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ABSTRACT 

The increasing dependence of society on weather-sensitive technologies as 
well as the expansion of urban centers to risk areas are making meteorological 
modeling even more important in the last decades. Moreover, the development 
of powerful computational systems has made the implementation of new 
physical models capable of representing more precisely the atmosphere 
inducing several sectors of the economy to become even more dependent on 
weather forecasting. This present work is the first one to apply a lightning data 
assimilation technique in order to improve the short-term weather forecasting in 
South America. The use of this new data source in the assimilation procedures 
has the potential to increase the efficiency of the initialization methods currently 
used in meteorological operation centers, especially in South America. The 
main goal of this research was to implement and improve a data assimilation 
algorithm responsible for inserting lightning data into the WRF model. 
Specifically, it was intended to evaluate the performance of the experiments 
with lightning data assimilation comparing them with the experiments with no 
assimilation procedures applied, focusing on the impact in short-term forecasts. 
The area selected for this work was set in South America specifically over the 
southern portion of Brazil. This area is well covered by many types of 
observation stations and at the same time, it has favorable conditions for the 
occurrence of several meteorological systems which implies in the occurrence 
of many storms with a high incidence of lightning. In order to perform the 
simulations, evaluate the experiments and track the meteorological system it 
was used data from different sources such as: Precipitation data from the 
National Institute of Meteorology; Lightning data from BrasilDAT provided by the 
Atmospheric Electricity Group of the National Institute for Space Research 
(INPE); Satellite images from GOES-16 and synoptic weather charts from the 
Center for Weather Forecasting and Climate Studies of INPE; and initial and 
boundary conditions from the GFS model provided by the Computational and 
Information Systems Laboratory from University Corporation for Atmospheric 
Research. This study used the WRF-ARW model version 3.9.1.1 and the 
WRFDA system version 3.9.1 with the 3DVAR methodology. The assimilation 
algorithm developed in this study to assimilate lightning data and correct the 
initial conditions of the model was based on the equation developed by Fierro et 
al. (2012). This study proceeded with three different experiments during the 
occurrence of two distinct meteorological events aiming to assess the 
assimilation algorithm implemented here. The experiments were basically 
divided in: control (CTRL), where no assimilation procedures were used; 
lightning data assimilation (LIGHT), where lightning data was assimilated using 
the equation developed by Fierro et al. (2012); and ALIGHT, where lightning 
data was assimilated using the equation with an adaptative relative humidity 
threshold developed in this study. Based on the experiments performed in this 
study, it was possible to conclude that in general, the use of the Lightning Data 
Assimilation System improved the short-term weather forecast for the 
precipitation field induced by large-scale systems, especially when the 
correction in the relative humidity threshold was applied. Additionally, the 
assimilation algorithm also improved the timing and positioning of a squall line 
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that affected the study area possibly due to the correct representation of cold 
pools during the assimilation process. In the second case analyzed, the 
assimilation algorithm improved the representation of the precipitation field in a 
few simulation cycles but it was noticed that when the convection is associated 
with thermal forcing the assimilation of lightning data using the algorithm 
presented in this study had a negative impact in the experiments. The 
assimilation methodology for lightning data presented in this study represents a 
significative contribution to the data assimilation field. The operational use of an 
alternative data source such as lightning has the potential to improve the short-
term forecasts impacting positively several sectors of society. 
Keywords: Assimilation. Lightning. BrasilDAT. WRF.  
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AVALIAÇÃO DO IMPACTO DA ASSIMILAÇÃO DE RELÂMPAGOS NO 

MODELO WRF 

RESUMO 

A crescente dependência da sociedade em tecnologias sensíveis ao tempo 
bem como a expansão de centros urbanos para áreas de risco estão 
tornando a modelagem meteorológica ainda mais importante nas últimas 
décadas. Além disso, o desenvolvimento de sistemas computacionais mais 
eficientes tornou a implementação de novos modelos físicos não apenas 
capazes de representar com mais precisão a atmosfera, mas também fez 
com que vários setores da economia se tornassem ainda mais dependentes 
da previsão do tempo. Este trabalho é o primeiro a aplicar uma técnica de 
assimilação de dados de relâmpagos a fim de melhorar as previsões 
meteorológicas de curto prazo na América do Sul. O uso dessa nova fonte de 
dados nos procedimentos de assimilação tem o potencial de aumentar a 
eficiência dos métodos de inicialização atualmente utilizados em centros de 
operações meteorológicas, especialmente na América do Sul. O principal 
objetivo desta pesquisa foi implementar e aperfeiçoar um algoritmo de 
assimilação de dados responsável pela inserção de dados de relâmpagos no 
modelo WRF. Especificamente, pretendeu-se avaliar o desempenho dos 
experimentos com assimilação de dados de relâmpagos, comparando-os 
com experimentos sem procedimentos de assimilação de dados, com foco no 
impacto dos algoritmos de assimilação nas previsões de curto prazo. A área 
selecionada para este trabalho foi definida na América do Sul, 
especificamente na parte sul do Brasil. Esta área apresenta uma boa 
cobertura de estações de observação e, ao mesmo tempo, possui condições 
favoráveis para a ocorrência de vários sistemas meteorológicos, o que 
implica na ocorrência de muitas tempestades com alta incidência de 
relâmpagos. Para realizar as simulações, avaliar os experimentos e 
acompanhar os sistemas meteorológicos, foram utilizados dados de 
diferentes fontes, tais como: Dados de precipitação do Instituto Nacional de 
Meteorologia; Dados de relâmpagos da BrasilDAT fornecidos pelo Grupo de 
Eletricidade Atmosférica do Instituto Nacional de Pesquisas Espaciais 
(INPE); Imagens de satélite do GOES-16 e cartas sinóticas do Centro de 
Previsão Meteorológica e Estudos Climáticos do INPE; e condições iniciais e 
de contorno do modelo GFS fornecido pelo Computational and Information 
Systems Laboratory from University Corporation for Atmospheric Research. 
Este estudo utilizou o modelo WRF-ARW versão 3.9.1.1 e o sistema WRFDA 
versão 3.9.1 com a metodologia 3DVAR. O algoritmo de assimilação 
desenvolvido neste estudo para assimilar dados de relâmpagos e corrigir as 
condições iniciais do modelo foi baseado na  equação desenvolvida por 
Fierro et al. (2012). Este estudo prosseguiu com três experimentos diferentes 
durante a ocorrência de dois eventos meteorológicos distintos, com o objetivo 
de avaliar o algoritmo de assimilação implementado. Os experimentos foram 
basicamente divididos em: controle (CTRL), onde não foram utilizados 
procedimentos de assimilação, em assimilação de dados de relâmpagos 
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(LIGHT), onde os dados de relâmpagos foram assimilados, e em assimilação 
de dados de relâmpagos com um limiar de umidade relativa adaptativo 
(ALIGHT). Com base nos experimentos realizados neste estudo, foi possível 
concluir que, em geral, o uso do Sistema de Assimilação de Dados de 
Relâmpagos melhorou a previsão de curto prazo para o campo de 
precipitação induzido por sistemas de grande escala, especialmente quando 
a correção do limiar de umidade relativa do ar foi aplicada. Além disso, o 
algoritmo de assimilação também melhorou o timing e o posicionamento de 
uma linha de tempestade que afetou a área de estudo, possivelmente devido 
à melhor representação das piscinas frias durante o processo de 
assimilação. No segundo caso analisado, o algoritmo de assimilação 
melhorou a representação do campo de precipitação em alguns ciclos de 
simulação, mas notou-se que, quando a convecção está associada à 
forçantes térmicas, a assimilação de dados de relâmpagos usando o 
algoritmo apresentado neste estudo teve um impacto negativo nos 
experimentos. A metodologia de assimilação de dados de relâmpagos 
apresentada neste estudo representa uma contribuição significativa para o 
campo de assimilação de dados. O uso operacional de uma fonte de dados 
alternativa como os relâmpagos tem o potencial de melhorar as previsões de 
curto prazo, impactando positivamente vários setores da sociedade. 

Palavras-chave: Assimilação. Relâmpagos. BrasilDAT. WRF. 
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1 INTRODUCTION 

The increasing dependence of society on weather-sensitive technologies as 

well as the expansion of urban centers to risk areas are making meteorological 

modeling even more important in the last decades. Moreover, the development 

of powerful computational systems has made the implementation of new 

physical models capable of representing more precisely the atmosphere 

inducing several sectors of the economy to become even more dependent on 

weather forecasting. 

The prediction of the atmospheric conditions is usually made by using a set of 

equations that comprehend the laws of motion and principles like the 

conservation of mass and energy. Those equations do not have analytical 

solutions and it is necessary to solve them by applying numerical methods, that 

is why the weather forecasting procedures it is often referred to as Numerical 

Weather Prediction (NWP). 

In order to improve the weather forecasts, it is possible to approach different 

modeling aspects. We can improve the forecasts (1) improving the model core 

and configurations like the spatial resolution, discretization methods, etc.; (2) 

Improving the physics, using different parameterizations or equations which 

describes the reality more precisely; (3) improving the data assimilation 

procedures; Or (4) applying ensemble techniques. 

This work approaches the weather forecasts from the point of view of the data 

assimilation explaining how the insertion of a new data source can improve the 

initial conditions and subsequently the result of the simulation. Basically, the 

assimilation is the process of the combination of observational data from 

different sources with the simulated data, known as background or first guess, 

in order to obtain adjusted initial conditions, known as analysis, resulting in 

better weather forecasts (KALNAY, 2003; LORENZ, 1963). 

The NWP is an initial value problem, i.e., the physical equations used in 

atmospheric modeling not only need initial conditions but also are highly 

sensitive to them. The sensibility of the models associated with the initial 

conditions as well as the high resolution of them make the simple interpolation 
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of the observational data insufficient to provide proper information for the initial 

conditions, so the use of a background which can be obtained from another 

model or from a previous run with the same model is indispensable (KALNAY, 

2003; LORENZ, 1963). The insertion of the observational data can correct the 

model background and, at the same time, decrease the cumulative errors from 

the simulation. 

The lack of observational data in the atmosphere causes the models to initialize 

with imprecise initial and boundaries conditions which results in the known spin-

up problem (DAVIDSON; PURI, 1992). Nevertheless, the assimilation of those 

observational data in the initial stages of the simulations can still smooth this 

problem (MANOBIANCO et al., 1994). More details are discussed in the next 

chapter. 

Figure 1.1 shows a schematic illustration of how the observations are combined 

with the background in order to generate the analysis. It is possible to notice 

that the assimilation methodology gives more weight to the observations when 

they are available and when they are not, the background has more weight over 

the analysis. 

Figure 1.1 – One-dimension schematic illustration showing how the background is 
combined with the observations in order to produce an analysis. 

 

 
Source: Warner (2011). 
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In this study, the Weather Research and Forecasting (WRF) and the WRF Data 

Assimilation (WRFDA) were used to perform all the experiments. The WRF 

model is an NWP that has been widely used for both applications research and 

operation (SKAMAROCK et al., 2005, 2008). It is also a community system 

where developers can contribute to improvements in the code. This model, 

typically used in regional applications, has a large spectrum of physical and 

dynamical parameterizations which allows it to adapt to almost any place (see 

section 2.3 for more details). 

There are many assimilation methodologies available in the atmospheric 

sciences which aim to combine the observation with the background such as: 

Successive Corrections Method (BERGTHÓRSSON; DÖÖS, 1955), Nudging 

(HOKE; ANTHES, 1976; KISTLER, 1974), Optimal Interpolation (LORENC et 

al., 2000; PARRISH; DERBER, 1992), Variational Methods (BARKER et al., 

2004), Kalman Filter (KALMAN, 1960), Hybrid Methods (HAMILL; SNYDER, 

2000; X. WANG et al., 2008), and others. The WRFDA system supports 

variational methods such as tri and four-dimensional (3DVAR, 4DVAR) and 

hybrid capabilities (see section 2.2 for more details about 3DVAR). 

The assimilation methodologies have been widely used in the meteorological 

models and its impact is well studied by the scientific community. However, 

additional studies are necessary in order to understand which methodology is 

the best for operational purposes and how the integration of different types of 

data sources can affect the forecasts. Each data source has its own limitation, 

the satellite, and upper air soundings data, for example, do not provide 

sufficient information to elaborate appropriate initial conditions in micro and 

mesoscales, while the meteorological radars are limited to their coverage 

radius, it has just a few observations over the ocean and mountain regions can 

easily affect its coverage (YANG; WANG, 2015). 

The use of lightning data provides information about the atmosphere that other 

types of observations cannot. Lightning is a good indicator of deep convection 

and unlike the radar observations, they are less affected by geography features 

(FIERRO et al., 2012; MACGORMAN et al., 1989; YANG; WANG, 2015). In 
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addition, the continuous observation of lightning can provide information about 

the development, life cycle and microphysics of a storm cloud 

(PAPADOPOULOS et al., 2005). 

The first lightning assimilation studies used lightning data as an alternative 

source to generate more accurately precipitation fields and other variables 

(proxy fields), i.e., from the information of lightning occurrence, it was possible 

to infer meteorological variables indirectly for the assimilation process 

(ALEXANDER et al., 1999; CHANG et al., 2001). 

Posteriorly, with the development of more efficient computers and assimilation 

methods, other forms to incorporate lightning data in the models emerged. For 

instance, nudging assimilation methods started to be developed for the purpose 

of lightning data assimilation.  This technique consists in the modification of one 

or more equations in order to force the model to develop atmospheric features 

related to lightning occurrences (FIERRO et al., 2012, 2015, 2014; MANSELL et 

al., 2007). 

Recently, other studies have shown techniques of directly lightning data 

incorporation through the modification of the observation operators in variational 

and hybrid methods (APODACA et al., 2014; STEFANESCU et al., 2012, 2013). 

Currently, there are many lightning detection networks working in different ways 

around the world. The networks operating in the range of low frequencies are 

able to detect lightning in the whole world, but their detection efficiency and 

precision are about 50% and 10 km, respectively (RODGER et al., 2006). On 

the other hand, there are networks which operate with medium frequencies, 

although their coverage is more limited when compared to the low frequency’s 

networks, the efficiency and precision are about 90% and 500 m, respectively 

(BIAGI et al., 2007; CUMMINS; KRIDER; MALONE, 1998; CUMMINS; 

MURPHY, 2009). Also, there are systems known as Lightning Mapping Array 

(LMA) which operate in the range of high frequencies (KOSHAK et al., 2004) 

and the Geostationary Lightning Mapper (GLM) aboard of Geostationary 

Operational Environmental Satellite 16 (GOES-16) which uses the optical 

spectrum to detect lightning from the space (GOODMAN et al., 2013). 
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In this study, it was implemented a methodology to calculate proxy fields which 

were assimilated by the WRFDA system. These proxy fields were calculated 

based on lightning data obtained from the Brazilian Lightning Detection Network 

(BrasilDAT), a medium frequency lightning detection network capable of 

distinguishing between Cloud-to-Ground (CG) and Intracloud (IC) flash. More 

details about the network will be discussed in section 2.4. 

1.1 Motivation and objective 

This present work is the first to apply a lightning data assimilation technique in 

order to improve the short-term weather forecasting in South America. The use 

of this new data source in the assimilation procedures has the potential to 

increase the efficiency of the initialization methods currently used in 

meteorological operation centers, especially in South America. 

The use of lightning data has innumerous advantages that will be discussed in 

the next sections. For instance, one of the main advantages is the fact that 

lightning data has a high spatial and temporal resolution and it can provide 

information about the thunderstorms that other type of convectional observation 

are not able to do. At the same time, it has the potential to reduce the 

computational cost of the meteorological operations. 

The main goal of this research was to implement and improve a data 

assimilation algorithm responsible for inserting lightning data into the WRF 

model. Specifically, it was intended to evaluate the performance of the 

experiments with lightning data assimilation comparing them with experiments 

with no assimilation procedures applied, focusing on the impact of the 

assimilation algorithms in short-term forecasts (≤3  hours). 

1.2 Organizational structure 

This work is structured in five chapters: (1) This is the present chapter which 

includes the introduction of the subject, basic concepts, the motivation and the 

goals of this research; (2) The focus of this chapter is to provide a complete 

review of the necessary concepts for a better understanding of the assimilation 

process; (3) In the chapter 3 are presented a description of the data and study 

area, model configurations, assimilation algorithm, experiments performed and 
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methods used to analyze the results; (4) This chapter shows the results 

obtained from the experiments performed with the model analyzing the impact 

of lightning data assimilation procedures and the differences between the 

different cases analyzed here; (5) Finally, in the last chapter are presented the 

conclusions and some suggestions of future works based on the results 

obtained in this research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

2 BACKGROUND 

This chapter introduces all the necessary concepts for a proper understanding 

of this work including a background on data assimilation focusing on the 

algorithm used in this research. It is also discussed in more details the 

assimilation system (WRFDA), the meteorological model (WRF), how they were 

employed and how the use of lightning data can help to improve the initial 

conditions.  

2.1 Data assimilation 

The assimilation process is commonly used in the meteorological operation of 

the main weather prediction centers in the world. This process is applied to 

improve the initial conditions of the models. 

Currently, many different data sources are available and all these data can be 

combined and used in the assimilation methodologies (Figure 2.1). 

Figure 2.1 –  Illustration showing different data sources commonly used in 
meteorological models. 

 

Source: ECMWF (2019) 
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The combination of all those observational data with data from the 

meteorological models is used in order to minimize the errors and find a better 

solution for the initial conditions. 

Even with all data available today, we still do not have enough observations for 

the proper elaboration of initial conditions in most of the meteorological models 

running globally. Also, the observational data has intrinsic errors associated 

with many factors such as calibration and other limitations associated with each 

data source. Even though the data from the model (background) contains 

enough information to elaborate the initial conditions for the next cycle, usually it 

has errors associated with itself (cumulative numerical errors from the 

integration of the equations or from not properly representing the atmospheric 

physics due to the approximations in the set of physical equations used in the 

model, for example). 

The assimilation process aims to process the observational data, filter the 

imprecise information, and combine it with the background from the model in a 

statistical way decreasing the errors associated with each of it and adjusting the 

initial conditions for the best possible solution. The background can be provided 

from the simulation of another model or from a previous simulation of the same 

model. 

The goal of the assimilation process is to minimize the errors through the 

combination of both data, observational and simulated (RABIER; LIU, 2003). 

Each data has its own error (𝜖). Taking a variable 𝑋 scalar, its true value is 

given by 𝑋∗ and the error associated with the background and the observation is 

given by the Equations 2.1 and 2.2, respectively. 

 

𝜖𝑏 = 𝑋𝑏 − 𝑋∗ (2.1) 
 

𝜖𝑜 = 𝑋𝑜 − 𝑋∗ (2.2) 
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The true value 𝑋∗ is a theoretical value which is not possible to measure, and it 

is just used for mathematical purposes. 

It is also assumed that the errors are unbiased which means that the error 

average is zero (Equation 2.3). 

 

𝜖𝑏̅̅̅ = 𝜖�̅� = 0 (2.3) 
 

Moreover, the analysis 𝑋𝑎 is given by the linear combination of the background 

and the observation (Equation 2.4). 

 

𝑋𝑎 = 𝛼𝑋𝑜 + 𝛽𝑋𝑏 + 𝛾 (2.4) 
 

Where 𝛼, 𝛽 and 𝛾 are the coefficients of the equation. 

The same assumption made in the Equations 2.1 and 2.2 is valid for the 

analysis (Equations 2.5 and 2.6). 

 

𝜖𝑎 = 𝑋𝑎 − 𝑋∗ (2.5) 
 

𝜖𝑎̅̅ ̅ = 0 (2.6) 
 

With the equations above, it is possible to derive the following equations 

(Equations 2.7 and 2.8): 

 

𝑋𝑎 = 𝛼𝑋𝑜 + (1 − 𝛼)𝑋𝑏 (2.7) 
 

𝜖𝑎
2̅̅ ̅̅ = 𝛼𝜖𝑜

2̅̅ ̅̅ + (1 − 𝛼)2𝜖𝑏
2̅̅ ̅̅  (2.8) 
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Where 𝜖𝑎
2̅̅ ̅̅ , 𝜖𝑏

2̅̅ ̅̅  and 𝜖𝑜
2̅̅ ̅̅  are the analysis error variances 𝜎𝑎

2, background 𝜎𝑏
2, 

and observation 𝜎𝑜
2. It was also considered that the errors are not correlated. 

In order to obtain the minimum analysis error, the Equation 2.8 is minimized and 

the value for 𝛼 is given by the Equation 2.9 (𝑑𝜎𝑎
2

𝑑𝛼
= 0). 

 

𝛼 =
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑜

2
 (2.9) 

 

The complete set of equations and more details about general data assimilation 

methods and how to derive the equations can be found in Bouttier and Courtier 

(2002). 

The corrections in the initial conditions using assimilation procedures reduce the 

spin-up time which means that the period where the model balances the 

mass/wind fields and develops realistic three-dimensional features into the 

simulation domain is reduced. The typically spin-up time for regional models like 

WRF varies between 6 to 12 hours of simulation. The corrections made by the 

observational data in the initial conditions of the simulation provide an 

atmospheric state partially balanced which allows the reduction in the spin-up 

period (KALNAY, 2003). 

The model can also be initialized using a previous run from another model or 

with the same model initialized before of the analysis time which allows the 

model to initialize with atmospheric conditions partially spun-up, i.e., balanced, 

this procedure is known as Warm Start or Dynamic Initialization. The opposite 

process is called Cold Start or Static Initialization, where the model is initialized 

in the analysis time and no other run is used (WARNER, 2011). The 

assimilation process can be used in both types of initializations, reducing in both 

cases the spin-up time.  

Basically, the data assimilation is a branch of the Estimation Theory, i.e., with 

redundant measures, each of them with different range errors, it is possible to 
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estimate a better solution with a smaller error combining both measures 

statically (ATLAS; TODLING, 1999). 

2.2 Variational methodology (3DVAR) 

The variational methodology is one of the most used data assimilation 

techniques in meteorological models. This technique is based on Bayes 

Theorem. This theorem says that the likelihood of an event A occurs given that 

event B is true is given by Equation 2.10: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 (2.10) 

 

Where 𝑃(𝐴) and  𝑃(𝐵) are the probabilities of the events 𝐴 and 𝐵 occur 

independently of each other. While 𝑃(𝐵|𝐴) is the probability of an event 𝐵 

occurs given that the event 𝐴 is true. 

This theorem is very useful when we already know that a certain event already 

happened. Considering the event 𝐴 = 𝑇 where 𝑇 is an estimative of the 

temperature, and 𝐵 = 𝑇𝑜 where 𝑇𝑜 is the observed temperature, the Equation 

2.10 can be written as it follows (Equation 2.11). 

 

𝑝(𝑇|𝑇𝑜) =
𝑝(𝑇)𝑝(𝑇𝑜|𝑇)

𝑝(𝑇𝑜)
 (2.11) 

 

This means to say that the probability of an event 𝑇 occurs given the 

observations 𝑇𝑜 is equal to the probability of 𝑇 multiplied by the probability of an 

event 𝑇𝑜 given 𝑇 divided by the probability of 𝑇𝑜. 

Assuming that the Probability Density Function (PDF) is given by the Gaussian 

Distribution, the probabilities can be written as it is shown by Equations 2.12 

and 2.13. 
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𝑝(𝑇) =
1

√2𝜋𝜎𝑏
2

exp (−
1

2

(𝑇 − 𝑇𝑏)2

𝜎𝑏
2

) (2.12) 

 

𝑝(𝑇𝑜) =
1

√2𝜋𝜎𝑜
2

exp (−
1

2

(𝑇𝑜 − 𝑇)2

𝜎𝑜
2

) (2.13) 

 

Where 𝜎𝑏
2 and 𝜎𝑜

2 are the background and the observation error variances, 

respectively, and 𝑇𝑏 is the background or first guess of the model. 

Using Equations 2.12 and 2.13 and replacing them into the Equation 2.11 we 

can obtain the proportionality relationship shown in Equation 2.14. 

 

𝑝(𝑇|𝑇𝑜) ∝
1

2𝜋√𝜎𝑏𝜎𝑜

exp (−
1

2
{

(𝑇 − 𝑇𝑏)2

𝜎𝑏
2

+
(𝑇𝑜 − 𝑇)2

𝜎𝑜
2

}) (2.14) 

 

It is possible to write another proportionality relationship based on the Equation 

2.14 (Equation 2.15): 

 

ln(𝑝(𝑇|𝑇𝑜)) ∝ −
1

2
{

(𝑇 − 𝑇𝑏)2

𝜎𝑏
2

+
(𝑇𝑜 − 𝑇)2

𝜎𝑜
2

} (2.15) 

 

Since 𝑝(𝑇|𝑇𝑜) < 1 and ln(1) = 0, the goal is to find the temperature 𝑇 that 

minimizes Equation 2.16. This equation is known as the cost function. 

 

𝐽(𝑇) =
1

2
{

(𝑇 − 𝑇𝑏)2

𝜎𝑏
2

+
(𝑇𝑜 − 𝑇)2

𝜎𝑜
2

} (2.16) 

 

In order to find the optimal temperature that minimizes Equation 2.16 (𝑇𝑎) it is 

necessary to calculate 𝑑𝐽(𝑇)

𝑑𝑇
= 0 which leads to the Equation 2.17. 



13 
 

 

𝑇 ≡ 𝑇𝑎 =
𝜎𝑏

2𝑇𝑜

𝜎𝑜
2 + 𝜎𝑏

2
+

𝜎𝑜
2𝑇𝑏

𝜎𝑜
2 + 𝜎𝑏

2
 (2.17) 

 

Which is the same equation obtained in the previous section. 

Figure 2.2 shows how the combination of 𝐽𝑜 which is the first term on the right 

side of the Equation 2.16, is combined with 𝐽𝑏 which is the second term to 

produce the complete cost function where the minimum of the function is what 

we call as analysis 𝑇𝑎. 

The equations showed until now demonstrate the application of the assimilation 

process for a scalar case. In the real case, the variables are matrices containing 

not only other variables but also the space information. For the tridimensional 

variational (3DVAR) case the probability function is given by Equation 2.18. 

Now, considering the event 𝐴 = 𝒙 where 𝒙 is the estimative, a matrix resulting 

from the assimilation process, and 𝐵 = 𝒚𝒐 where 𝒚𝒐 is the matrix containing the 

observational data, the Equation 2.10 can be rewrite as it is shown by Equation 

2.18. 

 

𝑝(𝒙|𝒚𝒐) =
𝑝(𝒙)𝑝(𝒚𝒐|𝒙)

𝑝(𝒚𝒐)
 (2.18) 

 

Assuming that the PDF’s are given again by the Gaussian Distribution, but this 

time for a multidimensional case, the probabilities can be written as it is shown 

by Equations 2.19 and 2.20. 

 

𝑝(𝒙) =
1

|𝑩|1/2√(2𝜋)𝑛
exp (−

1

2
(𝒙 − 𝒙𝒃)𝑇𝑩−1(𝒙 − 𝒙𝒃)) (2.19) 
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𝑝(𝒚𝒐|𝒙) =
1

|𝑹|1/2√(2𝜋)𝑝
exp (−

1

2
(𝒚𝒐 − 𝒉(𝒙))𝑇𝑹−1(𝒚𝒐 − 𝒉(𝒙))) (2.20) 

 

Where 𝑩 and 𝑹 are the background and the observation covariance error 

matrices, respectively. 𝒉( ) is the observation operator responsible for bringing 

𝒙 from the model space to the observation space which allows it to be 

compared with the observations 𝒚𝒐, and 𝒙𝒃 is the background or first guess of 

the model. 

Figure 2.2 – Schematic representation of the cost function for a scalar case (Equation 
2.16). 

 

Source: Adapted from Warner (2011). 
 

 Using the Equations 2.19 and 2.20 into Equation 2.18 we can obtain the 

proportionality relationship shown in Equation 2.21. 

𝑝(𝒙|𝒚𝒐) ∝
1

√|𝑹||𝑩|(2𝜋)𝑛𝑝
exp (−

1

2
{(𝒙 − 𝒙𝒃)𝑇𝑩−1(𝒙 − 𝒙𝒃)

+ [𝒚𝒐 − 𝒉(𝒙)]𝑇𝑹−1[𝒚𝒐 − 𝒉(𝒙)]}) 
(2.21) 
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Equivalently in Equation 2.22: 

 

ln(𝑝(𝒙|𝒚𝒐)) ∝ −
1

2
{(𝒙 − 𝒙𝒃)𝑇𝑩−1(𝒙 − 𝒙𝒃) + [𝒚𝒐 − 𝒉(𝒙)]𝑇𝑹−1[𝒚𝒐 − 𝒉(𝒙)]} (2.22) 

 

Since 𝑝(𝒙|𝒚𝒐) < 1 and ln(1) = 0, the cost function for the 3DVAR case is given 

by Equation 2.23 (more details are shown in Lorenc (1986)). 

 

𝐽(𝒙) =
1

2
(𝒙 − 𝒙𝒃)𝑇𝑩−1(𝒙 − 𝒙𝒃) +

1

2
[𝒚𝒐 − 𝒉(𝒙)]𝑇𝑹−1[𝒚𝒐 − 𝒉(𝒙)] (2.23) 

 

In order to find the optimal solution that minimizes Equation 2.23 (𝒙𝒂) it is 

necessary to calculate ∇𝐽(𝒙) = 0 which gives us Equation 2.24. 

 

𝒙𝒂 = 𝒙𝒃 + (𝑩−1 + 𝑯𝑇𝑹−1𝑯)[𝒚𝒐 − 𝑯(𝒙𝒃)] (2.24) 
 

However, the exact solution is not commonly used in the operational 

environment due to its high computational cost to solve it. Instead, iterative 

methods are used aiming to obtain an approximated solution as it is shown by 

Ming (2006). 

2.3 Weather forecasting and data assimilation systems 

The Weather Prediction System, used to simulate the meteorological conditions 

of the atmosphere, was the WRF model while the WRFDA was the Data 

Assimilation System responsible for inserting the observational information into 

the model and correcting the initial and boundary conditions for the simulation. 

Those systems were introduced briefly in the first chapter, in this section it is 

shown in more details the structure and the main components of them. 

Inside the WRF infrastructure, there are what we call as dynamic solvers, these 

are the main components responsible for solving the physical equations of the 

model. The WRF model has two different dynamic solvers, the Nonhydrostatic 
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Mesoscale Model (NMM) or the Advanced Research WRF (ARW), the last one 

used in this study. 

The complete set of physical equations that represents the atmospheric physics 

does not have an exact solution, this way, it is necessary to apply numerical 

methods in order to solve these equations which implies in the discretization of 

space and time. Some of these characteristics will be discussed below. 

The discretization of the space requires a grid, in the case of the ARW the grid 

used was Arakawa-C (ARAKAWA; LAMB, 1977). In this type of grid, the wind 

components (𝑢, 𝑣, 𝑤) and the thermodynamic variables (𝜃) are calculated as it 

is shown by Figure 2.3. 

Figure 2.3 – Horizontal and vertical grids (Arakawa-C) used by ARW solver. 

 

Source: Skamarock et al. (2008) 
 

The Δ𝑦 and Δ𝑥 are constant and the correction for different projections is made 

by a map factor 𝑚. 

Note that the zonal and meridional wind components 𝑢 and 𝑣 are calculated 

between the grid points, while the potential temperature 𝜃 is calculated exactly 

on the grid points. The same applies to the vertical grid where the vertical wind 

component 𝑤 is also calculated between grid points. 
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Different types of grids affect directly the format of the equations as well as the 

propagation of perturbations in the model, these features and more details can 

be seen in Arakawa and Lamb (1977). 

With the grid defined above, the ARW solver uses 2nd and 6th order advection 

options in horizontal and vertical spaces. 

Another important aspect is the horizontal resolution, i.e., the space between 

each grid point. The resolution must be defined based on the characteristics of 

the atmosphere that we want to study. A high-resolution grid to study a global 

scale atmospheric system might spend unnecessary computational resources 

while a low-resolution grid to study a smaller scale system might not represent 

properly the physics involved. An example of the impact of the horizontal 

resolution can be seen in Figure 2.4. 

The Figure 2.4 illustrates an ideal case where the observations (pluviometers) 

are spaced in different configurations aiming to represent the precipitation 

caused by the systems with length 𝐿. The expected spatial distribution of the 

precipitation is shown in “b”. Note that in “c” and “d” the observation instruments 

are spaced with 𝑠 = 𝐿 and because of that the precipitation is not properly 

represented, the same happens when 𝑠 =
3

4
𝐿. When the pluviometers are 

spaced with 𝑠 =
1

2
𝐿 the spatial distribution of the precipitation is more realistic.  

The same logic can be applied for the horizontal resolution of the model where 

it is necessary that the space between the grid points are at maximum half of 

the length of the system that we want to simulate, i.e.,  𝐿 ≥ 2Δ𝑠. However, due 

to the relative differences between the meteorological systems and the grid 

points, the ideal for operational purposes is to use 𝐿 ≥ 5Δ𝑠. 

Moreover, the ARW dynamic core equations are based on a vertical coordinate 

normalized by the hydrostatic-pressure in the surface defined by Equation 2.25 

(LAPRISE, 1992). 

 

𝜂 =
𝑝ℎ − 𝑝ℎ𝑡

𝑝ℎ𝑠 − 𝑝ℎ𝑡
 (2.25) 
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Where 𝑝ℎ is the hydrostatic pressure, 𝑝ℎ𝑡 is the hydrostatic pressure at the top 

and 𝑝ℎ𝑠 is the hydrostatic pressure at the surface. 

Figure 2.4 – Schematic illustration showing the representation of the precipitation field 
for different distances between the observation stations. 

 

Source: Adapted from Gandu (2005). 
 

This coordinate is usually referred to 𝜎 which is used in many hydrostatic 

atmospheric models. The coordinate varies between 1 at the surface and 0 at 

the top layer of the model (Figure 2.5). 

The advantage of the use of 𝜂 is due to the fact that it is a surface coordinate. 

However, errors in the pressure gradient are common in regions near to 

mountains with a high altitude gradient (PHILLIPS, 1957). More details about 

each type of vertical coordinates used in atmospheric models and the 

differences between each other can be found in AMS (2019). 
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Figure 2.5 – Vertical coordinate 𝜂 used by ARW solver. 

 

Source: Skamarock et al. (2008). 
 

The differential equations used in the atmospheric sciences generally are 

composed by terms that describe a large range of oscillation modes, some of 

these modes are generated by the integration of these equations and does not 

have any meteorological meaning but the low-frequency modes are associated 

with atmospheric conditions (SKAMAROCK et al., 2008). Hence, the time 

integration in ARW is calculated differently for different modes. For high-

frequency acoustic modes, the integration is made over smaller steps in relation 

to the low-frequency modes, where the third-order Runge-Kutta (RK3) is used 

allowing it to maintain the numerical stability of the system (SKAMAROCK et al., 

2008). 

The numerical stability is an important factor that needs to be considered in any 

simulation. The numerical schemes of the model must take into account criteria 

like consistency, convergence, and stability in order to solve the equations 

(CUNNINGHAM et al., 2001). 

In nonlinear equations, which is the case of the models that use primitive 

equations (differential equations used to describe the atmospheric flow) like 

WRF, the occurrence of nonlinear instabilities is commonly observed. This type 
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of instability happens when different oscillation modes generated by the 

integration of the model equations interact with each other generating errors in 

the redistribution of energy in the simulation domain, it is usually observed in 

wavelengths with about 2 to 4Δ𝑥 (KALNAY, 2003; WARNER, 2011). 

The primitive equations also need to obey the criteria for convergence known as 

Courant–Friedrichs–Lewy or CFL (COURANT et al., 1967). The Equation 2.26 

shows that the horizontal speed of the fastest wave in the model domain 𝑉𝐻 

(usually considered 300𝑚/𝑠) multiplied by the time step Δ𝑡 and divided by the 

horizontal resolution Δ𝑥 must be less or equal to 1. 

 

𝑉𝐻

Δ𝑡

Δ𝑥
≤ 1 (2.26) 

 

Moreover, the physical equations of the model have a wide range of 

parameterizations which allows it to adapt to a specific region or period of the 

year. Basically, the parametrizations are simplified equations responsible for 

describing a specific physical process. These simplifications are used for two 

main reasons: (1) for when we do not have enough knowledge about some 

specific physical process which makes it necessary to develop equations 

according to known variables, or (2) for when we want to reduce the 

computational cost (WARNER, 2011). 

Besides that, most of the parameterizations are developed empirically, i.e., they 

are developed based on the observational data and usually, their use is limited 

to a specific period of the year or to a specific region. Stensrud (2007) presents 

a good review of the parametrizations used in meteorological models in general. 

In the ARW-WRF model, there are simplified parameterization schemes for 

idealized studies and also complex schemes associated with Microphysics, 

Cumulus parameterizations, Surface physics, Planetary Boundary Layer 

Physics and Atmospheric radiation physics. More details in Powers et al. 

(2017). 
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Figure 2.6 shows the main WRF model components, including the assimilation 

system WRFDA, and how they are connected between each other in order to 

produce a weather forecast. 

The first component of the system is the WRF Preprocessing System (WPS). 

This component is responsible for processing the necessary external data for 

the model. The geogrid program defines some of the domain configurations 

including the area and the interpolation of the terrestrial data to the study area, 

while the ungrib program read, unpack and transform the GRIB data (initial and 

boundary conditions from another model, in this case, the Global Forecast 

System (GFS)) into a simpler format. The metgrid program is responsible for 

interpolating horizontally the data from ungrib to the domain defined by geogrid. 

The configurations of this procedure (input data, domain, resolution, etc.) are 

defined by a namelist file. 

The second component of the weather forecasting system includes the real 

program where the initial and boundary conditions are prepared for the ARW, 

which is the core of the whole system and where the set of equations are 

integrated in time generating a forecast. Posteriorly, the output is processed for 

operational or research purposes. Similar to the previous component, a 

namelist file defines some of the configurations in this component like the 

physical parameterizations used in the equations, for example. 

The WRFDA system receives the initial and boundary conditions processed by 

the real program in the second component and the assimilation core uses an 

assimilation methodology, like 3DVAR, to correct the initial conditions based on 

the observations (previously processed by the obsproc code). The update_bc 

code corrects the boundary conditions based on the corrections made by the 

assimilation core and then the corrected initial and boundary conditions are 

used by the ARW which is expected to generate a better forecast. The files 

parame.in, namelist.obsproc and namelist.input are also configuration files. 

Another component (optional) is the assimilation system. As it was discussed in 

the previous sections, the assimilation system is not strictly necessary, 

however, when used it can improve significantly the weather forecast. 
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Figure 2.6 – Diagram showing how all the components, including the WRF model and 
WRFDA system, used in this study interact with each other. 

 

The diagram in Figure 2.6 presents the main components of the weather 

forecasting system used in this study, the complete description of all 
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components, including the mathematical formulation and the code of the whole 

weather forecasting system can be found in Skamarock et al. (2008). 

2.4 Lightning and its application in data assimilation 

In this section, we discuss the atmospheric processes responsible for the 

formation of lightning, its relationship with the meteorological variables and why 

the use of this information in assimilation methodologies can improve the model 

initialization. 

There are many theories that explain the electrical structure of the clouds and 

most of them are based on how the particles (ice crystal, graupel, water 

droplets…) interact with the surrounding environment to form the electric charge 

centers. The convective (GRENET, 1947; VONNEGUT, 1963), the inductive 

(ELSTER; GEITEL, 1913), the non-inductive (REYNOLDS, 1957) and the 

quasi-liquid (BAKER; DASH, 1989; DASH, 1989; FLETCHER, 1968) are the 

most common ones. 

The thunderstorm clouds, also known as Cumulonimbus, usually have great 

vertical development associated with intense vertical motion. The vertical 

motions push the humid air from the surface to higher altitudes condensing it as 

the air parcel reaches the Lift Condensation Level. If this process continues, the 

water vapor will eventually freeze forming ice particles. 

In the inductive process, it is considered that an external electric field is capable 

of to polarize the particles inside the cloud. The particles with larger size 

(graupel) fall while the small particles (ice crystals) are pushed to the top of the 

cloud by the vertical wind, during this process the top of the small particles 

(negatively charged due to the polarization by the electrical field) collides with 

the bottom of the falling particles (positively charged) as it is shown by Figure 

2.7. The collision process between the particles of different sizes creates a 

positive charge center in the top of the cloud and a negative charge center in 

the bottom (Figure 2.8). 

When the electric potential difference is high enough, an arc discharge may 

occur between clouds or inside of the same cloud (IC) or even between a cloud 

and the ground (CG).  
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However, the non-inductive process seems to be the most viable explanation 

for the observed electric structure of a storm cloud and it is generally thought to 

be the best way to explain the rapid electrification of thunderstorms. Unlike the 

inductive process, the non-inductive does not consider the existing of an 

electrical field (COORAY, 2003; WILLIAMS, 1988). 

Basically, the graupel collides with ice crystals, in the presence of supercooled 

water droplets, and if the environment temperature is above −15℃, the small 

particles (ice crystals) become negatively charged while the graupel particles 

become positively charged. In colder temperatures, the electrification process is 

the opposite (Figure 2.9). 

Figure 2.7 – Illustration showing the interaction between ice crystal and graupel (hail), 
and how these particles interact with each other under the influence of 
an external electric field. 

  

This way, above the isotherm of −15℃ the heavier particles tend to accumulate 

in the bottom while the small particles are carried out to the top of the cloud. 

Below the isotherm of −15℃, the process is reversed creating a tripolar 

structure inside the cloud, with the top and the bottom positively charged and 
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the middle negatively charged. Figure 2.10 shows this tripolar structure for 

different regions and in different periods of the year. 

Figure 2.8 – Illustration of the electric charge centers according to the inductive 
process. 

 

The lightning is composed of multiple electrical discharges typically separated 

by tens of milliseconds and each of these individual discharges is called return 

stroke. Commonly, the return strokes are grouped into what we call as a flash. 

The flashes can be IC or CG, as already mentioned before.  

Moreover, the CG flash also can be classified as negative, when it is observed 

the transference of negative charges, or positive when the net electric charge 

transferred is positive. Also, they can be either descending, when the discharge 

leaves a cloud towards the ground or ascending when the discharge leaves the 

ground towards a cloud (Figure 2.11). 

The whole process of initiation, formation, and dissipation of the charge centers 

in thunderclouds resulting in the occurrence of lightning is a complex process 

and we will not discuss in this study. However, more details about this process 

can be found in Campos (2016), Cooray (2003), Naccarato (2006), Uman 

(2001) and Williams (1988). 
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Figure 2.9 – Illustration showing the interaction between ice crystals and graupel in 
different temperatures, and how the charges are transferred between 
these particles. 

 

Source:  Williams (1988). 
 

Based on what we discussed until now, it is clear now that lightning is related to 

the microphysics processes inside the thunderclouds and to atmospheric 

instability and thermodynamics. All these physical processes corroborate the 

fact that lightning data can provide different information about the atmosphere 

when compared to conventional data sources commonly used in meteorology. 

Moreover, the detection systems responsible for detecting lightning flashes also 

present several advantages. 

The BrasilDAT is the main lightning detection system in Brazil. This system 

operates in the range of Low and Very Low Frequencies (LF/VLF) using the 

Time-of-Arrival (TOA) algorithm to triangulate the position where the 

electromagnetic pulse was detected by the sensors (CUMMINS; MURPHY; 

TUEL, 2000). 
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Figure 2.10 – Illustration showing the charge centers and how the temperature affects 
their distribution inside the cloud. 

 

 

 

Source:  Krehbiel (1981). 
 

The location of the BrasilDAT sensors currently in operation can be seen in 

Figure 2.12. The study area, as well as the sensors inside it, can be seen in the 

next chapter in more details (Figure 3.2). 

This detection system is able to determine both the polarity (positive or 

negative) of the flash detected and if it is an IC or a CG. This system is also 

able to measure the electric current intensity produced by the flashes, this is 

made analyzing the signal and the amplitude of the first wave peak. More 

details about the operation of this system can be found in Naccarato and Pinto 

Junior (2012). 

The BrasilDAT network has an average detection efficiency of 85 to 90% for 

CG, while for IC this detection efficiency is between 50 to 60% (NACCARATO; 

PINTO JUNIOR, 2012). However, this can varies depending on the region and 

on the number of sensors (Figure 2.12 and 2.13). 
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Figure 2.11 – Illustration showing the different types of CG flashes. (a) Negative 
downward flash; (b) Positive downward flash; (c) Negative upward flash; 
and (d) Positive upward flash. 

 

Source:  Rakov and Uman (2003). 
 
The differences in the detection efficiency of IC and CG are mainly due to the 

electric current and the direction of propagation associated with each them. IC 

flashes tend to have a smaller electric current when compared to CG flashes 

since the resistance necessary for the occurrence of one discharge inside the 

cloud is smaller than between a cloud and the ground. Also, part of the IC 

flashes occurs horizontally while the sensors are capable of detecting only the 

vertical component of the electric field. 

The IC and CG flashes are associated with different processes inside the 

clouds, for example, IC flashes are correlated to updraft strength within deep 

continental storms (FIERRO et al., 2012; MACGORMAN; RUST, 1998; 

SCHULTZ; PETERSEN; CAREY, 2011) while the CG flashes are more 

correlated to downdraft strength and rain (CAREY; RUTLEDGE, 1996). 

The spatial distribution of flash, as well as the area selected for this study, 

located in southeastern Brazil (South America), is presented in Figure 2.14. It is 

possible to notice that the study region has a relatively high incidence of 
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lightning which makes it a good region to evaluate the impact of lightning data in 

the WRF model. 

Figure 2.12 – Spatial distribution of the BrasilDAT sensors. Currently, the network 
operates with 60 sensors in 13 different states. 

 

 
In more detail, Figure 2.15 shows the spatial distribution of CG flashes in Brazil. 

Note that the incidence of flashes is higher in the west portion of the study area, 

especially in the southwest. These characteristics are due to a wide range of 

meteorological systems that affect the region interacting with different terrain 

features. 
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Figure 2.13 – Lightning detection efficiency map for BrasilDAT in 2005. 
 

 

Source:  Naccarato and Bourscheidt (2011). 
 

Figure 2.14 – Global flash density (𝑓𝑙𝑎𝑠ℎ/𝑘𝑚2/𝑦𝑟) detected by the Lightning Imaging 
Sensor (LIS) from space-based optical sensors between 1995 and 2003. 
The black square over South America indicates the study area used in 
this work. 

 

Source: Adapted from NASA (2019). 
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Figure 2.15 – Spatial distribution of CG flashes during the period of 1998 to 2010. The 
black square indicates the study area. 

 

Source: Adapted from Naccarato et al. (2011). 

2.5 Lightning research review 

This section presents some of the main studies developed in the lightning data 

assimilation field showing the impact that this procedure has in the weather 

forecasts and how the different techniques use this information in order to 

obtain better results. The following works support the research developed in this 

present study showing that, in fact, the use of lightning data can improve the 

model simulations, especially when nudging techniques are used. 

Alexander et al. (1999) developed one of the first studies aiming to assimilate 

total lightning data, i.e., without separating IC and CG flashes, into a 

meteorological model in order to improve the initial conditions. 

In this study was used different data sources (satellite and lightning) in order to 

elaborate more precisely the initial conditions for a proper application of the 

assimilation procedure. Data from infrared and microwaves sensors with 3 and 

12 hours of time resolution, respectively, and from continuous observation of 

lightning were used. 

As mentioned before, each type of data source has its own limitations. For 

instance, the infrared sensors present a higher temporal resolution than 
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microwave sensors but they are affected by cirrus clouds. In the case of 

lightning data, there is a high temporal resolution and there is a good correlation 

with precipitation rates, although this relationship depends on the region 

(MACGORMAN; RUST, 1998). 

This way, Alexander et al. (1999) proceeded with simulations using the 

Mesoscale Model (MM5) over North America and assimilating latent heat 

derived from precipitation rate estimates obtained from a variety of 

combinations between different data sources (cited above) in order to analyze 

the occurrence of an extratropical cyclone in the Mexican Gulf region. It was 

observed that the combination of all data sources (infrared, microwave and 

lightning) was able to reproduce better the precipitation rates and, 

consequently, the experiment that assimilated these data was able to represent 

more precisely the extratropical cyclone in the study region. 

The impact of the different experiments with data assimilation proceeded in that 

study can be observed in Figure 2.16 where the precipitation rates observed 

and simulated are shown. 

In a similar case, Chang et al. (2001) also analyzed a cyclogenesis that 

occurred in the Mexican Gulf, far away from the meteorological radars 

coverage, from the lightning detection network and from the conventional 

observation systems. Instead Alexander et al. (1999), this study had data from a 

long-range lightning detection system (Spheris Timing and Ranging Network 1 – 

STARNET-1) and from LIS aboard of a satellite, both capable of to monitor 

lightning activity and, consequently, the convective activity in the study region. 

Besides these data, this study used information about the sea surface 

temperature, additional microwave radiometer data, and data from the first 

meteorological radar aboard a satellite. Thus, the work developed by Chang et 

al. (2001) had a larger amount of data than the work developed by Alexander et 

al. (1999). 

Chang et al. (2001) proceeded with several experiments with the MM5 model 

applying an algorithm developed in that work and assimilating data from 
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different data sources. Figure 2.17 shows the results from some of the 

experiments performed in that study. 

Figure 2.16 – Precipitation rate at 0900 UTC on March 13th, 1993 obtained from the 
meteorological radar WSR-57 and from the simulations with the 
assimilation of microwave from the Special Sensor Microwave/Imager 
(SSM/I), microwave and infrared (SSM/I-IR) and microwave, infrared 
and lightning data (SSM/I-IR-Lightning). 

 

Source: Alexander et al. (1999). 
 

In a subjective analyze, it is possible to notice that the ASM experiment in which 

includes the assimilation of precipitation (variable derived from a combination of 

satellite and lightning data) obtained the most accurate results when compared 

with the observational data. Thus, it was shown that the continuous observation 

of lightning, through the use of satellite and long-range systems can be applied 

in the assimilation procedures to improve weather forecasting. 

The following studies have in common the modification of specific physical 

parameterizations where the information of lightning detection was incorporated 

in the model through a nudging function (HOKE; ANTHES, 1976; KISTLER, 

1974). 

Using an assimilation technique similar to what was developed by Rogers et al. 

(2000) to assimilate radar data, Mansell et al. (2007) modified the Kain-Fritsch 

convective parameterization scheme (KAIN; FRITSCH, 1993) to allow lightning 
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data to control the activation of this scheme inside the Coupled Ocean-

Atmosphere Mesoscale Prediction System (COAMPS). This study verified that 

lightning assimilation was well succeeded in the representation of cold pools 

(isolated cores with lower temperature when compared to the surrounding 

environment). These cold pools were presented on the surface during the 

model initialization. Besides that, it was concluded that the forecast was 

significantly improved when compared with the control experiment, especially in 

the first hours of simulation. 

Figure 2.17 – Spatial distribution of precipitation rate at 0300 UTC on February 3rd, 
1998 for (a) NWS radar observation and forecasts for the following 
experiments: control (CTL – b); with precipitation assimilation, integrated 
water vapor in the atmosphere and sea surface temperature (ASM – c); 
the same of (c) but without the assimilation of water vapor (NOIWV – d); 
the same of (c) but without the assimilation of precipitation (NORAIN – 
e); and the same of (c) but without the assimilation of sea surface 
temperature (NOSST – f). 

 

Source: Chang et al. (2001). 
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Qie et al. (2014) performed simulations with the WRF model with the domain 

located in north China in order to simulate a Mesoscale Convective System. 

The study applied lightning data assimilation through a method that uses a 

nudging function similar to what was developed by Fierro et al. (2012), in which 

the values of the microphysics scheme are adjusted in the mixed-phase region 

of the cloud. Figure 2.18 shows the differences between the simulations and 

what was observed. 

Figure 2.18 – Observed precipitation accumulated in six hours and predicted starting at 
2000 UTC on June 13th, 2010: Experiment without lightning data 
assimilation (a) and with assimilation (b). The black contours represent 
the data from the surface stations and the shaded area indicates the 
simulated precipitation. 

 

Source: Qie et al. (2014). 
 

Note that there is a clear improvement in the experiment with the assimilation of 

lightning data when compared to the experiment without assimilation in both 

location and module of the accumulated precipitation in that period. Also, the 

study concluded that the results have shown improvements in the 

representation of the regions with convection, mainly in the areas with a high 

incidence of lightning. 

In the case of Fierro et al. (2014), the focus of the work was to compare two 

different assimilation methodologies that aims to improve the representation of 
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the convection during the analysis time and in the short-term forecast (6h) for a 

Mesoscale Convective System and for a derecho event (which is equivalent to a 

squall line). The first assimilation methodology was elaborated by Fierro et al. 

(2012), while the second is the same used in the 3DVAR in the Advanced 

Regional Prediction System (GAO et al., 2013). Then, a nudging assimilation 

technique (lightning assimilation) and a 3DVAR (with radar assimilation) were 

applied. As expected, it was observed that the 3DVAR assimilation technique 

had a better performance in the representation during the analysis time. 

However, using the nudging technique, it was observed better results in the 

short-term forecast. These features can be observed analyzing Figure 2.19, 

which shows the observed and simulated reflectivity field. 

Meanwhile, Dixon et al. (2016), using lightning data from the World Wide 

Lightning Location Network (WWLLN) and a lightning data assimilation 

technique based on moisture nudging, simulated two different cases in the 

Midwest and eastern of the United States using high resolution (3km) 

deterministic and ensemble forecasts. The work concluded that, for the 

deterministic simulations, the nudging technique increased the integrated water 

vapor and Convective Available Potential Energy (CAPE) improving the forecast 

while the control experiments failed to reproduce the initiation and organization 

of the convective system. In the ensemble experiments, the use of lightning also 

improved the representation of the convection improving the forecasts in 

general, although, the impact was smaller when compared to the deterministic 

experiments. 

More recently, combining the equations developed by Qie et al. (2014) and 

Fierro et al. (2012), Chen et al. (2019) developed a lightning data assimilation 

scheme (C18) where the parameters of the set of equations were defined based 

on the Bulk Richardson Number (BRN). The BRN is related to the occurrence 

and evolution of the convective systems (WEISMAN; KLEMP, 1982) and using 

that it is possible to correct the coefficients of the equations according to the 

level of instability of the atmosphere. 
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Figure 2.19 – Reflectivity field (dBZ) in 4km predicted and observed on June 29th, 
2012. (a) reflectivity observed from National Mosaic and Multi-sensor 
QPE interpolated to the WRF model grid; (d) – (f) results from the CTRL 
experiment; (g) – (i) results from the LIGHT experiment; and (j) – (l) 
results from the ALL experiment. 

 
Source: Fierro et al. (2014). 

 

The assimilation scheme was implemented using the WRF model configured 

with two nested domains with 6 and 2km of horizontal resolution located in 

northeast China, in the region of Beijing, with the lightning data from Beijing 

Lightning Network (BLNET). The study applied a lightning data assimilation 

scheme aiming to improve the simulation of two squall line cases that produced 

heavy precipitation in the study area. Figure 2.20 shows the comparison 

between different experiments and the observation for 3 hours accumulated 

precipitation field for one of the squall line cases. 
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It is visible the difference between the control experiment and the experiment 

with lightning data assimilation. The performance of the assimilation 

experiments was far more superior than the control reducing the spin-up period, 

inducing convection at the beginning of the simulations and improving 

significantly the short-term weather forecasts. Similar results were observed in 

both cases analyzed. 

The algorithm developed by Chen et al. (2019) to assimilate lightning data 

proved to be better in representing the precipitation field than the other 

assimilation algorithms in the first hours of simulation (4 hours) and the study 

concluded that C18 seems to be more appropriate to simulate squall lines in the 

study area. 

Figure 2.20 – 3 hours accumulated precipitation field from 2100 to 2400 LST on July 
27th, 2015 (mm). (a) Observed; (b) Control experiment; (c) Fierro 
algorithm; (d) Qie algorithm; and (e) New algorithm implemented. 

 

Source: Chen et al. (2019). 
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Other studies that applied different variations of nudging techniques to 

assimilate lightning data in NWP models also presented promising results 

(FIERRO et al., 2015; LAGOUVARDOS et al., 2013; LYNN; KELMAN; 

ELLROD, 2015; PAPADOPOULOS; CHRONIS; ANAGNOSTOU, 2005; PESSI; 

BUSINGER, 2009; WANG et al., 2018). 

Besides the studies cited above, there are studies like the one developed by 

Stefanescu et al. (2012) where a different assimilation methodology was 

implemented to incorporate lightning data into the WRF model. 

In that study, lightning data was used from the Earth Networks Total Lightning 

Network (ENTLN) during the simulation of two severe weather events with the 

occurrence of tornadoes in Alabama state in the United States. The method 

developed was implemented using a non-linear observation operator in the 

WRF – 3DVAR based on the CAPE variable as a proxy field for lightning. One 

of the main conclusions of this study showed that this assimilation scheme 

using lightning data improved the short-term forecast of the temperature profile. 

Meanwhile, Stefanescu et al. (2013) proceeded with similar experiments and 

included one more that modified the WRF – 4DVAR observation operator. They 

also imposed certain conditions for the model to develop physical 

characteristics according with the observed flash rate. It was noticed that the 

application of that data assimilation method refined the precipitation statistics 

inside the assimilation window and for the period of 3 to 7 hours immediately 

after. 

Apodaca et al. (2014) implemented an observation operator for lightning flash 

rate into the Gridpoint Statistical Interpolation (GSI) system by following a hybrid 

variational-ensemble approach. This assimilation method uses an observation 

operator based on the vertical updraft regression. The operator uses the 

maximum vertical velocity variable, which is related to the standard model 

variables through the continuity equation and, at the same time, has a 

relationship with lightning occurrence (PRICE; RIND, 1992). Therefore, it is 

possible to use lightning flash rate to update the initial model state modifying 

directly the standard model variables through the observation operator. 
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Even though it was not observed significative differences in the CAPE values 

(possibly because there were no observations of lightning in the region with 

high atmospheric instability), it was observed that the assimilation improved the 

analysis and the short-term forecasting. 

Despite the development of many different techniques to assimilate lightning, 

especially in the last years, it seems that most of the advances in this research 

field are coming from the nudging methodologies. Even though nudging 

equations are not exactly based on physics, since additional terms are inserted 

in the equations in order to correct the imprecision of the physical equations 

used in the models, due to the results obtained in many studies most of the 

scientific community is focusing on the development of better nudging 

methodologies or on the improvement of the representation of lightning using 

proxy fields. The relationships between lightning and proxy fields are a 

challenge especially when those proxies are based on graupel and water vapor 

(FIERRO; MANSELL, 2018). 

Although most of the studies applying nudging techniques have shown good 

results in the improvement of the convection and other aspects, especially in 

the first hours of simulation reducing the spin-up period, there are still many 

issues that need to be solved in order to improve this assimilation methodology. 

For instance, forcing the model to develop convection due to the insertion of 

moisture or through the modification of another proxy field may help the model 

to develop convection, however, in some cases, the convection persists way too 

long unrealistically delaying the dissipation of the system or inducing the 

formation of spurious convection. 

So, a proper assimilation technique has to induce the formation of convection 

just enough in the first hours in order to reduce the spin-up period and avoid the 

excess of atmospheric instability that could lead the convection systems to 

persist in the late hours of simulation. 

The main studies in the Lightning Data Assimilation research field are 

summarized in Table 2.1. 
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Table 2.1 – Characteristics of the main studies in the Lightning Data Assimilation 

research field. 

ID Year Study Area Data Source Model 
Assimilation 

Technique 

1 1999 Mexican Gulf NLDN MM5 
Nudging (precipitation 

rate) 

2 2001 Mexican Gulf STARNET-1; LIS MM5 
Nudging (precipitation 

rate) 

3 2005 

European 

continent and 

north Africa 

ZEUS SKIRON/Eta Nudging (humidity) 

4 2007 Midwest USA NLDN; LMA COAMPS 
Nudging (convective 

scheme) 

5 2009 
North Pacific 

Ocean 
LIS; OTD MM5 

Nudging (convective 

scheme) 

6 2012 Midwest USA ENTLN WRF 
Nudging (microphysics 

scheme) 

7 2012 Alabama WWLLN WRF 
Observation operator 

(CAPE) 

8 2013 Southern France LINET MM5 
Nudging (convective 

scheme) 

9 2013 USA ENTLN WRF 
Observation operator 

(CAPE) 

10 2014 North China SAFIR WRF 
Nudging (microphysics 

scheme) 

11 2014 Northeast USA ENTLN WRF 
Nudging (microphysics 

scheme) 

12 2014 East USA WWLLN WRF 
Observation operator 

(𝜔𝑚𝑎𝑥) 

13 2015 USA ENTLN WRF Nudging (humidity) 

14 2015 East USA ENTLN; USPLN WRF Nudging (humidity) 

15 2016 
Midwest and 

eastern of USA 
WWLLN WRF Nudging (humidity) 

16 2018 East China SAFIR WRF Nudging (humidity) 

17 2019 Northern China BLNET WRF 
Nudging (microphysics 

scheme) 
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The correspondent study associated with the ID of Tab. 2.1 can be seen below: 

[1] Alexander et al. (1999); [2] Chang et al. (2001); [3] Papadopoulos, Chronis 

and Anagnostou (2005); [4] Mansell et al. (2007); [5] Pessi and Businger 

(2009); [6] Fierro et al. (2012); [7] Stefanescu et al. (2012); [8] Lagouvardos et 

al. (2013); [9] Stefanescu et al. (2013); [10] Qie et al. (2014); [11] Fierro et al. 

(2014); [12] Apodaca et al. (2014); [13] Fierro et al. (2015); [14] Lynn, Kelman 

and Ellrod (2015); [15] Dixon et al. (2016); [16] Wang et al. (2018); [17] Chen et 

al. (2019). 
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3 METHODOLOGY 

In this present section the structure of the whole assimilation process is 

discussed including the algorithm developed for this study, the data used and 

their respective sources, the configuration of the model, the experiments and 

the evaluation methods, aiming to proceed with an objective analysis in order to 

define the advantages and disadvantages of the implementation of this 

technique operationally.  

3.1 Data and study area 

For a better evaluation and implementation of the assimilation process, many 

different data sources were used in this work. It was analyzed two different days 

where the occurrence of meteorological systems with a high incidence of 

lightning was verified. More details of the system and the experiments 

developed are shown in section 3.5. 

The area selected for this work was set in South America specifically over the 

southern portion of Brazil as it is shown by Figure 3.1. This area is well covered 

by many types of observation stations and at the same time it has favorable 

conditions for the occurrence of several meteorological systems which implies 

in the occurrence of many storms with a high incidence of lightning. 

The precipitation data used in this study to evaluate the simulations were 

obtained from about 600 meteorological surface stations (the number of stations 

depends on the hour analyzed) from the National Institute of Meteorology 

(INMET). The data has hourly resolution and the spatial distribution of those 

stations inside the simulation domain can be seen in Figure 3.2. 

The green square in Figure 3.2 shows the area considered in the evaluation 

methods (read more about it in section 3.6). This area was selected with the 

intention to avoid errors associated with the borders either because of 

instabilities in the simulation or because of the interpolation of observational 

data in regions with no data. 
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Figure 3.1 - Study area delimited by the yellow square used in the simulations with the 
WRF model. The domain has its center over Brazil covering a big portion 
of the southeast, south, and center-west of this country (the main cities 
are shown in red). 

 

Lightning data was the main data source used in this study. It was obtained 

from BrasilDAT provided by the Atmospheric Electricity Group of the National 

Institute for Space Research (ELAT/INPE). Lightning data was necessary to 

calculate the flash rate density that provided the necessary information to insert 

inside the assimilation algorithm responsible for correction the water vapor 

mixing ratio variable in order to obtain a better initial condition. It was also 

important to analyze and evaluate the behavior of some variables simulated by 

the WRF model. 

Satellite images from GOES-16 were considered in order to track the 

meteorological systems affecting the study area. It was possible to identify the 

type of meteorological system as well as the most affected regions. 



45 
 

Figure 3.2 - Spatial distribution of the observational data inside the domain. The green 
square shows the region where the evaluation methods were applied in 
order to define the impact of the assimilation process. 

 

Moreover, synoptic weather charts from the Center for Weather Forecasting 

and Climate Studies (CPTEC) of INPE were used for proper identification of the 

meteorological conditions associated with each meteorological system analyzed 

in this study. 

Finally, for the purpose of initialization of the regional model, it was also used 

data from the GFS (with 0.25° of spatial resolution) provided by the 

Computational and Information Systems Laboratory from University Corporation 

for Atmospheric Research (CISL/UCAR, 2017). 

3.2 Model configuration 

This study used the WRF-ARW model version 3.9.1.1 which was released on 

August 28th, 2017 (MMM/UCAR, 2018). The main parameterizations set for the 

simulations were: Yonsei University Scheme for Planetary Boundary Layer 

(HONG; NOH; DUDHIA, 2006), Thompson Scheme for Microphysics 

(THOMPSON et al., 2008), Unified Noah Land Surface Model for Land Surface 
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(TEWARI et al., 2004) and RRTMG for Shortwave and Longwave schemes 

(IACONO et al., 2008). Also, the Cumulus parameterization was deactivated 

which allowed the model to solve the convection explicitly. 

The simulations were configured with only one domain with a total of 149x189 

grid points located between the latitudes -29.1184°S and -17.1805°S and 

between the longitudes -57.5814°W and -41.0482°W. The longitudinal distance 

between the grid points varies between -0.087° and -0.088° and between -

0.077° and -0.084° latitudinally which gives a horizontal resolution of 

approximately 9km (Figure 3.3 shows the domain in more details). Vertically, 50 

vertical levels with the top in 50hPa and an adaptive timestep were used.  

This domain was selected considering the spatial distribution of the BrasilDAT 

sensors and meteorological observation stations (Figure 3.2) as well as the 

meteorological systems that commonly affect this region. The region selected is 

dynamically active the whole year showing a wide variety of meteorological 

systems like Fronts, Mesoscale Convective Systems, Low-Level Jets, 

Convergence Moisture Zones, Cyclones, and other systems. All that gives us 

the opportunity to analyze different physical configurations of the atmosphere 

with good coverage of observational data. 

The 3DVAR methodology in the WRFDA system version 3.9.1 (released on 

August 17th, 2017) with a time window of 30 minutes (covering 15 minutes 

before and 15 minutes after the time analysis) was used to assimilate the 

relative humidity corrected by the flash rate density obtained through the 

interpolation of lightning observations. 

The Background Error Covariance Matrix (BE) employed during the assimilation 

process was a generic matrix (CV3) provided by the WRFDA which can be 

used for any regional application. This matrix is an important factor that can 

affect the assimilation process significantly, however, the use of different types 

of BE was not explored in this study. 

The CV3 was generated by NCEP using the National Meteorological Center 

(NMC) method (PARRISH; DERBER, 1992) as a difference of 48 and 24-hours 
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forecasts using the GFS model. This option uses the vertical recursive filter to 

model the vertical covariance. More details can be found in Wang et al. (2017). 

Figure 3.3 -The terrain elevation (m) in the simulation domain which was showed in 
Figure 3.1 delimited by the yellow square. 

 

3.3 Assimilation Algorithm 

The assimilation algorithm developed in this study to assimilate lightning data 

and correct the initial conditions of the model was based on the equation 

developed by Fierro et al. (2012) (Equation 3.1). The Equation 3.1 corrects the 

water vapor mixing ratio variable 𝑄𝑣 of the model based on the flash rate 

density 𝑋 calculated using lightning detections. The saturation mixing ratio 𝑄𝑠𝑎𝑡 

and the graupel mixing ratio 𝑄𝑔 are obtained from the initial conditions of the 

model. The coefficients 𝐴, 𝐵, 𝐶, 𝐷, and 𝛼 are constants and their values are 

defined as 0.81, 0.2, 0.01, 0.25 and 0.22, respectively. 

 

𝑄𝑣 = 𝐴𝑄𝑠𝑎𝑡 + 𝐵𝑄𝑠𝑎𝑡 tanh(𝐶𝑋) [1 − tanh(𝐷𝑄𝑔
𝛼)] (3.1) 
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The behavior of the function defined by Equation 3.1 for a given 𝑄𝑔 can be seen 

in Figure 3.4. 

Figure 3.4 – Plot showing the behavior of the function given by Equation 3.1 for 
different values of graupel mixing ratios. 

 

Source: Fierro et al. (2012) 
 

It was defined a 30 minutes time window to calculate the flash rate which 

means that all lightning detections were accumulated for 30 minutes around the 

time analysis (15 minutes before and after a central time). After that, 𝑄𝑠𝑎𝑡 is 

calculated using 𝑄𝑣 field from the initial conditions, 𝑄𝑔 is extracted also from the 

initial conditions and then using Equation 3.1 a new 𝑄𝑣 is calculated. 𝑄𝑣 is only 

calculated in the mixed-phase region (a region in the atmosphere between the 

0°C and -20°C isotherms where the convection and the electrification are more 

intense – MacGorman; Rust (1998)) and when the Relative Humidity (RH) is 

below 81% or 60% (see next section). 
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However, in the case of the study developed by Fierro et al. (2012), the 𝑄𝑣 field 

was corrected inside the model through the modification of a microphysics 

parameterization. In this present study, the methodology applied is similar to 

that applied by Wang et al. (2017) where the assimilation process was made 

using the WRFDA with the 3DVAR technique to assimilate a proxy field (RH) 

obtained from 𝑄𝑣 calculated with the Equation 3.1. Therefore, the flash rate 

density is used to correct the 𝑄𝑣 field which is reinserted in the model as an 

observation. A diagram of the code developed for this purpose can be seen in 

Figure 3.7. 

The intention was to generate “simulated observation stations” where, following 

the conditions described above, the variable RH is assimilated. These 

“simulated observation stations” are actually grid points of the domain to where 

lightning data was interpolated and the conditions to assimilate the RH were 

satisfied. Figure 3.5 shows the increment of 𝑄𝑣 (the difference between analysis 

and background) due to the assimilation of these simulated stations.  

Figure 3.5 – Example of the 𝑄𝑣 increment in 𝑔/𝑘𝑔 (the difference between analysis and 
background) induced by the application of the assimilation algorithm 
implemented in this present work. The white points represent the 
simulated observation stations (604) to where lightning data (Figure 3.6) 
was interpolated. 
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It is possible to notice that the assimilation algorithm always adds water vapor 

to the initial conditions of the atmosphere and the number of simulated 

observation stations is not proportional to the amount of water added to the 

atmosphere which is visible comparing Figures 3.5 and 3.6. The regions with 

many stations not necessarily are the regions with higher 𝑄𝑣 increment. In fact, 

if a specific region of the domain was previously dry and flashes are registered, 

the assimilation algorithm will induce a higher 𝑄𝑣 increment than the region that 

was previously saturated (Figure 3.5 and 3.6). 

 
Figure 3.6 – Flash rate density (∙ 102/𝑘𝑚²) calculated from lightning data detections 

and interpolated to the same grid used in the model (9km horizontal 
resolution). The period is the same presented in Figure 3.5. 

 

The Lightning Assimilation System (LAS) has as main code what was named as 

“lasmain.f90”. It is from there where all the modules and functions are called 

following a specific flow. The module “netcdf_io.f90” uses the NetCDF library 

(external code) and contains the subroutines “readnetcdfdata” and 

“readnetcdfdimension” which are responsible for reading the variables from the 

WRF NetCDF files and the dimensions of the grids, respectively. The module 

“writefiles.f90” contains subroutines responsible for initializing (“initfiles”) and 

writing files containing the flash rate density (“writinglightning”), 
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The “writefiles.f90” code is also responsible for writing the file containing the 

water vapor mixing ratio information, the details about the simulated observation 

stations (“writingdata”) and the final file containing the simulated observations in 

little_r format (“writinglrc”). 

Figure 3.7 - Structure of the code implemented in Fortran to convert lightning data into 
a little_r file which is assimilated by the WRFDA system. The functions 
and subroutines are shown in green while the core of the code is shown 
in yellow. An external library was also used (red). 

 

The reading of lightning data is made by the module “read_light.f90”  while the 

interpolation of it, in order to produce the flash rate density in the same 

resolution of the model, is made by the subroutine “lightning” inside the module 

“calc.f90”. The subroutines “wrf_qs”, “wrf_tk” and “wrf_rh” are used to calculate 

𝑄𝑣, the temperature, and RH, respectively.  

Besides that, the module “calc.f90” has three more subroutines: (1) the 

“spherical_distance” subroutine calculates the distance between two points on 

the surface of the Earth, this subroutine is used to calculate the distance of 
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each lightning detection to the grid points of the domain; (2) the “nudging” 

subroutine is where the correction in the 𝑄𝑣 variable is made using the Equation 

3.1 with the conditions previously discussed; and (3) the “linear_regression” 

subroutine is used to find the RH threshold (see section 3.4). 

The diagram in Figure 3.8 shows how the assimilation algorithm interacts with 

the structure of the WRF model (the WRF model diagram was previously shown 

in Figure 2.6). 

Figure 3.8 - Diagram showing how the normal flow of the model showed in Figure 2.6 
was adapted in order to proceed with the data assimilation process. In 
blue, it is shown what was added to the original structure and in green, 
the assimilation algorithm developed in this study and showed in Figure 
3.7. 

 

The observational data (lightning detections) are combined with the initial 

conditions generated by “REAL” inside the LAS code, 𝑄𝑣 is updated and then 

the simulated observation stations are generated and converted to the little_r 

file. Thus, the little_r file (which contains the simulated observations) is used in 

the WRFDA system in order to generate new initial and boundary conditions. 

3.4 Adaptative threshold 

One of the main contributions of this present research is associated with the 

ideal definition of the threshold for RH. While in the original algorithm developed 

by Fierro et al. (2012) and adapted by Wang et al. (2017) the RH threshold is 
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fixed in 81%, this research found out that it is more appropriate to use an 

adaptative threshold.  

During the development of the experiments it was noticed that the algorithm 

does not have a good performance during the dissipation period of the 

meteorological system, i.e., when the simulation is started during the period of 

dissipation of the convection activity and the system is still producing flashes, 

the insertion of lightning data at this point can force the model to intensify the 

convection when it actually should be getting weaker. However, we still need to 

force a rapid response from the model in order to decrease the spin-up period 

and represent properly the convection in the first hours of simulation. This way, 

there is a delicate balance between the amount of water vapor that needs to be 

inserted in the model and the life cycle of the system. 

The solution found for this problem was to use an adaptative RH threshold 

based on the concept of Lightning Jump. This variable gives the variation of 

flashes in a given time interval and it is commonly used to identify the 

occurrence of severe weather events (SCHULTZ et al., 2009; WILLIAMS et al., 

1999). 

In the case of this study, the number of flashes was calculated using 30 minutes 

intervals during 2 hours before the initial time of the simulation. Applying a linear 

regression model to these calculated values it is possible to find the angle 

formed by the line that minimizes the errors (Figure 3.9). 

When the angle 𝛼 is above 30°, the RH threshold is the same used in other 

studies, 81%. However, when the angle 𝛼 is below to that value the RH 

threshold is considered 60% (Equation 3.2). 

𝑓(𝛼) = {
0.81, 𝑖𝑓 𝛼 > 30°
0.60, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.2) 

 

Where 𝑅𝐻 =  𝑓(𝛼). The thresholds and angles were defined empirically during 

the testing phase of the experiments.  

With this new implementation, it is expected a better response from the model 

in the dissipating period of the system. 
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Figure 3.9 – Graphic showing the variation in time of the number of lightning detections 
per 30 minutes for a real case (blue line). The red line shows analysis 
time (18:00 19/05), the black dots represent the points considered to 
calculate the linear regression model, in green the line that fits best to 
those points and 𝛼 is the angle considered in the assimilation algorithm. 

 
3.5 Experiment design 

The study proceeded with three different experiments during the occurrence of 

two distinct meteorological events aiming to assess the assimilation algorithm 

implemented here. The experiments were basically divided in control (CTRL) 

where no assimilation procedures were used, in lightning data assimilation 

(LIGHT) where lightning data was assimilated and in lightning data assimilation 

with an adaptative RH threshold (ALIGHT).  

Moreover, the meteorological events selected for this study started at 00:00 

UTC on 23/01/2018 and at 00:00 UTC on 19/05/2018. These specific days were 

selected due to the meteorological conditions associated with them. The 

systems analyzed had important morphological differences with each of them 

associated with a different synoptic scenario in the atmosphere. This way, the 
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assimilation process was evaluated in different situations. The discussion about 

the meteorological scenario in each event is presented in the next chapter. 

All the experiments were composed by 8 short-term forecasts, i.e., for each 

simulation were performed 3 hours forecast, with an interval of 3 hours amongst 

each initialization totalizing 24 hours of simulation. 

Furthermore, the simulations were all Cold Started which is expected to avoid 

the emergence of numerical instabilities due to the insertion of mass in the 

assimilation process. Figure 3.10 shows schematically how it is structured one 

experiment. 

Figure 3.10 - Diagram showing the schematic structure of an experiment. 

 
The initial conditions can be directly used by WRF-ARW in order to produce a 3 

hours forecast (experiment CTRL) or it can be used in the assimilation process 

instead (Figure 3.8) which also produce a 3 hours forecast and define the 

experiment LIGHT or ALIGHT. 

The experiments started at 00:00 UTC of the current day analyzed and ended 

at 00:00 UTC of the next day which means that the last simulation started at 

21:00 UTC. As the number of lightning detections varies throughout the day, the 

initialization of the model in different times allows the assimilation process 

works with different quantities of lightning flashes which is useful when we want 

to assess the performance of this methodology. 

Besides that, for the experiment that showed the best results, a 24 hours 

forecast was performed in order to analyze more deeply the impact of the 

assimilation process in a larger range of time. 
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3.6 Evaluation methods 

This section shows some of the methods applied to evaluate the experiments 

performed in this study. The goal was to verify objectively/quantitively the 

impact of the lightning data assimilation process. 

3.6.1 Precipitation analysis 

One of the methods used to assess the experiments was the precipitation 

analysis. Firstly, it was necessary to use Barnes algorithm (BARNES, 1964) to 

interpolate the observational data in a grid with the same configuration as the 

one used by the model (see section 3.2). 

The Equation 3.3 defines the interpolation method where 𝑥𝑖
𝑛 is the variable 

(precipitation in this case) in the 𝑖-th grid point in the 𝑛-th iteration: 

 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 +
∑ 𝑤𝑖,𝑘

𝐾
𝑘=1 (𝑦𝑘 − 𝑥𝑖

𝑛)

∑ 𝑤𝑖,𝑘
𝐾
𝑘=1

 (3.3) 

 

Where ∀ 𝑖: 𝑥𝑖
0 = 0, 𝑦𝑘 is the 𝑘-th observation and 𝑤𝑖,𝑘 is the weight function for 

the 𝑘-th observation in the 𝑖-th grid point given by Equation 3.4: 

 

𝑤𝑖,𝑘 = 𝑒𝑥𝑝 [− (
𝑑𝑖,𝑘

𝑔𝑛
)

𝛼

] (3.4) 

 

𝑑𝑖,𝑘 is the distance in km between the 𝑘-th observation and the 𝑖-th grid point, 𝛼 

is a constant greater than 1 and 𝑔𝑛 is the falloff parameter in the 𝑛-th iteration 

which is given by Equation 3.5: 

 

𝑔𝑛+1 = 𝑐𝑔𝑛 (3.5) 
 

Where 0 < 𝑐 < 1. 
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The parameters were adjusted empirically through the comparison with 

observational data. Based on that, it was defined as a total of two iterations with 

𝛼 = 1.5, 𝑔0 = 80 and 𝑐 = 0.5. The distance between the observations and the 

grid points was calculated using spherical trigonometry. 

One example of this interpolation method can be seen in Figure 3.11 where it 

shows the data registered by the observation stations and the resulting 

precipitation field. 

Once the precipitation data is interpolated to the same grid used in the model it 

is possible to apply techniques to compare the observational data with the 

simulation. 

Figure 3.11 - Example of the application of Barnes Interpolation Algorithm for the 
precipitation filed (mm/h) using data provided by CPTEC/INPE. 

 

 

 
The methods used to evaluate the positioning of the precipitation and compare 

the different experiments with the observational data were Threat Scores (TS), 

False Alarm Ratio (FAR) and Probability of Detection (POD). The Equations 

3.6, 3.7 and 3.8 describe each one of these methods. 
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𝑇𝑆 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 (3.6) 

 

𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 (3.7) 

 

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 (3.8) 

 
 
 
Where ℎ𝑖𝑡𝑠, 𝑚𝑖𝑠𝑠𝑒𝑠, and 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 are defined by Tab. 3.1. The perfect 

score for 𝑇𝑆 and 𝑃𝑂𝐷 is 1.0, while for 𝐹𝐴𝑅 is 0.0. 

 
Table 3.1 – Contingency table. 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑⁄  𝑦𝑒𝑠 𝑛𝑜 

𝑦𝑒𝑠 ℎ𝑖𝑡𝑠 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 

𝑛𝑜 𝑚𝑖𝑠𝑠𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

The Tab. 3.1 basically defines some variables used to calculate the equations 

above. For example, when the model predicts precipitation in some region and 

it is also observed by the meteorological observation station this is called ℎ𝑖𝑡; 

When the model predicts precipitation in a region where the observations have 

shown no precipitation this is called 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚. A 𝑚𝑖𝑠𝑠 happens when the 

model was not able to predict the precipitation where it was observed.   

Sometimes it happens that the precipitation predicted by the model is not 

synchronized with the observation because the fields simulated by the model 

are delayed in relation to what was observed. However, it is considered right 

(ℎ𝑖𝑡) when the model predicts a certain amount of precipitation accumulated just 

a few km from where it was in fact observed. Based on that, it was defined 

some thresholds to calculate the set of equations defined above (Equations 3.6, 

3.7 and 3.8): 



59 
 

 

1. 30 km and 1mm; 

2. 20 km and 5mm; 

3. 20km and 10mm. 

For example, the first condition is satisfied if it is registered/simulated a volume 

of precipitation greater than 1mm over a radius of 30km around the grid point 

considered. So, if the model and the observation satisfy this condition, we have 

a ℎ𝑖𝑡. This procedure is applied for all grid points of the domain and all the ℎ𝑖𝑡𝑠, 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 and 𝑚𝑖𝑠𝑠𝑒𝑠  are counted and the equations mentioned above are 

calculated. 

Moreover, it was also applied a BIAS estimator aiming to determine the 

difference quantitively between the experiments and the observed precipitation. 

The BIAS is given by Equation 3.9. 

 

𝐵𝐼𝐴𝑆 =
1

𝑁
∑(𝑓𝑖 − 𝑜𝑖)

𝑁

𝑖

 (3.9) 

 

Where 𝑓
𝑖
 and 𝑜𝑖 are the forecast and the observation, respectively, in the 𝑖-th grid 

point. The techniques here described and others commonly used in meteorology 

to compare the forecasts with the observational data are presented in more 

details in Stanski et al. (1989). 

This present section showed the methods applied to all the short-term forecasts 

experiments. Based on the results, the evaluation methods were applied again 

with an additional evaluation method (described in the next section) on the 

experiment with the best performance in order to analyze other characteristics 

of the assimilation process. 
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3.6.2 Reflectivity analysis 

Another way to analyze and evaluate the experiments performed in this study 

was through the comparison of the reflectivity fields simulated by the model with 

lightning data using specific algorithms developed for this purpose. 

This advanced analysis was made only for a specific experiment with a larger 

range of simulation (24 hours) where a good performance of the model during 

the short-term experiments was observed considering previous evaluation 

methods discussed in section 3.6.1. 

One way to identify if the reflectivity field was well simulated is comparing what 

was called here as “center of mass”. Basically, it is expected that regions with 

higher values of reflectivity (3km of height) will contain clouds with a high 

concentration of ice and consequently a high amount of lightning flashes will be 

detected.  

Therefore, the center of mass of the reflectivity (which is the weighted average) 

will have similar behavior to the arithmetic center of lightning detections. 

The definition of center of mass is given by the Equations 3.10 and 3.11: 

 

𝑥𝑐 =
∑ 𝑤𝑖𝑥𝑖

𝑁
𝑖

∑ 𝑤𝑖
𝑁
𝑖

 (3.10) 

 

𝑦𝑐 =
∑ 𝑤𝑖𝑦𝑖

𝑁
𝑖

∑ 𝑤𝑖
𝑁
𝑖

 (3.11) 

 

Where 𝑥𝑐 and 𝑦𝑐 are the coordinates of the center of mass (longitude and 

latitude, respectively), 𝑤𝑖 is the weight given by the reflectivity in the 𝑖-th grid 

point and 𝑥𝑖 and 𝑦𝑖 are the coordinates in that grid point. 
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4 RESULTS AND DISCUSSION 

In this section, the results obtained in this research are presented and 

discussed. The impact of the Lightning Data Assimilation System on the WRF 

simulations is evaluated for two distinct days, each one with different 

meteorological characteristics. Even though only two days were analyzed, it is 

emphasized that eight short-term simulations for each day were performed, 

giving us a good sample of simulations for evaluating the methodology applied 

on this work.  

4.1 Case study I 

4.1.1 Observational analysis 

The first case analyzed occurred on May 19th, 2018 and presented the peak of 

lightning activity at 05:00 UTC. The inner domain registered the maximum 

activity between 09:00 and 12:00 UTC. The number of lightning detections and 

the distribution along the day inside the simulation domain can be seen in 

Figure 4.1. 

As discussed in chapter 2, lightning activity is intrinsically associated with the 

formation of storms which means that an increase in the lightning activity also 

indicates an increase in the atmospheric instability. This instability can be 

associated with different atmospheric mechanisms such as thermodynamics. 

The instability associated with thermodynamics usually is observed at the end 

of the day and it is due to the intense heating of the Earth’s surface by the Sun 

which in turn warms the lower layers of the atmosphere. The warm layers tend 

to ascend in the atmosphere dragging moisture to higher altitudes which 

condense creating clouds and eventually thunderstorms (BROWNING; 

LUDLAM, 1962; PETTY, 2008; WEISMAN; KLEMP, 1986). 

Moreover, this process can also occur mechanically, i.e., the layers of the 

atmosphere are forced to ascend due to a mechanical force like during the 

passage of a Cold Front. The colder and denser air slides under a warmer air 

mass ahead pushing the layers to the top of the troposphere inducing the 

formation of clouds and storms (BERGERON, 1937; REBOITA et al., 2010). At 
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night, especially in the beginning of the day when the temperature is minimum, 

the friction of the atmosphere is smaller which allows the Cold Front to move 

faster pushing more layers ahead and inducing more atmospheric instability 

which contributes even more for the formation of storms (BRUNDIDGE, 1965). 

Figure 4.1 – Number of Lightning Detections per 30 minutes in the inner and outer 
domains on 19/05/2018. The black dots over the blue line and the 
numbers associated with them indicate the number of lightning 
detections considered for the assimilation at that time analysis. 

  
 
Figure 4.1 shows a peak of detections in the first hours of the day, which 

indicates the formation of storms associated with the occurrence of a Cold 

Front. The second peak around 19:00 UTC is associated with the convection 

induced by the daytime heating in an atmosphere already unstable due to the 

Cold Front in the region. 

The Figures 4.2 and 4.3 show synoptic charts at 00:00 UTC on 19/05/2018 

confirming the occurrence of a Cold Front in the study area. The synoptic 

environment on this day contributed to a high incidence of lightning in the region 
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throughout all day making this specific day ideal to apply the assimilation 

technique in order to understand how the use of lightning data can affect the 

simulation. 

Figure 4.2 – Synoptic chart at 00:00 UTC on 19/05/2018 showing the synoptic 
environment on the surface in South America. 

  
 

Source: CPTEC (2019). 
 

The airflow in 250hPa shows a wave propagating eastward inducing cyclonic 

curvature in the subtropical jet over southern Brazil (Figure 4.3). Also known as 

Trough, this atmospheric system induces negative vorticity advection on its right 

side which means that there is a higher-pressure atmospheric system ahead 

with divergent atmospheric airflow. By the principle of mass conservation, 
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surface convergent airflow is required which generates a center of low 

atmospheric pressure (PETTY, 2008), as it can be seen near the southern 

coast of Brazil in Figure 4.2. 

Figure 4.3 – Synoptic chart at 00:00 UTC on 19/05/2018 showing the synoptic 
environment in 250hPa in South America. 

 
 

Source: CPTEC (2019). 
 

Due to the Coriolis force, a convergent airflow creates an enclosure low-

pressure system which rotates cyclonically (clockwise direction) moving air 

masses throughout the continent. On its left side, the low-pressure system 

pushes air masses from the south towards the north creating a Cold Front 

(transition zone where a cold air mass moves towards a warmer one) and, a 

Warm Front on the opposite side (BJERKNES, 1921). 
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The Figures 4.2 and 4.3 show a low-pressure system on the surface right below 

the right side of the Trough on high levels of the atmosphere which 

characterizes a barotropic atmosphere, the early stages of a system under 

development (BJERKNES, 1921). 

The Cold Front affected the entire simulation area reaching the peak of lightning 

activity in the inner domain (the region of São Paulo state) at 11:30 UTC as it 

can be seen in the spatial distribution of flashes in Figure 4.4. 

Figure 4.4 – Flash density for the peak of Lightning Detections inside the inner domain 
(Figure 4.1) for a time window of 30 minutes, from 11:15 to 11:45 UTC 
19/05/2018. 

 
 
The cooling of the continent after the summer provides the necessary 

environment for the advance of the South Atlantic Anticyclone, a high 

atmospheric pressure system typically observed on the surface of the South 

Atlantic during the whole year, towards to South America continent. 

This atmospheric configuration induces the formation of an alley with winds 

bringing large amounts of moisture from the Amazon rainforest to Paraguay 

region, northeast of Argentina and South of Brazil. These winds, also known as 

Low-Level Jets, play an important role in the formation and development of 

Convective Mesoscale Systems and Cold Fronts (BROWNING; PARDOE, 

1973; PAEGLE, 1998; SALIO; NICOLINI; ZIPSER, 2007). At the same time, a 
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colder continent facilitates the advance of the Cold Fronts further north until the 

point where it can reach the northeast of Brazil (CARDOZO et al., 2015). 

The displacement of the Cold Front, as well as the thunderstorms, can be seen 

in Figure 4.5. 

Figure 4.5 – Images from GOES-16 satellite of the channel 7 (3.90µ) showing the 
Cloud Top Temperature at 00:00, 09:00 and 18:00 UTC on 19/05/2018. 

 

Source: DSA/CPTEC (2019). 
 

The satellite images show the intensification of the thunderstorms in the first 

hours of the day which is compatible with the observations of lightning (Figure 

4.1). Even though the system starts to dissipate as a whole after 05:00 UTC, it 

is possible to see the intensification of small storms in the south border of São 

Paulo state, especially near the coastline. These small storms were the early 

stages of a squall line that produced a high incidence of lightning and a large 

volume of rainfall in São Paulo state (HOUZE JUNIOR, 1977). 

Based on this synoptic analysis, the assimilation technique was applied during 

the occurrence of a large-scale system (Cold Front) that also induced a squall 

line in the region of São Paulo state. This way, it is expected a more uniform 

displacement and spatial distribution of lightning detections. 

4.1.2 Impact of the assimilation algorithm 

The impact of the lightning data assimilation technique developed by Fierro et 

al. (2014) and adapted by Wang et al. (2017) used in this study as well as a 

version of it developed here are focused on the correction of the moisture 

content in the middle levels of the troposphere. Its impact and the differences 

between these two experiments can be seen in Figure 4.6. 
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Figure 4.6 – ALIGHT (left) and LIGHT (right) experiments showing 𝑄𝑣 increment in g/kg 
(Analysis minus CTRL) integrated vertically in the atmosphere at 09:00 
UTC on 19/05/2018. 

 
 
Note that the algorithm added more water vapor on the ocean near the 

coastline and on the northwest of São Paulo state with a small difference 

between both experiments. A high 𝑄𝑣 increment means that either it was 

observed a high number of lightning detections or the relative humidity in the 

region with lightning activity was previously low. 

The assimilation algorithm works adding water vapor to the atmosphere which 

increases the atmospheric instability. Lightning activity induces the algorithm to 

add water vapor in the locations where thunderstorms are observed. This 

procedure helps to improve the short-term weather forecasting by starting deep 

convection and forming the correspondent cold pools (FIERRO et al., 2012; 

MANSELL et al., 2007). 

Moreover, this smooth pattern in the 𝑄𝑣 increment field observed in Figure 4.6 is 

the result of the data assimilation system used to assimilate the simulated 

observation stations. Possibly, this pattern is observed due to recursive filters 

applied to the two-dimensional fields of control variables increments during the 

process to obtain the background error covariance matrix (BARKER; HUANG; 

GUO, 2003). 

In order to analyze the difference between both experiments as well as the 

amount of water vapor added in different areas of the simulation domain, the 
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total amount of water vapor added to the atmosphere in the whole domain for 

each simulation cycle was calculated (Figure 4.7). 

Figure 4.7 – 𝑄𝑣 increment for each simulation cycle performed on 19/05/2018. The 
chart shows the total amount of water vapor added by the assimilation 
algorithm in the inner and outer domains. 

 

As it was discussed in the methodology section, the correction in the relative 

humidity threshold is applied in the dissipating phase of the meteorological 

system. Therefore, differences between the experiments are not observed in all 

simulation cycles.  

It is possible to see that in some cycles the ALIGHT algorithm added more 

water vapor. Even though the ALIGHT experiment corrected fewer grid points 

than the LIGHT experiment, the amount of water vapor inserted is greater since 

the coefficients of the Equation 3.1 were not modified. 

Note that when we analyze the vertical profile of the simulations (Figure 4.8), 

the experiments with data assimilation presented a more unstable atmosphere 

after 1 hour of simulation. The amount of moisture in the lower levels of the 
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atmosphere (from the surface up to 600hPa) was increased while the wind 

speed and direction were affected on a smaller scale. 

The ALIGHT and LIGHT experiments also presented differences between each 

other with a significative increase in the atmospheric instability in the ALIGHT 

experiment. Especially, due to the higher values of relative humidity observed 

between 700 and 600 hPa. 

Figure 4.8 – Skew-T chart showing vertical profile of air temperature, dewpoint and 
wind at 10:00 UTC on 19/05/2018 (1-hour simulation) for the experiment 
CTRL(a), LIGHT(b) and ALIGHT(c) in the center of the domain. 

 

4.1.3 Model performance 

The analyses of the experiments performed on 19/05/2018 using lightning data 

to improve the initial conditions of the model showed significant improvements 
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in the first hours of simulation when compared to the CTRL experiments. In 

general, the LIGHT/ALIGHT experiments presented improvements in the 

representation of the rainfall as well as in the location of the system.  

The main improvements were observed when the observation stations 

registered a high intensity in the rainfall. It is known that the WRF model 

underestimates the volume of rain in most of the cases with extreme rainfall 

observed, especially in the first hours (MOYA-ÁLVAREZ et al., 2018). 

Therefore, the addition of moisture in the initial conditions using the Equation 

3.1 supported the development of instabilities as soon as the model started 

which decreased the spin-up time and returned a rapid response from the 

simulation. 

Since the spin-up time of the WRF model is about 6 to 12 hours many other 

studies have tried to decrease this period using different approaches in order to 

obtain a faster response and improve the first hours of simulation (CHEN, Fei et 

al., 2007; COSGROVE et al., 2003; SOKOL, 2009). The reduction in the spin-

up time means a significant reduction in the use of computation resources. 

Similar results were observed in other studies that used lightning data 

assimilation techniques to initialize the meteorological model. It was also 

observed a better representation of the meteorological fields in the first hours of 

simulation (CHEN, Zhixiong et al., 2019; FIERRO et al., 2012; WANG, Y. et al., 

2017). 

Analyzing the differences between the LIGHT and ALIGHT experiments it was 

possible to observe that the second had a small improvement over the first one 

especially in representing the precipitation field, even though the differences 

were only observed in periods where a decrease in the number of lightning 

detections was also observed. 

The Figure 4.9 presents the sum of the precipitation field accumulated in the 

whole simulation domain for the CTRL, LIGHT and ALIGHT experiments and for 

the precipitation field observed for each one of the simulation cycles. 
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Figure 4.9 – The sum of the accumulated precipitation in the inner domain on 
19/05/2018 for each simulation cycle and for each experiment 
performed. 

 

Note that the experiments with lightning data assimilation had better 

performances in the cycles where the amount of precipitation was higher 

(cycles iv and v), with the best performance observed in the ALIGHT 

experiment especially in cycle-iv. 

Even in the first cycles (i and ii) where the amount of precipitation was small the 

experiments with lightning data assimilation still had a better performance. 

However, in the last cycles (vii and viii) the LIGHT and ALIGHT experiments 

overestimated the amount of precipitation observed in the domain. 

This overestimation is possibly explained by the meteorological environment 

simulated and not specifically because of the number of lightning detections 

used to initialize the model. According to Figure 4.1, it was used in the 

assimilation process 1273 lightning detections in cycle-i and 2805 in cycle-ii. 

During these two cycles, the precipitation volume increased rapidly due to the 

approximation of the Cold Front and the experiments with assimilation had a 

good response to the insertion of lightning data. While the cycles vii and viii 
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(with the assimilation of 2027 and 294 lightning detections, respectively) were 

performed in an environment with the convection predominantly induced by 

thermal forcing which generated a small amount of rain even though it was still 

observed a high incidence of lightning (this phenomenon is explained in more 

details in the next case). 

The highest volumes of precipitation are usually observed in large scale 

systems such as Cold Fronts (OLIVEIRA JÚNIOR et al., 2014). Meanwhile, the 

analyses of lightning databases suggest that a large number of lightning can be 

detected in both, large scale and local convective systems in the summer of the 

Brazilian southeast since the last one tends to occur all over the study area in 

this period of the year. 

Fierro (2012) developed a lightning data assimilation algorithm analyzing 

dozens of meteorological events over the United States, i.e., the algorithm was 

developed for midlatitudes where large-scale systems are predominant. This 

way, it is expected that the Equation 3.1 presents better results when 

associated with large-scale systems instead of tropical regions where the 

synoptic environment is completely different, and the precipitation is frequently 

associated with local convection induced by the daytime heating. 

The BIAS for the 3 hours accumulated precipitation is presented in Figure 4.10. 

As mentioned above, the assimilation algorithm presents a better performance 

during the periods with higher amount of precipitation (cycles iii, iv, v and vi) 

while in the cycles last cycles (vii and viii) the CTRL experiment had a better 

performance. 

Note that in cycle-iv, the correction made in the data assimilation algorithm 

originally in this research (ALIGHT experiment) had the best performance when 

compared to the LIGHT and CTRL experiments. In general, the ALIGHT 

experiments obtained the best results in representing the volume of 

precipitation in the domain, followed by the LIGHT experiments (Figure 4.10). 

In fact, it is possible to see that the assimilation of lightning data improved the 

representation of the precipitation field in almost all the simulation cycles during 

the passage of the Cold Front. 
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Figure 4.10 – BIAS for the 3 hours accumulated precipitation calculated for each 
simulation cycle with the dashed line showing the correspondent 
average. 

 

The algorithm applied in the ALIGHT experiment added more water vapor in the 

cycles iv and v (Figure 4.7) than the LIGHT experiment accelerating, even 

more, the model response and inducing the development of more convection 

and precipitation in the first hours. 

In order to analyze spatially the impact of the data assimilation procedures, the 

accumulated precipitation is presented in Figure 4.11 for every hour of 

simulation in cycle-iv. The CTRL experiment was not able to reproduce the 

precipitation field properly, producing some precipitation only after 1 hour of 

simulation. The precipitation field is not aligned with the meteorological system 

that was moving faster than the model could reproduce. A fast-moving system 

like squall lines is hard to simulate, especially in the first hours. 
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Figure 4.11 – Accumulated precipitation in mm in the inner domain for the cycle-iv 
(09:00 UTC 19/05/2018). (a), (b) and (c) present the observed 
precipitation; (c), (d) and (f) present the CTRL experiment; (g), (h) and (i) 
the LIGHT experiment; (j), (k) and (l) the ALIGHT experiment. (a), (d), 
(g) and (j) present the accumulated precipitation at 10:00 (1 hour of 
simulation); (b), (e), (h) and (k) at 11:00 (2 hours); (c), (f), (i) and (l) at 
12:00 (3 hours). 

 

The LIGHT and ALIGHT experiments started to produce precipitation from the 

very first hour evolving to intense precipitation in the following hours. Even 

though these experiments showed the squall line moving slower than the 

observations indicated, the amount of rain simulated was more compatible with 

the observations than the CTRL experiment. 

Note that at 12:00 UTC (3 hours of simulation) the ALIGHT experiment was the 

only experiment capable of to reproduce cores with more intense rainfall (above 

11mm) closer to what was observed (Figure 4.11). 
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The difference between the precipitation field observed and simulated is shown 

in Figure 4.12. 

Figure 4.12 – Difference between the accumulated precipitation observed and 
simulated in mm in the inner domain for the cycle-iv (09:00 UTC 
19/05/2018). (a), (b) and (c) present the observation minus CTRL 
experiment; (c), (d) and (f) present the observation minus LIGHT; (g), (h) 
and (i); the observation minus ALIGHT. (a), (d), and (g) present the 
accumulated precipitation at 10:00 (1 hour of simulation); (b), (e) and (h) 
at 11:00 (2 hours); (c), (f) and (i) at 12:00 (3 hours). 

 

The desynchronization between the simulated fields and the observations is 

clear when Figure 4.12 is analyzed. The red color indicates that the observation 

registered more precipitation than what it was reproduced by the simulations 

while the blue color indicates that the precipitation was overestimated by the 

model. In all experiments in cycle-iv, the band of precipitation associated with 

the squall line was always ahead than what the model was capable of to 

produce.  

Ahasan and Debsarma (2015) analyzing a squall line that affected a region of 

India also applied assimilation techniques in the WRF model in order to 

reproduce more precisely this extreme event. They noticed that even for this 
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unusual meteorological system the WRF model was able to simulate the 

synoptic environment properly with an improvement in the experiments that 

used data assimilation procedures. However, they also noticed some spatial 

and temporal biases in the representation of the squall line. 

The same timing and positioning biases were also observed by SU et al. (2016) 

when they were simulating a squall line event that occurred in the east of China 

with the WRF model. According to them, the cold pools play an important role in 

the development and evolution of this type of system which makes the 

representation of them very important to simulate the squall line properly. The 

correct representation of these atmospheric features can improve the short-term 

forecasting by inducing deep convection (MANSELL; ZIEGLER; 

MACGORMAN, 2007). 

Fierro et al. (2012) also notice that the representation of these cold pools in the 

analysis time can improve the forecast, especially when the mesoscale 

environment is not well simulated by the model. 

Although, the results also presented the same timing and positioning errors 

observed in other studies, the use of lightning data in the assimilation process 

still brought positive results. The addition of water vapor in the time analysis 

induced deep convection in the first hours of simulation which is rarely 

reproduced by the model without any type of data assimilation process. 

In order to quantify the positioning improvement of the system caused by the 

use of the lightning data assimilation methodology, POD, FAR and TS were 

calculated for different precipitation thresholds (see section 3.6.1). This calculus 

was applied for all cycles as it is shown by Tab. 4.1. 

The first threshold (30km and 1mm) shows the capability of the model in 

reproducing precipitation. Note that in both experiments with lightning data 

assimilation (LIGHT and ALIGHT) the probability of detection was improved 

significantly while the false alarms increased by a smaller rate, improving the 

ratio POD/FAR. However, for the precise quantification of how much the use of 

lightning data improved the positioning of the precipitation, it is necessary the 
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analyses of more events since in multiple cases in the CTRL experiment was 

not possible to calculate FAR. 

Table 4.1 – Table showing POD, FAR and TS variables calculated based on the 3 
hours accumulated precipitation simulated in each cycle for all three 
experiments (CTRL, LIGHT and ALIGHT) with different thresholds 
(30km and 1mm, 20km and 5mm, and 20km and 10 mm). Null values 
mean that it was not possible to calculate since there was no 
precipitation. 

Experiment 
Simulation 

Cycle 

30km and 1mm 20km and 5mm 20km and 10mm 

POD FAR TS POD FAR TS POD FAR TS 

CTRL 

i 0.00 Null 0.00 0.00 Null 0.00 0.00 Null 0.00 

ii 0.00 Null 0.00 0.00 Null 0.00 0.00 Null 0.00 

iii 0.26 0.00 0.26 0.20 0.00 0.20 0.17 0.16 0.16 

iv 0.30 0.00 0.30 0.06 0.42 0.06 0.00 Null 0.00 

v 0.06 0.68 0.06 0.00 Null 0.00 0.00 Null 0.00 

vi 0.10 0.00 0.10 0.08 0.00 0.08 0.03 0.68 0.03 

vii 0.00 1.00 0.00 0.00 1.00 0.00 0.00 Null 0.00 

viii 0.17 0.94 0.04 Null Null Null Null Null Null 

Mean 0.11 0.44 0.09 0.05 0.36 0.05 0.02 0.42 0.02 

LIGHT 

i 0.49 0.89 0.10 0.22 0.91 0.07 0.00 1.00 0.00 

ii 0.49 0.60 0.28 0.14 0.70 0.11 0.00 1.00 0.00 

iii 0.64 0.38 0.46 0.37 0.10 0.36 0.18 0.22 0.17 

iv 0.57 0.22 0.49 0.45 0.26 0.39 0.06 0.79 0.05 

v 0.55 0.45 0.38 0.21 0.76 0.13 0.07 0.94 0.04 

vi 0.44 0.74 0.20 0.22 0.17 0.21 0.03 0.44 0.03 

vii 0.46 0.93 0.06 0.00 1.00 0.00 0.00 1.00 0.00 

viii 0.65 0.91 0.09 Null 1.00 0.00 Null 1.00 0.00 

Mean 0.54 0.64 0.26 0.23 0.61 0.16 0.05 0.80 0.04 

ALIGHT 

i 0.49 0.89 0.10 0.22 0.91 0.07 0.00 1.00 0.00 

ii 0.49 0.60 0.28 0.14 0.70 0.11 0.00 1.00 0.00 

iii 0.64 0.38 0.46 0.37 0.10 0.36 0.18 0.22 0.17 

iv 0.57 0.22 0.50 0.48 0.27 0.41 0.13 0.86 0.07 

v 0.56 0.45 0.38 0.20 0.78 0.12 0.01 0.99 0.01 

vi 0.44 0.75 0.19 0.22 0.16 0.21 0.03 0.72 0.03 

vii 0.46 0.93 0.06 0.00 1.00 0.00 0.00 1.00 0.00 

viii 0.65 0.91 0.09 Null 1.00 0.00 Null 1.00 0.00 

Mean 0.54 0.64 0.26 0.23 0.62 0.15 0.05 0.85 0.04 
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The pattern remained the same for other thresholds with the lightning data 

assimilation experiments improving the variables POD and TS while the 

variable FAR also increased by a smaller rate. It was not observed significant 

differences between experiments LIGHT and ALIGHT. 

In order to understand how the assimilation of lightning data affects a medium-

range forecast, a 24 hours forecast was performed. Based on the results 

obtained above, the cycle-iv was selected to proceed with this simulation, i.e., it 

was performed a 24 hours simulation starting at 09:00 UTC on 19/05/2018 and 

ending at 09:00 UTC on 20/05/2018. The precipitation rate for the simulation 

period can be seen in Figure 4.13. 

The precipitation rate simulated by the experiments LIGHT and ALIGHT 

showed better results in the first hours and even after this period the pattern 

observed in these experiments suggested that they kept reproducing the 

meteorological environment more accurately. The CTRL experiment seemed to 

have difficulties in following the precipitation rate observed with a delayed 

response, especially in the first half of the simulation. The correspondent BIAS 

of this 24 hours experiment can be seen in Figure 4.14. 

In fact, when the precipitation rate BIAS is analyzed, it is clear that the 

experiments with lightning data assimilation reproduced the amount of rain 

better than the CTRL experiment in the first hours. However, the better BIAS 

observed between 4 and 7 hours of simulation in the experiment CTRL might 

not represent a real improvement. As it was discussed above, this improvement 

might be only a delayed response from the initial conditions that crossed the 

observation line which caused the small BIAS observed (Figure 4.13 and 4.14). 

Fierro et al. (2015) also observed an improvement in the performance of the 

accumulated precipitation forecast in the first hours of simulation during high-

impact weather events after analyzing 67 cases. 

According to Wang et al. (2017), the algorithm developed by Fierro et al. (2012) 

is an efficient assimilation method for initializing convection where lightning data 

was registered. Nevertheless, it has limited to suppress spurious convection or 

modulate the convection. 
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Figure 4.13 – Precipitation rate simulated and observed from 09:00 UTC 19/05/2018 

 to 08:00 UTC 20/05/2018. 

 

In fact, the lightning data assimilation algorithm was responsible for generating 

spurious convection in the simulation which was one of the causes of errors in 

these experiments limiting the forecast range where the use of lightning data in 

the analyses time is beneficial. The spurious convection observed in the 

experiments could have been caused by instabilities created by the insertion of 

mass in the analyses time. The addition of mass in the simulations can 

contribute to the initial mass/wind imbalances and subsequent generation of 

inertia-gravity waves during the integration of the model equations (PECKHAM 

et al., 2016). One way to reduce these imbalances is by using digital filters 

(HARTER, 1999; LYNCH; XIANG-YU, 1992). 

Despite the generation of spurious convection, the experiments with lightning 

data assimilation had a better performance when we consider a short-term 

forecast with the ALIGHT experiment having the best results. 

The experiments with data assimilation were also able to reproduce the 

precipitation location more accurately than the experiment CTRL. Figure 4.14 
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shows that POD and TS were improved in the first 4 hours of simulation while 

FAR remained smaller than CTRL experiment for the detection threshold (30km 

and 1mm). It was not observed significant differences between the experiments 

LIGHT and ALIGHT. 

Figure 4.14 – BIAS calculated for the precipitation rate presented in Figure 4.13. 

 

Wang et al. (2017) also observed better results for the accumulated 

precipitation in the first 6 hours of simulation for the experiment with lightning 

data assimilation using the detection threshold for the Frequency Skill Score. 

This means that the experiment using lightning data was capable to detect 

better regions with precipitation. 

Note that all the 24 hours experiments (CTRL, LIGHT, and ALIGHT) tend to 

converge to the same result after about 17 hours of simulation which can 

indicate that the lightning data assimilation process has a small impact in 

medium and long-range forecasts. 
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Figure 4.15 – POD, TS and FAR for the precipitation rate presented in Figure 4.13 
using the first threshold (30km and 1mm). 

 

The use of data assimilation cycles at the beginning of the simulation (Dynamic 

Initialization/Warm Start) to initialize the model could be an option to improve 

the medium-range forecasting. However, precautions are needed since the 

Dynamic Initialization by nudging is capable of to create unbalanced fields in the 

initial conditions which can cause not only errors in the simulations but also 

numerical instabilities (HOKE; ANTHES, 1976). 

Comparing the geometric center of lightning detections with the center of mass 

of the Reflectivity field in 3km of height simulated by the experiments with the 

WRF model, it is possible to track the displacement of the simulated storms and 

analyze if the observations were in agreement with what was simulated (Figure 

4.16). 
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Figure 4.16 – Representation of the location of the center of mass calculated based on 
the Reflectivity field in 3 km simulated by the experiments and of the 
geometric center based on lightning detections for the period between 
09:00 UTC 19/05/2018 and 09:00 UTC 20/05/2018. The direction of 
movement is from light to dark colors. 

 

Figure 4.16 shows the center of mass of the Reflectivity field simulated by the 

experiments as well as the geometric center of lightning detections moving 

northeastward. The analyses of the location error associated with the difference 

between the simulations and the observations show that the experiments with 

data assimilation had better performances. 

Even though the precipitation rate was improved only in the first 4 hours of 

simulation, the capability of the experiments with lightning data assimilation in 

representing the location and displacement of the meteorological system that 

affected the study area remained better than the CTRL experiment up to 10 

hours of simulation with no significative difference between the experiments 

after that (Figure 4.17).  
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Figure 4.17 – Location error of the center of mass in relation to the geometric center 
based on lightning observations for each experiment between 09:00 
UTC 19/05/2018 and 09:00 UTC 20/05/2018. 

 

Based on the analyses of the case occurred on 19/05/2018 presented in this 

section, the implementation of the lightning data assimilation system improved 

the representation of the precipitation fields as well as the location of the 

meteorological system, especially in the first hours of simulation (short-term 

forecast). Additionally, it is also possible to conclude that the algorithm 

developed in this research (an adaptation of the original algorithm developed by 

Fierro et al. (2012)) applied in this case showed the best results in general 

when compared to other experiments. 

4.2 Case study II 

4.2.1 Observational analysis 

The second case analyzed occurred on January 24th, 2018 and it was 

associated with a complete different atmospheric environment. In this case, the 

convective activity was predominantly produced by thermal forcing which 

generated many local convective systems not directly related to the large-scale 
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environment. Even though the meteorological systems were caused by the local 

physics the quantity and the intensity of these individuals systems produced a 

higher incidence of lightning in the study area when compared to the previous 

case (Figure 4.18). 

Figure 4.18 – Number of Lightning Detections per 30 minutes in the inner and outer 
domains on 24/01/2018. The black dots over the blue line and the 
numbers associated with them indicate the number of lightning 
detections considered for the assimilation at that time analysis. 

 
 
Since the thunderstorms were triggered by the intense daytime heating the 

peak of lightning detections was observed at 21:00 UTC (at 19:00 UTC in the 

inner domain) which is expected for storms modulated by this type of physics. 

Note that the green and blue lines in Figure 4.18 follow the same behavior 

meaning that all the storms in the region were triggered by the same 

mechanism. In the previous case, the Cold Front, moving from South to North, 

started to produce lightning in the outer domain first until it reaches the inner 

domain (Figure 4.1). 
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Analyzing the synoptic charts, it is also possible to notice that the configuration 

of the atmosphere is different from what was observed before (Figure 4.19 and 

4.20). 

At the 250hPa level, it is possible to see the Bolivian High displaced from its 

climatological position affecting part of the central and northern of the continent 

(Figure 4.20). The Bolivian High is a high-pressure atmospheric system that 

occurs at high levels of the atmosphere and its origin can be explained by 

different factors (DIAS; SCHUBERT; DEMARIA, 1983). The Andes mountains 

and the altitude of the Bolivian Altiplano has an important role in this process 

forcing the air coming from the east to ascend creating a divergent airflow and, 

consequently, a high-pressure system at higher levels of the atmosphere. Also, 

the intense convection in the Amazon rainforest releases large amounts of heat 

(latent heat) at lower levels of the atmosphere contributing to the high-pressure 

system at higher levels. Due to the atmospheric flow, eventually, the Bolivian 

High can be displaced from its typical position, as it is observed on this specific 

day. 

Another import large-scale system to be noticed is the Upper Tropospheric 

Cyclonic Vortex (UTCV) over the Northeast of Brazil (FERREIRA; MELLO, 

2005; KOUSKY; GAN, 1981). The Bolivian High is one of the factors that 

contribute to the formation of UTCV. This high-pressure system over Bolivia 

curves the atmospheric flow counterclockwise and by the conservation of 

absolute vorticity it generates a clockwise atmospheric flow ahead 

(SILBERMAN, 1954). The UTCV is a low-pressure system and it usually 

generates rainfall at the southwest of its center (due to the convergent airflow 

bringing moisture from the ocean). 

This configuration works as an atmospheric blocking preventing the Cold Fronts 

coming from the south to reach the Brazilian southeast and facilitating the 

convection associated with atmospheric thermodynamics in the region 

(NASCIMENTO, 1998; REBOITA et al., 2010). 
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Figure 4.19 – Synoptic chart at 00:00 UTC on 24/01/2018 showing the synoptic 
environment on the surface in South America. 

 
 

Source: CPTEC (2019). 
 

The spatial distribution of flash density at its maximum activity in the inner 

domain can be seen in Figure 4.22. Note that there many individual storms 

generating lightning uniformly in the whole domain which is commonly observed 

when the daytime heating is the main factor generating atmospheric instability 

and storms. 
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Figure 4.20 – Synoptic chart at 00:00 UTC on 24/01/2018 showing the synoptic 
environment in 250hPa in South America. 

 
 

Source: CPTEC (2019). 
 

The satellite images in Figure 4.22 show the convection affecting the entire 

domain but with more intensity on the Rio Grande do Sul and Santa Catarina 

states. In Figure 4.22a the meteorological system is in its dissipation phase 

since it was formed by the daytime heating of the previous day. In Figure 4.22c 

the energy of the daytime heating started to produce clouds and storms once 

again. 

Comparing with the previous case analyzed, it is obvious the difference 

between both. The convection activity, in this case, was predominantly induced 

by the local thermodynamics due to the intense daytime heating of the surface 

generating a higher number of lightning detections where most of it was 
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observed at the end of the day. Therefore, it is expected that the system 

presents a relative stationary behavior with more local and concentrated rainfall. 

Figure 4.21 - Flash density for the peak of Lightning Detections inside the inner domain 
(Figure 4.18) for a time window of 30 minutes, from 18:45 to 19:15 UTC 
24/01/2018. 

 
 
Figure 4.22 – Images from GOES-16 satellite of the channel 7 (3.90µ) showing the 

Cloud Top Temperature at 00:00, 09:00 and 18:00 UTC on 24/01/2018. 

 
Source: DSA/CPTEC (2019). 

 

By analyzing many short-term forecasts throughout the day in two different 

cases with synoptic environments completely distinct from each other it was 

expected to obtain a definitive conclusion about the use of lightning data in the 

WRF model. 
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4.2.2 Assimilation algorithm impact 

The impact of the lightning data assimilation algorithm on the experiment 

performed for 24/01/2018 can be seen in Figure 4.23 which shows the 𝑄𝑣 

increment at 19:00 UTC. 

Figure 4.23 – LIGHT (left) and ALIGHT (right) experiments showing 𝑄𝑣 increment in 
g/kg (Analysis minus CTRL) integrated vertically in the atmosphere at 
03:00 UTC on 24/01/2018. 

 

During the lightning activity periods (Figure 4.17), the assimilation algorithm, as 

expected, added more water vapor to the initial conditions when compared with 

the previous case analyzed.  

In the first case, for the cycle-iv (09:00 UTC 19/05/2018), the number of 

lightning detections considered by the assimilation algorithm was 3265 (Figure 

4.1) which caused the algorithm to insert an additional of about 70g of water 

vapor in the domain (Figure 4.7). Meanwhile, in the cycle-vi of the second case 

(18:00 UTC 24/01/2018), it was considered 11975 lightning detections (Figure 

4.18) which added about 100g of water vapor (Figure 4.24). 

Note that the amount of water vapor added also depends on factors other than 

the number of lightning detections. The previous state of the atmosphere as 

well as how lightning detections are grouped (which change the number of 

simulated observation stations and the values of flash density in each grid point) 

can also affect the water vapor increment. This is visible in the first cycle of this 

case where 5368 lightning detections caused a 𝑄𝑣 increment of about 160g, 



90 
 

possibly because the initial conditions before the use of the lightning data 

assimilation system was previously dry. 

Figure 4.24 – 𝑄𝑣 increment for each simulation cycle performed on 24/01/2018. The 
chart shows the total amount of water vapor added by the assimilation 
algorithm in the inner and outer domains. 

 

This additional water vapor added increased the atmospheric instability inducing 

convection motions and consequently more precipitation in the first hours of 

simulation (Figure 4.26). 

In this case the vertical profile simulated by the model presented different 

physical characteristics (Figure 4.25). Even though the atmospheric instability 

was again increased, CAPE was drastically reduced after the assimilation 

process inducing the formation of isolated thunderstorm clouds. 

It was not observed any significative difference between the LIGHT and 

ALIGHT experiment. 
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Figure 4.25 – Skew-T chart showing vertical profile of air temperature, dewpoint and 
wind at 04:00 UTC on 24/01/2018 (1-hour simulation) for the experiment 
CTRL(a), LIGHT(b) and ALIGHT(c) in the center of the domain. 

 

4.2.3 Model performance 

The analyses of the experiments performed on 24/01/2018 using lightning data 

to improve the initial conditions of the model did not have the same 

improvement observed in the analyses of the previous case. In general, the 

experiments LIGHT and ALIGHT overestimated the amount of precipitation in 

the study area. However, the positioning of the meteorological system was 

better represented than the CTRL experiment. 

Unlike the first event analyzed, the lightning activity occurred on 24/01/2018 

was mainly induced by daytime heating showing a peak of lightning detections 

at 21:00 UTC (Figure 4.18). This means that lightning activity was induced by 
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local convective systems with a smaller impact of the large-scale environment. 

As presented in the first case, the addition of water vapor also induced the 

development of instabilities and subsequent convection in the first hours of 

simulation, but the amount of rainfall generated by the set of many local 

convection systems was not properly represented by the experiments with 

lightning data assimilation. 

It was observed that these local convective systems that occurred in the 

simulation domain had a higher lightning activity when compared to the 

previous case analyzed. Even though the case occurred on 19/05/2018 

registered a higher amount of rainfall it had a peak of about 6,000 lightning 

detections while the case occurred on 24/01/2018 with a smaller amount of 

rainfall reached more than 16,000 lightning detections (Figures 4.1 and 4.18). 

These differences between lightning detections and volume of rainfall ratios 

changed the performance of the lightning data assimilation algorithm 

implemented in this study. 

Therefore, this case analyzed in this section was induced by thermal forcing 

causing a small amount of precipitation with a high lightning activity which could 

have caused the assimilation algorithm to add more water vapor than necessary 

making the experiments LIGHT and ALIGHT overestimate the accumulated 

precipitation. 

The Figure 4.26 presents the sum of the precipitation field accumulated in the 

whole simulation domain for the CTRL, LIGHT and ALIGHT experiments and for 

the precipitation field observed for each one of the simulation cycles in the first 

3 hours. 

The overestimation of the volume of precipitation simulated by the experiments 

with lightning data assimilation could have been caused due to the poor 

representation of graupel concentrations in the initial time. Even though the 

experiments could solve the convection explicitly, they were not able to 

reproduce graupel in the atmosphere maybe because of the 9km resolution 

used in the simulations. 
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Figure 4.26 – The sum of the accumulated precipitation in the inner domain on 

24/01/2018 for each simulation cycle and for each experiment 
performed. 

 

Graupel has an important role in the development of a thunderstorm. The local 

convection systems observed commonly during the summer in the study area 

are usually associated with the daytime heating and present deep convection. 

This type of convection generates intense updrafts and consequently, a high 

concentration of graupel which is one the main factor responsible for the 

formation of lightning (BRINGI et al., 1997; DYE et al., 1988; ZIEGLER et al., 

1991). 

Additionally, Tao et al. (2013) observed that the storm’s updraft is suppressed in 

the presence of large ice particles which can affect the dissipation time of the 

system and by consequence affecting the amount of precipitation generated.  

Similar results were also observed by Adams-Selin et al. (2013). They 

concluded that simulations with parametrizations that allowed the formation of 

large graupel had a minimal stratiform precipitation region with reduced 

convective intensity. Meanwhile, the simulations with smaller graupel allowed 
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the formation of deeper and strong cold pools which caused a wide region with 

stratiform precipitation as well as persistent convection.  

Those studies agree with what was observed in this section. The typical 

formation of graupel observed in local convective systems provided the 

necessary environment for the occurrence of lightning and induced a rapid 

dissipation of the systems agreeing with the high number of lightning detections 

(Figure 4.18) and with a small amount of observed rain (Figure 4.26).  

Furthermore, it also explains the overestimation of the precipitation field 

simulated by the experiments with data assimilation. Since the model was not 

able to reproduce the graupel concentration in the atmosphere, the experiments 

with lightning data assimilation which depend on it added more water vapor 

than necessary.  As it was showed by Figure 3.4, higher concentrations of 

graupel contributes to the addition of less water vapor in the atmosphere.  

The Thompson Scheme used for Microphysics in the simulations (THOMPSON 

et al., 2008) was not enough to simulate graupel concentrations, even this 

parametrization contains prognostic equations for cloud water, rain water, ice, 

snow, and graupel mixing ratios. An investigation needs to be conducted in 

order to find the optimal parameterization to represent graupel concentrations, 

especially coupled with the lightning data assimilation algorithm developed in 

this study. 

It is possible to notice in Figure 4.26 that the experiments with data assimilation 

overestimated by far the 3 hours accumulated precipitation in most of the 

cycles. However, note that the first 1 hour accumulated precipitation simulated 

by the experiments LIGHT and ALIGHT had a better performance. 

The BIAS for the 3 hours accumulated precipitation is presented in Figure 4.27. 

The best performance of the assimilation algorithm was observed in the cycles 

ii, iii and iv. In general, the CTRL experiment had better performance. 

Once more, the assimilation algorithm was not able to reproduce the amount of 

precipitation associated with thermal forcing and it becomes obvious when we 

notice that the worse performance in both cases analyzed (19/05 and 24/01) 
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occurred in the last simulations cycles possibly because of the poor 

representation of graupel mixing ratios, as discussed above. 

Figure 4.27 – BIAS for the 3 hours accumulated precipitation calculated for each 
simulation cycle with the dashed line showing the correspondent 
average. 

 

In this case, there was a small difference observed between the experiments 

ALIGHT and LIGHT due to the smaller volume of precipitation. The experiments 

had a worse representation of the 3 hours accumulated precipitation but the 

rapid response in the first hour of simulation indicated a positive impact. 

In order to analyze spatially the impact of the data assimilation procedures, the 

accumulated precipitation for every hour of simulation in cycle-ii is presented 

(Figure 4.28). Even though the error was smaller than other experiments, the 

CTRL experiment could not reproduce the precipitation field properly producing 

some precipitation only after 1 hour of simulation. Additionally, the main 

precipitation core with a center located around 22.5°S and 50.7°W was not 

reproduced by any of the experiments. 
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This inability in reproducing the main precipitation core is more visible when 

Figure 4.29 is analyzed. In fact, there was a timing and a positioning error 

simulating the convective activity in this case. 

Figure 4.28 – Accumulated precipitation in mm in the inner domain for a cycle starting 
at 03:00 UTC on 24/01/2018). (a), (b) and (c) present the observed 
precipitation; (c), (d) and (f) present the CTRL experiment; (g), (h) and (i) 
the LIGHT experiment; (j), (k) and (l) the ALIGHT experiment. (a), (d), 
(g) and (j) present the accumulated precipitation at 04:00 (1 hour of 
simulation); (b), (e), (h) and (k) at 05:00 (2 hours); (c), (f), (i) and (l) at 
06:00 (3 hours). 

 

 
In general, the assimilation algorithm overestimated the precipitation field once 

it was mainly associated with daytime heating. However, the WRF model by 

itself might be also inducing the error associated with this type of atmospheric 

environment. 



97 
 

Davis et al. (2006) applying an object-based verification methodology in order to 

evaluate the forecast of rainfall during the warm season over the United States 

showed that the WRF model generally tends to overestimate the size of the rain 

areas during the day which can induce the model to overestimate the 

precipitation field. 

Figure 4.29 – Difference between the accumulated precipitation observed and 
simulated in mm in the inner domain for a cycle starting at 03:00 UTC on 
24/01/2018. (a), (b) and (c) present the observation minus CTRL 
experiment; (c), (d) and (f) present the observation minus LIGHT; (g), (h) 
and (i); the observation minus ALIGHT. (a), (d), and (g) present the 
accumulated precipitation at 04:00 (1 hour of simulation); (b), (e) and (h) 
at 05:00 (2 hours); (c), (f) and (i) at 06:00 (3 hours). 

 

 
Even though the CTRL experiment was not able to generate a significative 

amount of precipitation in the first hours of simulation, the use of assimilation 

techniques reduced the spin-up period anticipating a natural overestimation 

response of the precipitation field from the model. 

Similarly, to the previous case, the variables POD, FAR and TS were calculated 

for different precipitation thresholds (see section 3.6.1) in order to define 
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quantitively the position error of the precipitation field simulated by the 

experiments. This calculus was applied for all cycles as it is shown by Tab. 4.2. 

Table 4.2 – Contingency table showing the variables 𝑃𝑂𝐷, 𝐹𝐴𝑅 and 𝑇𝑆 calculated 
based on the accumulated precipitation in 3 hours predicted for each 
simulation cycle (i, ii, iii, iv, v, vi, vii, viii) for all the experiments (CTRL, 
LIGHT and ALIGHT) with different thresholds (30km and 1mm, 20km 
and 5mm, and 20km and 10 mm) starting on 24/01/2018. For example, 
the cycle “iv” corresponds to the precipitation accumulated between 
09:00 and 12:00 of 24/01/2018 with the difference of 3 hours between 
each cycle. 

Experiment 
Simulation 

Cycle 

30km and 1mm 20km and 5mm 20km and 10mm 

POD FAR TS POD FAR TS POD FAR TS 

CTRL 

i 0.24 0.67 0.16 0.05 0.82 0.04 0.03 0.97 0.02 

ii 0.00 Null 0.00 Null 1.00 Null Null Null Null 

iii 0.00 Null 0.00 Null Null Null Null Null Null 

iv Null Null  Null Null Null Null Null Null Null 

v Null 1.00 0.00 Null Null Null Null Null Null 

vi 0.34 0.81 0.14 Null 1.00 0.00 Null 1.00 0.00 

vii 0.40 0.82 0.14 0.19 0.98 0.02 Null 1.00 0.00 

viii 0.16 0.53 0.14 0.09 0.66 0.08 0.07 0.90 0.04 

Mean 0.19 0.77 0.08 0.11 0.86 0.03 0.05 0.97 0.01 

LIGHT 

i 0.44 0.77 0.18 0.29 0.88 0.09 0.27 0.96 0.04 

ii 0.28 0.82 0.12 0.10 0.92 0.05 Null Null Null 

iii 0.00 1.00 0.00 Null Null Null Null Null Null 

iv Null 1.00 0.00 Null Null Null Null Null Null 

v Null 1.00 0.00 Null Null Null Null Null Null 

vi 0.47 0.96 0.04 Null Null Null Null 1.00 0.00 

vii 0.47 0.87 0.11 0.36 0.98 0.02 Null 1.00 0.00 

viii 0.49 0.71 0.22 0.30 0.88 0.10 0.35 0.94 0.06 

Mean 0.36 0.89 0.08 0.26 0.91 0.06 0.31 0.97 0.02 

ALIGHT 

i 0.51 0.77 0.19 0.33 0.87 0.10 0.27 0.96 0.04 

ii 0.37 0.79 0.15 0.11 0.92 0.05 Null Null Null 

iii 0.00 1.00 0.00 Null Null Null Null Null Null 

iv Null Null Null Null Null Null Null Null Null 

v Null 1.00 0.00 Null Null Null Null Null Null 

vi 0.47 0.96 0.04 Null Null Null Null 1.00 0.00 

vii 0.47 0.87 0.11 0.36 0.98 0.02 Null 1.00 0.00 

viii 0.49 0.71 0.22 0.30 0.88 0.10 0.35 0.94 0.06 

Mean 0.39 0.87 0.10 0 .27 0.91 0.06 0.31 0.97 0.02 
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In all thresholds analyzed the probability of detection and the threat score 

variables were improved with a small increment in the false alarms for the 

experiments with data assimilation. However, in this case, null values were also 

observed affecting the precise quantification of these variables but not 

impacting in the final conclusion. 

The ALIGHT experiment had the best performance in detecting precipitation 

increasing both POD and TS values and decreasing the false alarms when 

compared to the LIGHT experiment. When ALIGHT with CTRL are compared, it 

is visible that the probability of detection was drastically increased with a small 

increment in the false alarm variable. 

In other thresholds, the experiments with lightning data assimilation proved to 

be better than the CTRL experiments improving the positioning of the 

precipitation field in the domain. 

Analyzing the results obtained until now, a 24 hours run starting at 00:00 UTC 

on 25/01/2018 was performed. This simulation cycle was chosen in order to 

evaluate the differences between the experiments LIGHT and ALIGHT during 

the dissipation phase of the system and at the same time during a period with a 

significative amount of precipitation and lightning detections registered. The 

precipitation rate for this simulation period can be seen in Figure 4.30. 

The precipitation rate simulated (the sum for the whole domain) by the 

experiments with data assimilation (LIGHT and ALIGHT) was improved in the 

first 3 hours of simulation while the CTRL experiment once again had a delayed 

response with all of them converging to the same solution after about 8 hours of 

simulation. In the last part of the simulation (after 16 hours of simulation), the 

CTRL experiment had a better response generating more precipitation and 

following more precisely the observations when compared to the LIGHT and 

ALIGHT experiments.  

 

 

 



100 
 

Figure 4.30 – Precipitation rate simulated and observed from 00:00 UTC 25/01/2018 to 
23:00 UTC 25/01/2018. 

 

The correspondent BIAS for the precipitation rate seems to indicate that the 

precipitation field in the data assimilation experiments was not aligned with the 

observations (Figure 4.31). 

Although the BIAS variable was not well represented by the experiments LIGHT 

and ALIGHT (this variable is calculated locally), the variables POD, TS and FAR 

show an improvement in the representation of the precipitation field during all 

period of the simulation but especially in the first hours (Figure 4.32). 

The variables POD and TS had a great improvement in the first hours with no 

additional false alarms when the experiments with data assimilation are 

compared with the CTRL experiment. Note that the ALIGHT experiment had the 

best performance in the first 4 hours of simulation increasing POD and TS, and 

decreasing FAR. 
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Figure 4.31 – BIAS calculated for the precipitation rate presented in Figure 4.30. 

 

Figure 4.32 – POD, TS and FAR for the precipitation rate presented in Figure 4.30 
using the first threshold (30km and 1mm). 
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In Figure 4.33 is possible to see the center of mass of the convection activity 

simulated by the model based on the Reflectivity field as well as the convection 

activity observed based on lightning detections. The simulation error 

correspondent to each experiment performed for this case can be seen in 

Figure 4.34.  

Note that differently from the previous case, the experiments with lightning data 

assimilation were capable to improve the convection positioning only for the first 

3 hours of simulation with no significative difference between each other. 

Figure 4.33 – Representation of the location of the center of mass calculated based on 
the Reflectivity field in 3 km simulated by the experiments and of the 
geometric center based on lightning detections for the period between 
00:00 UTC 25/01/2018 and 00:00 UTC 26/01/2018. 

 

The deactivation of the cumulus parameterization allowed the model to solve 

the convection explicitly, but the 9km resolution used to perform the 

experiments might not have been ideal to solve the convection induced by the 

daytime heating (GILLILAND; ROWE, 2007). Although it was not observed 

significative difference simulating a large-scale system (as it was shown in the 

previous case), the convection associated with the daytime heating happens 
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locally and, in many cases, the thunderstorm core is smaller than 9km which 

could have affected the simulation of small systems. 

The results presented in the analysis of the case occurred on 24/01/2018 

showed that the application of the lightning data assimilation system improved 

the timing and positioning of the convection activity and the precipitation field in 

the first hours of simulation (3 hours). However, the amount of rainfall was 

overestimated in part because of the excess of water vapor added in the time 

analysis. Therefore, the use of the lightning data assimilation algorithm 

presented in this study during the warm season in the southeastern Brazil still 

need to be adjusted. 

 
Figure 4.34 – Location error of the center of mass in relation to the geometric center 

based on lightning observations for each experiment between 00:00 
UTC 25/01/2018 and 00:00 UTC 26/01/2018. 
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5 FINAL CONSIDERATIONS 

This research assessed the impact of a Data Assimilation System responsible 

for inserting lightning data into the WRF model using the WRFDA-3DVAR 

system. Also, it was implemented and adapted an assimilation algorithm in 

order applying it to Brazil. For the first time, a lightning data assimilation 

technique using BrasilDAT data and aiming to improve the short-term weather 

forecasting was applied in South America. 

This study presented a technique to correct the relative humidity threshold used 

in the original assimilation algorithm which contributed to improving the lightning 

data assimilation system during the dissipation phase of the meteorological 

system. 

Based on the experiments performed on this study, it was possible to conclude 

that in general, the Lightning Data Assimilation System improved the short-term 

weather forecast of precipitation field for large-scale systems, especially when 

the correction in the relative humidity threshold was applied. Additionally, the 

assimilation algorithm improved the timing and positioning of a squall line that 

affected the study area possibly due to the correct representation of cold pools 

during the assimilation process. 

 Even though the assimilation algorithm improved the representation of the 

precipitation field in a few simulation cycles in the second case analyzed, it was 

noticed that when the convection is associated with thermal forcing the 

assimilation of lightning data using the algorithm presented in this study had a 

negative impact on the experiments. These convective systems are usually 

associated with deep convection generating a high incidence of lightning with a 

smaller amount of precipitation and a high concentration of ice on the top of the 

atmosphere. The inability of the model in reproducing ice concentrations 

induced the assimilation algorithm to add more moisture than necessary and 

subsequently to overestimate the precipitation. However, the horizontal 

resolution used in this study could have played an important role in simulating 

this type of meteorological system making it an important feature to be 

evaluated in future works.   
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The performance of the experiments was drastically affected by the type of 

convective system. The incapacity in reproducing the precipitation field 

associated with thermal forcing is visible in both cases analyzed. However, the 

capability in representing the correct positioning of the meteorological systems 

was improved in both cases independently on what mechanism induced the 

convection. 

The assimilation methodology for lightning data presented in this study 

represents a significative contribution to the data assimilation field. The 

operational use of an alternative data source such as lightning has the potential 

to improve the short-term forecasts impacting positively several sectors of 

society. Lightning data has a high temporal and spatial resolution which can 

provide detailed information about different characteristics of thunderstorms. 

Moreover, the necessary instrumentation to detect lightning flashes is easier to 

deploy and maintain when compared with other data sources such as satellites 

and meteorological radars. 

Since the assimilation of lightning data in meteorological models is a new field 

with most of the scientific papers published in the last ten years, there are many 

study possibilities to investigate. This present research investigated the impact 

of a lightning data assimilation system applied in South America and proposed 

a correction/adaptation in the algorithm. However, as it was showed previously 

the assimilation algorithm depends on the graupel concentration and since the 

model was not able to reproduce this variable the assimilation algorithm was 

affected negatively while trying to represent the precipitation field of convective 

systems generated by the daytime heating. 

Based on the advantages and disadvantages observed in the results presented 

in this research, some suggestions for future works are proposed: 

1. Due to the observed performance of the experiments for different types 

of meteorological systems, improving the representation of the 

precipitation field during the passage a Cold Front and impacting 

negatively in local convective systems, it is possible that the best 

performance of the assimilation algorithm would be observed during the 
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winter or in an area located in midlatitudes (since most of the 

precipitation is generated by large-scale systems). This way, it is needed 

a performance evaluation of the algorithm under those conditions; 

2. A major adjustment in the coefficients of the assimilation equation has 

the potential to improve drastically the performance of lightning data 

assimilation procedures here presented. The use of machine learning 

algorithms for this purpose would help to define the ideal coefficients as 

well as the ideal conditions for when and where the data assimilation 

algorithm should be applied defining the layers of the atmosphere and 

the relative humidity threshold for when the performance is best; 

3. Since the misrepresentation of the precipitation field for local convective 

systems was associated with the difficulties of the model in reproducing 

the graupel variable, the use of different parameterizations and/or spatial 

resolution in the experiments could improve the assimilation technique 

through the improvement of the graupel variable; 

4. Another suggestion to improve lightning data assimilation procedures is 

using multiples assimilation cycles to improve the initial conditions of the 

model. However, it would necessary the use of filters during the 

initialization processes in order to reduce numerical instabilities due to 

the addition of mass. 

5. Finally, it is also important to evaluate the performance of the lightning 

data assimilation process using different approaches other than 3DVAR, 

such as 4DVAR, Kalman Filter, Hybrid Methods… 
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