as follows: 3 channels of MSU; 11 of AMSU-A; 5 of AMSU-B;
5 of MHS; 17 of ATMS; 7 of SSM/I; 3 of SSU; 10 of HIRS; 117 of AIRS; 136 of IASI;
120 of CrIS; 11 of Sounder; and 2 of SEVIRI. The specific nominal channel selections
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Table 3.5 - As in Table 3.4 (page 32), but for brightness temperature (Tb) variable obtained
through radiance satellites.

Platform Sensors
TIROS-N SSU; HIRS-2
NOAA-6 MSU; SSU; HIRS-2
NOAA-7 MSU; SSU; HIRS-2
NOAA-8 MSU; SSU; HIRS-2
NOAA-9 MSU; SSU; HIRS-2
NOAA-10 MSU; HIRS-2
NOAA-11 MSU; SSU; HIRS-2
NOAA-12 MSU; HIRS-2
NOAA-14 MSU; SSU; HIRS-2
NOAA-15 AMSU-A, -B; HIRS-3
NOAA-16 AMSU-A, -B; HIRS-3
NOAA-17 AMSU-A, -B; HIRS-3
NOAA-18 AMSU-A; MHS
NOAA-19 AMSU-A; HIRS-4
MetOp-A AMSU-A; MHS; HIRS-4; IASI
MetOp-B AMSU-A; MHS; IASI
Aqua AMSU-A; AIRS
GOES-8 Sounder
GOES-10 Sounder
GOES-11 Sounder
GOES-12 Sounder
GOES-13 Sounder
GOES-15 Sounder
DMSP-F08 SSM/I
DMSP-F10 SSM/I
DMSP-F11 SSM/I
DMSP-F13 SSM/I
DMSP-F14 SSM/I
DMSP-F15 SSM/I
SNPP ATMS; CrIS
MeteoSat-9 SEVIRI
MeteoSat-10 SEVIRI

is presented in Table 3.7. Its usage can vary for individual satellite platforms as a
result of sensor failure or quality control decisions (GELARO et al., 2017).
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Table 3.6 - As in Table 3.4 (page 32), but for brightness temperature (Tb) variable obtained
through radiance sensors.

Sensor Platforms
MSU NOAA-6, -7, -8, -9, -10, -11, -12, -14
AMSU-A NOAA-15, -16, -17, -18, -19; MetOp-A, -B; Aqua
AMSU-B NOAA-15, -16, -17
MHS NOAA-18; MetOp-A, -B
ATMS SNPP
SSM/I DMSP-F08, -F10, -F11, -F13, -F14, -F15
SSU TIROS-N; NOAA-6, -7, -8, -9, -11, -14
HIRS-2 TIROS-N; NOAA-6, -7, -8, -9, -10, -11, -12, -14
HIRS-3 NOAA-15, -16, -17
HIRS-4 NOAA-19; MetOp-A
AIRS Aqua
IASI MetOp-A, -B
CrIS SNPP
Sounder GOES-8, -10, -11, -12, -13, -15
SEVIRI MeteoSat-9, -10
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Table 3.7 - Nominal channel selections for satellite radiances according to each sensor pre-
sented in Table 3.6 (page 35). Channels in bold denote those that are as-
similated without any bias correction (only AMSU-A, ATMS, and SSU) and
underlined channels were used through 31 July 2012 (only CrIS).

Sensor Assimilated Channels
MSU 2, 3, 4

AMSU-A 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
AMSU-B 1, 2, 3, 4, 5
MHS 1, 2, 3, 4, 5
ATMS 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22
SSM/I 1, 2, 3, 4, 5, 6, 7
SSU 1, 2, 3
HIRS 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
AIRS 3, 6, 9, 10, 11, 13, 14, 18, 21, 29, 31, 44, 45, 46, 47, 49, 50, 52, 53, 55,

56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 75, 76, 77, 78,
80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116,
117, 119, 121, 122, 123, 124, 125, 126, 128, 129, 130, 166, 167, 168,
169, 170, 171, 172, 173, 174, 176, 177, 178, 181, 182, 186, 190, 193,
202, 208, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226,
227, 228, 229

IASI 1, 5, 9, 11, 13, 15, 16, 17, 19, 20, 22, 23, 24, 27, 28, 30, 32, 34, 43, 44,
45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63 64, 65,
66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 81, 85, 86, 87, 88, 90, 91, 93,
94, 95, 97, 99, 101, 102, 104, 105, 106, 107, 108, 109, 111, 112, 113,
114, 115, 116, 118, 120, 121, 122, 124, 125, 129, 131, 132, 134, 135,
136, 137, 138, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 157, 159, 161, 162, 165, 166, 167, 169, 170, 172,
174, 180, 181, 182, 183, 184, 185, 186, 191, 192, 193, 196, 198, 199,
200, 201, 202, 205, 206, 208, 209, 211

CrIS 1, 23, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 101, 113, 120, 121, 122, 123, 124, 125, 126, 128,
185, 226, 228, 229, 230, 237, 239, 261, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,
294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307,
308, 309, 310, 311, 312

Sounder 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
SEVIRI 2, 3
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4 FSOI APPLICATION TO REANALYSIS

This chapter presents the results obtaining observation impacts in a multi-year re-
analysis dataset, using the FSOI technique.

4.1 Introduction

The MERRA-2 is the latest global atmospheric reanalysis produced by the NASA
GMAO. At the time of this writing, MERRA-2 is an ongoing reanalysis covering
nearly 40 years of assimilation, from 1980 to the present. As other reanalyses, its
main purpose is to provide a data set for climate studies devoid of the disconti-
nuities encountered in operational NWP records, where frequent system upgrades
introduce nonphysical signatures in the time series. Although minimized to good
extent, irregularities in the boundary conditions (sea surface temperature and sea
ice) and intrinsic change in the observing system over the course of such multi-year
integration, can introduce undesirable features in the record still.

An example along the lines of illegitimate changes in the reanalysis record introduced
by the observing system and its treatment is the unrealistic trend in precipitation
noticed in MERRA (e.g., Section 7a of Rienecker et al., 2011). Close investigation
reveals it to be associated with the use of window channels (1-3 and 15) from the
Advanced Microwave Sounding Unit-A (AMSU-A) instruments, which as a conse-
quence, are chosen not to participate in MERRA-2; and by analogy channels 1-4 and
15 of the Advanced Technology Microwave Sounder (ATMS) and channel 1 of the
Microwave Souding Unit (MSU) are also not assimilated. Similar sensitivities are
also found with respect to the assimilation of AMSU-B, and even more so with the
introduction of the Special Sensor Microwave Imager (SSM/I). Arguably, under the
dry mass conservation constraint feature added to MERRA-2 (below) these choices
could have well been revisited.

Careful treatment of boundary conditions and observation datasets to be used in
reanalysis, as well as variational bias correction (DERBER; WU, 1998), incremental
analysis update (BLOOM et al., 1996), and imposition of physical constrains to the
assimilation system (e.g., Takacs et al., 2016) are a few of the mechanisms used to
ameliorate the situation and try to reduce the introduction of spurious signals in
data assimilation and reanalyses in particular.

However careful reanalysis efforts might be, changes in the observing system can
substantially change the quality (and likely the character) of the underlying analyses.
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An illustration of the improved quality of analyses along the course of MERRA-
2 can be seen from short-range forecasts produced for its analyses, as a parallel
exercise to the MERRA-2 production. Figure 4.1 shows 30- (purple curve) and 24-
hour (green curve), total energy normalized, forecast errors calculated with respect
to self-analyses for all January and July from 1980 to 2017. The 30-hour forecasts
are issued from 1800 UTC analyses and the 24-hour forecasts are issued from the
subsequent 0000 UTC analyses. The most striking feature in both forecast error time
series is their abrupt change in behavior around the late 1990’s and beginning of
2000’s — referred to here as the Earth Observing System (EOS) era, or sometimes
simply modern era in the context of the present study. Not only do the errors seem to
level along a smaller value in the EOS era as compared to the pre-EOS era, but also
noticeable are the reduction in the amplitude of the zig-zagging of the errors between
consecutive January and July months, and the reduced amplitude of the spread of
the errors between these two periods (indicated by the one standard deviation from
the mean shaded areas). The EOS era saw a dramatic change in the observing
system, especially by the introduction of instruments placed on satellite platforms,
such as: AMSU-A and -B in 1998; longwave, window, and water vapor channels from
Geostationary Operational Environmental Satellites (GOES) Sounder in 2001 and
water vapor channels from Spinning Enhanced Visible Infra-Red Imager (SEVIRI)
in 2012; hyper-spectral infrared Atmospheric Infrared Sounder (AIRS) in 2002; and
the Global Positioning System radio occultations (GPSRO) in 2004. These help
explain the improved quality in forecasts during this era with subtle but noticeable
error reductions seen in the errors time series. Also noticeable in the forecast error
curves in the figure is the slight increase in error from the mid-1980’s until about
the end of the pre-EOS era. We will see later that these are largely due to error
growth in the Tropics and Southern Hemisphere. The reasons for such error growth
in the short-range forecasts of MERRA-2 remains to be fully understood.

As briefly introduced in Chapter 2, a measure of the contribution brought about
by assimilating observations in each cycle can be obtained by subtracting the 30-
hour forecast error from the 24-hour error since these are verified at the same time.
The error reduction brought about by assimilating six more hours of observations is
shown by the red curve in Figure 4.1; the variability of the reduction is shown by the
one standard deviation red-shaded area around the same curve. The improvement in
the background from assimilating the increased set of observations in the EOS era
as compared to the pre-EOS era is reflected in the reduction (in absolute value) of
the error reduction in the EOS period. It is a matter of interest to try to understand
which of the different instruments contribute to bringing about these improvements
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Figure 4.1 - Time series of 30- (violet) and 24-h (green) forecast errors, nonlinear (red)
and linear (orange) impact estimates and the count of used observations (yel-
low, right axis). Lines represent monthly mean values with ±1 standard de-
viation from the mean in shading for 0000 UTC analyses during months of
January and July. The vertical shaded and non-shaded areas represent the
four streams of MERRA-2. Numerical values in the legend represent mean
±1 standard deviation in addition to the Pearson’s correlation between linear
and nonlinear impacts and its ratio. For reference, the time series of monthly
averaged 500 hPa geopotential height anomaly correlations is also shown (grey
curve) with scales on the far right vertical axis (%). The units of energy are
J kg−1 and the scale factor for observation count is 106.
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along the course of the reanalysis. A lot of insight is already given in this regard in
works such as that of Dee and Uppala (2009). Other reanalysis articles have further
contributed to this understanding (e.g., Rienecker et al., 2011; Dee et al., 2011;
Gelaro et al., 2017; and references therein).

The present work is yet another contribution along the lines of highlighting the sig-
nificance of different components of the observing system. The approach taken here
differs from that of previous works in that it applies the Trémolet (2008) extension of
Langland and Baker (2004), adjoint-based approach to assess the impact of observa-
tions used in reanalysis. Unlike traditional examination of root-mean-square error of
observation residuals, which carries with it the units of the observables, the adjoint-
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based methodology unifies the units and facilitates cross-comparing the contribution
of different types of observations. Specifically, this approach is natural to the version
of the GMAO Global Earth Observing System (GEOS) assimilation system used to
produce MERRA-2, since its software has at its disposal the whole machinery re-
quired by adjoint-based methods. Indeed, the MERRA-2 version of GEOS is very
closely related to what GMAO had at some point in time for its so-called forward
processing, near real-time system for which FSOI is routinely derived and moni-
tored. It is worth mentioning that the impact of observations can also be obtained
by using the adjoint-free degrees of freedom for signal (DFS) approach of Lupu et
al. (2011). Horányi (2017) applies DFS to the latest ECMWF reanalysis, the ERA5,
though the work evaluates the impact of observations only over a few months of a set
of key selected years. In many ways, as discussed in Todling (2013), DFS and FSOI
provide complementary information about the contribution of the observing system:
the first to the cycling variational system; the second to short-range forecasts. The
present work chooses to examine only FSOI for MERRA-2.

The Trémolet (2008) extension of the Langland and Baker (2004) approach provides
an alternative way to estimate the error reduction displayed by the red curve in
Figure 4.1. Unlike the calculation related to producing this curve, which is performed
in physical-space, the Langland and Baker (2004) estimate is derived in observation-
space, and has thus the advantage of allowing for the approximate error reduction
to be partitioned into the various sub-components of the observing system. The
approximate estimates are reliable to the extent they are a fair representation of
the actual error reductions. The orange curve in Figure 4.1 displays the adjoint-
based FSOI (total impact) estimate of the error reductions (referred to as total
impacts). As indicated in the figure, the total impact correlates at over 99% with
the actual error reduction, though it represents only about 70% of the magnitude of
the total error reduction. This low percentage, when well understood and explained,
does not deter from the results being used to obtain insightful conclusions about
the observing system. Indeed, Lorenc and Marriott (2014) point out that it is more
relevant to have the linear estimates well correlated with the nonlinear value and,
as the case in Figure 4.1, than to precisely match the level of error reduction. It
is the main objective of the present work to provide an understanding for how the
different components of the observing system used in MERRA-2 contribute to form
the total impact displayed in this figure.
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4.2 Forecast errors and sensitivities

An account for how the self-verified 30- and 24-hour errors in MERRA-2 short-range
forecasts change over time is given in Figure 4.2. The calculation of the linearized
total energy metric (2.1), page 12, is split into three regions, namely, Northern
Hemisphere Extratropics (NHX, north of 20◦N, thick line), Southern Hemisphere
Extratropics (SHX, south of 20◦S, thin line), and Tropics (TRP, between 20◦S and
20◦N, dashed line). The curves correspond to running means calculated to help quan-
tify the inter-annual variability1. The 30- and 24-h forecast errors correspond to the
violet and green curves, respectively, and the shading shows the differences in scores
between the two extratropical hemispheres. As seen elsewhere from more typical
anomaly correlation results derived for longer forecast lead times (e.g., in particular
panel (b) of Figure 1 of Dee et al., 2013, reproduced in this document as panel (b)
of Figure 1.1, page 3), there is considerable improvement in forecast skill entering
the EOS era (early 2000’s onward), when the increase in number of remote sensing
instruments brings about an abundance of observations (see Figure 3.1, page 24).
The improvement is especially noticeable in the Southern Hemisphere Extratrop-
ics where the dominance of satellite over conventional observations is considerable.
Interestingly, tropical errors seem to increase slightly, and steadily, from the mid-
1980’s until the late 2000’s. Also surprising is the slight error increase in the Southern
Hemisphere from the mid-1980’s until about the late 1990’s. Given that in the early
days of the reanalysis observation coverage in the Tropics is not very vast, the errors
at these early times might seem small simply due to their being less difference be-
tween the model predictions and the corresponding (verifying) analyses than at more
recent times. As observations increase in amount, as well as in diversity of instru-
ments, the errors increase and become more representative of differences between
the verifying analyses and model predictions. Although the same argument might
be used to explain the error growth in the Southern Hemisphere, it would appear
more reasonable to look for an alternative explanation, such as large biases in the
model or improper use of observations in the MERRA-2 analyses. This, however, is
outside the scope of the present work.

The abrupt change in errors between the pre-EOS and EOS era identified in the
figure here, and also noticed in Figure 4.1 (page 39), seems to differ from the results
of Dee et al. (2013) where the 500 hPa geopotential height anomaly correlations

1This is done using monthly-mean skill scores calculated over the years and calculating a running
mean with the corresponding value of each month and its predecessor. As our results starts in
January 1980, the value of this month is being omitted for consistency with the whole time series.
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Figure 4.2 - Time series of (a) 30- (violet) and 24-h (green) forecast errors regionally parti-
tioned into Northern Hemisphere Extratropics (NHX, thick), Southern Hemi-
sphere Extratropics (SHX, thin), and Tropics (TRP, dashed), plotted in the
form of annual running means. Values plotted for January (July) are averages
over that month and the preceding July (January). The shading shows the
differences in scores between the two extratropical hemispheres. The vertical
shaded and non-shaded areas represent the four streams of MERRA-2. Nu-
merical values in the legend represent mean ±1 standard deviation. The units
of energy are J kg−1.

1984 1989 1994 1999 2004 2009 2014
Date

1

2

3

4

5

6

En
er

gy
 (

J k
g

1 )

30-h Fcst Error NHX (mean: 3.7 ± 0.5 J kg 1)
30-h Fcst Error SHX (mean: 4.5 ± 1.0 J kg 1)
30-h Fcst Error TRP (mean: 2.2 ± 0.4 J kg 1)
24-h Fcst Error NHX (mean: 2.5 ± 0.3 J kg 1)
24-h Fcst Error SHX (mean: 3.1 ± 0.7 J kg 1)
24-h Fcst Error TRP (mean: 1.4 ± 0.3 J kg 1)

SOURCE: Author’s production.

steadily rise from the early reanalysis periods to the present, with no clear jumps
detected in the time series (shown for forecast lead times 3-, 5-, 7- and 10-days in
their work). It is important to notice that care must be exercised when comparing the
forecast errors shown in Figures 4.1 and 4.2 with more traditional error metrics. To
emphasize this point, Figure 4.1 shows the time series of monthly averaged 500 hPa
geopotential height, self-verified, anomaly correlations (grey curve) for the 24-hour
forecasts on the January and July months of MERRA-2. With forecasts of such
short lead-time the anomaly correlations are high to begin with even in the early
days of the reanalysis when data is less abundant than in the more recent EOS days.
Consistent with Dee et al. (2013), the day-1 500 hPa geopotential height anomaly
correlations here rises steadily from start to end, showing no dramatic transition
from the pre-EOS to the EOS era. As results from Figures 4.1 and 4.2 indicate, this
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is an incomplete view of what truly happens to the errors. The total energy-based 24-
and 30-hour forecast errors provide a more encompassing view since they account for
the contribution of errors in mass, wind and humidity integrated through the whole
troposphere and are thus more telling than typical error metrics based on single-
level, single-variable quantities. Unlike the gentile rise in skill seen in the 500 hPa
geopotential height anomalies, the total (tropospheric) forecast quality abruptly
improves in the EOS era.

The reduction in extratropical forecast errors seen in Figure 4.2, and their corre-
sponding increase of errors in the Tropics from the pre-EOS to the EOS era is
directly related to the 24-hour vertically integrated energy in forecast sensitivities
derived as intermediate inputs to diagnosing observation impacts through (2.2).
Figure 4.3 shows 18-year averages for January (top) and July (bottom) of pre-EOS
(1982-1999) and EOS (2000-2017) era 24-hour vertically integrated energy in fore-
cast sensitivities given in J kg−1 [formed from the first term on the right-hand side
of (2.3)]. The averages for January resemble the single January result in Figure 8
of Gelaro et al. (2010), and show the largest sensitivities being concentrated along
the North Pacific and North Atlantic storm tracks; in July, the bottom panels in
Figure 4.3 here show the largest sensitivities being flipped to the midlatitudes of
the Southern Hemisphere; that is, global 24-hour forecast sensitivities are largest in
the winter-hemisphere when the variability in the storm tracks are largest. Compar-
ing the pre-EOS with the EOS eras, the sensitivities are in direct contrast to how
forecast errors change, with reduced sensitivities in the Extratropics and increased
sensitivities in the Tropics. The Extratropical behavior of the errors and their sen-
sitivities reflects the combined improvement in model predictions and the ability of
analysis systems, such as the 3D-Var in MERRA-2, to handle observations in those
areas. In the Tropics, the increased forecast errors and sensitivities in a period of in-
creased, largely remote sensed, tropical observations suggests the assimilation not to
be making ideal use of such observations there. The MERRA-2 3D-Var assimilates
a number of highly sensitive water-vapor channels from hyperspectral instruments,
perhaps these contribute to the increase in errors. An accurate answer to this puzzle
is deferred to future studies.

Having calculated the 30- and 24-hour forecast errors it is simple to calculate the
forecast error reduction, ∆e, defined in (2.7) — the so-called nonlinear observation
impact. Figure 4.4 shows time series of this quantity for the January and July months
of the reanalysis period, averaged and regionally split in similar ways as done in
Figure 4.2. It is important to remember here, the more negative the numbers, the
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Figure 4.3 - Eighteen-year averaged 24-hour vertically integrated energy in forecast sensi-
tivities for January [top: (a) and (b)] and July [bottom: (c) and (d)] over the
pre-EOS [1982-1999; left: (a) and (c)] and the EOS [2000-2017; right: (b) and
(d)] eras. The scale factor is 10−3 and the units are J kg−1.
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bigger the impact of assimilating observations. Not surprisingly, as model predictions
improve dramatically over the Extratropics in the EOS era the impact of assimilating
observations becomes less significant when compared to the impact in the pre-EOS
era, when the observations had “to do a lot of work” to reduce forecast errors. In
the Tropics, the situation is contrary, as the impact of assimilating observations
increases when the system advances into the modern era.

Results from the alternative calculation of observation impact following the adjoint
approach in (2.2) appear in Figure 4.5 — the so-called linear observation impact.
Just as its nonlinear counterpart, ∆e, shown in Figure 4.4, the observation-space-
based total impact δe can also easily be split regionally. Comparison of these quan-
tities shows that the adjoint-based results resemble quite well the error reductions;
this being the crux in the reliability of the adjoint-based approach. Both show simi-
lar Northern and Southern Hemisphere differences and a sharp reduction of impact
as the assimilation of observations improves the quality of backgrounds in the EOS
era; both show the low impact observations had in the early days of MERRA-2
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Figure 4.4 - As in Figure 4.2 (page 42), but for nonlinear impacts.
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and the increased impact as the system gets into the modern era. The difference in
magnitude between the forecast error reductions in Figure 4.4 and the observation
impacts in Figure 4.5 is the consequence of the combined assumptions and approx-
imations involved in contrasting ∆e and δe: finite perturbation versus infinitesimal
perturbation approaches; and the approximations making up both model and anal-
ysis adjoints with respect to their nonlinear (forward) counterparts. Although the
forecast errors and its reduction over the Tropics increases, they are still smaller (in
absolute value) when compared to either of the Extratropics.

4.3 Global perspective

One possible partition of the residual vector and corresponding impacts is to define
classes based on the observable quantities handled in the MERRA-2 GSI 3D-Var
analysis. The impacts of each of the related variable types and their fractional ben-
efit are shown in Figures 4.6 and 4.7, respectively. These results are displayed as
monthly means for each January and July of the period of MERRA-2 studied in this
work. Although ozone and precipitation (rain rates) are other two variables handled
in the MERRA-2 analysis, they are intentionally not account for here for the rea-
sons explained above. From Figure 4.6 it is seen that the assimilation of horizontal
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Figure 4.5 - As in Figure 4.2 (page 42), but for linear impacts.
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wind components and brightness temperatures dominate the analysis contribution
to reducing 24-hour forecast errors. These types are followed by the contributions
from assimilating temperature and surface pressure. A reduction on the impact from
winds and temperature is noticeable as MERRA-2 enters the modern era. In the
generality of this summary, and under the given scales, the contribution from assim-
ilating specific humidity, surface wind speeds, and even bending angle from GPSRO
seem minor as compared to the others. One factor that makes such categories seem
to contribute little is that the categories of winds and brightness temperature are
very broad, including a number of different instruments and platforms, and are thus
bound to dominate. The contribution from surface wind speeds becomes disruptive
especially as the assimilation of this quantity is taken into the modern era (notice
red bars). These cases are not very intense and as such are highlighted with black
dots for improved readability.

The fractional beneficial impacts shown in Figure 4.7 help compare the contribution
from each of the analysis variable types removing the influence exerted from pure
data volume of related observations. Beneficial fractions represent the percentage
of observations contributing positively (negative values) to the observation impacts
and are constructed by assuming the impact is smaller than −10−10, that is, an
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Figure 4.6 - Heatmap of monthly mean total observation impact for each assimilated vari-
able type. Values are for 0000 UTC analyses during months of January and
July. Patched boxes represent monthly mean values with ±3 standard devia-
tions from the total mean impact displayed in the figure and dots represent
boxes with negative values. The units are J kg−1.
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observation with impact |dig̃i| ≤ 10−10 is considered neutral, and it is not taken
into consideration in the results displayed in this figure2. For most variables, and for
most of the time, these fractions are slightly larger than 50%. Although results here
remove contribution from so-called neutral impacts, they are still consistent with the
results reported in the intercomparison work of Gelaro et al. (2010). The breath of
the results here are, however, considerably broader since it applies to the context of a
multi-year reanalysis. While about 50% of assimilated observations of temperature,
wind, brightness temperature and bending angle contribute to reduce errors in the
24-hour forecasts, nearly 60% of all surface pressure observations contribute in the
same direction, especially in the months of January. This is a somewhat surprising
result. The scalar, univariate, analysis of M. Fisher (2006; pers. comm.) and Ehren-
dorfer (2007) suggest that between 60% to 65% of observations should contribute
to improve the data assimilation cycle; Todling (2013) confirmed their results using

2This threshold is based on a choice made in an yet unpublished intercomparison and ongoing
study extending and update the results of Gelaro et al. (2010) to including contributions from
multiple global assimilation systems (Rauhl Mahajan, pers. comm.).
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Figure 4.7 - As in Figure 4.6 (page 47), but for fractional of beneficial observations. The
units are %.
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a DFS-like approach applied to the complete GEOS data assimilation system. No
actual estimate exists for what exactly to expect in the context of forecast error
reduction (i.e., FSOI), but since the Fisher-Ehrendorfer estimate for the impact on
cycling analyses depends on the prescribed background and observation errors, it is
likely that FSOI results also depend on these quantities and on how fast errors in the
forecasting model grow. In this sense, it can be speculated that results for surface
pressure here are associated with the quality of MERRA-2 forecasts of surface pres-
sure as compared to other quantities. Given that MERRA-2 employs the Takacs et
al. (2016) dry mass constraint it is possible this might contribute to the percentage
observed here, but this will have to be investigated elsewhere. In Figure 4.7, only
specific humidity observations seen to fall consistently under 50%. Though at times
less than 50% of the assimilated surface wind speeds benefit the forecast, the number
only systematically drops below 50% in the EOS era. In the case of humidity this
could be associated with the lack of representation of correlations between this vari-
able and temperature and winds; in the case of speed observations, the low beneficial
rates could be associated with the effectiveness of the linearization of its observation
operator and quality of the simplified boundary layer physics in the model adjoint.
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To compare more directly results from the pre-EOS and EOS eras, Figure 4.8
presents mean impact over the two periods for the MERRA-2 analysis main ob-
servables. Relatively speaking, the ranking of dominance has not changed: in both
periods brightness temperature dominates the impacts, followed by wind, and tem-
perature. In the pre-EOS era these are followed by surface pressure; in the EOS era
surface pressure and bending angle observations show roughly equal impact when
reducing forecast errors. Under the measure defined by C in (2.1), specific humidity
and surface winds contribute very little to the error reduction. Overall, the impact
of assimilating observation decreases in the EOS era as compared to the pre-EOS
era. It is somewhat counter-intuitive, but nonetheless a fact, that observations have
smaller impacts the more abundant and better quality they are. This goes right
along with the error reduction noticed in Figure 4.1 when going from the pre-EOS
to the EOS era. As the observing system improves forecast errors go down and so
does the impact of any particular observing system (in absolute value).

Figure 4.8 - Total impact during the pre-EOS (1982-1999, light grey bars) and EOS (2000-
2017, dark grey bars) eras. The numbers on the right vertical axis represent
fractional of beneficial observations. Note that there are no bending angle
observations in the pre-EOS era. The units of total impact are J kg−1 and of
beneficial impact are %.
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Another possible partition of the residual vectors, and corresponding calculation
of the observation impact δe, is to choose I to represent major observing types.
Following the partitioning of McCarty et al. (2016) used in Figure 3.1 (page 24),
a comparison of the impacts related to the observing classes appears in Figure 4.9
together with corresponding beneficial impacts in Figure 4.10. As before, the figures
display time-series covering most of the period of MERRA-2 and the months of
January and July. Hatched patches highlight results showing impacts above three
standard deviations of the total mean impact displayed in the figure. It is quite
evident from this that Conventional observations play the main role in MERRA-2
during the pre-EOS era. The second most important contribution to the impact in
the same period comes from the so-called Heritage MW instruments, i.e., MSU on
early National Oceanic and Atmospheric Administration (NOAA) satellites [Tele-
vision Infrared Observation Satellite-N (TIROS-N), NOAA-6-9, 11, 12, 14]. This is
followed by the impact from SSU and HIRS-2 (Heritage IR) on board of the same
NOAA satellites. In the eyes of the metric defined in (2.1), the remaining part of
the observing system contributes only marginally to reducing errors in the 24-hour
forecasts.

Figure 4.9 - As in Figure 4.6 (page 47), but for the major observing systems assimilated
in MERRA-2. The categories presented here are the same used in Figure 3.1
(page 24).
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Figure 4.10 - As in Figure 4.9 (page 50), but for fractional of beneficial observations. The
units are %.
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As MERRA-2 enters the EOS era, the impact of conventional observations drops
considerably as compared to their impact in the pre-EOS era. That, as seen in
Figures 4.1 and 4.2 (pages 39 and 42, respectively), total forecast error improves
even under the dramatic drop in Conventional observations seen in the bottom panel
of Figure 3.1 (page 24) is demonstration of the higher resolution and better quality
of new observations in the EOS era, particularly of the AMSU-A and -B instruments
as compared to those of the early period. Indeed, that such reduced Conventional
network still shows up as a major contributor in the EOS era can only be attributed
to the improvement in background fields brought about by the new instruments.
The overall impact of observations is a combination of multiple instruments, though
clearly some are of fundamental importance. For example, Figure 4.9 suggests that
the AIRS instrument on the afternoon (PM) orbit NASA Aqua satellite has had a
good share of the impact from the times of its introduction in 2002. When the IASI
instrument is introduced on the Meteorological Operational-A (MetOp-A) platform
(and eventually, MetOp-B), the influence of AIRS seems to diminish, even though
MetOp satellites are placed in different morning (AM) orbits. The contribution
from the Joint Polar Satellite System (JPSS) CrIS instrument, which is in an orbit
concurrent with AIRS on Aqua, is seem as less significant than that of AIRS. This
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is likely due to the not-so-ideal choice of highly-correlated CrIS channels made in
MERRA-2, and its corresponding GEOS FP system (see Section 2.3.1 of McCarty
et al., 2016). That instruments which typically contribute to improve the forecast
error metric under consideration can actually, at times, deteriorate results can be
seen from the red-shaded bars in Figure 4.9. Typically these are of weak intensity
and are highlighted with black dots. This is the case for some of the early GOES IR
observations and for some surface wind observations (see what follows).

Before moving on to examine more specific partitions of the observing system it
might be instructive to show results for specific months of given years since these
more easily compare with results found elsewhere. The January fractional impacts
(bars) for 1989 and 2015 are displayed in Figures 4.11 and 4.12, respectively. The
figures also show the fraction of beneficial impact indicated for each case along
the right vertical axis. The figure breaks down the observing system in a more
traditional format, such as found in, for example, the works of Langland and Baker
(2004), Gelaro et al. (2010), Lorenc and Marriott (2014), and others. As expected,
the break down of the observing classes is not the same in both figures since the
observing system changes quite substantially between 1989 and 2015. The two years
selected here intentionally coincide with two of the years chosen in Horányi (2017,
Figures 6 and 9 there). Though the results here can be compared with those of
Horányi (2017), one must be cautious and recall the remark made earlier that DFS
and FSOI do not quite give the same information. Indeed, Horányi (2017) finds
DFS to indicate the somewhat surprising dominance of HIRS over MSU in 1989
(and earlier), whereas the FSOI results in Figure 4.11 show the expected dominance
of MSU over HIRS in MERRA-2. Comparing 1989 with 2015 we find Radiosondes
to dominate the fractional impacts, but the magnitude being considerably lower in
the latter period. In 2015, Horányi (2017) finds the fractional DFS of IASI to be
slightly larger than that of AMSU-A; here, in January 2015, the fractional impact
of AMSU-A is larger than that of IASI, which is typical of most other systems. In
both Horányi (2017) and here, Aircraft ranks fourth in 2015, but relative to various
instruments the fractional contribution from GPSRO seems to be more noticeable
in MERRA-2 than in ERA5, for this period.

Figure 4.12 also shows January 2015 results from the GMAO near-real-time system
(FP). This allows for comparison of NWP results with those obtained for MERRA-
2. In doing so, we should bear in mind the resolution difference between the 50 km
MERRA-2 system and the 25.5 km GEOS FP 3D-Var system at that time3. More

3The current GEOS FP exercises a Hybrid 4D-EnVar system at a resolution of 12.5 km.
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Figure 4.11 - Fractional impact during January of 1989. The horizontal axis represents
fractional impact; the right vertical axis indicates fraction of beneficial ob-
servations for each category. The units of fractional and beneficial impacts
are %.
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significantly are the differences in the observation blend in these two GMAO systems.
For example, MLS temperatures are not (yet) used in FP; aircraft temperature
observations are not (yet) bias corrected in FP; GPSRO is used up to 60 km in FP,
as opposed to 30 km in MERRA-2; this latter does not make use of GPSRO from the
MetOp-B satellite; and unlike MERRA-2, FP makes use of SSMIS (MW) brightness
temperatures. Their observing system also differ in sources of ozone observations,
but FSOI is not derived for such observations in either case. Other differences are
in the details of the tuning of various physical parameterizations between the model
versions in these systems, including the fact that no precipitation forcing is applied
to FP. The most evident difference in the results displayed here is that AMSU-A
dominates the fractional impacts followed closely by Radiosondes in FP, whereas in
MERRA-2 the order of these observing types is swapped. The fractional dominance
of these two observing types is always very close and it is frequently interchanged
when looked at as monthly contributions4. The fractional impact ranking of all other
observing systems is very comparable between FP and MERRA-2.

4The reader is invited to visit the FSOI live GMAO monitoring website at https://gmao.gsfc.
nasa.gov/forecasts/systems/fp/obs_impact/, where it is typical to see Radiosonde dominating
the fractional impacts, followed closely by AMSU-A and Geostationary winds.
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Figure 4.12 - As in Figure 4.11 (page 53), but for January of 2015. For reference, the
fractional impact for GEOS FP is also shown (dark grey bars).
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4.4 Conventional, Aircraft, AMV and Surface Wind

Figures 4.13 and 4.14 provide closer examination of the categories named Conven-
tional, Aircraft, AMV, and Surface Wind seen in Figure 4.9 (page 50) but now
displaying impact per observation instead of total impact. This is analogous, though
not identical, to the so-called observation influence, defined as DFS per observation.
Following Rienecker et al. (2008, see Table 3.5.4 there), the Aircraft category of Fig-
ure 4.9 is now split into two-subcategories, namely: Manual and Automated; these
represent two distinct data quality assigned different observation errors. The Con-
ventional category of Figure 4.9 is now split into Surface, Drifting Buoy, Upper-Air
(Radiosondes and Profilers), and MLS (Microwave Limb Sounder) retrieved temper-
ature. The AMVs are split into Geostationary and Polar. And finally surface winds
are split into SSM/I & SSMIS (SSM/I Sounder), ERS & ERS-2 (European Remote
Sensing), QuikSCAT, WindSat, and ASCAT (Advanced Scatterometer). It might
be somewhat atypical to include MLS temperature retrievals in the Conventional
category, but this is how McCarty et al. (2016) has it. The impact of the observing
classes here is considerably affected by the transition of MERRA-2 into the modern
period. So much so that to allow for color scales to reveal any significant informa-
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tion it is necessary to split the picture into a pre-EOS and EOS period, and use
different color scales for each case. Notice that the impact (per observation) reduces
by almost an order of magnitude going from the pre-EOS to the EOS period.

Figure 4.13 - Heatmap of monthly mean impact per observation for Conventional, Air-
craft, AMV and Surface Wind observations presented in Figure 3.1 (page 24)
during the pre-EOS era (1980-1999). The Conventional category is split into
three subcategories: Surface, Drifting Buoy, Upper-Air, and MLS; the Air-
craft into two: Manual and Automated; the AMV into two: Geostationary
and Polar; and the Surface Wind into five: SSM/I & SSMIS, ERS & ERS-2,
QuikSCAT, WindSat and ASCAT. Values are for 0000 UTC analyses during
months of January and July. Patched boxes represent monthly mean values
with ±3 standard deviations from the total mean impact displayed in the
figure and dots represent boxes with negative values. The scale factor is 10−5

and the units are J kg−1.
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On a per-observation basis, the contribution from Drifting Buoy observations far
exceeds that of any other instrument shown in the figure, throughout the MERRA-2
period; if nothing else, there are very few such observations, strategically positioned,
sometimes being the single source of information on passing storms. This results is
consistent with results from Horányi (2017) who finds drifting buoys to dominate
observation influence in all ERA5 years examined there. In the pre-EOS era, Aircraft
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Figure 4.14 - As in Figure 4.13 (page 55), but for the EOS era (2000-2017).
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observations come next, followed closely by Upper-air, Surface and Geostationary
AMVs. The automated Aircraft reports go through a period of “instability” in the
mid-1980’s, when observations were not very dense, and their contribution actually
degrades the forecast error reduction measure (2.1). Global maps of the location
of these observations reveal them to amount to very sparse flights spread over the
globe, depending on month and year (not shown). As MERRA-2 gets into the EOS
era, and the automated observations become standard, and substantially increase in
volume, their impact per observation stabilizes and their contribution becomes safely
in the direction of reducing forecast errors just as much as Surface and Geostationary
AMV observations.

In the EOS era, after Drifting Buoy, Manual Aircraft shows significant impact on
a per observation basis, especially in the early to mid 2000’s. Through in this pe-
riod, the impact of Upper-Air observations is substantial and steady. Also in this
era, MERRA-2 assimilates MLS observations (ozone and temperature) from 2004
and beyond; the figure accounts only for retrieved temperature profiles, which are
assimilated at or above 5 hPa (40 km). Although these data have been shown to
be a strong player in determining the dynamics of the stratopause and lower meso-
sphere (GELARO et al., 2017; LONG et al., 2017), their contribution to reducing the
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forecast error metric (2.1) is rather neutral. One must bear in mind that the verti-
cal weights provided by the energy operator defining the matrix C are rather small
above 10 hPa and it would be surprising to see any data above this level to show
significant contribution to error reduction.

When it comes to surface wind observations, the heatmap results of Fig-
ures 4.13 and 4.14 seem to suggest their contribution to be neutral, such as that from
pre-EOS QuikSCAT, to marginally positive, as from QuikSCAT and ASCAT in the
EOS era. Here again, one must be careful interpreting the results in light of the rel-
atively low weights imposed by the total energy norm defined by the matrix C near
the surface (see Figure 2.3, page 17). Indeed, different norm weights would lead to
different results. Additionally, the representation of near-surface physical processes
in the model adjoint is much too simplified as compared to the complex boundary
layer representation of the full nonlinear model. Even with such caveats it is notice-
able that the contribution from QuikSCAT improves as the system goes from the
pre-EOS into the EOS era; this is likely the case where other (new) instruments of
the EOS era help the system make overall better use of existing instruments.

Finally, in all of the results seen in Figures 4.13 and 4.14 (as well as those from
Figures 4.6, 4.7, 4.9 and 4.10, pages 47, 48, 50 and 51, respectively) a certain sea-
sonality is noticed with January results being slightly larger than in July. This is
understandable since the bulk of the observations considered in these figures are in
the Northern Hemisphere, and January is when the largest forecast sensitivities are
found (see Figure 4.3, page 44), during the winter period of this hemisphere.

4.5 Radiosonde

Vertical mean profiles can also be derived from the impacts, just as typically done
elsewhere for examining observation-minus-background (OmB) residuals. As an il-
lustration, the left panels of Figure 4.15 show vertical profiles of monthly averaged
impacts in the 0000 UTC analyses of all January and July months from 1980 to
2017 for radiosonde observations of temperature and zonal wind. For reference, the
right panels of the figure show corresponding monthly OmB standard deviations
for the quantities on left. Numbers in the right vertical axis represents the mean
observation count for each layer. It is noticeable that the bulk of the impact in both
variables is concentrated in the layer between 850 and 100 hPa. It is also notice-
able from the coloring of the curves in figures that there is a transition from the
initial years of the reanalysis to more recent years when the impacts become smaller
in absolute value, and do the residual standard deviations. This transition is seen

57



even when the observation counts are factored in, by looking at fractional impacts
(not shown), and thus rules out the influence of the number of observations in the
results. The reduced impact of the radiosonde observations in the modern period
is attributed to the improvement in the background over time as induced by the
effective contribution from modern observing systems.

An illustration of the betterment of the background fields is provided in Figure 4.16.
Using the observation residual diagnostic of Desroziers et al. (2005) the figure dis-
plays background and observation error standard deviation for radiosonde (a) tem-
perature and (b) zonal wind. The estimates are shown for January and July, and are
derived over two separate periods, namely, the pre-EOS (1982-1999) and EOS (2000-
2017) eras. Background errors are smaller in the modern era as compared to their
estimates over the 1980’s; the reduction in tropospheric error is noticeably dramatic
in the zonal component of the wind. The dots along the curves indicate the statisti-
cal significance of a t-test for the means of two independent samples, assuming that
the samples do not have equal population variance, that is the Welch’s version of
t-test. The size of these dots is associated with the significance level as indicated in
the figure. The numbers in the right vertical axis are the mean observation count for
the pre-EOS era and, in parenthesis the difference of the count of the pre-EOS era
with the EOS era; a positive value being indicative of the reduction in count over
the more recent period. Observation errors show smaller variations in the vertical
than the corresponding background errors do. Observation errors for temperature
are somewhat reduced, almost consistently throughout the column, in the EOS era
as compared to the pre-EOS era, with exception of the layer between 100 to 70 hPa.
Observation errors for zonal wind are nearly unchanged below 500 hPa and above
30 hPa, with results about jet level being somewhat reduced in the EOS era, but
somewhat increased between 150 and 30 hPa in the same EOS era.

The GSI 3D-Var specifies fixed observations errors throughout the reanalysis pe-
riod. The varying observation error estimates in the figure suggest that an optimal
analysis should benefit from a prescription allowing for time-varying observation
errors. As in typical 3D-Var implementations, the prescribed background error is
also fixed throughout the reanalysis, but its estimated value clearly changes with
time; the change in the zonal component of the wind along the jet level is rather
substantial. This reduction (change) in background error along the reanalysis period
is unsurprisingly a clear motivation for the implementation of more advanced anal-
yses procedures, capable of automatically adjusting to changes in the background.
In other words, four-dimensional variational data assimilation (4D-Var) and hybrid
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Figure 4.15 - Monthly mean vertical profiles of total impact [left: (a) and (c)] and standard
deviation [right: (b) and (d)] of observation-minus-background (OmB) resid-
uals for temperature [top: (a) and (b)] and zonal wind component [bottom:
(c) and (d)]. The column on the right represents mean number of obser-
vations per analysis in each layer. The units of energy are J kg−1 and of
standard deviation of temperature and zonal wind component are K and
m s−1, respectively.

0.10 0.05 0.00
Energy (J kg 1)

1000
850
700
500
400
300
250
200
150

100
70
50

30

20

10

Pr
es

su
re

 (
hP

a)

(a) T Total Impact

1 2 3 4
Std. Dev. (K)

(b) T OmB Residual

0.10 0.05 0.00
Energy (J kg 1)

1000
850
700
500
400
300
250
200
150

100
70
50

30

20

10

Pr
es

su
re

 (
hP

a)

(c) u Total Impact

4 6
Std. Dev. (m s 1)

(d) u OmB Residual

1797
1969
2392
2156
1626
1356
1214
1281
1312

1505
1227
1171

1015

900

724

1782
2301
2444
1871
1479
1404
1337
1386
1582

1854
1511
1630

1389

1197

835

1982 1989 1995 2001 2008 2014
Date

SOURCE: Author’s production.

ensemble-variational methods are bound to be better approaches for reanalysis. The
impact of these error reductions in the analyses can be further illustrated by look-
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Figure 4.16 - Vertical profiles of estimates of background (green and black) and observa-
tion (blue and red) error standard deviations for (a) temperature and (b)
zonal wind obtained from the radiosondes during the pre-EOS (1982-1999;
red and black) and the EOS (2000-2017; blue and green) eras. Lines rep-
resent mean values with ±1 standard deviation from the mean in shading
for 0000 UTC analyses during months of January and July. The column on
the right represents mean number of observations per analysis in each layer
for the pre-EOS era and in parenthesis the difference subtracting EOS from
pre-EOS era. The dots represent the statistical significance between the eras.
The units of standard deviation of temperature and zonal wind component
are K and m s−1, respectively.

SOURCE: Author’s production.

ing at a “pseudo” scalar gain, σ2
b/(σ2

b + σ2
o), that can be calculated directly from

the background (σb) and observation (σo) errors in Figure 4.16, assuming the cor-
responding error covariances to be diagonal. This simple calculation reveals clearly
the reduced effective weights given to radiosonde observations in the modern era as
compared to the early periods (more on this below). This happens simply because
of the introduction of other instruments competes with, and in many respects takes
it away from, the contribution of radiosondes.

An important fact to remember about MERRA-2 is that it relies on a 3D-Var
algorithm with prescribed, fixed, observation and background error covariances for
the whole course of its integration. Indeed, MERRA-2 is derived from GMAO FP,

60



near-real-time, system. The prescribed errors of this system are tuned to provide
best results over the current period, and therefore, one might expect the system
to perform less optimally over other periods. The only quasi-adaptive feature of
the MERRA-2 3D-Var is its online variational bias correction (DERBER; WU, 1998)
and an offline aircraft bias correction procedure. These, however, adjust biases in
satellite radiances and aircraft temperature observations but not observation and
background error covariances. An illustration of the difference in tuning is provided
here in Figure 4.17, where scalar analysis gains derived from observation residuals of
radiosonde temperature in panel (a) and winds in panel (b) are shown for the pre-
EOS and EOS era of MERRA-2. These quantities are constructed from estimates
of background and observation error standard deviation over the eighteen years of
January and July months preceding the EOS era (1982-1999) and during the EOS
era (2000-2017). If it is assumed that the system to be tuned for the current (EOS)
era, the results in the figure suggest the errors associated with the pre-EOS era to
be in need of tuning, i.e., requiring an adjustment of the prescribed statistics. It is
important to note that the x-axis is not kept the same among the panels (a) and
(b). This helps identify that temperature observations present slightly larger scalar
analysis gains when compared to wind observations.

4.6 Radiance

Two of the most compact ways to subset radiance observations and their impact
on forecast error reduction are shown in Figures 4.18 and 4.19: by platform, and
by sensor, respectively. The figures actually display fractional impact where the
fractions are calculated with respect to the whole observing system considered for
each particular period. The continuous grey curve — equal in both figures — shows
the time series of total radiance fractional impact for each period, and equates with
the total impact strip of brightness temperature shown in Figure 4.6 (page 47). It
is noted from the curve here that the fraction of satellite radiances contributing to
reduce forecast errors ranges from the mid 30% to nearly 60%. The fractions show a
steady rise from the mid-1990’s to early 2000’s, then slightly fall back down to rove
around 47% in the modern era. This reduced fractional impact can be traced to an
slight increase in the fractional impact of conventional wind observations — likely
from aircraft data (not shown). The size of the bubbles in Figure 4.18 corresponds
to the average number of observations in that subset class. The largest bubbles are
found further to the right in the two figures, after the Aqua, MetOp and JPSS
platforms are launched and the high-spectral IR instruments AIRS, IASI and CrIS
become available.
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Figure 4.17 - Vertical profiles of estimates of Kalman gain, σ2
b/(σ2

b + σ2
o), in observation-

space for radiosonde residuals of (a) temperature and (b) zonal wind obtained
for the 0000 UTC analyses of the January and July months of the pre-EOS
(1982-1999; red) and the EOS (2000-2017; blue) eras. Curves represent mean
values; shading represents ±1 standard deviation from the mean. The column
on the right represents mean number of observations per cycle in a particular
layer for the pre-EOS era and in parenthesis the differences from the pre-EOS
era.

SOURCE: Author’s production.

Closer examination of Figure 4.18 shows the modern period to have a larger blend
of different platforms than the early pre-EOS period, with the consequence that the
fractional impact from platforms contributing most is smaller than what is seen from
the dominant platforms in the early periods. In other words, the modern platforms
share the contribution among themselves without any single one of them dominat-
ing above levels achieved by past platforms. Notice that the pre-EOS era typically
has 3-to-4 simultaneous platforms, in contrast with the modern period when 9-to-
10 platforms are found to operate simultaneously. As mentioned above, the overall
contribution from satellite observations in the modern period is still larger, in the
mean, than what is seen in the early periods, but not dramatically so. Clearly, this
is not a statement about the quality and quantity of the observations brought about
by new platforms (and instruments). As a matter of fact, we have seen a quite sub-
stantial improvement in forecast error in the modern era over the earlier periods
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Figure 4.18 - Monthly mean fractional observation impact for all radiance grouped as
satellite platforms. Only results for 0000 UTC analyses during months of
January and July are included. The line represents the sum of all bubble
values for each month. The size of the bubbles is proportional to the monthly
mean observation count for each partition of the observing system. The units
of fractional observation impact are %.
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(see Figures 4.1 and 4.2, pages 39 and 42, respectively) and that can only be at-
tributed to changes in the observing system, and specifically changes in both quality
and quantity of satellite observations. Also noticed in the figure is the fact that in
the pre-EOS era the TIROS-N and the NOAA series of satellites up to NOAA-14
dominate the fractional impact; the fractional contribution from the early GOES
satellites is very small. Indeed, even in the modern era, the fractional contribu-
tion from these platforms, as well as the Defense Meteorological Satellite Program
(DMSP) and Meteorological Satellite (MeteoSat), is minor, but one has to associate
their contribution with the difficulties in making proper use of the instruments they
carry (see below).

The dominant platforms are the ones carrying the dominant instruments. This is seen
from examining Figure 4.19. Directly associated with the comments above, we see
from the figure now that in the pre-EOS era the MSU and HIRS instruments on the
TIROS-N and pre-NOAA-15 satellites dominate the fractional impact of radiances.

63



Close examination of the impact of these instruments identifies a period in the mid-
1980’s when their fractional impact nearly equals. However, in no time throughout
the MERRA-2 pre-EOS period the impact of HIRS surpasses that of MSU as seems
to be the case in the DFS results of Horányi (2017) for selected months in 1979
and 1989 of ERA5 (Figures 5 and 6 in that work). The fractional impact from
SSU (NOAA-6-9,11,14) shows as being minor, though as anticipated previously the
weighting matrix C defining the forecast error measure (2.1), page 12, provides very
little weight in the stratosphere where the SSU contribution is mostly influential;
the three SSU channels used in MERRA-2 peak on or above 15 hPa (channels 1, 2,
and 3 peak at about 15, 5, and 1.5 hPa, respectively). Around 1999 and in the early
2000’s the AMSU-A instrument start dominating the fractional impact, swamping
the contribution from MSU (still available for a short period of time on NOAA-
11, and for several years on NOAA-14). After AMSU-A’s peak contribution in its
early days its contribution is reduced when the AIRS (Aqua) is introduced; the
AMSU-A contribution continues to reduce further as IASI (MetOp-A and -B) and
more recently ATMS (JPSS) become available. Similarly, the consistent contribution
from the HIRS instrument in various platforms of the pre-EOS era dwindles down as
ATOVS replaces TOVS, and more so, when the hyperspectral AIRS instrument is
introduced. The fractional impact of AIRS is reduced after IASI becomes available;
and then its fractional impact is further reduced when CrIS starts being assimilated.
Sounder (GOES), SSM/I (DMSP), and SEVIRI (MeteoSat) all show low fractional
contributions, but as mentioned above these are complex observations, typically
highly thinned in GSI (due to cloud screening), which the analysis does not make
effective use of.

In all of the discussion of Figures 4.18 and 4.19 one must bear in mind that the
contribution brought about by various observing systems is indirectly dependent on
the weight the (GSI) analysis gives to each particular instrument. A precise mea-
sure of the overall weight associated with a given instrument is difficult to obtain
since observation errors are assigned to each particular channel provided by any
instrument. Nonetheless, it is instructive to try to associate observation impacts
to some measure of analysis weights. In Figure 4.19, the size of the bubbles repre-
sents an estimate of the analysis weights given to a particular instrument. These
weights are estimated by averaging the inverse observation error variance of each
used channel, of a given instrument and in a given cycle, over the channels of the
corresponding instrument, and then averaging the results for each cycle over the
month of relevance. From these we can tell, for example, that the two most heavily
weighted instruments throughout the reanalysis are MSU and AMSU-A. At first

64



Figure 4.19 - As in Figure 4.18 (page 63), but for sensors. The size of the bubbles is
proportional to the inverse of the observation error variance assigned before
the assimilation for each partition of the observing system. The units of
fractional observation impact are % and of the inverse of the observation
error variance are K−2.
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glance these are the instruments with the highest fractional impact. In the pre-EOS
era, the HIRS instrument also receive a considerable amount of weight, and it is
the second largest fractional impact during that period superseded only by MSU.
However, higher weights are not always necessarily directly associated with larger
fractional impacts. The overall weight given by the analysis to AMSU-A is notice-
ably smaller than the weight given to MSU, and still, if we examine the period
when these two instruments work concurrently (1998-2006), the fractional impact
from AMSU-A dominates that from MSU. This is attributed to AMSU-A provid-
ing better estimates of the atmospheric vertical structure than MSU. Similarly, the
pre-EOS HIRS instruments are given more weight than any of the hyperspectral IR
instruments of the modern era, and yet the fractional impact of the hyperspectral
instruments is at comparable levels to the impacts from HIRS. The thinking be-
hind these weighing strategy being that a conservative approach should be taken
when handling instruments with considerable inter-channel correlations, such as the
hyperspectral sensors, when such correlation are not accounted for in the analysis.
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Again, that low-weighted instruments can contribute just as much as high-weighted
instruments can only be attributed to the better quality and higher fidelity of the
former instrument.

4.7 GPS radio occultation

GPSRO is an observing system that has been shown to have considerable impact
in helping improve NWP systems (e.g., Healy and Thépaut, 2006; Cucurull and
Derber, 2008). We examine the contribution of this instrument to reanalysis in
Figures 4.20 and 4.21. The two figures summarize the impact of GPSRO observations
in the results. Similarly to the platform split for brightness temperature observations,
Figure 4.20 provides a heatmap of impacts for the various GPSRO platforms; the
sum of all these impacts equates with the total impact strip for bending angle shown
in Figure 4.6 (page 47).

Figure 4.20 - As in Figure 4.6 (page 47), but for all GPSRO observations grouped as
satellite platforms.
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When initially introduced in July 2004, the single platform, Challenging Minisat
Payload (CHAMP) shows consistent and strong impact signal with a seasonality
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that seems to show larger impacts in the July months. The impact of CHAMP
is noticeably reduced when the Constellation Observing System for Meteorology,
Ionosphere & Climate (COSMIC) is introduced (July 2006). COSMIC is a cluster
of six platforms (FM1-6) spread along different drifting orbits and providing rel-
atively even coverage of the globe. All of the platforms in the constellation seem
to contribute fairly evenly to reducing errors in the forecast. When GPSRO obser-
vations from MetOp-A and eventually MetOp-B are assimilated their contribution
to forecast error reduction seem to be comparable to that of the observations from
the COSMIC platforms. The impact from other GPSRO platforms, namely, Gravity
Recovery and Climate Experiment–A (GRACE-A), Terra Synthetic Aperture Radar
operating in X band (TerraSAR-X), Communications/Navigation Outage Forecast-
ing System (C/NOFS) and Scientific Application Satellite-C (SAC-C) seem smaller
than the impact from COSMIC and the MetOp satellites. This being attributed to
the sparseness of these “other” platforms.

GPSRO observations have fine vertical resolution and it is worth examining vertical
profiles of their impacts. MERRA-2 assimilates GPSRO bending angle observations
up to 30 km (approximately 10 hPa) and the vertical profiles of various quantities
shown in Figure 4.21 go up to the top of the data utilization level. As these measure-
ments have a height-based vertical coordinate, the vertical coordinate in the y-axis
of Figure 4.21 is chosen to be height. The figure shows total mean impact for each
1 km layer in the grey bars with scales indicated on the top x-axis. Also displayed
in the figure are the mean and standard deviation of the observation-scaled OmB
residuals, that is, of the quantities formed by (di/y

o
i ), with scales indicated along the

bottom x-axis. Beneficial impacts (grey bars) are seen throughout the column with
the exception of levels somewhat near the surface. The bulk of the impact is seen
between 7 and 17 km, with smaller but consistent impacts above 17 km and below
6 km. The whiskers placed along the grey bars provide an estimate of the variability
of the impacts and only below 6 km these are seen to sometimes contribute in the
opposite direction of reducing errors in the forecast. The low and degrading impact
at low levels is consistent with the fact that the scaled OmB residuals show con-
siderable dispersion at these levels. Everywhere else along the profile, the standard
deviation of the scaled residuals is largely uniform and perhaps less correlated with
the impacts themselves. The relatively small impact seen above 17 km might well be
a consequence of the mass weighting in the total energy norm used to derive FSOI;
weights drop exponentially fast above 300 hPa becoming comparatively small above
70 hPa (∼17 km), see Figure 2.3 (page 17). Because of this, it is not surprising
to see works based on DFS (e.g., Horányi, 2017) to find GPSRO possibly playing
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Figure 4.21 - Vertical profile of mean (red, bottom axis) and standard deviation (blue,
bottom axis) of fractional observation-minus-background (OmB) residuals,
and mean observation impact (bars, top axis). Lines (bars) represent mean
values with ±1 standard deviations from the mean in shading (whiskers) for
0000 UTC analyses during months of January and July. The column on the
right represents mean number of observations per analysis in each layer. The
units of mean and standard deviation of fractional background residuals are
% and of energy are 10−3 J kg−1.
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a bigger role than that identified in the present evaluation. To a large extent, the
findings here are very much consistent with the results in the works of Cardinali and
Healy (2014) and Lorenc and Marriott (2014), though month-specific studies such
as in these works tend to find deterioration of results above certain levels (e.g., Fig-
ure 11 of Lorenc and Marriott, 2014) which is not found in the case of the multi-year
averaging results presented here.

Overall, close examination of results in Figures 4.6 and 4.9 (pages 47 and 50, re-
spectively) show that the GPSRO contributes from as little as 1% to the overall
observation impact when first introduced in CHAMP in 2004, to nearly 10% during
the main years of COSMIC, to about 5% toward the end of the time series exam-
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ined in those figures. To a good extent, these results are in agreement with similar,
month-long, estimates found elsewhere, e.g.: 6% in Cardinali and Prates (2011) for
June 2009; 2.7% in Lorenc and Marriott (2014) for August-September 2010; and
10% in Cardinali and Healy (2014) for June 2011.

4.8 An interplay of fractional contributions

It has been noticed elsewhere that introduction of a new instrument may, at times,
considerably take away the fractional contribution of some other instrument. An
example of such interplay occurs in the EOS period, when there is a steady the
drop in fractional impact from brightness temperature observations visible in the
grey curves of Figures 4.18 and 4.19 (pages 63 and 65, respectively), during the
EOS era (same on both figures, see explanation in Section 4.6, page 61). Since
fractional impact has to add up to 100%, it should be possible to determine what
complementary component of the observing system takes it away from brightness
temperature. Close examination of the time series of impacts from other instruments
reveals that observations from wind increase their fractional contribution within the
same time period as the drop noticed in brightness temperature. A breakdown of
the various upper-air wind instruments is shown in Figure 4.22. The thin light grey
curve represents the total fractional contribution from wind observations; only data
from the EOS era is considered here. Notice that the rise from wind contribution
happens just about when the fractional contribution from brightness temperature
decreases. The breakdown points to aircraft wind and AMV observations as the
main contributing sources. However, wind observations are not the whole story. The
drop in fractional impact from brightness temperature is almost 10% of the total
impact (from early 2000’s to 2017). The increase due to wind is only about 6 to
7%. As illustrated by the thick dark grey curve in Figure 4.22, GPSRO explains
where the remaining fraction goes. Indeed, GPSRO contributes from as little as
1% when CHAMP is introduced in 2004, to almost 10% during the main years of
COSMIC, to about 5% toward the end of the time series examined in the figure —
these percentages are directly extracted from the difference between the two solid
curves in Figure 4.22. To a good extent, these results are in agreement with similar,
month-long, estimates found elsewhere, e.g.: 6% in Cardinali and Prates (2011) for
June 2009; 2.7% in Lorenc and Marriott (2014) for August-September 2010; and
10% in Cardinali and Healy (2014) for June 2011.
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Figure 4.22 - As in Figure 4.18, but for various sources of wind observations. The thin light
grey curve represents the sum of fractional impact from all wind observation
sources. The thick dark grey curve adds the contribution from GPSRO to
those of wind observations.
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5 FSOI APPLICATION TO REANALYSIS OVER THE AMAZON

This chapter is a follow-up work of the results presented in Chapter 4, focusing
on the observation impacts over the Amazon basin in South America. Although the
observation impacts presented in this chapter are for a confined region, it is essential
to say that these impacts represent the contribution to the reduction of the global
forecast error measure presented in Chapter 4. In other words, the results presented
in this chapter relates to the usage of the observations over the Amazon basin in
the presence of all other observations outside the Amazon basin.

5.1 Introduction

Chapter 4 provides a comprehensive assessment of the impact of the observations
on short-range (24-hour) forecasts from a multi-year reanalysis. Unlike typical ex-
amination of root-mean-square error of observation residuals that inherit the unit
of the variables being examined and are thus not suitable for cross-comparison, the
FSOI technique employed in Chapter 4 standardize units and thus allow for cross-
comparison. FSOI was introduced by Langland and Baker (2004), and it has since
become a standard tool for assessing the plethora of observations assimilated in
global operational NWP systems. One disadvantage of relying on, say, time series of
FSOI results from NWP applications is that these are affected not only by changes
in the observing system but also by changes in the rest of the system, namely, up-
dates to the underlying model and changes in the data assimilation technique being
used in operations. Most FSOI studies in the literature have been carried out over
short periods, with fixed versions of the corresponding NWP systems (e.g., Lang-
land and Baker, 2004; Gelaro and Zhu, 2009; Gelaro et al., 2010; Cardinali, 2009a;
Ota et al., 2013; Lorenc and Marriott, 2014; Buehner et al., 2018). Jumps in NWP
datasets due to system upgrades have long been recognized as undesirable, rendering
such datasets unsuitable for climate and long-term studies (e.g., National Research
Council, 1991). Reanalysis provides a relatively better alternative since it is unaf-
fected by system upgrades of any kind; its results are only affected by changes in
the observing system. In many ways, reanalysis provides an ideal environment for
conducting FSOI studies.

The study in Chapter 4 rely on the MERRA-2, which is an ongoing exercise with now
nearly 40 years of assimilated products available for climate studies. Though not used
in its ongoing integration, MERRA-2 has all necessary ingredients to perform FSOI,
namely, an adjoint model (HOLDAWAY et al., 2014) of its nonlinear general circula-
tion model, and an adjoint (TRÉMOLET, 2008) of its three-dimensional variational
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analysis. FSOI requires the introduction of a forecast error measure (or metric), and
it evaluates the sensitivity of this measure to changes in the observations. Implicit
in this evaluation are sensitivities of forecasts to changes in the initial conditions,
which are derived from the model adjoint. Since such adjoint models are only valid
over relatively short periods, FSOI results are typically derived for the 24-hour fore-
casts. More specifically, the technique of Langland and Baker (2004) also requires
the availability of 30-hour forecasts, valid at the same time as the 24-hour corre-
sponding ones, to allow for a relatively accurate FSOI estimate (see Errico, 2007;
Daescu and Todling, 2009).

Results presented in Chapter 4 shows that, unlike other regions in the tropics, the
Amazon basin forecast sensitivities change rather substantially from the first half
of MERRA-2 to its latter half, with a consequent increase in forecast error. These
changes are associated with changes in the observing system. The potential impact
of tropical heat sources in producing teleconnection patterns which can be a source
in forecast errors elsewhere over the globe is one the motivations of this chapter. In
the Amazon basin context, Grimm and Dias (1995) presents results for the potential
impact of the South America heat sources. The objective of the present study is to
provide an assessment of the impact of observations in short-range (24-hour) fore-
casts for the Amazon basin from 1980 to 2017 and to shed some light on the reasons
for such increased error growth. This assessment is a focused evaluation extracted
from the global evaluation of Chapter 4. Although the work here relies still on the
global forecast error metric employed in that work, conclusions are not expected to
change in any significant way by the use of a regionally-specific projection metric.
Indeed, work has been done showing that global error measures are just as effective
in obtaining regional results as regionally projected measures are (see Sec. 3.2 of
Boullot et al., 2016). This holds as long as the essence of the metric remains the
same, specifically for the case here, as long as results are still sought out for total
energy and not some other error measure based on, say, circulation or vorticity or
something else. Directly related to these statements is the fact that any assessment
that relies on the specification of a norm depends on that norm; thus, a change in
the norm might, in some cases, change the results and corresponding conclusions.
Examination of different norms is not part of the present work; readers interested
in applications using alternative norms are referred to typical few-month-long eval-
uations such as those of Todling (2013), Sommer and Weissmann (2016), Necker et
al. (2018), Cardinali (2018), Kotsuki et al. (2019).

In six-hourly cycling systems, such as those based on 3D-Var, FSOI can be thought
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of as a proxy for the error difference between two forecasts valid at the same time
but issued six-hours apart1. These differences are referred to as nonlinear impacts,
whereas FSOI is sometimes referred to as a linear impact. In the particular case
of calculating FSOI for the 24-hour forecasts, the nonlinear impact is created from
differences between the 24- and 30-hour forecast errors; negative numbers meaning
that errors in the 24-hour forecast are smaller than those in the 30-hour forecasts,
and indicate an improvement in predictions due to the assimilation of new batches of
six-hour observations. An illustration of the time evolution of the monthly averaged
24-h forecast errors and linear impacts throughout MERRA-2 are shown in Fig-
ures 5.1 and 5.2, respectively. The curves include results for January and July, from
1980 to 2017, and a one-cycle moving average is applied to the monthly means. The
total impact is partitioned into four regions (Figure 5.2): Northern Hemisphere Ex-
tratropics (NHX), Southern Hemisphere Extratropics (SHX), Tropics, and Amazon
basin; the first three appear in Chapter 4 in Figure 4.5 (see page 46). These region
definitions are presented in Chapter 3 (see Table 3.2, page 28). Notice the impact of
observations in the NHX and SHX reduces quite substantially as MERRA-2 enters
the so-called Earth Observing System (EOS), or modern, era (late 1999 onward).
The impacts brought about by assimilating observations become much more alike
between the two hemispheres in the modern era, as compared to the early pre-EOS
period. In the tropics and the Amazon basin, the situation is opposite, with the
impact of observations increasing as the reanalysis enters the modern era (a zoom
for these two regions appears in Figure 5.3). Results over the Amazon basin are
only a small part of those over the whole tropics, but the same trend of increased
impact is seen in both regions. In evaluating these results it is essential to real-
ize that, regardless of region, errors constructed from self-verification are bound to
underestimate the true errors; self-verified forecast errors are small in the absence
of observations. Consequently, under the self-verification there are two reasons for
observation impacts to be small (in absolute value): (i) little, and/or poor quality,
observations being available; or (ii) many, and/or very high quality, observations
being available. There is yet a third possibility related to system errors being so
large that no matter what data are assimilated little to no impact is obtained. This
is considered a pathetic case of no relevance. In the extra-tropics, the decrease of im-
pact in the modern era is associated with reason (ii): the increase and enhancement
in quality of the observations introduced in the late 1990’s and beyond, amounts
to a consequence improvement in the background fields used in the analyses and

1Some might prefer to consider the other way around and say that such forecast error differences
are a proxy for FSOI. Either way, what follows holds.
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corresponding forecasts. In the tropics, the low impact of observations in the early
periods is associated with reason (i). Assuming that as time progresses, MERRA-2
assimilates more and better quality observations in the tropics, the increased fore-
cast errors in this area combined with the steady rise in the observation impacts can
be indication of either the observations not being used optimally in this region, or
that a certain level of balance between properly observing and predicting the tropics
has not yet been achieved in the reanalysis. The precise reasons for the behavior of
MERRA-2 observation impacts in the tropics is a topic of investigation beyond the
present work.

Figure 5.1 - Time series of 24-h forecast errors in the Northern Hemisphere Extratropics
(north of 20◦N; thick continuous line), Southern Hemisphere Extratropics
(south of 20◦S; thin continuous line), Tropics (between 20◦S and 20◦N; dashed
line), and Amazon basin (dotted line). Lines represent monthly mean values
during January and July. The shading shows the differences in scores between
the two extratropical hemispheres. Values are plotted in the form of annual
running means, resulting in that values plotted for January (July) are averages
over that month and the preceding July (January), and, as a consequence, we
omit values for January 1980 for consistency with the whole time series. The
units of energy are J kg−1.
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Figure 5.2 - As in Figure 5.1 (page 74), but for linear impacts.
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What follows looks more closely at the evolution of impacts seen in Figures 5.2
and 5.3 over the Amazon and determines what changes in the observing system
taking place between the pre-EOS and EOS era lead to the noticeable changes of
impacts. Specifically, observations will be seen to impact forecasts during wet and
dry seasons in different ways, with specific observing systems contributing to the
impact in particular ways. Seasonality differences in the impact will be seen to
link to corresponding forecast sensitivities. Finally, the observing systems that most
contribute to the reduce short-range forecast errors in the region will be identified.
The ultimate hope of the present work is to provide an incentive for additional
observations to be made available over the Amazon basin as well as to motivate
improved treatment of certain observations already assimilated.

5.2 Observing system

The observing system used over nearly 40 years of MERRA-2 analysis is rich and
varied and is described in detail in McCarty et al. (2016). It includes conventional
observations from a variety of sources, many of which are not available in the Amazon
region or are only sparsely available. The bulk of the observations in MERRA-2 is
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Figure 5.3 - As in Figure 5.2 (page 75), but only the Tropics (between 20◦S and 20◦N;
dashed line), and the Amazon basin (dotted line).
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comprised of satellite radiances, especially as the reanalysis enters the EOS era. The
modern observing system is dominated by data from hyperspectral instruments such
as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding
Interferometer (IASI). Figure 5.4 provides a condensed view of the monthly averaged
observation counts (top) and corresponding stacked percentage (bottom) for the
various instruments analyzed in MERRA-2, over the Amazon basin. Counts are
provided only for the 0000 UTC analyses, and only for January and July since
observation impacts are only calculated for these times and months.

From the observation counts in Figure 5.4, we see a dramatic increase in satellite
observations in the modern era, as compared to the early pre-EOS era. This increase
in observations is a good part of the explanation for the near sudden reduction in
observation impact seen in Figures 5.2 and 5.3 in the extratropics (not shown) and
the Amazon basin when transitioning from the early to the modern periods. The
other reason for the reduced observation impact (not shown here) is the increased
quality in certain types of observations [particularly, brightness temperatures derived
from microwave (MW) observations; e.g., Microwave Sounding Unit (MSU) versus

76



Figure 5.4 - Time series of the monthly mean stacked observation count (top) and cor-
responding fractional count (bottom) for the 0000 UTC MERRA-2 analyses
during January and July over the Amazon basin. The scale factor for observa-
tion count is 106, and the units for fractional counts are %. Numerical values
in the legends are the mean non-scaled number of observations and the mean
fractional counts during the availability of each observing system. The vertical
shaded and non-shaded areas separate the four streams of MERRA-2.
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Advanced Microwave Sounding Unit A (AMSU-A)]. The study in Chapter 4 (and
references therein) have shown this to be associated with the considerable reduction
in forecast error over the same regions and the same period. Clearly, these are directly
related to the reason (ii) listed in the Section 5.1 for how observation impacts can
be found to be small.

An illustration of the reason (i) in the Section 5.1 for how small impacts can alter-
natively be due to near lack of observations is provided by examining the Amazon
basin data coverage during the pre-EOS era shown in Figure 5.4. Comparing with
Figures 5.2 and 5.3, we see that before the mid-1990’s impacts are considerably
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low as compared to the impacts in the extratropics. In this early period of the
reanalysis, there are not as many observations in the tropics as there are in the
extratropics, especially those from conventional observing systems. As observation
counts increase into the EOS era, their impact also increases. From the late 1990’s
to about the end of 2008 there is a considerable increase in coverage from MW
instruments (largely AMSU-A) and Atmospheric Motion Vectors (AMVs). During
this period, the former makes up about 55% of all data assimilated in the region,
while the latter corresponds to about 30% of the data assimilated. From late 2008
and beyond hyperspectral infrared (IR) instruments such as IASI on Meteorological
Operational A series (MetOp-A) and eventually on MetOp-B come in the mix and
dominate the observation count in the region (see percentage count in the bottom
panel of Figure 5.4). All these contribute to an increase in observation impact as
compared to the early, sparsely observed, era.

A relevant aspect of the observation count in Figure 5.4 that is especially noticeable
during the period between the late 1990’s and 2008 is the zig-zagging of the counts of
MW, IR, and AMV observations. Close examination reveals it to be a consequence
of seasonality, particularly the increase in clouds during the wet (January) months
versus the low cloud dry (July) months. The January months tend to have more
AMV observations than the July months; it is the presence of clouds, and their
movement, that allows for the estimation of AMV observation. Conversely, the GSI
3D-Var analysis of MERRA-2 handles only clear-sky radiances (see Sec. 9 of Gelaro
et al., 2017) consequently resulting in less MW and IR observations in the wet (Jan-
uary) months than in the dry (July) months. Still, the largest variations in count
between these instruments come from the presence of multiple water-vapor sensi-
tive channels for IR instruments (especially hyperspectral) — the most water-vapor
sensitive channels 1-3 and 15 of AMSU-A (MW) are not assimilated in MERRA-2.

5.3 Forecast sensitivities

A key component associated with the impact of observations on the forecast is the
forecast sensitivity derived through (2.3), page 12. A global evaluation of 24-hour
vertically integrated energy in forecast sensitivities of MERRA-2 in Chapter 4 has
shown the energy fields to be largest along with the storm tracks of each hemi-
sphere and to be more accentuated in the NHX in January with a flipped behavior
to the SHX in July. Furthermore, Chapter 4 also find considerable reduction in the
24-hour vertically integrated energy in forecast sensitivities in the EOS era as com-
pared to the pre-EOS era. This reduction is directly associated with the increase in
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data volume and the reduced observation impact in the two hemispheres as seen in
Figures 5.2 and 5.3.

A similar evaluation comparing 24-hour vertically integrated energy in forecast sen-
sitivities for the pre-EOS and EOS era, but now focused over the Amazon basin is
shown here in Figure 5.5. These are 18-year, 1◦ (roughly 100 km resolution), aver-
aged forecast sensitivities for January and July for each half period of the reanalysis.
In opposition to what happens in the extratropics, in the tropics, and in particular
over the Amazon basin, the energy in the forecast sensitivities actually increase in
magnitude between the two periods. This increase is directly associated with the
increased impact of observations in the Tropics and Amazon basin over the same
periods and illustrated in Figures 5.2 and 5.3 (pages 75 and 76, respectively). Very
noticeable is the contrast between January and July averaged sensitivities, especially
during the EOS era.

Figure 5.5 - Eighteen-year averaged 24-hour vertically integrated energy in forecast sensi-
tivities for January [top: (a) and (b)] and July [bottom: (c) and (d)] over the
pre-EOS [1982-1999; left: (a) and (c)] and the EOS [2000-2017; right: (b) and
(d)] eras. The Amazon basin is represented by polygons in black contour. The
scale factor is 10−3 and the units of energy are J kg−1.
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Partitioning of the averaged energy associated with these sensitivities reveals the
dominant parts of the sensitivities to project onto the available potential and latent
heat components of the energy (not shown). This is in opposition to what is typically
found with the global partitioning of the energy where the largest contribution is
determined by the kinetic energy component associated with the winds along the
storm tracks. This is not surprising given the relevance of thermodynamical effects
in tropical regions.

5.4 FSOI results

The impact of each observation on a given forecast can easily be derived from the
individual terms of the dot product in the last equality of (2.2), page 12. Clearly,
the impact from a single observation makes little sense and what is typically done to
obtain meaningful results is to group the individual impacts into various categories
and then apply regional and time averages to the grouped impacts. In what follows
we largely concentrate on observations (and their corresponding impacts) within the
Amazon basin, with considerations of other regions presented only to help reinforce
argumentation.

Figures 5.6 and 5.7 provide an overall summary of the observation impact and their
fractional impact over the Amazon basin, respectively. As before, results include only
January and July, from 1980 to 2017. Each bubble in Figure 5.6 refers to monthly
averaged observation impacts, and in Figure 5.7 to fractional impacts for a whole
given month. The size of the bubbles in figure reflects the mean observation count
over a particular month. The thin solid curve shown in Figure 5.6 is the time series
of total observation impact over the Amazon basin and is similar to the dotted
curves shown in Figures 5.2 and 5.3, except that a moving average is not applied
now. The solid grey curve in Figure 5.7 shows the sum of fractional impact for each
month. Except for cases when there are observing systems contributing to deteriorate
the forecasts, this grey curve adds up to 100%. The observing system is split into
different observation types. With a few exceptions, most of the types contribute to
reduce forecast errors, most of the time (negative numbers in Figure 5.6), with some,
occasionally contributing in the other direction (positive numbers in Figure 5.6;
spikes in the grey curve of Figure 5.7). Note that in relatively confined regions, it
is not uncommon, neither a concern to see observations sometimes contributing to
deteriorate the forecast; globally, on the other hand, this would require attention.

In the pre-EOS era, the impact of each individual observing type is relatively small,
but MW radiance observations (mainly MSU) tend to have a larger impact as com-

80



Figure 5.6 - Time series of the monthly mean total impacts for all observations over the
Amazon basin, grouped according to classes presented in Figure 5.4 (page 77).
The grey line represent the sum of all bubble values for each month and
is referred to as the dotted line in Figures 5.2 and 5.3 (pages 75 and 76,
respectively), with a single modification related to the moving average that is
not being applied here. The size of the bubbles is proportional to the monthly
mean observation count for each partition of the observing system. The units
of total impact are J kg−1.
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pared to other observing types available during that period. As MERRA-2 enters
the EOS era considerably more observations become available (as we have seen in
Figure 5.4), but now conventional observations seem to dominate the impact. This
dominance of conventional observations is especially noticeable in Figure 5.7 when
its fractional contribution roves around 55-60%. Observing systems such as AMVs
and Aircrafts also provide consistently work to reduce forecast errors, at times con-
tributing to slightly over 20%. Hyperspectral IR observations, once made available,
account for as much as 30% of the error reduction. The fractional percentage contri-
bution of GPSRO to error reduction falls a little under 10%. It should be pointed out
that the low impact of surface observations, both globally and locally over the Ama-
zon basin, must be taken with some caution. The weights of the total energy norm
associated with C in (2.1) and the modest representation of physical processes in
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Figure 5.7 - As in Figure 5.6 (page 81), but for fractional impacts. The grey line represent
the sum of all bubble values for each month. The units of fractional impacts
are %.
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the adjoint model required for the derivation of forecast sensitivities are two factors
that can significantly downplay the importance of near-surface observations.

The bulk of what is classified here as conventional observations is dominated by
radiosondes. A summary view of the count from radiosonde reports (based on tem-
perature soundings) is shown in Figures 5.8, 5.9 and 5.10. Figure 5.8 gives a broad
view of the partitioning of the global network of radiosondes into NHX, SHX, Trop-
ics and over the Amazon basin. Consistent with other works, we find a substantial
decrease of this type of observations in the NHX — mainly taking place during the
periods between the mid-1990’s to the early 2000’s — and a mild decrease in the
SHX which suffers from considerable lack of radiosondes in comparison to the NHX.
A closer view into the Tropics and Amazon basin is provided in Figure 5.9. In the
tropics, however, the situation is slightly more positive, with the network experienc-
ing a steady rise in sounding reports from 2004 onward, reaching as much as a 40%
rise late in the reanalysis period (e.g., Figure 18 of Dee et al., 2011; and Figure 7
of Gelaro et al., 2017). Over the Amazon basin this is even more favorable (a zoom
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for this region appears in Figure 5.10), with a rise in observations also starting in
the late 1990’s and getting to nearly as many as five times the number of averaged
reports. Unfortunately, the total number of averaged reports in the region is so small
to begin with that a five-time increase amounts to still a small count overall. But
even just a few extra radiosonde reports seem to contribute remarkably, steadily,
and consistently to a progressive reduction in forecast errors — see latter part of
time series in Figure 5.6.

Figure 5.8 - Time series of the monthly mean number of radiosonde reports per analysis
at 0000 UTC in the Northern Hemisphere Extratropics (north of 20◦N; thick
continuous line), Southern Hemisphere Extratropics (south of 20◦S; thin con-
tinuous line), Tropics (between 20◦S and 20◦N; dashed line), and Amazon
basin (dotted line). Lines represent monthly mean values during January and
July. Only reports including temperature are account for.
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It is rather peculiar that in the midst of the data-rich EOS period, highly dominated
by satellite observations, one finds a handful of conventional observations to domi-
nate the fractional impact. It is possible that the somewhat concurrent introduction
of hyperspectral instruments helps improve the use of other data types through an
improvement in the underlying background fields. It is also conceivable that assim-
ilation of all-sky MW and hyperspectral IR instruments might take over and get
these instruments to become the dominant contributors to forecast error reduction
in the Amazon basin. All-sky assimilation, however, is not part of MERRA-2. Work
is being done in the GSI analysis to treat observations in cloudy and precipitating
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Figure 5.9 - As in Figure 5.8 (page 83), but only the Tropics (between 20◦S and 20◦N;
dashed line) and the Amazon basin (dotted line).
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Figure 5.10 - As in Figure 5.8 (page 83), but only the Amazon basin.
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conditions, as it is already the case for how some instruments and channels used in
other assimilation systems are treated (see Bauer et al., 2011; Geer et al., 2018).
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5.5 Seasonal effect on FSOI

The effectiveness of different components of the observing system and their relation-
ship with corresponding impacts is, in some cases, driven by seasonal effects. This
was noticed earlier when examining the zig-zagging pattern in some of the types
of observations shown in Figure 5.4 (page 77), and when examining the behavior
of MERRA-2 24-hour forecast energy in the fields of sensitivities over the Amazon
basin in Figure 5.5 (page 79).

Figure 5.11 - Barplot of monthly mean observation counts for January (orange) and July
(blue) during the EOS era (2000-2017). The scale factor for observation count
is 106.
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A more specific illustration of the seasonality effect in the observing system is shown
in Figures 5.11 and 5.12. Here, observation counts and corresponding total impacts
for the 18 years of January and July months over the EOS era are shown in Fig-
ures 5.11 and 5.12, respectively, for the Amazon basin. These two periods are the
same as considered in panels (b) and (d) of Figure 5.5 (see page 79) when exam-
ining the vertically integrated energy in forecast sensitivities in the EOS era. Not
all observation types displayed in the bar plots of the present figure are available
for the whole of the 18 years; the averaging procedure is calculated according to
the availability of the observing types. We notice from the counts that the wet Jan-
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uary months end up with more AMV observations than the corresponding dry July
months. Conversely, wet periods show lower (clear sky) MW and IR counts than dry
periods. GPSRO also shows a small seasonal variability. The observation counts of
other instruments remain mostly consistent irrespective of the season. Accordingly,
Figure 5.12 shows that the impact of AMV is larger in the wet periods than in the
dry periods, whereas the opposite is true for the impact of Upper-Air Conv observa-
tions. Although fewer MW observations participate in the wet periods, their impact
is largest in such periods. Very few aircraft observations are available in either pe-
riod, but surprisingly their impact is comparable to the impact of other instruments
when summed over the whole EOS period. This is perhaps a statement about the
importance of such observations. Overall, the relationship of impacts among differ-
ent instruments here are in agreement with the tropical results of Gelaro and Zhu
(2009, their Figures 3 and 4) obtained when comparing FSOI with the alternative
approach of observation-system-experiment for two specific months of January and
July. The whiskers in the bars of Figure 5.12 correspond to the standard error of the
mean with 95% confidence intervals calculated using the standard deviation from
the averaged spatial variances of the impacts for each January and July months, for
each observation category. These show essentially the uncertainty of the monthly
mean impacts during the EOS era, and also provides an idea about the variability
of this mean. Looking at Figure 5.7 we can infer similar information, with most cat-
egories showing relatively small time variability in their impacts with the exception
of Upper-Air conventional observations. This latter case is seen to have considerable
increase in fractional impact toward the more recent years of the reanalysis, with
correspondingly large standard deviations indicated in Figure 5.12.

As mentioned above, Figures 5.11 and 5.12 indicate that GPSRO (bending angle)
is another observing system with sensitivity to seasonality. The wet periods have
reduced counts and smaller impacts than the dry periods. A closer look at GPSRO
appears in Figures 5.13 and 5.14, where the averaged results for January and July
are shown in the form of profiles for scaled OmB residual mean (solid curves), stan-
dard deviations of the OmB (dashed curves), and corresponding observation impact
(bars) and associated standard error of the mean impacts with 95% confidence inter-
vals (whiskers). The scaled means and standard deviations of the OmB residuals are
only mildly affected by seasonality, but a more considerable difference is noticed in
the observation impacts themselves. In the dry season, the largest impacts from GP-
SRO occur in the layer between 10-25 km; in the wet season, the largest impacts are
confined to a smaller layer between 13-20 km. The former is mainly in agreement
with the findings of Cardinali and Healy (2014) on a study done over June 2011
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Figure 5.12 - As in Figure 5.11 (page 85), but for total impact. The units of total impact
are J kg−1.
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(i.e., dry season). The more sensitive January forecasts sensitivities (Figure 5.5b)
affect the tropospheric contribution (up to 13 km) of GPSRO in the wet season,
with a large part of the profile showing a deterioration of forecast error reduction
(positive impacts), especially in the lower portion of the atmosphere. This reduced
effectiveness of GPSRO in wet periods is attributed to the GSI bending angle for-
ward observation operator large sensitivities (reflected in the Jacobian operator) to
moisture in the environment (CUCURULL et al., 2013). Cucurull et al. (2013) suggest
that the incorporation of horizontal gradients of refractivity (mainly caused by water
vapor) in the current GPSRO forward operator used in GSI is expected to improve
the use of such observations, particularly in the lower troposphere.
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Figure 5.13 - Vertical profile of mean (continuous line, bottom axis) and standard devia-
tion (dashed line, bottom axis) of fractional observation-minus-background
(OmB) residuals, and total impact (bars, top axis) for GPSRO observations
over the Amazon basin. Values represent 13-year average, from 2005 to 2017,
during January. The whiskers correspond to the standard error of the mean
with 95% confidence intervals calculated using the standard deviation as in
Figure 5.12. The column on the right represents mean number of observa-
tions per analysis in each layer. The units of mean and standard deviation
of fractional OmB residuals are % and of total impact and their standard
errors are 10−3J kg−1.
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Figure 5.14 - As in Figure 5.13 (page 88), but for July.
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6 SUMMARY AND CONCLUSIONS

In this chapter, all of the results and findings of this thesis are summarised. Addi-
tionally, some ideas for further work are outlined at the end of the chapter.

The main objective of this thesis was understand the impact of observations on
short-range forecasts in the broader context of yearly to decadal time scales of re-
analysis. The present study applied the Forecast Sensitivity Observation Impact
(FSOI) technique to a multi-year reanalysis. Thus far, FSOI studies have been con-
ducted largely in the context of short month-long experiments. Routine monitoring
of FSOI presently carried out by many operational or quasi-operational data assim-
ilation (DA) institutions reflect not only changes in the observing system but also
changes in the underlying sub-components of the DA systems which get frequent
upgrades with the latest system improvements. Reanalyses provide a convenient
framework for FSOI studies given that these only incur changes associated with the
observing system.

The GMAO MERRA-2 contains all the ingredients necessary for obtaining FSOI
estimates. The approach in this work follows the Trémolet (2008) extension of Lang-
land and Baker (2004) and uses the available adjoint of the MERRA-2 general cir-
culation model and the adjoint of its corresponding 3D-Var. Short-range (24-hour)
forecasts required for FSOI, and obtained from the MERRA-2 analyses considered
for this study, provide valuable insight for how new observations contribute to such
forecasts. As a corroboration of forecasts results from other reanalysis, the MERRA-
2 forecasts shows a steady rise in familiar anomaly correlation diagnostics starting
from its early days all the way up to present day. Not seen in such single-level,
single-variable forecast error diagnostic, but detected in the multi-variate forecast
error evaluation required for FSOI in the present work is the sharp improvement
in forecast errors when transitioning from the late 1990’s to the early 2000’s. This
improvement is also noticed in the total observation impact obtained from FSOI.
Surprisingly, global forecast errors seem to rise somewhat from the mid-1980’s to
the end of the 1990’s. Closer examination reveals the rise to be due to error growth
in the Southern Hemisphere. Furthermore, from the mid-1980’s until around 2010,
errors in the Tropics steadily grow until stabilizing in the more recent years. Though
some explanation relates to the sparseness of the observing system in these regions
in the early periods of the reanalysis, and on the self-verification nature of the error
definition, an ongoing investigation is taking place to better understand the error
behavior. Since the forecast error metric employed in the present work has not been
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applied to forecast from other reanalyses, no means of corroborating these results is
presently available.

Although the study here considers only the months of January and July from 1980
to 2017, and only the 0000 UTC analyses, the results satisfactorily illustrate the
contributions from various observing system components in reducing forecast errors
along the reanalysis period. In its early days, “Conventional” observations, made up
of radiosondes, aircraft, satellite wind retrievals, and a few others, amount to nearly
45% of the total number of available observations and the observation impacts were
largely dominated by these instruments, followed by satellite radiances from the
Microwave Sounding Unit (MSU) and High-resolution Infrared Radiation Sounder
(HIRS) instruments.

As the reanalysis switches from the TIROS-N Operational Vertical Sounder (TOVS)
to the Advanced TOVS period, and even more so, from the so-called pre-Earth Ob-
serving System (EOS) period into the modern EOS era, the percentage of conven-
tional observations steadily decreases as newer satellite instruments with increased
number of channels get in the mix and eventually, with the advent of the hyper-
spectral infrared (IR) instruments, satellite radiances completely dominate the data
count, bringing the percentage of Conventional observations down into the single
digits. Still, the impact of Conventional observations remains among the strongest,
being superseded only by the contribution from microwave observations, largely the
Advanced Microwave Sounding Unit-A (AMSU-A) instruments, and even so, not by
much.

Among the radiance instruments, MSU is found to dominate the impacts during
the pre-EOS era, whereas AMSU-A replaces its dominance in the late 1990s and
into the EOS era. The HIRS instrument in the pre-NOAA-15 satellites is second to
MSU during the pre-EOS era with the impacts of these instruments becoming less
significant when hyperspectral IR observations of the Atmospheric Infrared Sounder
(AIRS) and eventually the Infrared Atmospheric Sounding Interferometer (IASI) be-
come available. Interestingly, the fractional impact of the hyperspectral instruments
remain at about the same levels as the fractional impact of the HIRS instruments.
This is attributed to the MERRA-2 analysis giving more weight to the HIRS in-
struments than to their hyperspectral counterpart; these latter are not being used
to better potential given that inter-channel correlations are not accounted for in
the analysis of MERRA-2. Much of the impact of satellite radiances is shown to be
consistent with the weight given by the underlying MERRA-2 3D-Var analysis to
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these observations. That is, mostly, radiance observations given large weights by the
3D-Var procedure tend to have larger fractional impacts. Some exceptions to this are
encountered at major instrument transitional periods. During the data rich EOS pe-
riod, a small decrease in the fractional impact from brightness temperature is found
to be explained by a compensating increase due to an increase in the availability of
aircraft wind and AMV observations and the introduction of GPSRO.

As a follow up to the work of Chapter 4, we examined the impact of observations
in short-range forecasts from the MERRA-2 reanalysis over the Amazon basin in
Chapter 5. The study in this chapter also employs the FSOI technique of Langland
and Baker (2004), combined with the Trémolet (2008) correction to account for
multiple linearizations of the observation operator, to assess the impact of nearly 40
years of assimilation of observations, but over this challenging region of the globe.
In some respects, results in this region are found to be not much different from
those obtained from the global picture. But its specificity serves as a reminder and
motivation for the need to improve upon the usage of certain observation types with
much potential over the Amazon in particular, and in the tropics in general

It is especially clear from this work that, even with the advent of a dramatic increase
in satellite observations over the past 20 years, 3D-Var reanalysis such as MERRA-
2 reveals the importance and heavy reliance on conventional observations. Over
the Amazon basin, in particular, the present work shows the dominance of only a
minimal set of radiosondes in these same 20 years. The mild increase in the number of
radiosonde reports over the basin after 2012 is seen to get the network to contribute
to over 50% of the impact in reducing forecast errors as compared to the contribution
from all other observations in the region. The relevance of radiosondes in the region
has been emphasized in many works, some of which suggest approaches to improve
upon the network. Among these, there are innovative ideas to help enhance the
availability of such observations on a routine basis, especially over remote regions
such as the Amazon basin (e.g., glidersondes of Lafon et al., 2014).

At the same time, it can be fairly argued that more advanced techniques to take ad-
vantage of radiance observations in cloudy and precipitating regions might mitigate
the apparent need for an increase in radiosonde-like observations. The relatively low
impact of radiance observations in the Amazon basin found in the present MERRA-
2-based evaluation is likely different in a system that already treats some of the
radiance observations as all-sky. Indeed, global results show that radiance observa-
tions dominate the overall impact when some are treated as all-sky (see Cardinali
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and Prates, 2011). The potential improvement on the usage of satellite radiance
through techniques allowing for all-sky conditions is also expected to affect the
interplay found in this work between the clear-sky radiance of MERRA-2 and At-
mospheric Motion Vectors (AMVs). The presence of clouds and precipitation in the
wet Amazon season should no longer be a reason to find the impact from radiance
to be smaller than the impact from AMVs.

From its introduction in the early 2000’s, the Global Positioning System Radio
Occultation (GPSRO) observations are found to contribute to about 10% to the
overall reduction in forecast errors on a global scale. Over the Amazon basin, its
contribution is slightly less than 10%, but it is seen to vary somewhat with season.
The assimilation of bending angle in the MERRA-2 analysis seems quite sensitive
to low and mid-tropospheric water vapor, which in turn contributes to reduce the
effectiveness of these observations in wet periods. There is potentially room for
improvement in the GPSRO forward operator as implemented in the Gridpoint
Statistical Interpolation analysis when it comes to handling sensitivity to water
vapor.

All of the results and conclusions drawn in this study are dependent on the metric
chosen to evaluate errors in the forecast. As it turns out, the metric in this study
essentially focus on the troposphere, giving very little weight to the stratosphere
and near surface regions. Also related to the metric is that results in the present
work are based on self-verification. A viable extension of this work that chooses
an alternative verification would likely inform us on the subtle differences between
two different systems. Choosing operational analyses for verification might not be
desirable for reanalysis studies since the former have the signature of changes beyond
those related to the observing system only. Choosing to verify against a reanalysis
other than MERRA-2 might be worth pursuing.

A continuation of this study plans to compare some of the results here with other
measures of observation impact, such as, for example, the degrees of freedom for
signal (DFS; Lupu et al., 2011; Horányi, 2017). Different methods based on the
inverse observation error covariance (e.g., Todling, 2013) can still use FSOI but
provide an alternative view of the impact of observations in DA systems. Some
additional ideas for the next steps of the present study are already taking place,
which includes:

• Further study under the metrics used here considering the effect of the
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stratosphere in the Tropics (mainly over convectively active areas), as well
as the interaction between Tropics and Extratropics;

• A closer look into single-month specific results comparing with studies
available over the literature, and also evaluate the possibility to add our
results with those being obtained in the Joint Center for Satellite Data
Assimilation (JCSDA) FSOI Intercomparison effort;

• And, investigate the applicability of an augmented version of the total
energy accommodating coefficients for additional terms not contemplated
by the traditional version (e.g., ozone, precipitation, clouds, bias correction
coefficients).
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