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We study the dynamic vortex Mott transition in two-dimensional superconducting arrays in a magnetic
field with f flux quantum per plaquette. The transition is induced by external driving current and thermal
fluctuations near rational vortex densities set by the value of f and has been observed experimentally from

the scaling behavior of the differential resistivity. Recently, numerical simulations of interacting vortex models
have demonstrated this behavior only near fractional f. A fine-grid vortex model is introduced, which allows us
to consider both the cases of fractional and integer f. The critical behavior is determined from a scaling analysis
of the current-voltage relation and voltage correlations near the transition and by Monte Carlo simulations. The

critical exponents for the transition near f = 1/2 are consistent with the experimental observations and previous
numerical results from a standard vortex model. The same scaling behavior is obtained for f = 1, in agreement
with experiments. However, the estimated correlation-length exponent indicates that even at integer f, the critical

behavior is not of mean-field type.

DOLI: 10.1103/PhysRevB.100.104517

I. INTRODUCTION

Superconducting arrays provide an interesting testing
ground for equilibrium and nonequilibrium phase transitions.
They can be realized as two-dimensional (2D) arrays of cou-
pled superconducting regions or “grains,” with well controlled
parameters, being useful model systems of inhomogeneous
superconductors, when phase fluctuations of the supercon-
ducting order parameter play a major role [1-7].

Recently, remarkable nonequilibrium phase transitions in-
duced by an applied current have been revealed through exper-
iments on a square array of superconducting islands coupled
by the proximity effect on a metallic film, in a perpendicular
magnetic field [8,9]. The signature of the transition appears in
the behavior of the differential resistivity at low temperatures,
showing reversal of a minimum in to a maximum near certain
values of the vortex density for increasing driving currents
and a corresponding scaling behavior as a function of current
and vortex density near the transition. The transition has
been identified as a classical analog of the dynamic quan-
tum Mott insulator transition [10-13], with vortices playing
the role of quantum particles. Dynamic vortex Mott tran-
sitions were clearly identified near integer vortex density
f =1 and fractional vortex density f = 1/2. The simplest
model for such a superconducting system consists of an ideal
Josephson-junction array in an external magnetic field [14,15]
on the same lattice as the superconducting grains, where
logarithmically interacting vortices are located at plaquette
centers, which act as pinning sites. The average vortex density
corresponds to the frustration parameter f, defined as the
number of flux quantum per plaquette. The scaling behavior of
the differential resistivity observed experimentally [8,9] was
found to be described by a single critical exponent €. This be-
havior has been demonstrated in recent numerical simulations
of interacting vortex models [15,16] only near fractional f.
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Outstandingly, for integer f, the value ¢ =2/3 found ex-
perimentally agrees with a mean field description of the
nonequilibrium dynamics obtained by mapping the dynamic
vortex Mott transition into a non-Hermitian quantum problem
[11]. Nevertheless, to characterize the critical behavior, the
dynamic critical exponents z and correlation-length exponent
v are also required. Near f = 1/2, a different critical exponent
€ = 1/2 was observed [8], which is not consistent with this
mapping. Numerical results [15] for f = 1/2, obtained from
simulations of logarithmically interacting vortices, found an
exponent e consistent with the experimental observations and
also obtained an estimate of the dynamic exponent z ~ 2 and
correlation-length exponent v ~ 1. These critical exponents
clearly indicate that the dynamic vortex Mott transition at
fractional vortex densities belongs to a different universality
class. To fully characterize the transition for integer f, it
should, therefore, be of interest to have similar information
on the value of these critical exponents but, so far, there
are no estimates available from experiments or numerical
simulations for this case.

In this work, we study the dynamic vortex Mott transition
in superconducting arrays using a lattice model of logarithmic
interacting vortices, both at fractional and integer f. Because
in the standard vortex model on a periodic lattice [14,15] the
properties at integer f are equivalent to f = 0, it does not
allow the study of this dynamic transition at nonzero integer
vortex densities. To circumvent this problem, a fine-grid vor-
tex model is introduced, allowing us to consider both the cases
of fractional and integer f while still keeping the simplicity
of the original model. The critical behavior is determined
from a scaling analysis of the current-voltage relation and
voltage correlation near the transition and by Monte Carlo
simulations. We find that, for f = 1/2, the dynamic transition
is accompanied by a structural transition of the sliding vortex
lattice. The critical exponent € for f = 1/2 is consistent with
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FIG. 1. (a) Schematic of the fine-grid vortex model. Squares represent superconducting grains and grid points the allowed positions for
vortices; (b) and (c) represent the vortex configurations (filled circles) in the ground state for f = 1 and f = 1/2, respectively.

the experimental observations [8] and previous numerical
results from the standard vortex model [15]. The same scaling
behavior of the differential resistivity is obtained for f = 1, in
agreement with experiments [8,9]. From the scaling analysis
we find € = 1/2v and using the experimental results for €
we then conjecture the values v =1, z =2 for f = 1/2 and
v=3/4, z="7/3 for f =1, which are consistent with the
numerical results within the error bars. The results indicate
that even for integer f the dynamic vortex Mott transition is
not of mean-field type and, therefore, fluctuations should be
taken into account to fully describe the critical behavior.

II. MODEL AND SIMULATION

In the standard vortex model of a 2D superconducting
array, vortices can only be located at the centers of plaquettes
of the lattice formed by the superconducting grains, which act
as pinning sites. The grid of available sites corresponds to the
dual lattice of the array. The vortex Hamiltonian is given by
(14]

H, =21"E, Y (n; — )G ;(n; — ), o))
iJ

where vortices are represented by integer charges n; (n; =
0, £1...) atthe sites r; = (x;, y;) of the dual lattice, constrained
by the neutrality condition, }_.(n; — ) = 0. f is the number
of flux quantum ¢y = hc/2e per plaquette of area S introduced
by the external magnetic field B, f = BS/¢y, and its value
sets the average density of vortices. This vortex representation
can be obtained following a standard procedure [17] in which
the usual Josephson-junction array model [14], in terms of
the phases of the local superconducting order parameter and
Josephson coupling Ep, is replaced by a periodic Gaussian
model, leading to explicit vortex variables n;. The vortex
interaction is given by G;j = G(r; — rj) — G(0), where G(r)
is the lattice Green’s function [18-20]. G'(r) diverges log-
arithmically as —log(r)/(2w) for large separations. For a
square lattice,

1 eik~r
G(r) = — :
)= 13 ; 4—2cos(k -ay) — 2cos(k - a)

(@)

where L is the system size, k are the reciprocal lattice
vectors, and a;, a, are two perpendicular nearest-neighbor
lattice vectors. When f is an integer, a global change of
the vortex charges n; — n; + f shows that the properties of

the model are the same as the case without external field,
f = 0. Because of this periodicity in f, the standard model
does not discriminate between zero and nonzero integer vortex
densities, although it describes this transition for fractional
vortex densities [15].

In order to study both fractional and integer vortex den-
sities within the same model, we introduce here a fine-grid
vortex model on a square lattice. In addition to be located
at the pinning sites of the array, vortices can now also be
located at the junctions and at the grains of the array with
a corresponding energy penalty (Fig. 1). The spacing of the
grid of available sites is one half of the array spacing. The
Hamiltonian of the fine-grid vortex model is given by

Hpg = 2nE, Y (0 =[G, j(n; — )+ > En?, (3)

iJj

where the vortex charges n; are defined on the sites r; =
(x;, y;) of the fine-grid lattice, constrained by the neutral-
ity condition, ) ;(n; — f') =0, where f' = f/4. E; are ad-
ditional vortex core energies: E; = E; at the midpoint of
the junctions between grains, E; = Eg > E; at the grains
sites, and E; = 0 at the pinning sites (plaquette centers). For
sufficiently large E;, the low-energy minimum for f =1
[Fig. 1(b)] corresponds to a vortex configuration where there
is one vortex at each pinning site and for f = 1/2 [Fig. 1(c)],
there is one vortex at alternating pinning sites.

We study the nonequilibrium response of the supercon-
ducting array under an applied driving current by driven
Monte Carlo (MC) simulations [19-22] of the fine-grid vortex
model. The vortex dynamics is assumed to be overdamped.
An external force is included, representing the effect of the
driving current density J on the vortices, acting as a Lorentz
force transverse to the velocity, leading to an additional con-
tribution to the energy in Eq. (3), —(h/2e)J Y, n;x;, when
J is in the y direction. The MC time is identified as the
real time ¢ with the unit of time dr = 1, corresponding to a
complete MC pass through the lattice. A MC step consists
of adding a dipole of vortex charges to a nearest-neighbor
charge pair (n;, n;), using the Metropolis algorithm. Choosing
this charge pair at random, the step consists of changing
n; — n; — land n; — n; + 1, corresponding to the motion of
a unit charge from r; to r;. The move is accepted with proba-
bility min[1, exp(—AH/kT )], where AH is the change in the
energy. Periodic boundary conditions are used in systems of
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FIG. 2. (a) Nonlinear current-voltage characteristics (/ = I /L, E = V/L) for increasing frustration f near f = 1/2. Temperature 7 = 0.2
and system size L = 64. From the bottom up, f increases from 0.5 to 0.518555 in 19 equal steps. (b) Differential resistivity % for f > 0.50293
near the transition. (c) %€ as a function of f for different J. From the bottom up, J increases from 1.06552 to 1.32759 in 20 equal steps. The

daj

separatrix dE /dJ;_,;, is indicated by black dots. (d) Scaling plot of ‘% for f > 1/2, with J, = 1.203, f, = 0.5, and € = 0.55.

linear size L. The driving current J biases the added dipole,
leading to a net flow of vortices in the direction transverse
to the current, if the vortices are mobile. This vortex flow
generates an electric field E along the current which can be
calculated (in arbitrary units) as E(t) = %Zl AQ;(t), after
each MC pass through the lattice, where AQ; = (rj — ;) - X
for an accepted vortex dipole excitation at the sites (i, j)
and AQ; = 0 otherwise. Due to the neutrality condition, f’
is varied in multiples of 1/L%. Temperature T is measured in
units of E,/kg and J in units of (2e/h)E,.

The results of the simulations presented in Sec. IV are
for E;/Ey = 2 with Eg = 4E;. We use typically 5 x 103 MC
passes to compute time averages and the same number of
passes to reach steady states.

III. SCALING ANALYSIS

The expected behavior of the differential resistivity and
other measurable quantities follows from general arguments
of the scaling theory of a continuous dynamic transition
occurring at a critical current J.. Measurable quantities should
scale with the diverging correlation length & ~ |6J]|™” and
relaxation time t ~ &%, where 6J =J —J., and v and z

are the correlation length and dynamic critical exponents,
respectively. In particular, the differential resistivity scaling
can be obtained in a similar manner as for the current-voltage
scaling of inhomogeneous superconductors [20,23], adapted
to the present case of a transition at the critical current J. and
frustration f,, with nonzero vortex density.

A. Current-voltage relation and differential resistivity

Since the electric field E generated by moving vortices
with density f and velocity v is proportional to fv, the sin-
gular contribution to E should scale as E ~ £'~%. Crossover
effects due to a change §f = f — f. should occur when
|8£1€2 ~ 1, corresponding to an additional vortex in a corre-
lated area, revealing that § f is a strongly relevant perturbation
and should therefore appear in the scaling function in the
combination 8J/|8 f|'/?". As a function of 87 and § f, one then
expects the current-voltage scaling [15]

EU, f)=F,J, f)+8f1PF(87/|8f°), )

where F, is a regular contribution, analytic in §J and § f, and
Fi(x) is a scaling function with F;(0) = ¢, a constant. The
exponents B and € are determined by the correlation length
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FIG. 3. (a) Relaxation time t(/J, f) at different values of f, near the dynamical transition for f = 1/2. Temperature 7 = 0.2 and system
size L = 112. f increases from 0.500957 to 0.518176 in 18 equal steps; (b) Scaling plot for f > 0.514349 neglecting finite-size effects with
J.=1.19, f. =0.501, v =1, and z = 2; (c) Scaling plot with /LY = ¢, a constant (¢ = 7.09), with J. = 1.16, f. = 0.501, v = 1.1, and
z = 1.9. Open squares correspond to L = 48, circles to L = 64, and triangles to L = 80; (d) Scaling plot at J, = 1.24 with z = 2.1.

and dynamic critical exponents as

B=(zZ— 1y,
€ =1/2v. (5)

The scaling form for the differential resistivity dE/dJ can
then be obtained from Eq. (4) as

dEW, f) dEU.[)
dJ dJ

=8P DH(8J/18 1),
J=J.

with H(0) = 0. We have neglected the 4J dependence of
dF,(J, f)/dJ.

The above scaling form reduces to the one used in the
experiments [8,9] when 8 = 1,
dE(J,f) dEU, f)

dJ dJ

Q)

=H(@J/18f1°),
J=J,

N

which depends on a single exponent €. The experimental data
for the differential resistivity is well described by this scaling
form, both for fractional and integer frustration f. However, to
fully characterize the critical behavior, the critical exponents
z and v are also required.

With 8 = 1 and using the exponent relations in Eq. (5) we
can conjecture the values of the other exponents ¢, v, and z,
assuming one of them. The usual exponent for relaxation dy-
namics, z = 2, implies that v = 1, which leads to a crossover
exponent € = 1/2v = 0.5. Remarkably, this value agrees with
the experimental results [8] for f = 1/2 and also with the
numerical results from the standard vortex model [15]. For
f =1, however, the experiments find a different value [8,9],
€ = 2/3. Assuming this value for €, we get v =3/4 and
z=17/3. In the next section, we compare these conjectured
values with the numerical results obtained with the present
fine-grid vortex model.

B. Relaxation time

To determine the values of the critical exponents z and v
from numerical simulations, we performed a scaling analysis
of the relaxation time t(J, f), obtained from the voltage time
correlation function

VOV (0) = (V(1)*
(V(@)?) — (V)

C@)= ®
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FIG. 4. Snapshots of the vortex configurations and corresponding structure factor S(lz) atJ = 1.17034 (a) and J = 1.22276 (b), below and

above the dynamical transition, respectively, for f = 0.505859.

Near the transition, 7 can be estimated from the expected
time dependence of C(¢) at long times, C(t) o e~*/7. Since
€ = 1/2v, the relaxation time t ~ &% should then satisfy the
scaling form

T8 fI/* = G818 £, ©)

in the absence of finite-size effects. The critical exponents v
and z can be estimated from the best data collapse in a plot
of T|8f|/? versus 8J/|8 f|'/?", satisfying this scaling form. To
minimize the finite-size effects, this data collapse is performed
for large systems and in a range of f not too close to f,.

However, when the correlation length £ becomes compara-
ble to the system size L, the scaling function will also depend
on the dimensionless ratio L/ as

T8 f1* = F(8J/18 12", 8IL'Y). (10)

This makes the numerical determination of the critical pa-
rameters very complicated due to the presence of two scaling
variables. As a simplification, in this case we consider data at
current densities and system sizes such that /L is equal
to a constant value. Then, the scaling function F, depends

only on a single variable 8J/|8 f|'/". At the transition, J = J,.,
the correlation length is cutoff by the system size L and the
relaxation time t should satisfy the finite-size scaling form

T/L* = F(L*|8f)). (11)

C. Vortex correlation

The dynamic vortex Mott transition should correlate with a
change in the structure of the sliding state of the vortex lattice.
For f = 1/2, we find that this change can be quantified from
the behavior of the structure factor S(k), which is a measure
of the vortex correlations,

Sk) = %(In(k)lz), (12)
where n(k) is the Fourier transform of the vortex variables
n;. The sliding ordered state below J, corresponds to sharp
peaks in the structure factor S(k) at the wave vectors Kk,
of a periodic vortex structure. Above J., the peaks broaden
and become very small corresponding to a disorder phase.
Assuming a structural phase transition, S(k,) should then
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FIG. 5. (a) Vortex structure factor peak S(k) at different values of f, near the dynamical transition for f = 1/2. Temperature 7 = 0.2 and
system size L = 80. f increases from 0.501875 to 0.511875 in 17 equal steps; (b) scaling plot for f > 0.505 neglecting finite-size effects, with
J.=1.24,v =0.95, and n = 0.7; (c) Scaling plot with §JL'/" = ¢, a constant (c = 8.64), with J. = 1.23, f. = 0.501, v = 1.0, and n = 0.7.
Open squares correspond to L = 48, circles to L = 64, and triangles to L = 80. (d) Scaling plot at J, = 1.23 with f. = 0.501 and n = 0.7.

satisfy the scaling form

SIS f1172 = Fy(8J/18 £V, 8JLYY),  (13)

where 1 is an additional critical exponent characterizing
the power-law decay of vortex correlations at the transition
(njny ™ @My ~ |p; — |77, At the transition, it should
satisfy the scaling form

S(ko)/L®™" = F5(L?|5 £1). (14)

We also consider the scaling behavior of the finite-
size vortex correlation length, which can be obtained from
S(k) as

§U. 1) =

[S(ko)/S(k) — 112 (15)

2 sin(k,,/2)
Here k; = k¢ + ki and Kk, is the smallest nonzero wave
vector of the lattice. This expression is a generalization of
the usual second-moment correlation length [24] for an order
parameter with nonzero wave vector k,. Above the transi-
tion, J > J., this definition corresponds to a finite-difference
approximation to the infinite system correlation length &2 =

- ﬁ % |k=k,, taking into account the lattice periodicity.

& should satisfy the scaling form
EISfI'? = Fs(8T/18 1", 8TLMY), (16)

near the transition. At the transition, it should satisfy the
scaling form

g/L = F(L*8f)), a7

which, interestingly enough, does not depend on the critical
exponents. To verify the scaling behavior of Eqs. (13) and
(16), we use the same procedure as for Eq. (10).

IV. NUMERICAL SIMULATIONS AND DISCUSSION
A. Fractional vortex density: f =1/2

First, we consider the dynamic vortex Mott transition near
f = 1/2 and check if the present fine-grid vortex model gives
the same results as the previous simulations [15] with the
standard vortex model. New results are also obtained from cal-
culations of the vortex structure factor and correlation length.
Figure 2(a) shows the effect of increasing the frustration f
from f = 1/2 on the current-voltage (I-V) relation, in terms
of the current density J = I /L and the electric field E = V/L

104517-6
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FIG. 6. (a) Vortex correlation length £(J, f) at different values of f, near the dynamical transition for f = 1/2. Temperature 7 = 0.2 and
system size L = 80. f increases from 0.501875 to 0.511875 in 17 equal steps; (b) Scaling plot for f > 0.505 neglecting finite-size effects,
with J. = 1.24, f. = 0.5015, and v = 0.95; (c) Scaling plot with §JL!'/" = ¢, a constant (¢ = 8.64), with J. = 1.20, f. = 0.501, and v = 1.0.
Open squares correspond to L = 48, circles to L = 64, and triangles to L = 80. (d) Scaling plot at J. = 1.23 with f. = 0.501.

at a temperature 7 = 0.2. This temperature is well below
the critical temperature of the equilibrium resistive transition,
T. ~ 0.8, which occurs at / = 0. A small increment in f
from f = 1/2 leads to an increase in the slope of the current-
voltage curve, which changes sharply at a critical value J. ~
1.2. Further increase of f tends to smooth out the slope of
these curves near J.. This change of slope near J. can be
seen much clearer in the behavior of the differential resis-
tivity, dE /dJ, shown in Fig. 2(b). To obtain smooth curves
for dE /dJ by numerical differentiation, the current-voltage
data in the small interval near J. was fitted to a low order
polynomial. Figure 2(b) reveals that the curves dE/dJ x J
for different f > 0.502 cross approximately at the same point
J.. The crossing point is a manifestation of the underlying
dynamic transition, with dE /dJ behaving approximately as
a scaling invariant quantity and f — f, acting as a relevant
perturbation [15], consistent with the scaling form of Eq. (6)
when 8 = 1. When the differential resistivity is plotted as a
function of f for different currents in Fig. 2(c), where data
for f < 1/2 is also included, there is a characteristic reversal

of a minimum into a maximum near f = 1/2 for increasing
current density, at J.. The main difference of this behavior
in the present model and the standard model [15] is the
asymmetry of the curves with respect to f — 1/2. In Fig. 2(d),
we plot the data near the transition according to the scaling
form of Eq. (7), originally proposed in the experiments [8].
Data for different J and f collapse into the same smooth curve
when J., f,, and € have the appropriate values. The value
obtained for the critical exponent, € = 0.55(7), is consistent
with the one obtained from previous numerical simulations
with the standard model [15] and also with the experiments
[8], supporting the universality of this dynamical transition.
The reversal of the minimum in to a maximum and the
data collapse characterized by a single exponent € are the
signatures of the dynamic vortex Mott transition as observed
in the experiments [8,9].

In Fig. 3(a), we show the behavior of the relaxation time
7 obtained from the voltage time correlation function, defined
in Eq. (8), as a function of the driving current and different f
near f = 1/2. A reasonable data collapse according to scaling
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forms of Eq. (10) [Figs. 3(b) and 3(c)] and Eq. (11) [Fig. 3(d)]
is obtained with z &~ 2 and v = 1.

The dynamic vortex Mott transition correlates with a
change in the structure of the sliding state of the vortex lattice.
As can be seen from the snapshots of the vortex configuration
in Figs. 4(a) and 4(b), obtained below and above the critical
current J,, respectively, the vortex lattice remains essentially
ordered below J. but has a large number of defects above
J.. The transition in the vortex structure can be determined
from the behavior of the structure factor S (75), defined in
Eq. (12), which is a measure of the vortex correlations. The
sliding ordered state below J,. [Frg 4(a)] corresponds to sharp
peaks in the structure factor S(k) at the wave vectors k of
the periodic vortex structure, as expected for a commensurate
frustration f = 1/2. Above J. [Fig. 4(b)], the peaks broaden
and become very small corresponding to the disordered phase.
In Fig. 5(a), we show the behavior of the structure factor peak
S (1_50) as a function of the driving current J > J, and different
f, near f = 1/2. As shown in Figs. 5(b), 5(c), and 5(d), a
reasonable data collapse according to the scaling forms of
Egs. (13) and (14) is obtained with v & 1, n = 0.7, and J, =
1.23. Finally, in Fig. 6(a), we show the behavior of the vortex
correlation length £(J, f), defined in Eq. (15) with k, =

as a function of f for different J. From the bottom up, J increases from 2. 155 17 to 2.47241 in 20 equal steps. The separatrix
WrthJ =2.3534, f. =1.0,and € = 0.6.

(2w /L)X, as a function of the driving current and different
f near f = 1/2. A reasonable data collapse according to the
scaling form of Eq. (16) [Figs. 6(b) and 6(c)] is obtained
with v & 1 and Fig. 6(d) shows that the data collapse at J.
is consistent with Eq. (17), which does not depend on the
critical exponent v. These estimates of the exponents obtained
from vortex correlations agree with the values obtained from
the voltage time correlation showing that indeed the dynamic
vortex Mott transition for f = 1/2 corresponds to a structural
phase transition of the sliding vortex lattice.

B. Integer vortex density: f =1

We now consider the dynamic vortex Mott transition near
an integer vortex density, f = 1, and extract the critical ex-
ponents €, v, and z from the expected scaling behavior as
described in Sec. III. Figure 7(a) shows the effect of increasing
the frustration f from f = 1 on the current-voltage relation
at a temperature 7 = 0.2. The corresponding behavior of the
differential resistivity, dE/dJ, is shown in Fig. 7(b). The
differential-resistivity curves for different f cross approx-
imately at the same point J. ~ 2.3 signaling the dynamic
vortex Mott insulator transition. In Fig. 7(c), dE /dJ is plotted
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FIG. 8. (a) Relaxation time t(J, f) at different values of f, near the dynamical transition for f = 1. Temperature 7 = 0.2 and system size
L = 80. f increases from 1.00188 to 1.03563 in 18 equal steps; (b) scaling plot for f > 1.01563 neglecting finite-size effects with J. = 2.35,
f. = 1.002, v = 0.7, and z = 2.5; (c) scaling plot with /L' = ¢, a constant (¢ = 85.75), with J, = 2.36, f. = 1.001, v = 0.7, and z = 2.4.
Open squares correspond to L = 48, circles to L = 64, and triangles to L = 80; (d) scaling plot at J, = 2.36 with z = 2.4.

as a function of f for different currents, where data for both
f < land f > 1 are included, showing the reversal of a mini-
mum into a maximum near f = 1 for increasing currents. The
separatrix of the two regimes is indicated by the dotted lines.
In Fig. 7(d), we plot the data near the transition according
to the scaling form of Eq. (7), giving an estimate of the
critical exponent € ~ 0.60(7). The characteristic minimum-
maximum reversal of the differential resistivity near f = 1 for
increasing current and the corresponding data collapse are in
good agreement with the behavior of the dynamic vortex Mott
transition as observed in the experiments [8,9] with € = 2/3,
supporting the universality of this dynamic transition.

In Fig. 8(a), we show the behavior of the relaxation time
T obtained from voltage time correlations as a function of the
driving current and different f near f = 1. A reasonable data
collapse according to the scaling forms of Eq. (10) [Figs. 8(b)
and 8(c)] and Eq. (11) [Fig. 8(d)] are obtained with v ~
0.70(7) and z = 2.40(7). The estimated values of v and z are
indeed compatible with the conjectured values v = 3/4 and
z = 7/3 inferred from the scaling analysis of Sec. IIT A.

V. CONCLUSIONS

We have considered the dynamic vortex Mott transition
in 2D superconducting arrays in a magnetic field with f
flux quantum per plaquette. This nonequilibrium dynamic
transition is induced by external driving current and thermal
fluctuations near rational vortex densities set by the value of
f. Experimentally, the transition has been determined from
the scaling behavior of the differential resistivity character-
ized by a critical exponent €. Recent numerical simulations
of interacting vortex models [15,16] have demonstrated this
behavior only near fractional f. A fine-grid vortex model was
introduced, which allowed us to consider both the cases of
fractional and integer f and investigate the critical behavior
by a scaling analysis and MC simulations. For f = 1/2, the
dynamic transition is accompanied by a structural transition of
the sliding vortex lattice. The critical exponents are consistent
with the experimental observations [8], and previous numer-
ical results from a standard vortex model [15]. The same
scaling behavior of the differential resistivity is obtained for
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f =1, in agreement with experiments [8,9]. However, we find
a correlation-length exponent v ~ 0.75, which is significantly
different from the one expected from mean-field theories, v =
1/2. From the scaling analysis we find € = 1/2v and using
the experimental results for € we then conjecture the values
v=1,z=2for f=1/2and v =3/4, z=7/3 for f =1,
which are consistent with the numerical results within the
error bars. Although the critical exponent € = 2/3 observed
experimentally for integer f can be obtained at the mean-field
level by mapping to a single particle non-Hermitian Hamilto-
nian [11], our results indicate that the full critical behavior is

not described by this approximation and fluctuations should
be taken into account.
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