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Standard sirens are the gravitational wave (GW) analog of the astronomical standard candles and can
provide powerful information about the dynamics of the Universe. In this work, we simulate a catalog with
1000 standard siren events from binary neutron star mergers, within the sensitivity predicted for the third
generation of the ground GW detector called the Einstein Telescope (ET). After correctly modifying the
propagation of GWs as input to generate the catalog, we apply our mock dataset on scalar-tensor theories
where the speed of GW propagation is equal to the speed of light. As a first application, we find new
observational bounds on the running of the Planck mass, when considering appropriate values within the
stability condition of the theory, and we discuss some consequences on the amplitude of the running of the
Planck mass. In the second part, we combine our simulated standard sirens catalog with other geometric
cosmological tests (supernovae Ia and cosmic chronometer measurements) to constrain the Hu-Sawicki
fðRÞ gravity model. We thus find new and non-null deviations from the standard ΛCDM model, showing
that in the future fðRÞ gravity can be tested up to 95% confidence level. The results obtained here show that
the statistical accuracy achievable by future ground-based GW observations, mainly with the ET detector
(and planned detectors with a similar sensitivity), can provide strong observational bounds on modified
gravity theories.
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I. INTRODUCTION

After 20 years of research, the nature of the physical
mechanism responsible for accelerating the Universe at
late times is still an open question, and a large variety of
cosmological models have been and are continually pro-
posed in the literature to explain such observations (see
[1–3] for review). This is essentially due to the difficulty of
discriminating among different scenarios that respond to
the observations in the same way, leading to a theoretical
degeneracy.
The observation of new astrophysical sources, through a

direct manifestation of gravitational effects, can provide
rich physical information about the nature of gravity, which
should play a key role to probe new (or rule out) additional
gravitational degree(s) of freedom, or exotic forms of
energy such as dark energy. The gravitational waves
(GWs) issued by binary systems, such as binary black
hole (BBH) and/or binary neutron star (BNS) detected by
LIGO/VIRGO, certainly open a new window to investigate
fundamental physics in this direction. At present, catalogs

of GWs from ten BBH mergers and one BNS merger
are available [4]. The latter, the GW170817 event [5],
observed at z ≃ 0.009, has imposed strong constraints on
modified gravity and dark energy models [6–11]. Also,
GW170817 was the first standard siren (the gravitational-
wave analog of an astronomical standard candle) event
to be cataloged, once its electromagnetic counterpart
(GRB170817) was measured. These observations were
also used to measure H0 at 12% accuracy, assuming a
fiducial ΛCDM cosmology [12]. We refer the reader to
[13–15] for proposals to use the standard siren to measure
H0 with more accuracy.
Given the central importance of GW astronomy, beyond

the present performance of the LIGO and Virgo interfer-
ometers, plans for construction of several GW observatory
interferometers (on Earth and in space) are currently in
preparation, such like LIGOVoyager [16], Cosmic Explore
[16], Einstein Telescope (ET) [17,18], LISA [19], DECIGO
[20], and TianQin [21], among others, to observe GWs in
the most diverse frequencies bands and different types of
GW sources. In this paper, we are particularly interested to
use the sensitivity predicted for the ET [17,18], which is a
third-generation ground-based detector and it is envisaged
to be several times more sensitive in amplitude than the
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advanced ground-based detectors in operation, covering the
frequency band range from 1 to 104 Hz. Also, the ET is
expected to have a signal-to-noise ratio (SNR) for BBH and
BNS mergers several times larger than the current mea-
sures, as well as to observe hundreds or thousands of these
events throughout the whole operational time. Several
works have been done using the ET sensitivity to simulate
a GW standard siren in order to investigate diverse aspects
in cosmology [22–44].
In this work, we generate a simulated catalog with 1000

standard siren events from BNS mergers, from the ET
power spectral density noise, in order to evaluate forecast-
ing observational constraints on scalar-tensor theories
where the speed of GW propagation is equal to the speed
of light. First, assuming a well-known parametric model for
the running of the Planck mass and assuming appropriate
stability conditions on the theory, we find new observa-
tional bounds on the amplitude of the running of the Planck
mass and we discuss its possible implications. In the second
part, we apply our simulated standard siren data on fðRÞ
gravity given by the Hu-Sawicki model in order to find new
observational limits on such a model. In both analyses,
we find that the parameters that characterize deviations
from general relativity (GR) may be non-null, within some
statistical borders.
The manuscript is organized as follows. In Sec. II, we set

our theoretical framework to show how the GW propaga-
tion is modified from scalar-tensor theories. In Sec. III, we
describe our methodology to generate standard siren mock
catalogs. In Secs. IV and V, we present our main results.
Finally, in Sec. VI, we outline our final considerations and
future perspectives.
Throughout the text, we use units such that c ¼ ℏ ¼ 1,

and MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass. Moreover, we

adopt the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric ds2 ¼ −dt2 þ aðtÞ2δijdxidxj, where a is
the scale factor, normalized to unity today. As usual
notation, we denote by a subscript “0” physical quantities
evaluated at the present time and by the prime and dot
symbols the derivatives with respect to the conformal time
(τ) and cosmic time (t), respectively, related by dt ¼ adτ.
Lastly, we express the Hubble constant (H0) results in units
of km=s=Mpc.

II. MODIFIED GRAVITATIONAL WAVE
PROPAGATION IN SCALAR-TENSOR GRAVITY

The Horndeski theories of gravity [45–47] (see [48,49]
for a review) are the most general Lorentz invariant scalar-
tensor theories with second-order equations of motion and
where all matter is universally coupled to gravity. They
include, as a subset, the archetypal modifications of gravity
such as metric and Palatini fðRÞ gravity, Brans-Dicke
theories, and Galileons, among others. The Horndeski
action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

M2
PLi þ Lm

�
; ð1Þ

where g is the determinant of the metric tensor and

L2 ¼ G2ðϕ; XÞ; ð2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð3Þ

L4 ¼ −G4ðϕ; XÞRþG4;X½ð□ϕÞ2 − ϕ;μνϕ
;μν�; ð4Þ

L5 ¼ −G5ðϕ; XÞGμνϕ
;μν −

1

6
G5;X½ð□ϕÞ3 ð5Þ

þ 2ϕ;μνϕ
;μσϕ;ν

;σ − 3ϕ;μνϕ
;μν
□ϕ�: ð6Þ

Here, Gi (i runs over 2, 3, 4, 5) are functions of a scalar
field ϕ and the kinetic term X ≡ −1=2∇νϕ∇νϕ, and
Gi;X ≡ ∂Gi=∂X. For G2 ¼ Λ, G4 ¼ M2

P=2 and G3 ¼
G5 ¼ 0, we recover GR with a cosmological constant.
For a general discussion on the model varieties for different
Gi choices after GW170817, see [49].
Recently, the GW170817 event together with the

electromagnetic counterpart showed that the speed of
GW, cT , is very close to the speed of light for z < 0.01,
i.e., jcT=c − 1j < 10−15 [5]. In the context of Horndeski
gravity, in order to explain these constraints, the only
option is to consider G4;X ≈ 0 and G5 ≈ const in the action
above. It is important to note that this restriction applies
only to the local Universe (≲40 Mpc). Thus, in principle,
nothing prevents one from considering the presence of
these terms at redshifts larger than z ¼ 0.01. In fact, only
future measurements at high z can confirm whether cT ¼ c.
Here, we assume cT ¼ c, without loss of generality in the
analysis we are going to develop. Under this condition, the
GW propagation obeys the equation of motion [50]

h00ij þ ð2þ αMÞHh0ij þ k2hij ¼ 0; ð7Þ

where hij is the metric tensor perturbation and H≡ a0=a
is the Hubble rate in conformal time. Moreover, αM is the
running of the Planck mass, which enters as a friction term
responsible for modifying the amplitude of GWs acting as a
damping term:

αM ¼ 1

HM2�

dM2�
dt

; ð8Þ

where M� is the effective Planck mass:

M2� ¼ 2ðG4 − 2XG4X þ XG5ϕ − _ϕHXG5XÞ; ð9Þ

and H ≡ _a=a is the Hubble parameter. Following the
methodology presented in [51] (see also [52,53]), we
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can write a generalized GW amplitude propagation for
scalar-tensor theories as

h ¼ e−DhGR; ð10Þ

where

D ¼ 1

2

Z
τ
αMHdτ0: ð11Þ

Note that due to the condition cT ¼ c, that is, G4;X ≈ 0 and
G5 ≈ const, we do not have phase corrections in Eq. (10).
As the GW amplitude is inversely proportional to the
distance, one can interpret the amplitude modification in
Eq. (10) as a correction to the luminosity distance, defining
an effective luminosity distance, or equivalently, an effec-
tive amplitude correction as [52,54,55]

dGWL ðzÞ ¼ dEML ðzÞ exp
�
1

2

Z
z

0

dz0

1þ z0
αMðz0Þ

�
; ð12Þ

where dEML is the standard electromagnetic luminosity
distance as a function of the redshift1:

dEML ðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð13Þ

This generalization has been recently investigated in some
contexts of modified gravity (see, e.g., [51–63]).
It is usual to choose phenomenologically motivated

functional forms for the functions αi (see, e.g., [64–67]).
Typically, their evolution is tied to the scale factor aðtÞ or to
the dark energy density ΩdeðaÞ raised to some power n. On
the other hand, an important point within Horndeski gravity
is the stability conditions of the theory. Appropriate values

of the free parameters functions must be considered in order
to have a stable theory throughout the evolution of the
Universe (see [66] and reference therein). Following [66],
we adopt the parametrization αM ¼ αM0an, so that the
stability conditions can be summarized as follows:
(1) n > 5

2
: stable for αM0 < 0;

(2) 0 < n < 1þ 3Ωm0

2
: stable for αM0 > 0.

Here, Ωm0 is the present dimensionless matter density.
Under these considerations, we can note from Eq. (12)
that the changes in the GW amplitude propagation will be
sensitive to the sign of αM0. Possible corrections with
αM0>0 or αM0<0 will induce dGWL >dEML and dGWL <dEML ,
respectively. We quantify these effects in Fig. 1. We note
that variations on αM0 > 0 ð<0Þ can produce changes
up to 10% (5%), respectively, on the effective GW
amplitude, for reasonable values of the running of the
Planck mass today.

III. METHODOLOGY AND GW STANDARD
SIREN DATASET

In order to move on, we need to define the GW signal
hGR. In modeling the gravitational wave form, given a
GW strain signal hðtÞ ¼ AðtÞ cos½ΦðtÞ�, we can obtain its
Fourier transform h̃ðfÞ using the stationary phase approxi-
mation for the orbital phase of an inspiraling binary system.
For a coalescing binary system with component masses m1

and m2, we have

h̃ðfÞ ¼ QAf−7=6eiΦðfÞ; ð14Þ

where A is the GW inspiral amplitude computed perturba-
tively within the so-called post-Newtonian (PN) formalism
up until three PN corrections,

A ¼
ffiffiffiffiffi
5

96

r
M5=6

c

π2=3dGWL

�X6
i¼0

AiðπfÞi=3
�
; ð15Þ

FIG. 1. Corrections on the effective luminosity distance [see Eq. (12)], as a function of the redshift, for different values of the
running of the Planck mass today. The theoretical curves correspond to the case αM0 > 0 and n ¼ 3 (left panel) and αM0 > 0 and
n ¼ 1 (right panel).

1The redshift is defined as z ¼ a−1 − 1.
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where dGWL is the modified luminosity distance as in
Eq. (12), and the coefficients Ai are given in the
Appendix A. The function Q is expressed by

Q2 ¼ F2þð1þ cos2ðιÞÞ2 þ 2F2
×cos2ðιÞ; ð16Þ

where ι is the inclination angle of the binary orbital angular
momentum with respect to the line of sight and F2þ and F2

×
are the two antenna pattern functions. In Eq. (14), the
function ΦðfÞ is the inspiral phase of the binary system:

ΦðfÞ ¼ 2πftc − ϕc −
π

4
þ 3

128ηv5

�
1þ

X7
i¼2

αivi
�
; ð17Þ

where the coefficients αi are the corrections up to the
3.5 PN corrections. In Appendix A, we also provide the
expressions for these coefficients. In the above equation,
we have defined v≡ðπMfÞ1=3,M ≡m1 þm2, η≡m1m2=
ðm1 þm2Þ2, and Mc ≡ ð1þ zÞMη3=5 to be the inspiral
reduced frequency, total mass, symmetric mass ratio, and
the redshifted chirp mass, respectively. The quantities tc
and ϕc are the time and phase of coalescence, respectively.
After having defined the modified GW signal for

compact binaries, in what follows we summarize the
already known methodology used to estimate dLðzÞ mea-
sures from GW standard sirens. We refer to [68,69] for
pioneer works in this regard.
For a high enough SNR and a given waveform model

hðf; θiÞ, with free parameters θi, we can use the Fisher
matrix analysis to provide upper bounds for the free
parameters of the models by means of the Cramer-Rao
bound [70,71]. We refer the reader to [72–77] for a
discussion on the Fisher analysis to estimate parameters
in binary systems for a given GW signal. Once the
waveform model is defined, the root-mean-squared error
on any parameter is determined by

Δθi ¼
ffiffiffiffiffiffi
Σii

p
; ð18Þ

where Σij is the covariance matrix, i.e., the inverse of the
Fisher matrix, Σij ¼ Γ−1

ij . The Fisher matrix is given by

Γij ¼
�∂h̃
∂θi

���� ∂h̃∂θj
�
: ð19Þ

The inner product between two waveform models is
defined as

ðh̃1jh̃2Þ≡ 2

Z
fupper

flow

h̃1h̃
�
2 þ h̃�1h̃2
SnðfÞ

df; ð20Þ

where the “star” stands for complex conjugation and SnðfÞ
is the detector spectral noise density. With this definition of
the inner product, the SNR is defined as

SNR2 ≡ 4Re
Z

fupper

flow

jhðfÞj2
Sn

df: ð21Þ

In what follows, we consider the ET detector power
spectral density noise. The ET is a third-generation ground-
based detector of GWs and it is envisaged to be 10 times
more sensitive in amplitude than the advanced ground-
based detectors in operation nowadays, covering the
frequency range 1–104 Hz. Unlike the current detectors,
from the ET conceptual design study, the expected rates of
BNS detections per year are of the order of 103–107 [23].
However, we can expect only a small fraction (∼10−3) of
them accompanied with the observation of a short γ-ray
burst. If we assume that the detection rate is in the middle
range around Oð105Þ, we can expect to see Oð102Þ events
with short γ-ray bursts per year.
Thus, let us consider in our simulations a mock GW

standard siren dataset composed by 1000 BNS merger
events. Assuming that the errors on dL are uncorrelated
with errors on the remaining GW parameters, we have

σ2dL ¼
�∂h̃ðfÞ

∂dL ;
∂h̃ðfÞ
∂dL

�−1
: ð22Þ

Since h̃ðfÞ ∝ ðdGWL Þ−1, then σdL ¼ dL=SNR. However,
when we estimate the practical uncertainty of the mea-
surements of dL, we should take the orbital inclination into
account. The maximal effect of the inclination on the SNR
is a factor of 2 (between ι ¼ 0° and ι ¼ 90°). Therefore, we
add this factor to the instrumental error for a conservative
estimation. Thus, the estimate of the instrumental error is
given by σdL ¼ 2dL=SNR. On the other hand, GWs are
lensed in the same way as the electromagnetic waves,
resulting into a weak lensing effect error, which we model
as σlensdL

¼ 0.05 z dLðzÞ [23,78]. In our study, we do not
consider possible errors induced from the peculiar velocity
due to the clustering of galaxies. Since we are interested in
simulating events at high z mainly, we can neglect such
contributions, which are significant only for z ≪ 1. In fact,
at high z, the dominant source of uncertainty is the one due
to weak lensing. Therefore, the total uncertainty σdL on the
luminosity distance measurements associated to each event
is obtained by combining the instrumental and weak
lensing uncertainties as

σdL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσinsdL

Þ2 þ ðσlensdL
Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2dLðzÞ
SNR

�
2

þ ð0.05zdLðzÞÞ2
s

: ð23Þ

The redshift distribution of the BNS sources is taken to be
of the form
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PðzÞ ∝ 4πd2CðzÞrðzÞ
HðzÞð1þ zÞ ; ð24Þ

where dCðzÞ is the comoving distance and rðzÞ describes
the time evolution of the burst rate:

rðzÞ ¼

8>><
>>:

1þ 2z; z ≤ 1;

ð15 − 3zÞ=4; 1 < z < 5;

0; z ≥ 5.

ð25Þ

The distribution of the neutron star masses is chosen to
be randomly sampled from uniform distributions within
½1 − 2� M⊙, also under the condition m1 ≳m2 and
η < 0.25. In this case, in the mock data generation we
take χ1 ¼ χ2 ¼ 0, where χ1 and χ2 are the associated spin
magnitudes on each mass component. Then, we simulate
BNS mergers up to z ¼ 2, which represents the maximum
distance at which these events can be observed from the
power spectral density noise from the ET [23]. Also, we
checked that, beyond z ¼ 2, the SNR presents low values,
which also can limit the use of the Fisher information for
mock data. Now, in order to realistically generate a mock
catalog using modified gravity, we shall consider nonzero
values for the parameters αM0 and n, which are compatible
with the current cosmological observation as well as with
the stability criteria of the theory. Lastly, when generating
our mock GW standard siren dataset, we only consider
BNS mergers with SNR > 8.
In order to estimate the observational constraints on

the free parameters of the models, we apply the Markov
chain Monte Carlo (MCMC) method through the
Metropolis-Hastings algorithm [79], where the likelihood
function for the GW standard siren mock dataset is built
in the form

LGW ∝ exp

�
−
1

2

X1000
i¼1

�
dobsL ðziÞ − dthL ðziÞ

σdL;i

��
: ð26Þ

Here, dobsL ðziÞ are the 1000 simulated BNS merger events
with their associated uncertainties σdL;i, while d

th
L ðziÞ is the

theoretical prediction on each ith event.

IV. CONSTRAINTS ON THE RUNNING
OF THE PLANCK MASS

In this section, we present and discuss our results
regarding the future observational constraints that GW
standard sirens can impose on a possible time variation
of the Planck mass within the ET sensitivity. The running
of the Planck mass is an important physical quantity,
which essentially is present in any and all modified gravity
models. To generate a simulated dLðziÞ catalog using
modified gravity, we assume realistic values for the pair
(αM0, n), on each triplet [zi, dLðziÞ; σdLðziÞ] evaluated at
each point i, as follows.
We first note that the parameter n is statistically

degenerate. This fact is already well known and expected
to happen. In the literature, it is usual to assume n ¼ 1, but
here we follow the stability conditions discussed in Sec. II
and weakly generate random values for n, within the range
of stability of the theory: (i) for the case αM0 > 0, we
randomly sampled from uniform distributions: αM0 ∈
½0; 0.5� and n ∈ ½0; 1.40�; (ii) for the case αM0 < 0, we
randomly sampled αM0 ∈ ½−0.5; 0� and n ∈ ½2.5; 3.5�. We
found that different prior ranges on n change the simulated
catalogs very weakly. Only very different prior ranges on
αM0 can significantly change the pair [dLðziÞ; σdLðziÞ]. The
range assumed on αM0 is fully compatible with current
constraints [80–90]. We used as input values H0 ¼
67.4 km=s=Mpc and Ωm0 ¼ 0.31 for the Hubble constant
and matter density parameter, respectively, in agreement
with the most recent Planck cosmic microwave background
(CMB) data [91]. Hence, these values are reasonable for
our purpose to generate GW standard siren mock data.
In the realization of the MCMC analysis, the sampling

has been done assuming the following uniform priors for
the cosmological parameters: H0 ∈ ½55; 90�, Ωm0 ∈ ½0; 1�,
and αM0 ∈ ½−1; 0�, αM0 ∈ ½0; 1� for each case. Due to the
large statistical degeneracy on n, as commented above,
we fixed n ¼ 3 and n ¼ 1 for the cases of αM0 > 0 and
αM0 < 0, respectively. Table I summarizes the constraints at
the 68% and 95% confidence levels (C.L.). In Fig. 2, we
show the parametric space and the one-dimensional mar-
ginalized distribution for the parameters Ωm0, H0 and αM0,
in both αM0 > 0 and αM0 < 0 cases. We note from both
analyses that the parameter αM0 is non-null at the 68% C.L.
Assuming the stability condition where αM0 is negative,
we find the new lower limit αM0 > −0.2 at the 95% C.L.

TABLE I. Summary of the MCMC results for the cases αM0 > 0 and αM0 < 0. The upper and lower values next to
the mean value of each parameter denote the 68% and 95% C.L. errors, respectively.

Stability conditions H0 Ωm0 αM0

αM0 < 0 67.466þ0.036ð0.143Þ
−0.067ð0.179Þ 0.328þ0.015ð0.028Þ

−0.014ð0.028Þ −0.100þ0.051ð0.092Þ
−0.043ð0.085Þ

αM0 > 0 67.390þ0.047ð0.098Þ
−0.050ð0.095Þ 0.297þ0.029ð0.083Þ

−0.044ð0.072Þ 0.199þ0.069ð0.178Þ
−0.097ð0.167Þ
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On the other hand, under the condition that the running of
the Planck mass is positive defined, we find that αM0 can be
non-null up to 95% C.L., more specifically 0.03≲ αM0 ≲
0.38. For a qualitative comparison, we show also the
constraints from the ΛCDM model in both cases. It is
important to note that the ΛCDM model is a particular case
of our simulated data, where both mock catalogs are mainly
controlled by possible corrections on the amplitude of the
running of the Planck mass as explained above. Therefore,
extended estimates on the pair [dLðziÞ; σdLðziÞ] beyond the
ΛCDM prediction will be dependent on the αM0 correction,
where we have considered two different scenarios αM0 > 0
and αM0 < 0. This should induce a minimal bias when
analyzing the parameters within the ΛCDM scenario due
to the αM0 prior range in the mock data generation. In the
case αM0 < 0, our minimal baseline, i.e., Ωm0 and H0, is
completely compatible for the two scenarios. On the other
hand, when analyzing αM0 > 0, we can note a minimal bias
manifested on Ωm0, resulting in a minimum tension at
1σ C.L. on this parameter but still making the model
compatible beyond that statistical significance.
It is interesting to compare our results with others already

obtained in the literature. For instance, in [90], using
measurements of the growth rate of structures from a dark
energy spectroscopic instrument survey, it is observed that
the amplitude of the running of the Planck mass (quantity
physically analogous to our αM0 > 0) can be detected up to
99% C.L. In [87], a 95% C.L. upper limit of 0.015 is found
from CMB data. In [56], analyzing the standard siren
GW17081 event, the authors found the amplitude of the
running of the Planck mass to be ∈ ½−80; 28� at the
95% C.L. In [52], the amplitude damping αM0 < 0 appear

to be preferentially at low z from GW observations. Other
analyses can be found in [80–90]. We note that the new
borders on the amplitude of the running of the Planck mass
derived in this work may have also an impact on the
modified propagation primordial gravitational wave spec-
trum [92].
Now, we shall briefly discuss the consequences of our

results. Based on the arguments developed in Sec. II, we
can write the running of the Planck mass as

αM ¼
_G4

HG4

: ð27Þ

One of the surviving classes of models under the condition
cT ¼ c are the nonminimal theories in which the scalar
field ϕ is coupled with the curvature scalar R in the form
G4ðϕÞR. This class includes the metric fðRÞ gravity and the
Brans-Dicke theory [93]. The original Brans-Dicke theory,
for instance, is obtained by setting G4 ¼ ϕ. By substituting
this in Eq. (27), it is possible to obtain ϕ as a function of the
cosmic time. In Fig. 3, we show a reconstruction for the
evolution of the field ϕ=ϕ0 in Planck mass units, where ϕ0

is ϕðz ¼ 0Þ. Also, it is important to remember that in such a
theory the gravitational constant is not presumed to be
constant, butGNðϕÞ ∝ 1=ϕ. This fact is physically encoded
in αMðaÞ, which measures the gravity strength. We can
note that at late times, the gravity strength GN is greater
(smaller) than predicted by GR when αM0 > 0 ð< 0Þ, up to
20% (30%) at z ¼ 0. On the other hand, when z ≫ 0, GR is
recovered and we do not expect to have significant
variations at early times.

FIG. 2. Parametric space at 68% and 95% C.L. and one-dimensional marginalized distribution of Ωm0, H0 and αM0 for scalar-
tensor theories, resulting from the mock GW data generated under the stability condition αM0 < 0 (left panel) and αM0 > 0
(right panel). The predictions of the ΛCDM model within each forecast analysis are shown for comparison.
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V. CONSTRAINTS ON PARAMETRIC
f ðRÞ GRAVITY

In this section, we briefly review fðRÞ cosmology and
show new observational constraints on the Hu-Sawicki
(HS) model from our standard siren mock dataset. We refer
to [94–97] for reviews on fðRÞ gravity.
The fðRÞ gravitational theories consist of extending the

Einstein-Hilbert action in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
P

2
fðRÞ þ Sm; ð28Þ

where fðRÞ is a function of the Ricci scalar and Sm is the
action for matter fields. For fðRÞ ¼ R, the GR case is
recovered.
Let us consider a spatially flat FLRW universe domi-

nated by pressureless matter (baryonic plus dark matter)
and radiation with energy densities ρm and ρr and pressures
Pm and Pr, respectively. The modified Friedmann equa-
tions in the metric formalism are given by [94,95]

3FH2 ¼ 8πGðρm þ ρrÞ þ
1

2
ðFR − fÞ − 3H _F; ð29Þ

−2F _H ¼ 8πGðρm þ Pm þ ρr þ PrÞ þ F̈ −H _F: ð30Þ

Moreover, one obtains the following useful relation:

R ¼ 6ð2H2 þ _HÞ: ð31Þ

It can be shown that, through the transformation of the
scalar degree of freedom, ϕ ¼ MPdfðRÞ=dR, the metric
fðRÞ gravity is equivalent to the Brans-Dicke theory (with
wBD ¼ 0). Thus, when considering a parametric function
fðRÞ, given our constraints on ϕ, some bounds can also be
found on fðRÞ gravity. For example, adopting the formal-
ism presented in [98,99] (and reference therein), one can
write

fðRÞ ¼ R − 2ΛyðR; bÞ; ð32Þ

where the function yðR; bÞ quantifies the deviation from
Einstein gravity, i.e., the effect of the fðRÞ modification,
through the distortion parameter b. Then, the scalar field
can be expressed as

ϕ ≃MP

�
1 − 2Λ

∂yðR; bÞ
∂R

�
: ð33Þ

Interpreting ϕ0 ¼ MP and given a function yðR; bÞ, we
can use our limits on ϕ=ϕ0 and place observational
bounds on b. We note that the stability conditions
assumed in Sec. II and used in the development of this
section are completely in agreement with fðRÞ gravity
[66]. Clearly, more direct observational boundaries on
fðRÞ gravity can be obtained by modifying appropriately
Eq. (12) to include a function fðRÞ. We are motivated to
present a more detailed study in this sense in a future
communication.
Without loss of generality, we can use our simulated

standard siren catalog from BNS mergers, within a
parametric limit and certain stability conditions, to model
the fðRÞ gravity dynamic. Thus, in what follows, we
consider a parametric fðRÞ gravity scenario and inves-
tigate the observational bounds that our standard siren
mock dataset can impose on the free parameters of the
theory.
Let us consider viable models that have up to two

parameters, where the fðRÞ function is given by Eq. (32).
This methodology has been used earlier to investigate the
observational constraints on fðRÞ gravity in [98,99]. In this
respect, one of the most well-known models in the modified
gravity theory literature is the HS model [100], which
satisfies all the dynamics conditions required for a given
fðRÞ function. The function yðR; bÞ for the HS model is
given by

FIG. 3. Statistical reconstruction of the ϕ=ϕ0 in Planck mass units as a function of z at the 68% and 95% C.L., under the stability
condition αM0 < 0 (left panel) and αM0 > 0 (right panel).
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yðR; bÞ ¼ 1 −
1

1þ ð R
ΛbÞn

; ð34Þ

where n is an intrinsic parameter of the model. In what
follows, we assume n ¼ 1 and refer to [98,99] for
details.
As a direct application of the standard siren events from

BNS mergers, within the sensitivity predicted for the ET,
we proceed to constrain the HS model using our mock
dataset generated by the condition αM0 < 0. Together with
the standard siren data, in the present analysis we also
employed the type Ia supernova (SN) Pantheon data [101]
and the cosmic chronometer (CC) measurements [102] in
order to obtain tighter constraints on the free parameters of
the HS scenario (see Appendix B for the details on the SNe
and CC data). In the MCMC analysis, we assumed uniform
priors for the cosmological parameters: H0 ∈ ½55; 90�,
Ωm0 ∈ ½0; 1�, and b ∈ ½0; 1�. In Fig. 4, we show the para-
metric space and the one-dimensional posterior distribu-
tions for the HS baseline model from SNþ CCþ GW and
SNþ CC analysis. Thus, we can quantify how much the
addition of the GWs standard siren data can improve the
constraints and break the degeneracy on the parametric
space of the model, in particular on b. For comparison, we
show also the constraints for the ΛCDM model. In
particular, we found the following mean values with the
relative 68% and 95% C.L. errors from the joint analysis
(SNeþ CCþGWs):

H0 ¼ 69.37þ0.67ð1.45Þ
−0.80ð1.41Þ ; ð35Þ

Ωm0 ¼ 0.303þ0.019ð0.038Þ
−0.019ð0.037Þ ; ð36Þ

b ¼ 0.383þ0.134ð0.229Þ
−0.116ð0.257Þ : ð37Þ

We note that b tends to be non-null up to the 95% C.L.
with the addition of GW data, therefore breaking the
degeneracy enough to have a non-null value on b up to
2σ. This demonstrates the potential of the future standard
siren catalogs in joint analysis with another geometric
probes. As a comparison, in [99] it was found b < 0.50
and b < 0.13 at the 95% C.L. from CCþH0 and
JLAþ BAOþ CCþH0, respectively, while in [98] it
was found b < 0.25 at the 68% C.L. The data used in
these works are from different physical nature and accuracy
and, thus, a direct comparison seems not to be appropriate.
However, all these constraints are compatible with each
other within the 95% C.L. Also, we can note how much the
addition of GW data can improve the constraints on Ωm0

and H0 parameters. A detailed analysis from GW standard
sirens on other viable fðRÞ models as well as a full
discussion will be presented in a future communication.
Finally, it is interesting to analyze the consequences of

our results on the effective dark energy equation of state
parameter. This can be expressed as [98]

wDEðaÞ ¼
−1 − 2

3
a d lnE

da

1 − ΩmðaÞ
; ð38Þ

where EðaÞ ¼ HðaÞ=H0 and

ΩmðaÞ ¼
Ωm0a−3

E2ðaÞ : ð39Þ

FIG. 4. Parametric space at 68% and 95% C.L. and the one-
dimensional marginalized distribution for Ωm0, H0 and b, for the
Hu-Sawicki model from the joint analysis SNeþ CCþGW and
SNeþ CC. The predictions of the ΛCDM model are shown for
comparison.

FIG. 5. Reconstruction of the effective dark energy equation of
state parameter at the 68% and 95% C.L. from the SNþ CCþ
GW analysis for the Hu-Sawicki model. The prediction of the
ΛCDM model (red solid line) is shown for comparison.
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In the case of the standard ΛCDM model, wDE ¼ −1
throughout the entire cosmological evolution. In Fig. 5,
we show the 1σ and 2σ reconstructions of wDEðzÞ for the
Hu-Sawicki model compared to the prediction of the
standard ΛCDM model. The nonvanishing value of b
makes the effective dark energy term behave as quintes-
sence at late times for z < 0.4ð0.1Þ at the 68% (95%) C.L.
Beyond this range, the effective equation of state is
compatible wDE ¼ −1 at the 95% C.L. The green line
represents the evolution of wDE from the mean values of the
MCMC analysis on SNeþ CCþ GWs.

VI. FINAL REMARKS

Assuming an effective luminosity distance for GWs,
which can be physically interpreted as possible corrections
on the GW amplitude propagation between source and
detector, we obtained new observational constraints on the
running of the Planck mass under appropriate stability
conditions (see the summary in Table I), from 1000
standard siren events from binary neutron star mergers
within the ET power spectral density noise. We found that
the GWamplitude damping correction can be preferentially
nonzero at 68% and 95% C.L., for αM0 < 0 and αM0 > 0,
respectively.
Furthermore, we combined our simulated GW data with

the latest available SNe and CC measurements to constrain
the parametric Hu-Sawicki gravity model. In doing so, we
found that the deviation from GRmay be evidenced as non-
null at 95% C.L. These results demonstrate the statistical
accuracy that can be achieved by a future ground-based
GW observatory such as the ET detector.
The underlying assumption of our analysis is cT ¼ c at

all redshifts. This hypothesis is strongly motivated from the
GW170817 constraints to hold locally. On the other hand,
the evidence for cT ¼ c might not be falsified due to the
lack the gravitational wave observations at high z, even in
the near future, since within the LIGO/VIRGO sensitivity,
we expect to measure standard siren events from BNS only
at very low z. Thus, as significant deviations from GR are

expected only at moderate to high z and/or a large scale, it
may be interesting to relax the condition cT=c ¼ 1 and
perform forecast analyses on the ratio cT=c from binary
systems at high z within the sensitivity of the future
detectors, such as ET and DECIGO, and check for possible
consequences on modified gravity phenomenology. It
would be also interesting to apply a similar methodology
as developed here to investigate other well-motivated
classes of modified gravity models, as well as to perform
joint analysis between standard siren mock events and
CMB data (present and future missions). In this way, we
will be able to determine the level of deviations from GR as
suggested by the combination of future astronomical
observations in the next decade.
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APPENDIX A: PN COEFFICIENTS

For the convenience of the reader, we list below the PN
coefficients [103] we used for the waveform model
Eqs. (15) and (17). The individual masses and spin
parameters, mi and χi (i ¼ 1, 2), are encoded in the
following parameter combinations:

δ ¼ m1 −m2

M
; ðA1Þ

χs ¼
χ1 þ χ2

2
; ðA2Þ

χa ¼
χ1 − χ2

2
: ðA3Þ

The PN amplitude expansion coefficients are

A0 ¼ 1; ðA4aÞ

A1 ¼ 0; ðA4bÞ

A2 ¼
451

168
−
323

224
; ðA4cÞ

A3 ¼
27δχa
8

þ
�
27

8
−
11η

6

�
χs; ðA4dÞ

A4 ¼
27312085

8128512
−
1975055η

338688
þ 105271η2

24192
þ
�
8ηþ 81

32

�
χ2a −

81

16
δχaχs þ

�
81

32
þ 17η

8

�
χ2s ; ðA4eÞ
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A5 ¼ −
85π

64
þ 85πη

16
þ δ

�
285197

16128
−
1579η

4032

�
χa þ

�
285197

16128
−
15317η

672
−
2227η2

1008

�
χs; ðA4fÞ

A6 ¼ −
177520268561

8583708672
þ
�
545384828789

5007163392
−
205π2

48

�
η −

3248849057η2

178827264
þ 34473079η3

6386688
ðA4gÞ

þ
�
1614569

64512
−
1873643η

16128
þ 2167η2

42

�
χ2a þ

�
31π

12
−
7πη

3

�
χs þ

�
1614569

64512
−
61391η

1344
þ 57451η2

4032

�
χ2s ðA4hÞ

þ δχa

�
31π

12
þ
�
1614569

32256
−
165961η

2688

�
χs

�
: ðA4iÞ

The phase ΦðfÞ expansion coefficients are

α2 ¼
3715

756
þ 55η

9
; ðA5aÞ

α3 ¼ −16π þ 113δχa
3

þ
�
113

3
−
76η

3

�
χs; ðA5bÞ

α4 ¼
15293365

508032
þ 27145η

504
þ 3085η2

72
þ
�
200η −

405

8

�
χ2a −

405

4
δχaχs þ

�
5η

2
−
405

8

�
χ2s ; ðA5cÞ

α5 ¼ ½1þ logðπMfÞ�
�
38645π

756
−
65πη

9
þ δ

�
−
140η

9
−
732985

2268

�
χa þ

�
−
732985

2268
þ 24260η

81
þ 340η2

9

�
χs

�
; ðA5dÞ

α6 ¼
11583231236531

4694215680
−
6848γE
21

−
640π2

3
þ
�
15737765635

3048192
þ 2255π2

12

�
ηþ 76055η2

1728
−
127825η3

1296
ðA5eÞ

−
6848

63
logð64πMfÞ þ 2270

3
πδχa

�
2270π

3
− 520πη

�
χs; ðA5fÞ

α7 ¼
77096675π

254016
þ 378515πη

1512
−
74045πη2

756
þ δ

�
−
25150083775

3048192
þ 26804935η

6048
−
1985η2

48

�
χa ðA5gÞ

þ
�
−
25150083775

3048192
þ 10566655595η

762048
−
1042165η2

3024
þ 5345η3

36

�
χs: ðA5hÞ

APPENDIX B: SNE AND CC DATASET

We provide here some details of the low-redshift
cosmological observables that we used to complement
the GW mock data in the statistical analysis on the
HS model.
The first dataset is the Pantheon sample [101], composed

of 1048 supernovae (SNe) Ia in the redshift range
0.01 < z < 2.3. In this compilation, all the SNe are
standardized through the SALT2 light-curve fitter, in which
the distance modulus is modeled as follows [104]:

μ ¼ mB −M þ αx1 − βCþ ΔM þ ΔB; ðB1Þ

wheremb is the B-band apparent magnitude of each SN and
M is its absolute magnitude, while ΔM and ΔB account for
the host-mass galaxy and the distance bias corrections,
respectively. Moreover, x1 and C are the stretch and color
parameters of each SN light curve, respectively, with their
relative coefficients α and β. On the other hand, the distance
modulus predicted by a cosmological model is given as

μðzÞ ¼ 5 log10

�
dLðzÞ
1 Mpc

�
þ 25: ðB2Þ

As shown in [105], under the assumption of a flat universe
one can compress the full SN sample into a set of six
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cosmological model-independent measurements of EðzÞ−1,
where EðzÞ≡HðzÞ=H0 is the dimensionless Hubble
parameter. This approach allows us to properly marginalize
over the SN nuisance parameters in the fit. Thus, taking into
account the correlations among the E−1ðzÞ measurements,
we can write the likelihood function associated to the SN
data as [106]

LSN ∝ exp

�
−
1

2
ATC−1

SNA

�
; ðB3Þ

where A≡ E−1
obs;i − E−1

th ðziÞ quantifies the difference
between the measured values and the values predicted
by a cosmological model and CSN is the covariance matrix
resulting from the correlation matrix given in [105].
The second dataset is built upon the differential age

approach [107], which represents a model-independent
method to characterize the expansion of the Universe up
to z < 2. In this technique, passively evolving red galaxies
are used as cosmic chronometers (CCs) to measure the age

difference (dt) of the Universe at two close redshifts (dz).
Thus, one can estimate the Hubble parameter as

HðzÞ ¼ −
1

ð1þ zÞ
dz
dt

: ðB4Þ

In our analysis, we used the compilation of 31 HðzÞ
uncorrelated measurements collected in [108] (see refer-
ences therein). We can then write the likelihood function
relative to the CC data as

LCC ∝ exp

�
−
1

2

X31
i¼1

�
Hobs;i −HthðziÞ

σH;i

�
2
�
; ðB5Þ

where Hobs;i are the observed measurements with their
relative uncertainties σH;i, while HthðziÞ are the theoretical
values of the Hubble parameter estimated from using a
specific cosmological model.
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