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Use of Artificial Neural Networks in Satellite Simulators
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Abstract. Satellite operational simulator is a tool used to support the operation of a satellite.
In this paper an Artificial Neural Network (ANN) was used to design models that describe
parts of a satellite’s Electrical Power Supply Subsystem. The results are compared with previ-
ous research using an identification technique called n4sid and with the real telemetry values
of the CBRS-4 satellite. The Artificial Neural Network produced better results, for all EPSS
parameters (battery voltage, main error amplifier voltage and battery discharge regulator cur-
rent) identified, than the n4sid identification. The models implemented with ANN shown to be
sufficiently accurate for use in a satellite operational simulator.

Palavras-chave: Artificial Neural Network, Electrical Power Supply Subsystem, System
Identification, Space System Simulation.

1. Introduction

The Low Earth Orbit (LEO) satellites must have a subsystem capable of providing the energy
necessary for their operation. Generally, this subsystem, known as Electrical Power Supply
Subsystem (EPSS or EPS), has the following features: supply, control, storage and distribution
of electricity for satellite loads. [Wertz and Larson 1999]

The EPSS is responsible for 41% of failures after 5 years of operation, and catastrophic
failure can cause loss of mission. [Castet and Saleh 2009, Kim et al. 2011, Kim et al. 2012,
Magalhaes 2012]

After the launch of the satellite, a satellite operational simulator can be used to anomaly in-
vestigation and resolution that can happen due to the aging of the subsystem [ECSS 2010]. In
general, the EPSS model executed by the simulator should reproduce the health status of the
satellite with a high level of accuracy.
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In order to obtain more accurate models, this paper proposes the use of artificial neural
networks. The results will be compared with the previous work that used an identifica-
tion technique known as numerical algorithms for subspace state space system identification
(N4SID) [Rodrigues et al. 2018].

Identification techniques have been used for a long time in the space area as suggested
by [Campion et al. 1982, Adachi et al. 1999].

The main contribution of this paper is the experimental use of neural networks to better under-
stand the behavior of some EPSS pieces of equipment of the CBERS-4 satellite.

The remainder of this paper is organized as the following. Section 2 presents the problem
that the paper proposes to solve by using ANN. Section 3 gives a brief description of a back-
propagation neural network. Section 4 describes the methodology for applying the ANN. The
results are presented in Section 5 comparing the results produced by the model using ANN the
results produced by the model using the n4sid. In section 6 the conclusions are presented.

2. Problem Statement

The China-Brazil Earth Resources Satellite (CBERS) Program is a mutual technological effort

between Brazil and China, established more than 30 years ago, in order to develop satellites
Earth observation satellites [CBERS 2018a, CBERS 2018b].

The control of the satellite in orbit is done by the satellite control center. To support the op-
eration team, the operational simulator is used to: (i) to develop and validate the flight control
procedures, (ii) to train the operations team, (iii) to validate the satellite control center software,
and (iv) to support the troubleshooting and maintenance [Ambrosio et al. 2006, Eickhoff 2009,
ECSS 2010].

The SImCBERS Simulator, released in 2017, is the operational simulator for CBERS-4. The
SimCBERS simulates the 15 subsystems of CBERS-4, performs the orbit propagation, the space
environmental conditions and the ground stations. The subsystems (models in XML) were
modeled using the behavioral model approach described in [Tominaga et al. 2012].

One of the subsystems implemented in SImMCBERS is the EPSS. The CBERS-4 EPSS is com-
posed of the following equipment: solar generator (SAG), divided into two sections (SAG1 and
SAG?2), batteries (BAT1 and BAT?2), shunt regulator (SHUNT), batteries discharge regulator
(BDR) and the continuous voltage converters (DC/DC). The equipment, illustrated in Figure 1,
are described in Table 1

Battery
SAGTA }» BCHC X » BDR
SAG1B
f-r DC/DC [—{ LOADS
\ 4
SAG2 » Shunt )

Figure 1. EPSS Diagram Block. [Rodrigues et al. 2018]
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Table 1. Description of the main EPSS equipment. [Magalhaes 2005, Magalhaes 2012,
Torres 2014, Magalhaes 2014, Torres 2014, Rodrigues et al. 2018]

Equipment || Description

SAG The energy from the solar cells is distributed for: (i) charging the batter-
ies, via SAG1 divided into SAG;4 and SAG; 5 circuits, to each battery,
also (i1) for direct energy transferring to the satellite loads, by SAGs.
SHUNT The Shunt is composed of six switched channels, a capacitor bank and
a main error amplifier (MEA). These channels are controlled by MEA,
receive the energy from SAG; and they delivery to the main bus. The
MEA verifies the main bus voltage and controls the opening or closure
of the shunt channels, keeping the main bus voltage constant.

BAT Batteries are elements that store energy. They are recharged during the
period of sunlight and discharged during the eclipse of the satellite.
BDR The BDR (Battery Discharge Regulator) is composed of: battery

switched regulators (BSR), two redundant battery charge controllers
(BCC) and two redundant battery heat controllers (BHC). The BSR
keeps the battery voltage regulated. The BCCs, one for each battery,
are responsible for the battery charge and depend on the battery tem-
perature and voltage. The BHCs, also having one for each battery, are
responsible for the heat control and actuate in the heaters located above
the batteries.

DC/DC The DC/DC converters are responsible the main bus voltage to smaller
regulated voltages, when the loads of the satellite are not connected to
the main bus.

In order to avoid a risky operation for the mission it is essential to have reliable models to
run the simulations in the optional simulator. A study conducted by [Rodrigues et al. 2018]
investigated the use of an identification technique to obtain more accurate models.

The model of EPSS considers the behavior, which depends on the telecom-
mands [Tominaga et al. 2012], and its dynamics, described with mathematical equa-
tions [Magalhaes 2009, Torres et al. 2010, Magalhaes and Silva 2017]. The Table 2 shows the
SimCBERS errors (see Equation 2) using mathematical models [Rodrigues et al. 2017] and
the identified models [Rodrigues et al. 2018], compared to real telemetry, for the following
parameters: Vpari, Isprovr and Vi ga.

Table 2. Comparison between mathematical models and identified mod-
els. [Rodrigues et al. 2018]

Parameter || Mathematical Model Identified Model
Veari 3.3% 2.25%

IsprouT 16.4% 11.75%

ViEA Not implemented 13.48%

In order to minimize the error of the operational simulator in relation to the satellite, other
approaches can be investigated. In this paper a test is performed using artificial neural networks
(ANN) to learn the behavior of the parameters presented in Table 2.
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The ANN have been showing success in several applications in the space area, such as: ther-
mal [Reis Junior et al. 2016], spacecraft power system controller [El-madany et al. 2011], bat-
tery degradation [Donato 2018], satellite bus voltage [Ibrahim et al. 2018]. In addition, the
use of ANN is a trend for satellite control centers as shown by [Li 2017, Kolbeck et al. 2018,
O’Meara and Wickler 2018]

3. Feed-Forward Artificial Neural Network (ANN)

The Figure 2 presents the architectural of a multiplayer perceptron (MLP). MLP networks ba-
sically have two types of signal [Haykin 2005, Haykin 2009]:

* Inputs: propagates forward through the network and emerges at the output end of the
network as an output signal. Contains samples used to train and excite the ANN.

* Error signal - an error signal, Equation 1, originates at an output neuron of the net-
work and propagates backward (layer by layer) through the network. Through the error
backpropagation the ANN weights are adjusted.

E=23 "y —dp)’ (1)

J

Where y represents the ANN output and d the desired output, given by online measurements.

Input
<
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Figure 2. Architectural of a multilayer perceptron with two hidden layers and three
outputs. [Haykin 2009]

4. Methodology
The methodology described in [Rodrigues et al. 2018] is reproduced in this paper, as follows:

» Samples: the data used for training the network are the same as those used in previous
work.

* ANN: the equipment model is obtained from the ANN application. The ANN used was
feedforwardnet provide by MATLAB.

* Results: the network outputs are compared to real telemetry, using the mean
relative square error (MRSE), defined in Equation 2. [Borjas and Garcia 2011,
Vazan et al. 2017, Rodrigues et al. 2018]
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where y,(t) is the g-th real output data (real telemetry), 3,(t) is the g-th estimated output data
(ANN output), no is the total number of outputs and val is the amount of data used to measure
the performance of the ANN.

The ANN feedforwardnet was configured with the following number of neurons in the hid-
den layer:

* Vgar1 — 4 neurons;
* IgprouT — 4 neurons;

* Vs — 4 neurons.

As for the identification, for the training of the neural networks the same inputs were also used
for each one of the parameters, as follows:

* Vpari — 4 inputs: the battery current (Iz471), the solar array current (Iss14), the
current supplied by solar array for the battery (Isopcnc) and the bus voltage (Vgys);

* Igprour — 2 inputs: the BDR input currents, Igprrn1 and Igprine;

* Vypa — 4 inputs: the BDR output current (Izprour), the solar array current (Iggo),
the bus current (I5;75) and the bus voltage (Vpys).

It is important to note that the ANN used the same amount of sample used by the identification
technique.

5. Results and discussion
Table 3 shows the parameter MRSE. A decrease in error is observed for all parameters. Fig-

ures 3 to 5 show the graphical comparison which demonstrate that the behavior of the EPSS
parameters are consistent with the actual telemetry.

Table 3. MRSE for ANN.

Parameter || ANN
VBeari 1.56%
IzprouT 10.76%
Virea 0.41%
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Figure 5. V), 4 comparison.

Note that the error, both in the identified model and in the ANN, was smaller than the error
of the mathematical model implemented in the simulator. It can be assumed that this error is
smaller because actual measurement data is used, which includes subsystem degradation.

Figure 6 shows the difference between the errors of each model.
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Figure 6. Comparison between the three models.

6. Conclusion

The use of ANN showed to be quite effective for obtaining accurate models of satellite subsys-
tems, in particular for EPSS.
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The ANN had more advantages because the error was the smallest, when compared to the
error of the mathematical model implemented in the simulator and the error obtained by the
identification technique, was the smallest of all.

As future research we propose to increase the number of samples for training, since in this
paper we used the same sampling used of the identification technique (n4sid); to evaluate the
influence of the correlation between CBERS-4 telemetry.
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