
sid.inpe.br/mtc-m21c/2019/11.21.08.24-TDI

MAPPING SUCCESSIONAL FOREST STAGES AND
TREE SPECIES IN SUBTROPICAL AREAS

INTEGRATING UAV-BASED PHOTOGRAMMETRIC
POINT CLOUD AND HYPERSPECTRAL DATA:

COMPARISON OF MACHINE AND DEEP LEARNING
ALGORITHMS

Camile Söthe

Doctorate Thesis of the Graduate
Course in Remote Sensing, guided
by Drs. Claudia Maria de Almeida,
and Marcos Benedito Schimalski,
approved in December 18, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3UED6S2>

INPE
São José dos Campos

2019

http://urlib.net/8JMKD3MGP3W34R/3UED6S2


PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)



sid.inpe.br/mtc-m21c/2019/11.21.08.24-TDI

MAPPING SUCCESSIONAL FOREST STAGES AND
TREE SPECIES IN SUBTROPICAL AREAS

INTEGRATING UAV-BASED PHOTOGRAMMETRIC
POINT CLOUD AND HYPERSPECTRAL DATA:

COMPARISON OF MACHINE AND DEEP LEARNING
ALGORITHMS

Camile Söthe

Doctorate Thesis of the Graduate
Course in Remote Sensing, guided
by Drs. Claudia Maria de Almeida,
and Marcos Benedito Schimalski,
approved in December 18, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3UED6S2>

INPE
São José dos Campos

2019

http://urlib.net/8JMKD3MGP3W34R/3UED6S2


Cataloging in Publication Data

Söthe, Camile.
So77m Mapping successional forest stages and tree species in

subtropical areas integrating UAV-based photogrammetric point
cloud and hyperspectral data: comparison of machine and deep
learning algorithms / Camile Söthe. – São José dos Campos :
INPE, 2019.

xxvi + 186 p. ; (sid.inpe.br/mtc-m21c/2019/11.21.08.24-TDI)

Thesis (Doctorate in Remote Sensing) – Instituto Nacional de
Pesquisas Espaciais, São José dos Campos, 2019.

Guiding : Drs. Claudia Maria de Almeida, and Marcos
Benedito Schimalski.

1. Tropical biodiversity. 2. Imaging spectroscopy.
3. Photogrammetry. 4. WorldView-2. 5. Individual tree crown
delineation. I.Title.

CDU 528.8:630*1

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/




iv 
 

 

 

 

 

 

 

 

 

 

 

  



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The two most important days in your life are the day you are born and the day 
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ABSTRACT 

The use of Remote Sensing for successional stages and tree species 
mapping in (sub)tropical forests is a challenging task, due to high floristic and 
spectral diversity in these environments. Fortunately, in the latest decades, 
mankind has witnessed a remarkable advancement of space technologies 
targeted to monitoring forest resources, such as the availability of high spatial 
and spectral data and advanced classification methods. Besides providing 
high spatial and spectral resolution images, unmanned aerial vehicle (UAV)-
hyperspectral cameras operating in frame format enable to produce 
tridimensional (3D) hyperspectral point clouds. This study investigated two 
major topics concerning the successional stages and tree species mapping in 
a subtropical forest environment in Southern Brazil: a) the use of UAV-
acquired hyperspectral images and UAV-photogrammetric point cloud (PPC) 
for the classification of successional stages, comparing these data with 
classifications using multispectral images acquired by the WorldView-2 (WV-
2) satellite and Light Detection and Ranging (LiDAR) data and; b) the use of 
UAV-acquired hyperspectral images and UAV-PPC for individual tree crown 
(ITC) delineation and semiautomatic classification of 16 major tree species in 
two subtropical forest fragments. For both goals, different datasets containing 
hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy 
height model (CHM), and other features extracted from hyperspectral or WV-
2 data (e.g., texture, vegetation indices-VIs, and minimum noise fraction-
MNF) were tested. To classify the successional forest stages, an object-
based image analysis (OBIA) was conducted using two conventional machine 
learning classifiers, support vector machine (SVM) and random forest (RF). 
For tree species classification, two conventional machine learning, SVM and 
RF, and one deep learning classifier, the convolutional neural network (CNN), 
were tested in a pixel-based approach. Besides these classifiers, a new SVM 
approach focused on an imbalanced sample set was also tested, the 
weighted SVM (wSVM). For ITC delineation, three methods were tested: two 
using hyperspectral bands, the multiresolution region growing (MRG) and the 
itcIMG, and the other one using the PPC, named multiclass cut followed by 
recursive cut (MCRC). The best segmentation result was used in two 
classification approaches tested using the conventional machine learning 
methods: OBIA and the majority vote (MV) rule. The results showed that the 
successional forest stages were successfully classified with accuracies over 
80% when the WV-2 data were applied, and over 90% with the UAV-
hyperspectral data. The best result reached an overall accuracy (OA) of 
99.28% using the hyperspectral data associated with the CHM and RF 
classifier. The CHM and features derived from WV-2 and hyperspectral data 
increased between 5% and 13% the classification accuracies. Regarding the 
tree species classification, the CNN outperformed the RF and SVM for both 
areas, with an OA of 84.4% in Area 1, and 74.95% in Area 2, using only the 
VNIR bands. This method was 22% to 26% more accurate than the SVM and 
RF when considering the VNIR dataset. The inclusion of PPC features and 
the CHM provided a great increase in tree species classification results when 
machine learning methods were applied (SVM, wSVM and RF), between 13% 
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and 17% depending on the selected classifier and the study area. However, a 
decrease was observed when these features were included in the CNN 
classification. The OBIA approach did not increase the OA for the SVM 
classifier, while a slightly increase was observed for the RF algorithm in 
comparison with the RF using the pixel-based classification. The MV rule 
approach, on the other hand, brought a marked increase in accuracy for both 
study areas (5% for Area 1 and 11% for Area 2). When using PPC features 
and the CHM, associated with the MV approach, the machine learning 
classifiers reached accuracies similar to the ones achieved by the CNN 
(82.52% for Area 1 and 75.45% for Area 2). The wSVM provided a slightly 
increase in accuracy not only for some lesser represented classes, but also 
for some major classes in Area 2. None of the three ITC delineation methods 
reached a suitable result for all reference ITCs. The MRG method tended to 
oversegment most ITCs, while the itcIMG and MCRC tended to 
undersegment or missed some suppressed ITCs. With the inclusion of the 
CHM in the MRG segmentation and merging homogenous segments with the 
Jeffries Matusita (JM) distance, visually and according to supervised 
evaluation metrics, a better delineation was reached. The results found in this 
study are relevant to favor the conservation of the Atlantic Rain Forest, a 
severely threatened biome, optimizing the mapping and monitoring of its 
forest remnants, and also to subsidize actions within the scope of the rural 
environmental register (Cadastro Ambiental Rural- CAR) in Brazil. In addition, 
the methodology can be used to map specific tree species, such as the 
endangered ones, in this case Araucaria angustifolia and Cedrela fissilis. 

Keywords: Tropical Biodiversity. Imaging Spectroscopy. Photogrammetry. 
WorldView-2. Individual Tree Crown Delineation. Support Vector Machine. 
Random Forest. Convolutional Neural Network. 
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MAPEAMENTO DE ESTÁDIOS SUCESSIONAIS DA VEGETAÇÃO E 
ESPÉCIES ARBÓREAS EM ÁREAS SUBTROPICAIS INTEGRANDO NUVEM 

DE PONTOS FOTOGRAMÉTRICA E DADOS HIPERESPECTRAIS 
BASEADOS EM VANT: COMPARAÇÃO ENTRE ALGORITMOS DE 

APRENDIZADO DE MÁQUINA E APRENDIZADO PROFUNDO 

RESUMO 

O uso de Sensoriamento Remoto para o mapeamento de estádios sucessionais e 
espécies arbóreas em florestas (sub)tropicais é uma tarefa desafiadora, devido à 
alta diversidade florística e espectral desses ambientes. Felizmente, nas últimas 
décadas, a humanidade testemunhou um notável avanço das tecnologias 
espaciais voltadas ao monitoramento dos recursos florestais, como a 
disponibilidade de dados com alta resolução espacial e espectral e métodos de 
classificação sofisticados. Além da aquisição de imagens de alta resolução 
espacial e espectral, câmeras hiperespectrais a bordo de veículos aéreos não 
tripulados (VANT) operando em formato de quadro permitem produzir nuvens de 
pontos hiperespectrais tridimensionais (3D). Este estudo investigou dois grandes 
tópicos referentes ao mapeamento de estádios sucessionais e de espécies 
arbóreas em um ambiente de floresta subtropical do sul do Brasil: a) o uso de 
imagens hiperespectrais adquiridas por VANT e sua nuvem de pontos 
fotogramétrica (photogrammetric point cloud - PPC) para a classificação de três 
estádios sucessionais da vegetação, comparando esses dados com classificações 
usando imagens multiespectrais adquiridas pelo satélite WorldView-2 (WV-2) 
associados a dados Light Detection and Ranging (LiDAR); e b) o uso de imagens 
hiperespectrais adquiridas por VANT e informações da PPC para o delineamento 
de copas de árvore individual (individual tree crown - ITC) e para a classificação 
semiautomática de 16 espécies arbóreas dominantes em dois fragmentos de 
floresta subtropical. Para ambos os objetivos, foram testados diferentes conjuntos 
de dados contendo bandas do espectro visível/infravermelho próximo (visible/near 
infrared - VNIR), atributos derivados da PPC, modelo de altura de dossel (canopy 
height model - CHM) e outros atributos extraídos de dados hiperespectrais ou WV-
2 (e.g., textura, índices de vegetação-VIs, e fração de ruído mínima-MNF). Para 
classificar os estádios sucessionais, foi conduzida uma análise de imagem 
baseada em objetos (object-based image analysis - OBIA) usando dois 
classificadores de aprendizado de máquina, máquinas de vetor de suporte 
(support vector machine - SVM) e floresta aleatória (random forest - RF). Para a 
classificação de espécies arbóreas, dois algoritmos de aprendizado de máquina 
convencionais, SVM e RF, e um classificador de aprendizagem profunda, rede 
neural convolucional (convolutional neural network - CNN), foram testados em 
uma abordagem baseada em pixels. Além destes, também foi testada uma nova 
abordagem SVM para lidar com o conjunto de amostras desbalanceadas, o SVM 
ponderado (weighted SVM - wSVM). Para o delineamento de ITC, três métodos 
foram testados: dois utilizando bandas hiperespectrais, o algoritmo multirresolução 
por crescimento de regiões (multiresolution region growing - MRG) e o itcIMG, e o 
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terceiro método utilizando a nuvem de pontos PPC, denominado corte multiclasse 
seguido de corte recursivo (multiclass cut followed by recursive cut - MCRC). O 
melhor resultado de segmentação foi usado em duas abordagens de classificação 
testadas com os métodos convencionais de aprendizado de máquina: OBIA e 
regra de voto majoritário (majority vote - MV). Os resultados mostraram que a 
classificação dos estádios sucessionais da vegetação, em geral, foi bem-sucedida, 
alcançando precisões acima de 80% quando empregados os dados do WV-2, e 
acima de 90% quando usados os dados hiperespectrais. O melhor resultado 
alcançou uma precisão global (overall accuracy - OA) de 99,28% usando os dados 
hiperespectrais associados ao CHM e ao classificador RF. O CHM e os atributos 
derivados dos dados do WV-2 e hiperespectrais aumentaram entre 5% e 13% a 
precisão da classificação. Em relação à classificação das espécies arbóreas, a 
CNN superou os classificadores RF e SVM em ambas as áreas, com uma OA de 
84,4% na Área 1 e 74,95% na Área 2, utilizando apenas as bandas espectrais 
VNIR. Este método foi 22% a 26% mais preciso do que SVM e RF quando 
considerado apenas o conjunto de dados VNIR. A inclusão de atributos da PPC e 
do CHM levou a um significativo aumento na precisão da classificação de 
espécies arbóreas quando métodos de aprendizado de máquina foram aplicados 
(SVM, wSVM e RF), entre 13% e 17% dependendo do classificador e da área de 
estudo. No entanto, uma diminuição na OA foi observada quando esses atributos 
foram incluídos na classificação da CNN. A abordagem OBIA não aumentou a OA 
para o SVM, enquanto um pequeno aumento foi observado no algoritmo RF em 
comparação com o RF usando a classificação baseada em pixels. A abordagem 
MV, por outro lado, trouxe um aumento acentuado na precisão para ambas as 
áreas de estudo (5% para a Área 1 e 11% para a Área 2). Ao usar atributos 
derivados da PPC e o CHM, associadas à abordagem MV, os classificadores de 
aprendizado de máquina alcançaram precisões similares à CNN (82,52% para a 
Área 1 e 75,45% para a Área 2). O wSVM aumentou a precisão, não apenas de 
classes com menos amostras, mas também de algumas classes majoritárias na 
Área 2. Nenhum dos três métodos de delineamento de ITC alcançou um resultado 
adequado para todas as ITCs de referência. O método MRG tendeu a 
superssegmentar a maioria das ITCs, enquanto o itcIMG e o MCRC tenderam à 
sobressegmentação, ou então, não segmentaram algumas ITCs suprimidas sob o 
dossel. Com a inclusão do CHM na segmentação usando o MRG, e a fusão de 
segmentos homogêneos usando a distância Jeffries Matusita (JM), tanto 
visualmente quanto de acordo com métricas de avaliação, conseguiu-se um 
melhor delineamento das copas das árvores. Os resultados encontrados nesse 
estudo são relevantes para incentivar a conservação da Mata Atlântica, um bioma 
severamente ameaçado, otimizando o mapeamento e monitoramento de seus 
remanescentes florestais, e também para subsidiar ações no âmbito do Cadastro 
Ambiental Rural (CAR) no Brasil. Além disso, a metodologia pode ser usada para 
mapear espécies arbóreas específicas, como as ameaçadas de extinção, neste 
caso, Araucaria angustifolia e Cedrela fissilis. 

Palavras-chave: Biodiversidade Tropical. Espectroscopia de Imageamento. 
Fotogrametria. WorldView-2. Delineamento de Árvores Individuais. Máquinas de 
Vetor de Suporte. Floresta Aleatória. Rede Neural Convolucional. 
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1 INTRODUCTION 

Tropical forests are among the most complex ecosystems on Earth. Hosting an 

overwhelming proportion of global tree diversity, approximately 53,000 tree 

species in contrast to only 124 across temperate Europe (SLIK et al., 2015), 

they play a crucial role in biodiversity conservation and in ecological dynamics 

at global scale (ZHANG Z. et al., 2016). 

According to Viana and Tabanez (1996), the Atlantic Rain Forest (Mata 

Atlântica) is one of the most endangered tropical biomes in the world. Current 

estimates of remaining vegetation cover range from 16% (RIBEIRO et al., 2009) 

to 28% (REZENDE et al., 2018). This biome has been particularly affected by 

anthropogenic disturbances, such as industrial activities, urbanization, and 

agricultural expansion, which transformed it in an archipelago of different 

successional forest stages patches embedded into a mosaic of degraded areas, 

pasture, agriculture, forestry, and urban areas (JOLY et al., 2014).  

The natural regeneration of abandoned areas can improve the provision of 

ecosystem services and habitat availability (STRASSBURG et al., 2016). 

However, more information is needed regarding how these forests recover 

during secondary succession, to enable the estimation of the ecosystem 

services that it provides (WORLD RESOURCES INSTITUTE, 2005). Currently, 

one of the major challenges for conservation is to obtain reliable and accurate 

information on a large scale to monitor biodiversity, resources, as well as the 

human impact on natural ecosystems (WAGNER et al., 2019). Remote sensing 

is considered an effective means for this effort, not only because of the 

increased spatial and temporal resolutions of the datasets, which enable 

identifying elements of biodiversity, such as tree species, but also because of 

the increase in available data and in the associated computational capacity to 

process such data (GHOSH et al., 2014; HE et al., 2015; KWOK, 2018). 

During the last years, significant efforts have been made to map forest cover 

and its changes, mainly based on medium spatial resolution data, and a 1-year 

temporal resolution, such as the Global Forest Change map (HANSEN et al., 

2013) and project MapBiomas specifically for Brazil (MAPBIOMAS, 2018). Such 
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resolution has revealed that fragmentation is increasing in all tropical forests 

(TAUBERT et al., 2018). However, it is still too coarse to retrieve information 

regarding species or the distribution of individual trees that can inform on the 

successional stage, diversity or disturbance levels of these ecosystems, which 

play key roles in maintaining environmental processes such as the water cycle, 

soil conservation, carbon sequestration and habitat protection (FAO, 2016). 

In this regard, the improvement of the spatial resolution of the remote sensing 

sensors in the last decades enables the identification of isolated trees even in 

dense forest canopies. Hyperspectral sensors mounted on manned aircrafts, for 

instance, could provide data at both high spatial and spectral resolution, being 

extensively used in tree species classification in different environments, as 

tropical (CLARK et al., 2005; CLARK; ROBERTS 2012; FERÉT; ASNER, 2013; 

BALDECK et al., 2015; FERREIRA et al., 2016; SHEN; CAO, 2017), temperate 

or boreal forests (DALPONTE et al., 2012; 2013; 2014; GHOSH et al., 2014; 

RACZKO; ZAGAJEWSKI, 2017; MASCHLER et al., 2018) and savannas (CHO 

et al., 2012; COLGAN et al., 2012; NAIDOO et al., 2012; PIIROINEN et al., 

2017). 

Recently, small-format hyperspectral cameras on-board unmanned aerial 

vehicles (UAV) have been on the spotlight and they began to be explored for 

tree species classification in boreal (NEVALAINEN et al., 2017; TUOMINEN et 

al., 2018) and subtropical forests (SOTHE et al., 2019a). Compared to satellite 

and airborne manned data acquisition, UAV-borne methods have many 

advantages, such as the possibility to collect data even under poor imaging 

conditions, e.g., under cloud cover, which makes it very operational in a wide 

range of environmental measuring applications (HONKAVAARA et al., 2013); 

the cost-efficient data collection with the desired spatial and temporal 

resolutions; and the non-dependence on airports for take-off, or satellite 

availability in the desired area (PANEQUE-GÁLVEZ et al., 2014). As they 

operate at a lower flight height than conventional aerial platforms, they offer a 

finer spatial resolution (NEVALAINEN et al., 2017).  
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Besides the high spatial resolution and a considerable number of spectral 

bands, UAV-borne sensors operating in frame-format record spectral data in 

two spatial dimensions within every exposure, opening new ways of imaging 

spectroscopy (AASEN et al., 2018), in which spectral and 3D information can be 

retrieved from the same data and to compose (hyper)spectral digital surface 

models (HONKAVAARA et al., 2013; AASEN et al., 2015). This 3D information 

can capture differences in vertical structure among species (i.e. tree height, tree 

patterns and leaf distributions) (NÄSI et al., 2015; TUOMINEN et al., 2018) that 

can be useful for tree species classification. In fact, many studies have shown 

some improvement in accuracy when integrating multispectral or hyperspectral 

data with 3D information (i.e. acquired from Light Detection and Ranging-LiDAR 

data or from a photogrammetric point cloud - PPC) for successional forest 

stages (SOTHE et al., 2019b) or tree species classification (DALPONTE et al., 

2012; GHOSH et al., 2014; BALDECK et al., 2015; PIIROINEN et al., 2017; 

TUOMINEN et al., 2018; SOTHE et al., 2019a). This combination allows to 

obtain a richer description of the vegetation analyzed, as their information are 

complementary to each other (GHOSH et al., 2014), but until now it has been 

poorly explored in tropical forests. 

A fact that must be considered when dealing with very high spatial resolution 

data, as those acquired by UAV, is the existence of the intra-class variability. In 

this case, the presence of noise, differences in lighting conditions and spectral 

variability within the canopies of successional stages and tree species may 

negatively affect the classification results when the pixel is considered the 

classification unit (YU et al., 2006; PIAZZA et al., 2016). The intra-class 

variability of such data can be accommodated into segments, generated 

previously to the classification process, conducting the classification as an 

object-based image analysis (OBIA). In the case of tree species classification, 

OBIA approaches usually consider an individual tree crown (ITC) as the 

classification unit, which can reduce the negative effects of spectral variability of 

pixels inside the crowns (HEINZEL; KOCH, 2012), such as branches, presence 

of lianas, background, shadow, among others. In this sense, many studies 

showed that the classification of tree species at the ITC level using OBIA or 
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accommodating a pixel classification into segments with a majority vote rule 

(MV) procedure has proved to be more accurate than that executed at a pixel 

scale (CLARK et al., 2005; CLARK; ROBERTS, 2012; DALPONTE et al., 2013; 

FÉRET; ASNER, 2013). Furthermore, a classification map at an ITC level may 

be more easily related to the biophysical and biochemical properties of the 

species and has practical applications in studies of individual trees (DALPONTE 

et al., 2014; SHEN; CAO, 2017).  

In fact, the delineation of ITCs not only helps the classification process, but also 

is a prerequisite for individual tree inventory over large spatial extents (CLARK 

et al., 2005), providing information such as tree count, location, crown size, 

distance between individuals, and tree species (FASSNACHT et al., 2016). 

Regarding that, numerous algorithms exist for automatic ITC delineation, but 

most of them have been developed for temperate or boreal forest stands (KE; 

QUACKENBUSH, 2011; DUNCANSON et al., 2014; DALPONTE et al., 2015a; 

LEE et al., 2016) and their application to deciduous and tropical forests has 

proven to be much more challenging (FÉRET; ASNER, 2013; TOCHON et al., 

2015; FERREIRA et al., 2016; WAGNER et al., 2018). In a review study made 

by Zhen et al. (2016), they related that most of the published studies involving 

the ITC delineation are concentrated in coniferous forests (40.6%), because 

most algorithms assume a basic conical crown shape, which is more 

appropriate for conifers. Only 21.7% of the studies were in closed mixed forests 

and barely 6% in closed hardwood forests. Deng et al. (2016) reported that ITC 

delineation algorithms tend to have lower precision when applied to more 

structurally complex forests, especially multi-stratified ones with overlapping or 

interconnected canopies, such as tropical forests. Therefore, it is still necessary 

to explore the ITC delineation methods in tropical forests. 

Besides the data and the classification level approach, a proper choice of the 

classification method is also decisive for a successful land use/ land cover 

mapping (LU; WENG, 2007). In this respect, machine learning algorithms, such 

as support vector machine (SVM) and random forest (RF), have  been on the 

spotlight for tree species classification over the last years (DALPONTE et al., 

2012; GHOSH et al., 2014; BALDECK et al., 2015; BALLANTI et al., 2016; 
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FERREIRA et al., 2016; PIIROINEN et al., 2017; FRANKLIN; AHMED, 2017; 

MASCHLER et al., 2018; FERREIRA et al., 2019; SOTHE et al., 2019a). These 

methods are considered robust and work well in the presence of a wide range 

of class distributions (ANDRADE et al., 2014) and with high dimensionality and 

multisource data (GHOSH et al., 2014).  

Nevertheless, even with the availability of high spectral and spatial resolution 

data and robust classifiers, it is observed that studies involving tropical forests 

have been limited to the classification of three to eight dominant canopy species 

e.g., (CLARK et al., 2005; CLARK; ROBERTS, 2012; BALDECK et al., 2015; 

FERREIRA et al., 2016; SHEN; CAO, 2017). Among the issues that hamper the 

classification of a high number of tree species in such environments, the 

presence of dominant and minority classes is to be mentioned, resulting in an 

imbalanced sample set, in which only a small number of samples are available 

for the less often found tree species (MELLOR et al., 2015). In this case, 

sampling the natural abundance of species would lead to highly skewed 

samples size across classes, while increasing the sample size of rare species 

would be time-consuming and costly (GRAVES et al., 2016). Concerning this, 

some approaches relying on machine learning have been adapted to deal with 

small or imbalanced sample sets (DALPONTE et al., 2015; GRAVES et al., 

2016; NGUYEN, 2019). Dalponte et al. (2015) proposed a semi-supervised 

SVM to combine the information from both labeled and unlabeled sets as a way 

to increase the number of samples. Graves et al. (2016) investigated the 

imbalanced classes problem with two strategies: i) creating a dataset where 

every class has the same amount of training samples, equal to the number of 

samples of the smallest class; and ii) allowing different cost parameters for each 

class while using the SVM classifier. Nguyen et al. (2019) proposed a weighted 

SVM (wSVM) method specifically developed to solve the problems of 

unbalancing, unreliability, and size of the training sets for tree species 

classification at an ITC level.  

Although conventional machine learning methods are very well established in 

literature, these methods are based on hand-engineered features, and are thus 

highly dependent on domain knowledge (LI Y. et al., 2017). Recently, deep 
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learning has been introduced into hyperspectral images classification and is 

able to extract deep spatial and spectral features from hyperspectral data 

(SIGNORONI et al., 2019). Much of the pioneering work on deep learning 

applied to hyperspectral data classification has given evidence that the 

identification of deep features leads to higher classification accuracies for 

hyperspectral data (CHEN et al., 2014; LI W. et al., 2017; WAGNER et al., 

2019). Among these methods, the convolutional neural network (CNN) 

algorithm is a supervised deep learning model that has been producing 

promising results in the classification of remotely sensed images (YUE et al., 

2015; LI Y. et al., 2017; WANG et al., 2017; GAO et al., 2018), including tree 

species classification purposes in particular (PÖLÖNEN et al., 2018; FRICKER 

et al., 2019; HARTLING et al., 2019). Despite its great potential, there are no 

studies involving CNN for tree species classification in tropical or subtropical 

forests. Hereafter this study uses the term ‘machine learning’ to refer to 

conventional machine learning approaches that do not rely on deep learning. 

1.1 Hypotheses 

This work is based on the following hypotheses: 

a) The successional forest stages can be well discriminated with both 

multispectral (WV-2) and hyperspectral data associated with machine 

learning methods. 

b) The integration of 3D features derived from the PPC and the 2D 

hyperspectral data improves the successional stages and tree species 

classification. 

c) The use of UAV-based PPC or hyperspectral data is effective for ITC 

delineation in subtropical forests. 

d) The use of ITC as a classification unit (i.e. OBIA or the MV rule) 

increases the tree species classification accuracies of machine 

learning methods in relation to the pixel-based classification. 
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e) Classifiers dealing with the imbalanced samples can increase the 

accuracy of less represented tree species classes. 

f) Different of machine learning methods, the CNN algorithm can 

effectively classify tree species without the need of hand-engineered 

features with comparable accuracy indices. 

1.2 Objectives 

1.2.1 Main objective 

The main goal of this study is to evaluate the exclusive and combined use of 

multisource data (i.e. WV-2, LiDAR, UAV-hyperspectral and UAV-based PPC) 

associated with machine learning methods and OBIA for the classification of 

successional forest stages of a mixed Atlantic Rain Forest area, and to evaluate 

the pure and combined use of multisource data (i.e. UAV-hyperspectral and 

UAV-based PPC) associated with machine and deep learning methods for the 

classification of a large number of tree species. 

1.2.2 Specific objectives 

a) To compare two machine learning methods (SVM and RF) and 

multisource data (UAV-hyperspectral data and UAV-based PPC; and 

WV-2 and LiDAR data) for the classification of successional forest 

stages. 

b) To test UAV-hyperspectral images and their integration with 3D 

features derived from the PPC for ITC delineation and tree species 

classification. 

c) To test a different SVM approach focused on an imbalanced sample 

set (wSVM) for tree species classification.  

d) To test a deep learning architecture based on CNN for tree species 

classification. 
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e) To compare the results of the above-mentioned classifications with 

conventional classification methods, SVM and RF.  

f) To compare different classification approaches, per-pixel, OBIA and 

the MV rule, associated with machine learning methods for tree 

species classification. 
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2 THEORETICAL BACKGROUND 

2.1 Successional forest stages and the Mixed Ombrophilous Forest 

Tropical forests can be roughly grouped into categories of primary forest and 

successional forests. Primary forest corresponds to a forest that is barely 

disturbed by natural disasters or human activities (LU et al., 2003). 

Successional forest is defined as a regrowth forest following a disturbance such 

as deforestation, in which secondary succession describes the changes of 

plants that live in a particular community over time (FINEGAN, 1984). Due to 

the importance and different capability of successional forests in restoration of 

degraded moist tropical environments, accurately differentiating them into 

different stages is valuable to better understand their role and their relationships 

with ecosystem changes (LU et al., 2003).  

The Mixed Ombrophilous Forest (MOF) is a phytophysiognomy of the Atlantic 

Rain Forest and one of the main formations in the southern region of Brazil 

(HIGUCHI et al., 2012). It is characterized by a heterogeneous formation of 

vegetation with primitive genera such as Drimys, Araucaria (Australasian) 

and Podocarpus (Afro-Asian), being Araucaria angustifolia a physiognomic 

marker of this forest type (BACKES; NILSON, 1983). The MOF designation 

originates from the phytogeographic classification of Veloso et al. (1991), who 

named as "Ombrophilous" the characteristic formations of humid environments 

and used the term "Mixed" to refer to the formation composed both by species 

originated in the temperate region, such as Andina, and the tropical region 

(VELOSO et al., 1991). Currently, the MOF is considered one of the most 

threatened phytophysiognomies among the country's forest formations, 

remaining only 24.4% of its original cover in Santa Catarina (SC) (VIBRANS et 

al., 2013). Most of its remnants are composed of small isolated fragments (<50 

ha) of secondary forests in early and intermediate forest stages (RIBEIRO et al., 

2009).  

The Resolution of the Brazilian Council for the Environment (Conselho Nacional 

do Meio Ambiente – CONAMA) nº 04/1994 (BRASIL, 1994) determines the 

observation of a set of qualitative and quantitative (structural) criteria and 
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indicators for the characterization of secondary vegetation in the early, 

intermediate and advanced stages for the SC state, which includes the MOF. 

Among the criteria mentioned in the Resolution, there are characteristics related 

to vegetation size, such as tree height, diameter at breast height (DBH) and 

basal area; forest formation characteristics, such as the number of strata, 

presence of epiphytes and lianas, litter thickness; and the floristic composition. 

The characterization of each stage according to the current Brazilian Laws is 

described as follows: 

a) Early successional stage (SS1): also called a pioneer stage, the 

vegetation is dominated by shrubs, herbs and grasses, with less 

diversity of species. This stage usually lasts between 6 and 10 years, 

depending on the degree of degradation of the soil, and the 

environment. The average height of the vegetation does not exceed 4 

m, and the average diameter in the DBH reaches a maximum of 8 cm. 

In general, it has a small number of woody species, it presents a low 

complexity of vegetation structure and the occurrence of vascular 

epiphytes is rare. 

b) Intermediate successional stage (SS2): this stage can occur between 6 

and 15 years after the area has been abandoned. The diversity 

increases, there is a greater number of woody trees than shrubs and 

herbs, with predominance of pioneer tree species. The average stage 

is characterized by moderate diameter amplitude, ranging from 8 to 15 

cm DBH and height up to 12 m. Vascular epiphytes are present in 

greater number than the previous stage and the litter layer presents 

different thickness. It represents a stage of transition between the 

early and advanced stages. 

c) Advanced successional stage (SS3): at this stage, the woody tree 

physiognomy is dominant over the others, forming a closed and 

relatively uniform canopy, presenting dominant trees. The average 

height of the vegetation is over 12 m, and the DBH mean varies from 

15 to 25 cm. In this physiognomy, there is a predominance of woody 
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species, with complexity in the vegetation structure and great diversity 

of species. Vascular epiphytes are found in abundance, woody 

creepers are well developed, and the is a thick layer.  

Indicative species of each successional stage are defined according to their 

ecological group (pioneers, early or late secondary, and climax) (BUDOWSKI, 

1965). The species are assigned to one of these ecological groups according to 

the strategy adopted in the forest dynamics, which can be determined by their 

tolerance or not to luminosity. In this case, for instance, the predominance of 

species considered pioneers or early secondary could serve as an indicator that 

the fragment is in the early or secondary successional stage. However, one 

must consider that some tree species may belong to different successional 

groups. Different altitudinal levels indicate relevant floristic differences for each 

of the sub-formations of the ombrophilous forest, and therefore, the pattern of 

indicator species is not uniform (VELOSO et al., 1991; RODERJAN et al., 2002; 

BLUM; RODERJAN, 2007). In addition, edaphic variations in the environment 

promote differences in the structure and composition of mature and secondary 

forests, reflecting on different indicator species even for close environments 

(VELOSO; KLEIN, 1961; CLARK et al., 1999; FINEGAN; DELGADO, 2000; 

RODERJAN et al., 2002). Therefore, the species that are socially more 

important in the community structure permeate different successional stages 

(SIMINSKI et al., 2011), making it difficult to use this as a criterion to define the 

successional stage (ANDREACCI; MARENZI, 2017). 

Studies made by Higuchi et al. (2012) and Manfredi et al. (2015) highlighted the 

predominant species of MOF environments in SC. They pointed out that this 

phytophysiognomy is characterized not only by the remarkable presence of 

Araucaria angustifolia, which is already a common sense, but also by an 

important set of typical broadleaf species, such as Matayba elaeagnoides, 

Ocotea pulchella, Lamanonia ternata and Lithraea brasiliensis. Although it is 

one of the most important species of this environment, araucaria trees are 

diminishing rapidly in their natural habitat and therefore they are categorized as 

“Critically endangered” according to the “List of Threatened Species” of the 
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International Union for Conservation of Nature (IUCN, 2017). Another 

endangered species of MOF is Cedrela fissilis, classified as “vulnerable” 

according to the IUCN red list. 

2.2 Studies on forest and tree species mapping from remote sensing 
data  

The potential of remote sensing for vegetation mapping was verified in the 

1980s, when the first images with a high spectral resolution were obtained 

(GOETZ; VANE, 1985). In the last decades, there was a remarkable advance in 

space technologies for forest resources monitoring. The recent refinement of 

both spatial and spectral settings of orbital sensors and the increased 

improvement in the classification algorithms have strengthened the use of 

remote sensing data as a source for land cover and land use mapping (ADAM 

et al., 2014). Remote sensing data is considerably more advantageous when 

compared to conventional in situ mapping, not only because these data are 

systematically acquired, allowing their application at large scales, but also 

because they involve a less capital- and labor-intensive acquisition (JANOTH et 

al., 2007). 

On the last decades, several authors have committed themselves to 

characterize and classify successional stages of vegetation using remote 

sensed imagery (Table 2.1). At this level, recent efforts show that even when 

using medium spatial resolution images one can reach accuracies over 90% 

when machine learning methods are applied. Despite the optimistic results, until 

now there are no studies exploring very high spatial resolution images acquired 

by orbital satellites (such as WV-2 and WV-3) or UAV-borne data for this 

purpose. This is an interesting topic to be studied, since medium spatial 

resolution data may not capture different successional stages of very small 

forest fragments, which is a common reality in MOF environments.  
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Table 2.1- Summary of studies exploring the forest successional stage classification 
with remote sensing data. 

Study Sensor Spatial 
resolution 

Forest/ 
Country 

Classifier Best 
accuracy 

(%) 
Vieira et al. 

(2003) 
ETM/Landsat7 30 m Tropical 

Forest, Brazil 
Non reported 81 

Amaral et 
al. (2009) 

CBERS-2, IRS-P6 
e Quickbird 

20, 6 and 
0.61 m 

Tropical 
Forest, Brazil 

MLC and 
Mahalanobis 

distance 

54  

Galvão et 
al. (2009) 

CHRIS/PROBA 40 m Tropical 
Forest, Brazil 

MDA 82 

Falkowski 
et al. 

(2009) 

Optech ALTM30 
(LiDAR) 

0.26 
points.m-2 

Temperate 
Mixed-conifer 
Forest, USA 

RF 95 

Li et al. 
(2011) 

TM/Landsat5 30 m Tropical 
Forest, Brazil 

MLC, ANN, 
CTA, OBC 

82.8 

Castillo et 
al. (2012) 

LVIS Non 
reported 

Tropical Dry 
Forest, Costa 

Rica 

ISODATA - 

Lu et al. 
(2012) 

TM/Landsat5 
ALOS Palsar 

30 m Tropical 
Forest, Brazil 

MLC 85.9 

Berveglieri 
et al. 

(2016) 

Dense DSM 
generated from 

stereoscopic optical 
images 

0.45 m Subtropical 
Forest, Brazil 

Local height 
variance from 

the DSM 

- 

Piazza et 
al. (2016) 

SAAPI orthoimages 0.39 m Subtropical 
Forest, Brazil 

Decision tree 
C4.5 

91 

Sothe et al. 
(2017a) 

OLI/Landsat 8 and 
RapidEye 

15 and 5 m Subtropical 
Forest, Brazil 

MLC, SVM 
and RF 

90.8 

Sothe et al. 
(2017b) 

OLI/Landsat8 and 
Sentinel-2 

15 and 10 
m 

Subtropical 
Forest, Brazil 

SVM and RF 98.4 

Zhang et al. 
(2017) 

Leica ADS-40 0.4 m Boreal Mixed 
Forest, 
Canada 

RF 89 

Pinto 
(2018) 

CMOS 20MP 0.33 m Tropical 
Forest, Brazil 

RT 88 

Bispo et al. 
(2019) 

TanDEM-X - Tropical 
Forest, Brazil 

MLC 87 

Note:  DSM= Digital Surface Model; MDA= Multiple Discriminant Analysis; MLC= 
Maximum Likelihood Classifier; RF= Random Forest; RT= Random Tree; SVM= 
Support Vector Machine.  
Source: Author’s production. 

 

Not only the successional forest stages, but also mapping tree species 

distributions in tropical landscapes has been a major goal of the remote sensing 

community (NAGENDRA, 2001), due to its relevance in forest management and 

conservation sectors. It includes ecological applications for understanding 

spatial patterns of tree populations and species co-occurrence (COLGAN et al., 

2014), conservation applications to identify regions of high diversity (LUCAS et 

al., 2008; GRAVES et al., 2016), invasive species (USTIN et al., 2002; HE et 
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al., 2011; KHARE et al., 2019), rare and ecologically important species (CLARK 

et al., 2005), and questions linked to resource inventories (VAN AARDT; 

WYNNE, 2007). High spatial resolution imaging spectroscopy, that can 

discriminate individual tree crowns and capture small differences in reflectance 

patterns among species, is pointed as the most suitable data to achieve these 

goals (NAGENDRA et al., 2008; FASSNACHT et al., 2016). 

Mainly since the beginning of the 2010s, hyperspectral sensors have been on 

the spotlight for the classification of tree species in different forest types (Table 

2.2). Nevertheless, research on tree species classification using hyperspectral 

for tropical environments is not so widespread (FASSNACHT et al., 2016). 

Among the first studies involving tree species classification in these 

environments, Clark et al. (2005) should be mentioned, who have applied 

reflectance of narrow bands of hyperspectral data to classify seven tree species 

at leaf, pixel, and tree crown levels respectively. Later, Clark and Roberts 

(2012) studied the potential of vegetation indices, absorption based metrics and 

spectral derivative metrics in improving classification accuracy of their previous 

study. Another pioneer study involving tree species classification in tropical 

forests was made by Féret and Asner (2013) using airborne hyperspectral data 

for the classification of 10 to 17 tree species. They pointed out that the accuracy 

was gradually reduced as the number of tree species for classification 

increased. Indeed, a particular challenge for operational species mapping in 

tropical forest ecosystems is the high species diversity, which requires 

identifying many species, most of them have few individuals in the landscape 

(GRAVES et al., 2016).  

At the foliar level, the interaction of electromagnetic radiation with vegetation is 

basically controlled by three parameters: pigment concentration, structure and 

amount of water (GATES et al., 1965). Therefore, different species have very 

similar spectral behavior. The basic condition that must be satisfied to 

discriminate tree species is that the intraspecific variability is significantly 

smaller than the interspecific variability. In tropical forests, the verification of this 

condition is essential to evaluate the potential of reflectance data, in particular 

hyperspectral data, for species discrimination. Since it is rarely satisfied when 
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dealing with a large number of tree species and few samples, the combination 

of hyperspectral data with 3D features can be of great value to improve the 

discrimination of tree species classes. These features can provide other 

information besides the spectral characteristics, such as height, crown shape 

and species structure.  

At Table 2.2 it can be noticed that studies exploring the combination of 

hyperspectral and 3D features (i.e. derived from LiDAR or PPC) are 

concentrated in temperate or boreal forests, as also indicated in the review 

paper elaborated by Fassnacht et al. (2016). So, it is necessary to explore the 

inclusion of such features as a means to improve the classification accuracy 

when studying a large number of tree species in tropical forests. 

Table 2.2- Summary of studies exploring tree species classification using hyperspectral 
data. Works developed in tropical or subtropical forests are highlighted 
in gray. Those combining hyperspectral + LiDAR data contain the point 
density information at the ‘Spatial resolution’ column. 

Study Sensor Spatial 
resolution 

(m) 

Spectral 
resolution 

Forest/ 
Country 

Classifier Number 
of 

species 

Best 
accuracy 

(%) 
Clark et 

al. (2005) 
HYDICE 1.6  VNIR-SWIR 

(400–2500 
nm; reduced 
to 30 bands 

selected) 

Tropical 
Forest, 

Costa Rica 

LDA, 
MLC, 
SAM 

7  92 

Jones et 
al. (2010) 

AISA Dual  
 

2  
(0.4 

points/m2) 

VNIR-SWIR 
(429–2400 

nm, reduced 
to 40 spectral 

bands) 

Boreal 
Forest, 
Canada 

SVM 11  72 

Clark; 
Roberts 
(2012) 

HYDICE 1.6 VNIR-SWIR 
(400–2500 

nm; 210 
bands) 

Tropical 
Forest, 

Costa Rica 

RF 7  87 

Cho et al. 
(2012) 

CAO Alpha 1.1  VNIR (384–
1054 nm; 72 

bands) 

Savanna, 
South 
Africa 

MLC 6 65 

Dalponte 
et al. 

(2012) 

AISA 
Eagle, 

GeoEye 
and ALS 
Optech 
ALTM 

1 and 0.5 
(8.6 and 

0.48 
points/m2) 

VNIR (400–
990 nm; 126 

bands) 

Temperate 
Forest, Italy 

SVM e RF 7 species 
+ non 
forest 
class 

74 

Naidoo et 
al. (2012) 

CAO Alpha 
System 

1.1 (1.3 
point/m²) 

VNIR (348-
1054 nm, 72 

bands) 

Savanna, 
South 
Africa 

RF 8 87.7 

  continue 
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Table 2.2- Continuation. 

Study Sensor Spatial 
resolution 

(m) 

Spectral 
resolution 

Forest/ 
Country 

Classifier Number 
of 

species 

Best 
accuracy 

(%) 
Ferét; 
Asner 
(2013) 

CAO Alpha  0.56  VNIR 
(390–1044 

nm; 24 
bands) 

Tropical 
Forest, 
Hawaii 

LDA, QDA, 
RDA, KNN, 
ANN and 

SVM 

17  73 

Dalponte et 
al. (2014) 

HySpex 
VNIR-160 
and ALS 
Optech 
ALTM 

0.4 
(7.4 

point/m²) 

VNIR 
(410-990 
nm, 160 
bands) 

Boreal 
Forest, 
Norway 

SVM 2 
species 
+ mixed 

class  

93 

Ghosh et 
al. (2014) 

HyMap and 
Hyperion 

4, 8 and 
30 

(12 point 
density) 

VNIR-
SWIR 

(450-2500 
nm, 128 
bands) 

Temperate 
Forest, 

Germany 

SVM and 
RF 

5  86 

Baldeck 
and Asner 

(2015) 

CAO AToMS 1.12  VNIR-
SWIR 

(380–2512 
nm, 167 
bands) 

Tropical 
Forest, 

Panama 

Single-
class SVM 

3  94 

Ferreira et 
al. (2016) 

ProSpecTIR-
VS  

1 VNIR-
SWIR 

(450-2400 
nm, 357 
bands) 

Subtropical 
Forest, 
Brazil 

LDA, SVM 
and RF 

8  84.9 

Ballanti et 
al. (2016) 

AISA Eagle 
and Leica 

ALS60 

2 
(4 and 8 

points/m2) 
 

VNIR 
(397.78–
997.96 

nm, 128 
bands) 

Temperate 
Forest, USA 

SVM and 
RF 

8 90 

Richter et 
al. (2016) 

AISA dual 2 VNIR-
SWIR 

(400- 2497 
nm, 267 
bands) 

Temperate 
Forest, 

Germany 

SVM, RF 
and PLSDA 

10  78.4 

Graves et 
al. (2016) 

CAO AToMS 2 VNIR-
SWIR 

(380–2512 
nm) 

Tropical 
Forest, 

Panama 

SVM 
imbalanced 

20 
species 

+ 1 
mixed 
class 

63 

Nevalainen 
et al. 

(2017) 

UAV-FPI 0.086 VNIR 
(507-819 
nm, 33 
bands) 

Boreal 
Forest, 
Finland 

RF, MLP, 
C4.5, KNN 

4  95  

Piiroinen et 
al. (2017) 

AISA Eagle 
and Optech 
ALTM 300 

1 (9.6 
points/m²) 

VNIR 
(400-1000 
nm, 129 
bands) 

Agroforestry, 
Kenya 

SVM and 
RF 

31 57.1 

Raczko; 
Zagajewski 

(2017) 

APEX 3.35 VNIR-
SWIR 

(413-2447 
nm, 288 
bands) 

Temperate 
Forest, 
Poland 

ANN, SVM 
and RF 

5 77 

Shen; Cao 
(2017) 

AISA Eagle 
and  

RIEGL LMS-
Q680i 

0.6 
(10 

points/m2) 

VNIR 
(398.55–

994.44 nm, 
64 bands) 

Subtropical 
Forest, 
China 

RF (object 
approach) 

5 85.4 

continue 
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Table 2.2- Conclusion. 

Study Sensor Spatial 
resolution 

(m) 

Spectral 
resolution 

Forest/ 
Country 

Classifier Number 
of 

species 

Best 
accuracy 

(%) 
Tuominen 

et al. 
(2018) 

UAV-FPI  0.08 VNIR-SWIR 
(409-1578 

nm, 60 
bands) 

Arboretum, 
Finland 

KNN+GA 
and 
RF 

26  82.3 

Maschler 
et al. 

(2018) 

Hyspex 
VNIR 
1600 

(160SB) 

0.4 VNIR (415-
991 nm, 80 

bands) 

Temperate 
Forest, 
Austria 

RF (object 
approach) 

13 91.7 

Dabiri; 
Lang 

(2018) 

APEX 2.5  VNIR-SWIR 
(413-2451 
nm, 288 
bands) 

Temperate 
Forest, 
Austria 

RF 6 90 

Marrs; Ni-
Meister 
(2019) 

G-LiHT 
imager 

1 m 
(6 

points/m2) 

VNIR (418-
918 nm, 114 

bands) 

Temperate 
Forest, USA 

SVM, CN2 
rules, ANN 

10 and 
15 

67 and 59 

Sothe et al. 
(2019a) 

UAV-FPI 0.11 (35 
points/m²) 

VNIR (506-
819 nm, 25 

bands) 

Subtropical 
Forest, 
Brazil 

SVM 12 72.4 

Fricker et 
al. (2019) 

NEON 
AOP 

1 m VNIR-SWIR 
(280- 2510, 
426 bands) 

Temperate 
Forest, USA 

CNN 7 87 

Note:  ANN= Artificial Neural Network; CNN= Convolutional Neural Network; GA= 
Genetic Algorithm; KNN= K-nearest neighbor; LDA= Linear Discriminant 
Analysis; MDA= Multiple Discriminant Analysis; MLC= Maximum Likelihood 
Classifier; MLP= Multilayer Perceptron; PLSDA= Discriminant Analysis based 
on Partial Least Square; QDA= Quadratic Discriminant Analysis; RDA= 
Regularized Discriminant Analysis; RF= Random Forest; SVM= Support Vector 
Machine; SWIR=short-wave infrared. 
Source: Author’s production. 

 
2.3 Segmentation and individual tree crown delineation 

In contrast to pixel-based analysis, in the OBIA framework segments are 

considered as the basic unit of analysis. The idea of segmentation is to spatially 

decompose complexity, in which resulting segments (grouped according to 

some homogeneity criteria) can maximize spectral homogeneity between 

segments while minimizing spectral variability within a segment (PAL; PAL, 

1993). An optimal segment has minimum internal variations and, at the same 

time, maximum external difference from neighboring segments. These optimal 

segments, also referred to as “candidate objects”, (BURNETT; BLASCHKE, 

2003) strongly depend on segmentation methods. 

In this sense, a variety of segmentation algorithms has been proposed in the 

last two decades. Among them, three segmentation approaches are the most 

often used for land cover mapping in general and for applications involving 
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forest environments: region growing (KE; QUACKENBUSH, 2011; SINGH et al., 

2015; PIAZZA et al., 2016; NORDIN et al., 2018; SOTHE et al., 2019b), 

including multiresolution, graph-based (STRÎMBU; STRÎMBU, 2015; LEE et al., 

2016) and mean shift (HU et al., 2017; MASCHLER et al., 2018).  

The region growing stands out for its simplicity and it is implemented in many 

softwares. The multiresolution, for instance, is based on the region growing 

algorithm proposed by Baatz and Schäpe (2000). It starts with seed pixels and 

progressively grows regions by iteratively including adjacent pixels until a 

threshold of expansion or stopping criteria is met. This algorithm has three main 

parameters: the color (and shape) weight, the compactness (and smoothness) 

weight and the scale parameter. While the color/shape weights control how 

much the segmentation is based on image spectral (color) information vs object 

shape information, the smoothness/compactness weights control how much the 

object shape tends to be spatially compact vs spectrally homogeneous 

(smooth) but less compact. The scale parameter defines the maximum standard 

deviation of the homogeneity criteria regarding the weighted image layers for 

generating image objects. It limits the heterogeneity of the final objects and, 

thus, controls the size of the final segments (QIAN et al., 2014; TORRES-

SÁNCHEZ et al., 2015). In general, the greater the scale value, the larger the 

size of objects and the higher the heterogeneity (QIAN et al., 2014).  

In the last years, segmentation approaches have been adapted or specifically 

developed for ITC delineation (VAUHKONEN et al., 2012; FERREIRA et al., 

2014; DALPONTE et al., 2015a; STRÎMBU; STRÎMBU, 2015; FERRAZ et al., 

2016; LEE et al., 2016; WAGNER et al., 2018). Studies focused on ITC 

delineation usually aim to obtain information at the ITC level to be used for a 

direct classification, where each ITC is treated as one observation; or in a post-

classification approach, treating each pixel as one observation and aggregating 

the pixel level species classifications inside each ITC (i.e. using the MV rule) 

(DALPONTE et al., 2014). 

An outcome of an ITC classification, based either on direct classification or 

post-classification, depends on the ITC delineation carried out prior to the 
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classification. In this respect, ITC can be obtained from an automatic delineation 

method using different types of remote sensing data (e.g., LiDAR, multispectral 

and hyperspectral data) and different segmentation methods.  

Lee et al. (2016; 2017) proposed a graph cut approach, based on the 

normalized cuts (NC), the latter one inspired on the previous work of Shi and 

Malik (2000). NC is an established approach for grouping points and/or pixels 

into disjoint clusters (LEE et al., 2017). It starts with a matrix of similarity 

measures between all possible pairs of points and/or pixels and uses the 

eigenvectors of that matrix to distinguish groups (SHI; MALIK, 2000). In the 

case of LiDAR (or PPC) data, the similarity matrix is derived from the physical 

distance between points (nodes) in 3D space. The NC divides the graph into 

clusters that have great similarity between the nodes of the same clusters and a 

low similarity between nodes of different clusters. According to Lee et al. (2017), 

when using LiDAR data, this method can delineate ITC directly from the 3D 

point cloud, so ITCs are not influenced by interpolation or smoothing errors 

prevailing in CHM-based approaches. To start the segmentation, this algorithm 

depends on priors that can be computed based on the higher values of a CHM 

band. 

Another method specifically developed for ITC delineation is the itcSegment, 

proposed by Dalponte et al. (2015a). This method has two variants: one 

exploring point cloud data (itcLIDAR) and the other one exploring optical data 

(itcIMG), tested in this study. Similar to multiresolution, this latter starts with 

seed points: first, a low pass filter is applied to one raster band selected among 

the bands of the image; second, seed points are defined using a moving 

window in which a pixel can be considered a seed point if it detains the 

maximum value inside the window. Then, initial regions are defined starting 

from the seed points and a label map is created. A neighbor pixel is added to 

the region if it meets the pre-defined criteria (distance and threshold). From 

each region in the label map, the central coordinates of each pixel are 

extracted, and a 2D convex hull is applied to these points, and the resulting 

polygons are the final ITCs (DALPONTE et al., 2015a). 
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2.4 Feature extraction and feature selection  

Feature reduction methods can be further separated into feature selection (FS) 

(selecting a subset from the original bands) and feature extraction algorithms 

(applying statistical transformations to create a reduced number of new features 

which summarize the information content of the original features) (WEBB; 

COPSEY, 2011).  

Among the feature extraction methods, the minimum noise fraction (MNF) 

(GREEN et al., 1988) transformation is commonly applied for forest types and 

tree species classification using hyperspectral data (FASSNACHT et al., 2014; 

GHOSH et al., 2014; PIIROINEN et al., 2017; RACZKO; ZAGAJEWSKI, 2017; 

DABIRI; LANG; 2018; MASCHLER et al., 2018). MNF is a well-known 

technique for imagery denoising. It is similar to principal component (PC) 

transformation, however, instead of grouping projected bands (features, 

components) based on their variance, MNF transforms a noisy data cube into a 

data cube with images with increasing noise levels, which means that the MNF 

output images contain steadily decreasing image quality (LUO et al., 2016). 

Both PC and MNF transformations are based on the calculation of the 

eigenvalue decomposition using a covariance matrix (RODARMEL; SHAN, 

2002). The resulting components from the dimensionality reduction techniques 

can be examined by the eigenvalues’ measures. Eigenvalues are an indicator 

for the separation of noise-dominated components (meaning the components 

with near-unity eigenvalues) from information-dominant components 

(eigenvalues greater than 1) and visual inspection for band selection (DABIRI; 

LANG; 2018). 

Besides reducing the data, feature extraction methods can be applied to get 

more information from the original bands or reduce the effects caused by 

illumination angles, increasing the classification accuracy (TONG et al., 2014). 

As examples, the vegetation indices (VIs) and textural features can be 

mentioned. Texture-based methods are commonly used for effectively 

incorporating spatial information in image interpretation. In the case of tree 

crowns, texture information is mainly related to crown-internal shadows, foliage 



21 
 

properties (size, density, and reflectivity), and branching (SAYN-

WITTGENSTEIN, 1978). Gray-level co-occurrence matrix (GLCM)-based 

textural metrics proposed by Haralick et al. (1973) is a common approach used 

to compute texture information for vegetation types (and successional stages) 

and tree species classification (JOHANSEN; PHINN, 2006; YU et al., 2006; 

MALLINIS et al., 2008; FRANKLIN; AHMED, 2017; SOTHE et al., 2017ab; 

2019ab; MASCHLER et al., 2018; FERREIRA et al., 2019).  

VIs have been developed based on specific absorption features in order to 

quantify biophysical and biochemical indicators. They allow combining 

information contained in different spectral bands and can normalize external 

effects, e.g., solar and viewing angles, and internal effects such as soil variation 

or topographic conditions (LIN et al., 2015). The first indices were meant to 

enhance the strong reflectance of vegetation in the NIR region in relation to its 

marked absorption due to chlorophyll in the red region of the spectrum, such as 

the Simple Ratio (SR) (BIRTH; MACVEY, 1968) and the Normalized Difference 

Vegetation Index (NDVI) (ROUSE et al., 1973). More recently, some 

refinements were made in the conception of these indices, such as the 

Optimized Soil Adjusted Vegetation Index (OSAVI), which employs a soil 

adjustment coefficient (0.16) to minimize NDVI’s sensitivity to variation in soil 

background under a wide range of environmental conditions and; the Green 

Normalized Vegetation Index (GNDVI) replaces the red band by the green 

band. Hyperspectral and newer multispectral sensors, such as WV-2 and WV-3, 

also allowed the calculation of the Red-edge Normalized Difference Vegetation 

Index (NDVIRed-edge) (GITELSON; MERZLYAK, 1994), which is composed by 

the spectral response of a band located in the red-edge region. According to 

Hatfield et al. (2008), the use of the green and red-edge channels avoids 

saturation and the concurrent loss of sensitivity to certain values of chlorophyll, 

besides being generally preferred because they are more sensitive to moderate 

and high contents of chlorophyll.  

Hyperspectral sensors still make it possible to compute other indices at specific 

wavelengths, such as the photochemical reflectance index (PRI), the plant 

senescence reflectance index (PSRI), and the pigment specific simple ratio 

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-21702017000300389#B7
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(PSSR). According to Gamon et al. (1992), PRI is related to the changes in the 

xanthophyll cycle in the vegetation and the light efficiency in the photosynthesis 

process, which may not be perceived by NDVI. PSRI is sensitive to the ratio 

between carotenoids and leaf chlorophyll, which is altered during the 

senescence of the vegetation and also during its fruiting period (MERZLYAK et 

al., 1999), while PSSR was created for the study of chlorophyll concentration 

(BLACKBURN, 1998).  

When dealing with hyperspectral data, or even with multispectral data 

associated with a high number of features extracted from them, FS can be a 

promising approach to reduce the data dimensionality. Removing redundant 

information, they reduce the computation complexity and generate a subset of 

the most relevant features (GUYON; ELISSEEFF, 2003; MALDONADO; 

WEBER, 2009; MA et al., 2017). Moreover, based on the selected features, 

assumptions can be made concerning which one is especially useful for the 

separation of land cover classes, such as successional forest stages and tree 

species (FASSNACHT et al., 2014). 

FS algorithms are separated into three categories: filters, wrappers and 

embedded techniques (MALDONADO; WEBER, 2009; DURO et al., 2012; 

HIRA; GILLIES, 2015). Filter methods use statistical properties of the features 

to filter out poorly informative ones. This is done before applying any 

classification algorithm. Wrappers utilize the machine learning of interest as a 

black box to score subsets of variables according to their predictive power 

(MALDONADO; WEBER, 2009; MA et al., 2017). This approach tends to 

perform better in selecting features, since it takes the model hypothesis into 

account by training and testing it in the feature space (HIRA; GILLIES, 2015). 

However, it is computationally demanding. The third approach (embedded 

methods) performs FS in the process of model building. In contrast to filter and 

wrapper approaches, in embedded methods the learning part and the FS 

cannot be separated, and the class structure of the functions under 

consideration plays a crucial role (LAL et al., 2006). 
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Wrapper methods have a search strategy, which can be methodical, such as 

the best-first search; stochastic, such as a random hill-climbing algorithm; or it 

can use heuristics such as forward selection and backward selection to add and 

remove attributes (BROWNLEE, 2014). Sequential Forward Selection (SFS), a 

special case of sequential FS, is a greedy search algorithm that attempts to find 

the “optimal” feature subset by iteratively selecting features based on the 

classifier performance. It starts with an empty feature subset and add one 

feature at a time in each round; this feature is selected from the pool of all 

features that are not in the feature subset, and it is the feature that – when 

added – results in the best classifier performance (PUDIL et al., 1994).  

Embedded methods include decision trees and RF algorithms. RF classifier, for 

instance, provides a ranking with the importance value of each feature using the 

‘mean decrease in accuracy’ or ‘Gini index’ (LIAW; WIENER 2002). Variable 

importance in RF is based on the following heuristic: prediction errors based on 

the out-of-bag (OOB) samples are recorded for each tree and again after 

randomly shuffling the OOB samples. The difference between the prediction 

accuracy of the OOB samples and the permuted OOB samples is averaged 

over all trees and then normalized by the standard deviation of the differences 

(LIAW; WIENER 2002). Variables with larger scores are thought to be more 

important to the classification than variables with lower scores. However, this 

method does not provide a subset of features, depending on the user to choose 

how many will select based on importance values. 

2.5 Image classification 

Digital image classification is a technique that seeks to recognize homogeneous 

patterns in the image and associate them with a given class (PONZONI et al., 

2012). In the case of the supervised classification, training samples are 

collected, which are used to generate the patterns and thus label the pixels as 

belonging to a given class (NOVO, 2011). 

Among the classification methods, parametric classifiers have been criticized for 

their limited ability to classify high-dimensional and multisource data (GHOSH et 

al., 2014). When applied to these situations, they may result in the so-called 
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Hughes phenomenon (HUGHES, 1968), which occurs when the ratio between 

the number of training samples available and the number of attributes is small, 

making it difficult to estimate the classifier parameters (DALPONTE et al., 

2012). 

In forest species classification studies, the acquisition of a sufficient amount of 

training data that exceeds the total number of spectral bands, especially when 

using hyperspectral data, is an impractical task. Consequently, non-parametric 

methods, such as those based on machine learning, have received increasing 

attention in these applications (DENG et al., 2016). Among the machine 

learning methods, RF and SVM are the most commonly applied for tree species 

classification (c.f. Table 2.2). 

The above-mentioned algorithms can be considered as "shallow" learning 

models, because their architectures contain one or few processing layers 

(PASUPA; SUNHEM, 2016). Zhang, L. et al. (2016) report that such classifiers 

are highly dependent on the user's knowledge to choose the attributes and 

parameters to be used in the classification, which makes it difficult to achieve an 

optimal balance between discrimination and robustness for many types of data. 

In this sense, the main advantage of methods termed as ‘deep’ learning is that 

they take raw data and automatically learn features through training, with 

minimal prior knowledge about the task (LECUN et al., 1998). Such capacities 

have made deep learning emerged as the next generation learning technique 

with great potential for classification of remote sensing data (YUE et al., 2015; 

ZHANG, L. et al., 2016; LI, Y. et al., 2017; WANG et al., 2017; GAO et al., 2018; 

HARTLING et al., 2019). Among the deep learning algorithms, CNN stands out 

because it allows handling data in two or three dimensions, which is desirable in 

the classification of remote sensing images (LI, Y. et al., 2017). 

2.5.1 Support vector machine 

The SVM classifier (VAPNIK, 1995) is a supervised, non-parametric statistical 

learning technique, which aims at finding an optimal hyperplane for solving the 

class separation problem (Figure 2.1). The optimal hyperplane is the one that 

maximizes the distance between closest training samples and the separating 
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hyperplane (MELGANI; BRUZZONE, 2004). Since the feature space is 

partitioned among the classes by a hyperplane, low accuracies are obtained for 

solving non-linear class boundary problems. Hence, SVMs uses the “kernel-

trick” to map the data into a higher dimensional feature space (FASSNACHT et 

al., 2014), allowing for non-linear class boundaries. The SVM has four main 

kernel functions: (1) linear, (2) quadratic, (3) polynomial and (4) radial basis 

function (RBF) (LORENA; CARVALHO, 2007).  

 

Figure 2.1- Structure of a SVM classifier. 

 

Source: Drakos (2018). 

Steinwart and Christmann (2008) identified three reasons for the success of 

SVM: ability to learn well with a small number of parameters; robustness in face 

of different types of variations and diversity of models and; computational 

efficiency compared to other methods. The robustness in the treatment of data 

of high dimensionality is related to the capacity of discernment of data with 

greater entropy by the SVM, that is, the amount of uncertainty (randomness) in 

the image (ANDRADE et al., 2014). Normally, other classifiers find problems 

with higher entropy data, due to the great occurrence of overfitting. The SVM, in 

addition to extracting the general parameters that allow generalization, store the 

noise and peculiarities, tolerating the recognition of patterns not observed 

during the training phase (ANDRADE et al., 2014). More detailed information 

about SVM can be found in Melgani and Bruzzone (2004) and Mountrakis et al. 

(2011). 
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2.5.1.1 Weighted support vector machine 

According to Nguyen et al. (2019), a standard SVM algorithm gives the same 

weight to all the training samples and, therefore, in the case of wrongly labeled 

samples in the dataset, or a highly imbalanced distribution of the samples 

among the classes, the classification performance could significantly decrease. 

Motivated by that, the authors proposed the wSVM to solve the problems of 

unbalancing, unreliability, and size of the training sets for tree species 

classification at an ITC level. This algorithm gives distinct weights to different 

samples and to different classes based on three strategies: i) using the class 

abundances to differently weight the samples of the different classes and; ii) 

using the training samples and their distribution in the feature space to 

differently weight each training sample, and; iii) exploiting the unlabeled 

samples (that could be extracted from the study area) and their distribution in 

the feature space to weight differently each training sample. Since this method 

is not widely known, more details of the formulation regarding the two first 

strategies, which were explored in this study, will be given below. 

Given a training dataset composed by x classes, and give that each class has 

𝑁𝑘 elements, the inter-class weight (CW) can be formulated as (Equation 2.1): 

  𝐶𝑊𝑘 =   
max (𝑁𝑖𝑖=1…𝑥)

𝑁𝑘
    (2.1) 

 

with 𝑘=1,…,x. However, if the inter-class weights of majority classes are much 

smaller compared to the inter-class weights of minority classes, some 

information could be lost from the majority classes leading to a decrease of their 

accuracy. To deal with this problem, the inter-class weight of majority classes 

could be set to the mean values of all the inter-class weights (NGUYEN, 2019). 

For the prediction of the intra-class component (SW) of the sample weights, the 

training samples of each class are divided into 𝐺 clusters. The density of each 

cluster is used to estimate the density of the samples in the feature space. 

Considering one class, if most training samples are grouped in one cluster while 

the remaining samples are sparsely distributed, the latter is considered less 
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reliable than others. Hence, higher weights will be assigned to the samples that 

are in clusters characterized by a higher number of samples. In greater detail, 

this strategy follows three steps for each class (NGUYEN, 2019):  

1. the k-means clustering is applied to the training set of each class to identify a 

set Ω= {𝑐1, 𝑐2,…,𝑐𝐺} of G-clusters. The number of clusters 𝐺 is defined as the 

square root of the half of the total number of samples in that class (DEMIR; 

BRUZZONE, 2014);  

2. the density of the cluster 𝑐𝑖 is determined by the number of samples located 

in that cluster. In this way, labeled samples that fall into the high-density 

clusters are more important for the classification problem and vice versa;  

3. weights are normalized in the interval [0,1].  

2.5.2 Random forest 

The RF is an algorithm designed by Breiman (2001) aiming to improve the 

accuracy of classification or regression by combining a large number of trees 

trained upon random subsets of the available labeled samples and features. In the 

first case, each tree contributes only one class vote to each instance, and the final 

classification is determined by the majority votes of all the forest trees (HASTIE et 

al., 2009) (Figure 2.2). In its simplest form, this algorithm requires the definition of a 

few parameters: the number of trees to form the "forest" (ntree) and the number of 

features/predictors considered for each node in the trees (mtry). 
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Figure 2.2- Structure of a RF classifier. 

 

Source: Koehrsen (2017). 

The method provides a way to evaluate statistical quality by means of an 

internal sampling procedure called OOB, which can be used to estimate 

classification errors. For this, the RF algorithm collects about 2/3 of the training 

data with substitution, while the remainders are left OOB. These samples of 

OOB are attributed to trees that have not yet been used, and the difference 

between the expected and the actual class is used to evaluate the classification 

accuracy (PRASAD et al., 2006). In addition to estimating the error, the OOB 

samples also allow to estimate the importance of each feature in the 

classification process, which is calculated based on the decrease in the 

accuracy of general or class classification when the feature is permuted in OOB 

samples (BREIMAN, 2001). This give to RF the ability to efficiently select the 

best predictor features from a large set of correlated features, without a 

previous step of FS (CLARK; ROBERTS, 2012). There is a rich and well-known 

literature on RF e.g., (BREIMAN, 2001; MURPHY, 2012; KUNCHEVA, 2014). 

2.5.3 Convolutional neural network 

The first deep learning technique called CNN was introduced by Fukushima 

(1980), inspired by the biological learning process. Similar to the function of the 

human brain, CNNs are made up of neurons with learnable weights and biases. 

Each neuron receives several inputs, takes a weighted sum over them, passes 

it through an activation function and responds with an output (HARTLING et al., 
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2019). The four key components of a CNN are: a) convolutional layer; b) 

activation function or non-linearity; c) pooling layer e; d) fully connected layer 

(ZHANG, L. et al., 2016) (Figure 2.3).  

The original input image is convolved with a set of trainable kernels that scan 

across the entire input image resulting in a group of feature maps. Each feature 

map results from the convolution of the kernel, with its corresponding local 

region on the original input image. Moreover, an element wise non-linear 

activation function (e.g., sigmoid, rectified linear unit- ReLU, hyperbolic tangent) 

is taken out of the results of a convolutional layer for non-linearity amplification. 

The pooling layer is usually computed immediately after a convolutional layer 

and is used to down/sub-sample output of the convolutional layer to generate a 

condensed set of feature maps. The max-pooling is the most common and 

widely used pooling layer, which makes it possible to keep only the maximal 

values of the feature maps. It reduces the spatial size of feature maps 

significantly and, consequently, the computation volume for the next layers to 

be processed (GHORBANZADEH et al. 2019; HARTLING et al., 2019). The 

fully-connected layers finally follow several stacked convolutional and pooling 

layers. The last fully-connected layer (usually a softmax function) allows 

interpreting the output layer values as posterior probabilities for each defined 

class (WANG et al., 2017). More details about CNN can be found in Goodfellow 

et al. (2016) and Gao et al. (2018). 

Figure 2.3- Structure of a CNN classifier. 

 

Source: Adapted from Li, W et al. (2017). 
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3 MATERIAL AND METHODS 

The methodological framework developed for this research is shown in Figure 

3.1. Refer to Figures 3.14, 3.15 and 3.17 for detailed flowcharts of each 

classification scheme. The common steps for both the successional stages and 

tree species classification are in light pink color boxes, while the light blue 

boxes comprise only steps performed for tree species classification.  

 

Figure 3.1- Methodological framework developed in this study. 

 

Note: Pre-proc= preprocessing; FS= feature selection; ML= machine learning. 

Source: Author’s production. 

 

The first step comprised the preprocessing of the input data (hyperspectral, 

PPC, WV-2 and LiDAR), followed by the feature extraction at the pixel level, 

compilation of datasets and collection of training samples. For the OBIA 

approach and for the ITC delineation, the segmentation was performed prior to 

the classification. Afterwards, the spectral means corresponding to each layer of 

the training segments were used for the classification process. In this step, the 

feature selection and variable importance were performed. For tree species 

https://www.mdpi.com/2072-4292/9/8/838/htm#fig_body_display_remotesensing-09-00838-f001
https://www.mdpi.com/2072-4292/9/8/838/htm#fig_body_display_remotesensing-09-00838-f001
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classification at the pixel level, FS and variable importance were executed 

based on the full dataset and training samples associated with the JM and 

SFFS methods. Following, the classifications using the machine learning 

methods were performed and evaluated at the pixel level, and after the MV rule 

approach. For the CNN, a data augmentation was initially applied to the training 

samples and, in the sequence, a pixel-based classification was executed. The 

classification results were evaluated, and the final thematic maps were 

produced. 

3.1 Study areas 

The study areas are located in the municipality of Curitibanos, SC state, 

southern Brazil (Figure 3.2), near the Marombas River. These areas are 

approximately 30 ha (Area 1) and 19 ha large (Area 2) and are part of the 

Atlantic Rain Forest biome and MOF phytophysiognomy. The climate, according 

to Köppen–Geiger classification, is Cfb, moist mesothermal with no clearly 

defined dry season, mild summers, and an average annual temperature of 15 

°C (PEEL et al., 2007).  

Figure 3.2- Study areas location. (A) Santa Catarina State and (B) Curitibanos 
municipality (IBGE, 2019); (C) Google Earth image showing their 
location; (D) Area 1; (E) Area 2. 

 
Source: Author’s production. 
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3.2 Field surveys  

Two fieldworks were carried out over both areas, the first one in December of 

2017 and the second one in October of 2018. In the first one, a survey was 

conducted regarding the tree species diversity and structure and the 

successional stages of the forest fragments. For this task, six plots with 400 m² 

were delimited in Area 1 and four in Area 2 (Figure 3.3). Inside each plot, all the 

trees with DBH greater than 5 cm were measured and identified. Characteristics 

like the number of forest strata, presence of lianas and bromeliads and litter 

thickness were also reported to help at the successional stage classification of 

each plot. Table 3.1 shows the average DBH, height, basal area (BA), number 

of tree species and successional stage classified according to CONAMA 

Resolution 04/1994 (BRASIL, 1994) and Siminski et al. (2013). Figure 3.4 (A-D) 

shows examples of vegetation cover obtained from different views in Area 1. 

Figure 3.3- Distribution of the plots to identify the successional forest stages in both 
areas.  

 

Source: Adapted from Google Earth (2019). 
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Table 3.1- Structural characteristics of each plot regarding its successional forest 
stage. 

    DBH (cm) Height (m) BA (m²) Number of tree species Stage 

Area 1 

Plot 1 25.61 13 1.31 18 SS3 
Plot 2 19.35 9.77 1.19 24 SS3 
Plot 3 19.76 13 0.91 21 SS3 
Plot 4 21.75 16.7 0.75 16 SS3 
Plot 5 13.89 8 0.85 41 SS2 
Plot 6 12.27 7.31 0.26 16 SS2 

Area 2 

Plot 1 20.51 13.97 1.42 31 SS3 
Plot 2 21.65 12.1 1.29 21 SS3 
Plot 3 19.04 13.61 0.80 18 SS3 
Plot 4 16.39 12.15 0.7 17 SS3 

Source: Author’s production. 

 

Figure 3.4 - Examples of forest cover of Area 1: (A-B) internal view, (C) external view; 
(D) aerial view using an UAV-RGB camera. 

 

 
Source: Author’s production. 

Although all the plots comprised SS3 and SS2 stages (Table 3.1), SS1 stage 

areas were also found in Area 1. However, plots were not installed in these 

areas because most trees did not reach the minimum DBH considered (5 cm). 

Therefore, the coordinates of such areas were collected to provide samples of 

this stage, in order to perform the successional stages classification. 
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Considering that Area 2 is mainly composed by the SS3 stage, the successional 

forest stages classification was restricted to Area 1. 

The second fieldwork was carried out after the acquisition of the UAV data. 

Differentiating from what is observed for land-use/land-cover assessment in 

field inspections, the species identification of an individual tree must be checked 

and determined by a trained specialist in situ (GRAVES et al., 2016). Therefore, 

it was not possible to implement a randomization scheme for collecting field 

data, and only the tree species which had clearly visible crowns in the images 

were inspected and identified in the field. Trees with ambiguous appearance 

were discarded. 

In total, 17 tree species belonging to 11 families were originally identified in both 

areas (Table 3.2). Due to the low number of samples of Ocotea puberula, this 

particular tree species was associated with the Ocotea pulchella species, 

composing the Ocotea sp. class. Based on the first fieldwork, it was estimated 

that these species represent nearly 55% and 48% of all the trees species 

(including suppressed and co-dominant trees) of Areas 1 and 2, respectively. 

Considering only the dominant trees, they represent approximately 80% of the 

tree species in both areas. 

Table 3.2- Tree species and their successional group identified in both areas. 

ID Species Family Successional group 
1 Luehea divaricata Malvaceae initial or late secondary, climatic 
2 Araucaria angustifolia Araucariacea pioneer or secondary 
3 Mimosa scabrella Fabaceae pioneer    
4 Lithraea brasiliensis Anacardiaceae pioneer, initial secondary or climatic 
5 Campomanesia xanthocarpa Myrtaceae initial or late secondary 
6 Cedrela fissilis Meliaceae initial or late secondary, climatic 
7 Cinnamodendron dinisii Canellaceae late secondary 
8 Cupania vernalis Sapindaceae initial or late secondary 
9 Matayba elaeagnoides Sapindaceae late secondary 
10 Nectandra megapotamica Lauraceae initial or late secondary 
11 Ocotea sp. Lauraceae initial secondary 
12 Podocarpus lambertii Podocarpaceae late secondary or climatic 
13 Schinus terebethifolius (sp1) Anacardiaceae pioneer, initial or late secondary 
14 Schinus lentiscifolius (sp2) Anacardiaceae initial or late secondary 

continue 
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Table 3.2- Conclusion. 

ID Species Family Successional group 
15 Erythrina falcata Fabaceae initial secondary or climatic 
16 Sebastiania commersoniana Euphorbiaceae initial secondary 

Source: Author’s production. 

3.3 Input data 

3.3.1 UAV-hyperspectral and PPC data 

The flight to acquire the hyperspectral data was conducted in December 2017, 

at the end of the spring season, by means of a quadcopter UAV (UX4 model) 

and a frame format hyperspectral camera based on a Fabry–Perot 

interferometer (FPI), model 2015 (DT-0011). This camera was supplied by the 

São Paulo State University (UNESP) and built by Senop Ltd. (2018). It 

comprises one irradiance sensor and one global navigation satellite system 

(GNSS) receiver. A single frequency GNSS receiver (NSRAW) was integrated 

to acquire raw data which can be post-processed to provide the coordinates of 

the exposure station of the first band (MIYOSHI et al., 2018a).  

The FPI technology offers a frame-format hyperspectral imager operating on the 

time-sequential principle (HONKAVAARA et al., 2017). The camera has an 

adjustable air gap, which allows for the acquisition of 25 spectral bands in the 

range from 500 to 900 nm with the best spectral resolution of 10 nm at the full 

width at half maximum (FWHM) (MIYOSHI et al., 2018b). While this camera 

allows for flexibility in selecting the spectral bands, increasing therefore the 

number of acquired bands, it simultaneously increases the acquisition time. In 

mobile applications, the bands in individual cubes have spatial offsets that need 

to be corrected in the processing phase (c.f. Section 3.4.1) (HONKAVAARA et 

al., 2013; HONKAVAARA et al., 2017; AASEN et al., 2018). Regarding the 

spectral bands, the configuration shown in Table 3.3 was adopted, comprising 

the visible and near infrared regions (VNIR) of the electromagnetic spectrum. 

 

 

https://www.mdpi.com/2072-4292/11/11/1338/htm#sec3dot1-remotesensing-11-01338
https://www.mdpi.com/2072-4292/11/11/1338/htm#table_body_display_remotesensing-11-01338-t002
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Table 3.3- Description of VNIR bands used in this study.  (λ = central wavelength of the 
spectral band). 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

506 15.65 580 15.14 650 15.85 700 21.89 750 19.43 
519 17.51 591 14.81 659 24.11 710 20.78 769 19.39 
535 16.41 609 13.77 669 21.7 720 20.76 780 18.25 
550 15.18 620 14.59 679 21 729 21.44 790 18.5 
565 16.6 628 12.84 690 21.67 740 20.64 819 18.17 

Source: Author’s production. 

The aerial surveys were carried out in two consecutive days between 12:55 and 

13:16 (UTC-3) in Area 1, and between 10:59 and 11:06 (UTC-3) in Area 2. The 

flights were conducted keeping a great overlap between the strips (Table 3.4), 

which allowed the creation of high spatial resolution PPCs. On both occasions, 

the illumination conditions were stable, and the weather was sunny (Figure 3.5). 

The characteristics of the camera, the flight and the data acquired in the study 

areas are shown in Table 3.5. Further details about the camera can be found in 

Oliveira et al. (2016) and Miyoshi et al. (2018b).  

 

Table 3.4- Strip sizes and overlap of each area. 

 Number of 
strips 

Size of 
strips (m) 

Forward 
overlap (%) 

Side overlap 
(%) 

PPC density 
(points/m²) 

Area 1 8 700 x 35 70 60 35 
Area 2 6 450 x 40 60 50 25 

Source: Author’s production. 

Table 3.5- Characteristics of the camera, flight and data acquired in the study areas. 
Sensor CMOSIS CMV400 sensors 

Spectral bands 25 spectral bands ranging from 506 to 819 nm 
FWHM Ranging from 12.84 to 21.89 nm 

Focal length 8.6 mm 
Field of view (FOV) 37° 

Ground sampling distance (GSD) 11 cm (Area 1) 
12 cm (Area 2) 

Image dimensions 1,023 × 648 pixels 
Flight height 150 m 
Flight speed 4 m/s 

Source: Author’s production. 
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Figure 3.5- Photos showing the weather conditions of the flight days. 

 

Source: Author’s production. 

3.3.2 WorldView-2 data 

The cloud-free WV-2 scene (ID 103001005CAA7100) was acquired in August 

2016 with 28.2° off Nadir and 42.7° Sun Elevation. The images have eight 

multispectral bands and one panchromatic band (Table 3.6). The scene is 

classified as standard 2A, which means that the radiometric, sensor, and 

geometric corrections were already applied. 

Table 3.6- Spectral bands and spatial resolution of WorldView-2 data. 

Spectral band Wavelength (µm) Spatial resolution (m) 
Panchromatic 0.46–0.80 0.5 

Coastal 0.40–0.45 2 
Blue 0.45–0.51 2 

Green 0.51–0.58 2 
Yellow 0.59–0.63 2 

Red 0.63–0.69 2 
Red-edge 0.71–0.75 2 

Near Infrared 1 0.77–0.90 2 
Near Infrared 2 0.86–1.04 2 

Source: Author’s production. 

3.3.3 LiDAR data 

The LiDAR data were acquired by the company SAI Brasil, which performed a 

laser surveying in the study area using the Optech Model 3033 sensor in 2013, 

with a density of 1 point/m². The characteristics of the flight are shown in Table 

3.7. 
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Table 3.7- Characteristics of the flight and LiDAR data acquired over the study areas. 
Sensor Optech Model 3033 

Airborne Helicopter B2 Esquilo 
Flight height 1,000 m 
Flight speed 140 km/h 
Strip width 700 m 

Forward overlap 30° 
Points/m² 1 

Scanning angle 20° 
Source: Author’s production. 

3.4 Data preprocessing 

3.4.1 Hyperspectral data 

In this stage, digital numbers (DN) from the images were initially transformed 

into radiance values with photon units pixel−1 s−1. Afterwards, the dark signal 

correction was calculated using a black image collected just before the data 

capture with the lens covered. The software Hyperspectral Imager, provided by 

Senop Ltd., was used for this step. 

The next phase involved the geometric processing of the data using the Agisoft 

PhotoScan Professional software. Both the interior orientation parameters 

(IOPs) and the exterior orientation parameters (EOPs) were estimated using the 

so-called on-the-job calibration to reconstruct the camera geometry and the 

orientation of each band, which were refined based on the initial values. The 

initial values for the camera positions were determined by the GNSS receiver, 

comprising latitude, longitude, and altitude (flight height plus the average terrain 

height). The coordinates of six ground control points (GCPs) for Area 1 and 

three for Area 2 were added to the project and measured in the corresponding 

reference images (Figure 3.6). These points were previously located and 

surveyed in the field (signalized with lime mortar) on the same day of the flight 

and had their coordinates collected with a GNSS RTK Leica GS15. However, 

one point of Area 2 was discarded because it was situated at the border of the 

area and it did not appear in all the bands. After the bundle adjustment, the final 

errors of Area 1 in the GCPs (reprojection errors) were 0.03 pixels on the image 

and 0.003 m on the GCPs. At Area 2, the errors were 0.08 pixels on the image 

and 0.004 m on the GCPs.  
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Figure 3.6- Ground control points (GPPs) locations and an example of lime mark. 

 

Source: Author’s production. 

Next, the orthorectification was performed starting with the generation of a 

dense point cloud. The dense matching method was used to generate the 

Digital Surface Models (DSMs) with a GSD of 11 cm for Area 1 and 12 cm for 

Area 2. In the last stage, the orthomosaics of all bands were generated from the 

orthoimages of each hypercube band. This whole procedure was repeated for 

each of the 25 spectral bands of each area in order to coregister them regarding 

the slight positioning difference among bands of the same image, caused by the 

time sequential operating principle of the camera (HONKAVAARA et al., 2013; 

MIYOSHI et al., 2018b). Afterwards, the final discrepancies among the 

orthorectified image bands were measured using the GCPs and four 

independent points chosen in the images for Area 1, and the GCPs plus two 

independent points for Area 2. An error was verified in x and y of about 0.03 ± 

0.06 m among the bands of Area 1, and about 0.07 ± 0.08 m in Area 2, which 

was considered acceptable for the classification purpose in this study. 

The orthomosaics of all the bands were stacked to compose the VNIR dataset. 

The PPC of the band centered at the 565 nm wavelength and its DSM (Figure 

3.7), which is, in fact, an interpolated raster data, were exported to be used in 

further steps: generation of the PPC features and the canopy height model 

(CHM).  
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Figure 3.7- Dense photogrammetric point cloud (PPC) and digital surface model (DSM) 
of each area.  

 

Source: Author’s production. 

3.4.2 WorldView-2 data 

Initially, the WV-2 images were converted to radiance images, using the 

Radiometric Calibration tool of ENVI 5.3. Next, they were once again converted 

to surface reflectance using the Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH). In order to use this tool, it is necessary to enter 

some parameters of the scene and the sensor, such as: filter response 

functions (available at ENVI 5.3 for WV-2), central coordinates of the scene, 

terrain elevation, sensor altitude, pixel size, date and time of image acquisition, 

atmospheric model and aerosol model. 

After the atmospheric correction, the WV-2 multispectral bands were 

pansharpened with the WV-2 panchromatic band using the Gram-Schmidt 

method. This method was chosen because it does not improve nor decrease 

the classification accuracy (BRUZZONE et al., 2006), keeping a high degree of 

spectral similarity with the original multispectral bands, and it did not impose a 

limit on the number of input bands (ANJOS, 2016). Finally, the WV-2 scene was 
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orthorectified based on the rational polynomial coefficients, using parameters 

provided by the metadata and the Digital Terrain Model (DTM) extracted from 

LiDAR data (Section 3.4.3). 

3.4.3 LiDAR data 

The filter Adaptive Triangular Irregular Network (AXELSSON, 2000) was 

applied to the LiDAR point cloud using the LAStools software (ISENBURG, 

2018) to remove the outliers and to separate the ground from the non-ground 

points. To generate the DSM, the function las2dem of LAStools was applied. 

This function has a command called thin_with_grid which transforms the filtered 

points into a regular network with a user-defined spatial resolution. Due to the 

lower points density of LiDAR data, the DSM spatial resolution was set to 1 m. 

The same function was applied to generate the DTM, but in this case, only the 

points classified as ‘ground’ were interpolated (Figure 3.8).  

Figure 3.8- Digital terrain model (DTM) and digital surface model (DSM) generated 
from LiDAR data. 

 

Source: Author’s production. 
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3.5 Sample collection 

The samples used for the successional forest stages classification were defined 

based on field observations, UAV-RGB images with 4 cm spatial resolution and 

UAV-hyperspectral data with 11 cm spatial resolution. The samples correspond 

to segments resulting from the segmentation process described in Section 3.9, 

covering all the existing spectral variability in each class and input data (WV-2 

and hyperspectral). Because of the smaller proportion of areas with SS1 and 

SS2 classes, fewer samples of them were collected and they were also more 

spatially concentrated (Figure 3.9). Due to differences in spatial resolution and 

segmentation results, the number of pixel samples varied for the WV-2 and 

hyperspectral data (Table 3.8). 

Table 3.8- Number of samples collected for each forest successional stage according 
to the data for Area 1. 

Class WV-2 Hyperspectral 
Nº segments Nº pixels Nº segments Nº pixels 

SS1 40 9,426 45 196,131 
SS2 55 11,437 55 284,006 
SS3 98 24,779 120 485,855 

Source: Author’s production. 

Figure 3.9- Distribution of samples from forest successional stages over the Area 1 
according to the input data. 

 

Source: Author’s production. 

Only the ITCs visited and identified in the field work were used as samples for 

tree species classification (Figure 3.10). The number of ITCs manually 

https://www.mdpi.com/2072-4292/11/11/1338/htm#fig_body_display_remotesensing-11-01338-f002
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delineated and the corresponding number of pixels per class is shown in Table 

3.9 and its distribution in Figure 3.11. Eighty ITCs representing 14 tree species 

were selected and identified in Area 1, and 41 ITCs representing 11 tree 

species for Area 2. 

Figure 3.10- Tree species manually delineated as samples for both areas: UAV-RGB 
image with 4 cm spatial resolution and the corresponding crown in the 
hyperspectral images (used in this study). 

 

continue 

 

 

 

 

 

 

 

 

 

https://www.mdpi.com/2072-4292/11/11/1338/htm#table_body_display_remotesensing-11-01338-t001
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Figure 3.10- Conclusion 

 

Source: Author’s production. 

Table 3.9- Number of ITCs and pixels for each tree species used in the classification 
process. 

Area 1 Area 2 
Species ITC Nº pixels Species ITC Nº pixels 

Luehea divaricata 5 23,624 Luehea divaricata 4 15,259 

Araucaria angustifolia 8 27,191 Araucaria angustifolia 6 32,925 

Mimosa scabrella 7 25,449 Lithraea brasiliensis 8 13,553 

Lithraea brasiliensis 5 17,458 Campomanesia xanthocarpa 3 7,565 

Campomanesia xanthocarpa 5 18,837 Cedrela fissilis 2 12,910 

Cedrela fissilis 5 24,368 Erythrina falcata 2 3,663 

Cinnamodendron dinisii 5 6,927 Nectandra megapotamica 4 4,862 

Cupania vernalis 5 12,475 Ocotea sp. 3 12,991 

Matayba elaeagnoides 8 48,231 Podocarpus lambertii 4 21,391 

Nectandra megapotamica 8 11,247 Schinus terebethifolius 2 2,646 

Ocotea sp. 9 101,884 Sebastiania commersoniana 3 3,396 

Podocarpus lambertii 6 12,387    

Schinus terebethifolius (sp1) 2 4,491    
Schinus lentiscifolius (sp2) 2 6,083    

Total 80 340,652 Total 41 131,161 

 
Source: Author’s production. 
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Figure 3.11- Spatial distribution of the individual tree crown (ITC) samples over Area 1 
(A) and Area 2 (B). 

 

Source: Author’s production. 

3.6 Feature extraction  

This step consisted in the extraction of features from the data (hyperspectral, 

PPC, LiDAR and WV-2) to be used in the classification process. Six sets of 

features were considered: (i) VNIR: the VNIR bands of hyperspectral and WV-2 

data; (ii) MNF: minimum noise fraction components extracted from the 

hyperspectral and WV-2 data; (iii) GLCM: gray-level co-occurrence matrix 

textural features extracted from the hyperspectral and WV-2 data; (iv) VI: 

vegetation indices also extracted from hyperspectral and WV-2; (v) CHM: 

canopy height model, extracted from PPC and LiDAR data; and (vi) PPC: 

features extracted from the PPC. 

The MNFs were computed in ENVI 5.3 using all the VNIR bands of 

hyperspectral and WV-2 data. Based on eigenvalue stats of the output 

uncorrelated bands, the first eight MNF components of hyperspectral data and 

five components of WV-2 data were selected, which had the highest values. 

For texture information, the six GLCM features considered the most relevant for 

the analysis of remote sensing images were chosen: angular second moment 

(SM), contrast (con), variance (var), homogeneity (hom), correlation (cor), and 

entropy (ent) (LU et al., 2014) (Table 3.10). In addition to these six features, the 

dissimilarity (dis) and the textural mean (mean) were also computed because 
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previous studies conducted by Sothe et al. (2017b) showed that these two 

features were among the most important ones for identifying successional forest 

stages in a patch of Atlantic Rain Forest. The GLCM-based textural features 

were generated in ENVI 5.3, where it was necessary to define four parameters: 

window size, spectral bands, level of quantization, and the spatial component. 

The latter corresponds to the distance between the pixels and the angle 

(direction). The window size has an impact on the GLCM textural features 

performance for land use/ land cover classification. Small windows may amplify 

differences and increase the noise content in the texture image, while larger 

windows cannot effectively extract texture information due to the smoothing of 

the texture variation (LU et al., 2012; ATTARCHI; GLOAGUEN, 2014). 

Preliminary tests using the Jeffries–Matusita (JM) distance (RICHARDS; JIA, 

2006) indicated that the textural parameters extracted using a 5 × 5 window 

size, in the southwest direction and at the level of quantization of 64 bits were 

the most appropriate for separating the classes in both data. In order to select 

different regions of the spectrum and less correlated bands without greatly 

increasing the dataset, the textural metrics were calculated for three spectral 

bands corresponding to green, red and NIR regions of hyperspectral data (565, 

679, and 780 nm), and four bands corresponding to blue, green, red and NIR 

regions of WV-2 data (480, 550, 660 and 800 nm). 

Table 3.10- Texture features computed in this study for hyperspectral and WV-2 data. 
Texture feature Abbreviation Equation 
Angular second 

moment SM SM= ∑ {𝑝(𝑖, 𝑗)²}
𝑁−1

𝑖,𝑗=0
 

Contrast Con Con= ∑ 𝑝𝑖, 𝑗(𝑖 − 𝑗)²
𝑁−1

𝑖,𝑗−0
 

Variance Var Var=∑ (𝑖 − 𝜇)²𝑝(𝑖, 𝑗)
𝑁−1

𝑖,𝑗=0
 

Homogeneity 
Hom Hom= ∑ 𝑝𝑖,𝑗

1+(1−𝑗)2

𝑁

𝑖,𝑗=0
 

Correlation 
Cor Cor=∑ 𝑝𝑖. 𝑗 

[(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)]

√(𝜎2𝑖)(𝜎2𝑗)

𝑁

𝑖,𝑗=0
 

Entropy Ent Ent=∑ 𝑝𝑖, 𝑗(− ln 𝑝𝑖, 𝑗)
𝑁−1

𝑖,𝑗−0
 

Dissimilarity Dis Dis= ∑ 𝑝𝑖, 𝑗|1 − 𝑗|𝑁−1
𝑖,𝑗−0  

Textural mean Mean Mean= ∑ 𝑝𝑥𝑖𝑁
𝑖=1

𝑁
 

Note:  i is the row number; j is the the column number; pi,j is the normalized value in 
the cell i,j; N is the number of rows or columns. 

 Source: Author’s production. 
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Different VIs were computed using the ENVI 5.3 according to the specific 

wavelengths available in each data. For the hyperspectral data, besides the 

NDVI, the PRI, PSRI and PSSR were computed (Table 3.11). Due to the lower 

number of spectral bands in comparison with the hyperspectral data, and for 

being more influenced by the illumination angles, more VIs were computed for 

the WV-2 data. In this case, different band combinations were used to calculate 

NDVI and SR indices.  

Table 3.11- Vegetation indices extracted from hyperspectral (hyper) and WorldView-2 
(WV-2) data. 

Data Vegetation Index Equation Reference  

Hyper 

Normalized Difference Vegetation Index NDVI = 𝜌750−𝜌650

𝜌750+𝜌650
 Rouse et al. (1973) 

Photochemical Reflectance Index PRI = 𝜌535−𝜌565

𝜌535+𝜌565
 Gamon et al. 

(1992) 

Plant Senescence Reflectance Index  PSRI = 𝜌679−𝜌506

𝜌750
 Merzlyak et al. 

(1999) 
Pigment Specific Simple Ratio PSSR = 𝜌819

𝜌679
 Blackburn (1998) 

WV-2 

Simple Ratio SR(6,5)= 𝜌720

𝜌660
 

Birth and Macvey 
(1968) Simple Ratio SR(7,5)= 𝜌810

𝜌660
 

Simple Ratio SR(8,5)= 𝜌910

𝜌660
 

Normalized Difference Vegetation Index  NDVI(6,5) = 𝜌720−𝜌660

𝜌720+𝜌660
 

Rouse et al. (1973) 
Normalized Difference Vegetation Index NDVI(7,5) = 𝜌810−𝜌660

𝜌810+𝜌660
 

Normalized Difference Vegetation Index NDVI(8,5) = 𝜌910−𝜌660

𝜌910+𝜌660
 

Normalized Difference Vegetation Index NDVI(8,4) = 𝜌910−𝜌610

𝜌910+𝜌610
 

Green Normalized Difference Vegetation 
Index 

GNDVI(7,3) = 
𝜌810−550

𝜌810+𝜌550
 

Gitelson et al. 
(1996) 

Optimized Soil Adjusted Vegetation 
Index 

OSAVI= 𝜌810−𝜌660

𝜌810+𝜌660+ 0.16
 Rondeaux et al. 

(1996) 
Source: Author’s production. 

Two CHMs were computed in this study (Figure 3.12) using the raster calculator 

tool of QGIS (QGIS DEVELOPMENT TEAM, 2017). One of them was 

calculated by the subtraction between the DSM, derived from the PPC, and the 

DTM, derived from LiDAR data. The spatial resolution was 0.22 m for Area 1, 

and 0.24 m for Area 2. The second CHM was calculated with both DSM and 

DTM extracted from LiDAR data, called CHM-LiDAR. Due to the lower density 

of points of the LiDAR data, the CHM-LiDAR was calculated with 1 m of spatial 

resolution. The latter one was used only in association with the WV-2 data for 

the successional forest stages classification.  

https://www.mdpi.com/2072-4292/11/11/1338/htm#table_body_display_remotesensing-11-01338-t004
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-21702017000300389#B7
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-21702017000300389#B7
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Figure 3.12- Canopy height models (CHMs) used in this study. 

 

Source: Author’s production. 

The last set of features comprehends six elevation metrics (Table 3.12) 

extracted from the UAV-PPC. The features were computed using 

the lidR package (ROUSSEL et al., 2018) in the R program (R DEVELOPMENT 

TEAM, 2018). To compute these features, an area-based approach with 0.5 m 

spatial resolution was adopted, chosen to ensure that there were no missing 

values in the resulting data. It was verified that the features extracted from a 

normalized PPC did not bring significant information to the datasets, because 

the values were very close to those obtained using the CHM. In order to check 

which one would be used in this study, classification tests were conducted in 

both areas using features derived from the non-normalized PPC (raw PPC data) 

and features resulting from the normalized PPC, where there was a subtraction 

between the points elevation values and the corresponding DTM values 

conducted point-by-point, i.e. individually. For Area 1, the non-normalized PPC 

features greatly improved the accuracy of the classification results, while for 

Area 2 the results coming from both data sets, non-normalized and normalized 

PPC features, were very similar. This can be probably ascribed to the fact that 

https://www.mdpi.com/2072-4292/11/11/1338/htm#table_body_display_remotesensing-11-01338-t005
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the analyzed species in Area 1 present subtle variations in elevation 

(positioning in the terrain) and height, and such variations can be masked by 

the normalization procedure (Figures 3.7 and 3.8). Such assumptions may not 

hold for Area 2. Anyway, the non-normalized PPC features were kept in both 

cases for the sake of standardization. 

Table 3.12- Features extracted from the high density photogrammetric point clouds. 
PPC Feature Description 

zmax maximum height of all points within each pixel 
zmean mean of all height points within each pixel 
zq90 90th percentile of height distribution within each pixel 
zq70 70th percentile of height distribution within each pixel 
zq5 5th percentile of height distribution within each pixel 

zentropy entropy of height distribution within each pixel 
Source: Author’s production. 

3.7 Feature selection and variable importance 

In order to check the importance of each feature in tree species classification, 

the JM distance was considered because was widely used in such application 

(DALPONTE et al., 2012; 2013; 2015; FERREIRA, 2019; SOTHE et al., 2019a). 

The JM distance among the distributions of two classes ωi and ωj is as follows 

(Equation 3.1):  

JMij = {∫ [ √p(x|ωi)  − √p(x|ωj) 
x

]2 dx}1/2    (3.1) 

It can be rewritten according to the Bhattacharyya distance Bij (Equation 3.2): 

JMij = √2{1 − exp [−𝐵𝑖𝑗] }    (3.2) 

The JM has upper and lower bounds that vary between 0 and √2 (≈1.414), with 

higher values indicating the total separability of the class pairs in the bands being 

used (RICHARDS; JIA, 2006). Besides the feature importance, the JM distance 

was also used as a separability criterion of a search strategy for the FS process. In 

this situation, a wrapper method, the sequential forward floating selection (SFFS) 

algorithm (PUDIL et al., 1994) was adopted because it is considered a fast 

suboptimal search strategy (DALPONTE et al., 2013). It is characterized by the 

presence of both forward and backward selection steps at each iteration. This 

“floating” behavior allows one to reconsider the selected features at each step, 

reducing the possibility to stop in a local maximum of the separability measure 
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(DALPONTE et al., 2012; 2013). When associated with a search strategy, the JM 

distance tends to saturate when the optimal number of features is reached. After 

the saturation point, any feature added does not increase the class separability. In 

this study, the set of features that corresponds to the saturation point of the distance 

was selected. The process was conducted in the R program using the 

hyperspectral dataset composed by all the features (full dataset described in 

Section 3.8) and the ITC samples. 

To check the importance of the variables used in successional forest stages 

classification, the mean decrease in Gini index (MDG) was used. The MDG is a 

feature importance statistic produced by RF averaging Gini indices of the individual 

trees (BREIMAN, 2001). A higher MDG indicates higher variable importance, 

conversely, the least important variable will have the smallest MDG values 

(LOUPPE et al., 2013). The MDG was computed using the full dataset of 

hyperspectral and WV-2 data associated with the RF algorithm available in 

Waikato Environment Knowledge Analysis (WEKA) (HALL et al., 2009). Because 

the MDG only provides the importance value of each feature, not selecting a set of 

features, the selection was made performing a cross validation each time that one 

less important band was removed. If the accuracy started to decrease, no more 

features were removed. 

3.8 Dataset composition 

After the feature extraction and selection, different datasets were composed to 

perform the classifications of tree species and successional stages (Table 

3.13).  
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Table 3.13- Description of the datasets according to the features used in the 
classification process. Hyperspectral (Hyper) and WorldView-2 (WV-2) 
data. 

Data Dataset Name VNIR CHM PPC MNF GLCM VI Total 
features 

Hyper 

VNIR 25 - - - - - 25 
VNIR_CHM 25 1 - - - - 26 
VNIR_PPC 25 - 6 - - - 31 
VNIR_PPC_CHM 25 1 6 - - - 32 
VNIR_PPC_CHM_MNF 25 1 6 8 - - 40 
VNIR_PPC_CHM_GLCM 25 1 6 - 24 - 56 
VNIR_PPC_CHM_VI 25 1 6 - - 4 36 
VNIR_PPC_CHM_MNF_VI 25 1 6 8 - 4 44 
VNIR_MNF_GLCM_VI 25 - - 8 24 4 61 
MNF_PPC_CHM - 1 6 8 - - 15 
MNF_PPC_CHM_VI1 - 1 6 8 - 4 19 
MNF_CHM2 - 1 - 8 - - 09 
FSRF2 6 1 5 3 15 - 30 
FSJM-A11 18 1 6 7 10 4 46 
FSJM-A21 21 1 6 4 14 3 49 
full 25 1 6 8 24 4 68 

WV-2 

VNIR2 8 - - - - - 08 
VNIR_CHM- LiDAR2 8 1 - - - - 09 
VNIR_CHM-LiDAR_MNF2 8 1 - 5 - - 14 
VNIR_CHM- LiDAR_GLCM2 8 1 - 5 32 - 46 
VNIR_CHM- LiDAR_VI2 8 1 - - - 9 18 
VNIR_MNF_GLCM_VI2 8 - - 5 32 9 54 
MNF_CHM- LiDAR2 - 1 - 5 - - 06 
FSRF2 3 1 - - 6 5 15 
full2 8 1 - 5 32 9 55 

Note: 1Dataset only used in tree species classification; 2Dataset only used in 
successional forest stages classification; A1= Area 1; A2= Area 2; 
FSRF= Feature Selection Random Forest; FSJM= Feature Selection 
Jeffries-Matusita. 
Source: Author’s production. 

 

3.9 Segmentation and ITC delineation 

For the classification of the successional forest stages, the multiresolution 

region growing (MRG) segmentation available in eCognition was applied to both 

the hyperspectral and WV-2 data. Three spectral bands of each data and the 

CHM (CHM-LiDAR in the case of WV-2) were used as input data. Since this 

level of classification is less detailed comparing with ITC delineation, the 

segmentation parameters were empirically chosen using a trial-and-error 

approach (Table 3.14). 
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Table 3.14- Segmentation parameters of multiresolution region growing (MRG) 
algorithm used in successional forest stages classification. 

 Parameter Hyperspectral WV-2 

w_color 0.5 0.5 
w_shape 0.5 0.5 
w_compact  0.5 0.5 
w_smooth  0.5 0.5 
Scale 60 50 

Source: Author’s production. 

For the ITC delineation, more careful tests were conducted, and three 

segmentation methods were tested: the MRG segmentation; the itcIMG function 

of itcSegment package (DALPONTE et al., 2015); and a graph cut method 

named multiclass cut followed by recursive cut (MCRC), proposed by Lee et al. 

(2016; 2017). 

Three experiments were conducted using the MRG algorithm. For the first one, 

only three hyperspectral bands were used, two in the visible region (565 and 

679 nm) and one in the NIR region (780 nm). In the second experiment, besides 

the bands, the CHM was also considered in the segmentation process 

(MRG_CHM experiment). The segmentation parameters were optimized using 

the Segmentation Parameter Tuner (SPT) software (ACHANCCARAY et al., 

2014). Based on reference ITCs, an optimization function (in this case, 

Precision and Recall- P&R) (Figure 3.13) interacts with the segmentation 

algorithm to determine the optimal set of parameters. As an optimization 

method, a hybrid strategy was adopted (QUIRITA et al., 2016; SOTHE et al., 

2019c) in which, first, the Differential Evolution (STORN; PRICE, 1997) is 

applied to identify a promising initial solution, and then it is refined by the 

Nelder-Mead (NELDER; MEAD, 1965) function. The segmentation parameter 

tuning for the MRG algorithm was executed with 30 iterations and each of them 

was run three times in order to avoid a bias selection of a minimum local as 

seed point, and to ensure that the algorithm converges prior to that. The 

parameters automatically chosen were visually refined in the segmentation 

process executed in eCognition (Table 3.15).  

The third experiment with the MRG method consisted in refining the 

segmentation results by means of the JM distance (MRG_CHM_JM 
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experiment). This distance was used as a criterion to merge homogeneous 

segments based on their spectral separability (FERREIRA et al., 2014; 2016). 

The JM distance was computed using the mean of the pixels in each tested 

segment and estimated using all the VNIR bands. Two neighboring segments 

with a low JM distance may belong to the same class and therefore can be 

merged if the distance is below a pre-defined threshold. After a set of empirical 

tests, the combination of parameters for the segmentation algorithm that 

produced the best result was: minimum size of a region (T)=40 pixels; JM 

threshold=0.2. To avoid an excessive merging, a criterion in which each 

segment could be merged only one time was applied. The results were visually 

verified after each iteration. 

Figure 3.13- Illustration of the Precision and Recall (P&R) metric used as optimization 
function and one of the evaluation metrics. 

 

Source: Fredrich and Feitosa (2008). 

As for the second segmentation method, the itcIMG function of the itcSegment 

package was tested using the NIR band centered at 819 nm. The segmentation 

parameters of itcIMG were empirically defined (Table 3.15). 

 

 

 



54 
 

Table 3.15- Final parameters chosen for MRG and itcIMG segmentation methods. 
 Method  Parameter Area 1 Area 2 

MRG 

w_color 0.4 0.5 
w_shape 0.6 0.5 
w_compact  0.4 0.6 
w_smoot  0.6 0.4 
Scale 20 20 

itcIMG 

searchWinSize 25 25 
TRESHSeed 0.65 0.65 
TRESHCrown 0.3 0.35 
DIST 10 10 
th 0.2 0.1 

Source: Author’s production. 

The MCRC segmentation was conducted in Matlab (MATHWORKS, 1996) 

program using the code available at https://github.com/jl626/MCRC. First, priors 

were computed based on the CHM, using a local maxima function in QGIS 

software. These priors correspond to the highest values of CHM, which are 

usually associated with the top of the crowns. After that, the segmentation was 

driven using the raw PPC keeping the default parameters of the code. 

Besides the visual assessment, some metrics were used to evaluate the ITC 

delineation results. The metrics were computed in SPT based on 20 reference 

ITCs manually delineated in the images. Räsänen et al. (2013) state that 

different segmentations may stand out as being best when different metrics are 

used, because each metric may evaluate different aspects of the generated 

segments (e.g., area, shape). Thus, three different metrics were used for this 

task: a) P&R (PONT-TUSET; MARQUES, 2013); b) Area Fit Index (AFI) 

(LUCIEER; STEIN, 2002); and c) Segmentation Covering (C) (PONT-TUSET; 

MARQUES. 2013). Brief introductions to these methods are summarized on 

Table 3.16. 
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Table 3.16- Metrics used to evaluate the ITC delineation. 

Metric Equation Description 
P&R 

𝑃 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑅 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
  , 

𝑃&𝑅 =  1 −
2𝑃𝑅

𝑃 + 𝑅
 

Measures the trade-off between Precision and Recall 
considering segmentation as a classification process 
(Pont-Tuset and Marques 2013). Given a segment 
from the segmentation outcome S and its respective 
reference (or ground truth) segment 𝐺𝑇, four different 
regions can be defined: 
True positives (tp): correspond to the pixels that 
belong to both 𝑆 and 𝐺𝑇;  
False positives (fp): pixels that belong to S but not to 
GT. 
False negatives (fn): pixels that belong to GT but not 
to S. 
True negatives (tn): pixels that do not belong to S or 
GT. 
Range [0,1], where “P&R = 0” correspond to a perfect 
segmentation. 

AFI 

𝐴𝐹𝐼 =  
1

𝑁𝐺𝑇

∑
𝐴𝑘 −  𝐴𝑙. 𝑖.𝑘

𝐴𝑘

𝑁𝐺𝑇

𝑘=1

 
Addresses the polygon form, being 
over/undersegmentation evaluated by analyzing the 
overlapping area between segmentation and 
reference (Lucieer and Stein 2002). It is defined as 
the ratio between the area and the perimeter of a 
segment.  
𝐴𝑘 is the area, in pixels, of a reference segment 𝐶𝑘 in 
the 𝐺𝑇 image and 𝐴𝑙.𝑖.𝑘 is the area, in pixels, of the 
segment, in the segmentation outcome, with the 
largest intersection with the reference segment. 𝑁𝐺𝑇 is 
the number of segments in the 𝐺𝑇 image.  
“AFI = 0” indicates a perfect overlap. 

C 
𝒪(𝐶𝑖 , 𝐶𝑗) =  

|𝐶𝑖 ∩ 𝐶𝑗|

|𝐶𝑖 ∪ 𝐶𝑗|
, 

 
 

𝐶(𝑆 → 𝐺𝑇)

= 1 −
1

𝑁𝐺𝑇

∑ |𝐶𝑡|

𝐶𝑡∈𝐺𝑇

.

 
𝑚𝑎𝑥

𝐶𝑖 ∈ 𝑆    
𝒪(𝐶𝑖 , 𝐶𝑡) 

Measures the overlap between two segments, 𝐶𝑖 in a 
segmentation 𝑆 and 𝐶𝑗 in its 𝐺𝑇, where Σ𝑁𝐺𝑇 is the 
total number of pixels in the original image. The 
segmentation covering (C) only considers the 
segments with the maximum overlap between them. 
It matches each proposed segment to a true 
segment, with which the proposed segment has the 
largest overlapping ratio and computes the sum of 
such optimal overlapping ratios weighted by relative 
segment sizes. 
Range [0,1], and “C = 0” stands for a perfect 
segmentation. 

Source: Adapted from Gu et al. (2018) and Sothe et al. (2019c). 

3.10 Successional forest stages classification 

For the successional stages classification, the OBIA approach was executed 

using the image corresponding to the full datasets of WV-2 and hyperspectral 

data. From these datasets, the spectral means corresponding to each feature of 

the segments (generated in the segmentation step) were extracted. Then, the 

segments labeled in the samples collection were separated to compose the 

training datasets. These datasets were converted to Attribute-Relation File 
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Format (ARFF) and the classifications were performed in the software WEKA 

(HALL et al., 2009). The libSVM library was used for SVM, and the 

RandomForest library for RF algorithm. Different feature combinations were 

tested in these classifications, described in Table 3.13. 

The classification parameters were selected based on a 10-fold cross-

validation. The best result for each algorithm and dataset was applied to the full 

database to generate the maps and to evaluate the final results. Figure 3.14 

depicts the OBIA classification scheme used in successional forest stages 

classification. 

Figure 3.14- Methodological flowchart of successional forest stages classification using 
the OBIA approach. 

 

Source: Author’s production. 

3.11 Tree species classification 

Three machine learning (SVM, wSVM and RF) and one deep learning method 

(CNN) were tested. For the wSVM and CNN algorithms, only the pixel-based 

classification was conducted, while for the SVM and RF, three approaches were 

compared: a) the pixel-based classification, b) the pixel-based classification 

associated with the MV rule, and c) OBIA. Details on these experiments and 

adopted parameters are given below.  
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3.11.1 Machine learning methods 

At the pixel-based classification, all the hyperspectral datasets described in 

Table 3.13 were used in SVM and RF algorithms. For wSVM classifier, only the 

VNIR, VNIR_CHM_PPC and the best result of SVM for each area were tested.  

The pixel-based classifications using RF, SVM and wSVM were conducted in R 

program. The randomForest package (LIAW; WIENER, 2002) was used for RF 

classification, while the kernlab package (KARATZOGLOU et al., 2004) for SVM 

and wSVM. The algorithm parameters were defined based on a 5-fold cross 

validation process. 

For RF, the ntree parameter was set to 500 trees in all the experiments. 

Regarding the mtry parameter, the default value was kept, which corresponds 

to the square root of the total number of features used in each experiment 

(BREIMAN et al., 2001).  

For both SVM and wSVM, the one-against-one multiclass strategy and the RBF 

were adopted, due to its superiority in relation to the other functions has been 

demonstrated in several studies (HUANG et al., 2002; DURO et al., 2012). This 

function has two user-defined parameters that can affect the classification 

accuracy: cost (C) value used to fit the classification errors in the training data set 

(ADAM et al., 2014), and gamma (g). A high value of C may overfit the model to 

data, while the adjustment of the g parameter will have an influence on the shape 

of the separating hyperplane (LI; DU, 2015). Based on cross-validation, it was 

observed that by varying the value of C between 1, 10, 100 and 1000, the results 

did not change substantially. The value 100 for this parameter presented a slightly 

better accuracy and was adopted for all datasets, while the g value was set during 

the classification process with the function sigest of the kernlab. The same process 

was adopted for wSVM classification. However, in this case, different weights were 

applied for both: each class and each sample. The algorithms for the computation 

of the class and sample weights were implemented in R using clustering based on 

k-means (NGUYEN, 2019). 

For the MV rule approach, the class of each segment was assigned based on 

the majority class of its classified pixels. This process was conducted in the 
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TerraView software (INPE-DPI, 2018), using the resulting segments described 

in Section 3.5 associated with the best pixel-based classification results maps 

for each area. Figure 3.15 shows the methodological flowchart of tree species 

classification using the machine learning methods and the pixel-based 

classification and MV rule approaches. 

Figure 3.15- Methodological flowchart of tree species classification using machine 
learning methods (SVM, wSVM and RF), pixel and MV rule approaches. 
Example considering two species (sp1 and sp2). 

 

Source: Author’s production. 

Due the limited number of ITCs in Area 2, the OBIA approach was executed 

only in Area 1, using the image corresponding to the full dataset. From this 

image, spectral means of the segments belonging to the training ITCs were 

extracted to be used as training data. Since only few ITC samples are available, 

the use of one spectral mean per ITC would drastically reduce the training set. 

Thus, an oversegmentation result provided by the MRG algorithm was adopted, 

in which each ITC was represented by more than one homogeneous segment. 

The classification was conducted in the same way as the successional forest 

stages classification in WEKA, using RF and SVM algorithms (c.f. Section 3.10, 

Figure 3.14), but only the best dataset result according to a 5-fold cross 

validation was used for the final map and accuracy assessment. 

3.11.2 Deep learning method 

In this study, a CNN architecture was adopted and executed in a Python 

environment using Keras with TensorFlow backend (ABADI et al., 2015). The 

CNN architecture consisted of five convolutional layers, three pooling layers, a 

fully-connected layer and a classification layer (Figure 3.16). The number of 

kernels for each convolutional layer was 32, 32, 48, 48, 64, and 128 for the 
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fully-connected layer, with a learning rate of 10e-4. After every convolution 

operation and the fully-connected layer, a batch normalization, followed by a 

leaky rectified linear unit (Leaky ReLU) activation function, was applied. In 

terms of training time with gradient descent, the non-saturating activation 

function Leaky ReLU tends to be faster than other saturating activation 

functions (LI Y. et al., 2017). The Adam optimizer (KINGMA; BA, 2015) 

parameters were set to default values. To deal with overfitting, the network was 

trained using early stopping and dropout regularization of 0.35 after the fully-

connected layer and before the top layer. The last layer of the network 

(classification layer) is composed by the softmax activation function that 

performs a pixel-wise classification upon the learned representative features.  

Considering the requirement of CNN regarding the high-dimensional number of 

training samples (PASUPA; SUNHEM, 2016) and aiming to balance the samples 

set, a data augmentation process using flip and rotation operations was applied to 

increase the number of training samples for the less representative classes. 

According to Yu et al. (2017), these operations preserve the scene topologies in 

remote sensing data, which is especially important for consistent classifications, 

but enhance the intra-class data diversity. To this end, the samples were replicated 

as the feature space was rotated and flipped in different directions until an amount 

of 15,000 pixels per class was reached. The few classes with training samples 

exceeding 15,000 pixels, however, were downsampled. The total number of CNN 

parameters varied according to the dataset: 186,896 (VNIR dataset), 194,372 

(VNIR_CHM dataset) and 239,227 (VNIR_CHM_PPC dataset). 

In the inference step, the trained network was applied over the image to 

generate the classifications. To that, the CNN classifier was applied to 

overlapping image patches to predict the class of their central pixel using a 

sliding window technique with stride 1. Next, each query was spatially 

concatenated to obtain a classification at the same resolution of the input 

image. The evaluated network was designed to receive a patch of 33x33 pixels 

(which was defined after testing different patch sizes) and to output a 

probabilistic vector of size equal to the number of classes, where the index 

location of the highest value indicates the most probable class.  



60 
 

Because the CNN computes its features employing the user-defined window 

size, it was necessary to include a ‘background’ class. This procedure avoids 

classification errors caused by the influence of pixels related to disregarded 

classes, such as ground and black areas corresponding to the borders of the 

images. However, it is important to note that pixels classified as ‘background’ 

were not considered in the confusion matrices. Figure 3.17 depicts the 

methodological flowchart of tree species classification using the CNN method. 

Figure 3.16- CNN architecture for Area 1 with 25 bands and 15 classes (14 tree 
species plus ‘background’ class).  

 

Source: Author’s production. 

Figure 3.17- Methodological flowchart of tree species classification using the CNN 
method. 

 

Source: Author’s production. 

3.12  Accuracy assessment and classification maps 

To evaluate the classification results, the confusion matrices were generated 

based on a cross-check between the classified results and the test samples. In 

this case, the test samples of the successional forest stages correspond to 
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independent sets of random points generated for each classification result in a 

two-stage process. Initially, irregular polygons not including the training samples 

were manually delimited for each class directly in the images of both sensors, 

based on field observations and very high spatial resolution images as ancillary 

data. In a second stage, inside each of these polygons, a stratified random 

sampling was conducted, where 200 and 400 pixels for SS1, and 200 and 400 

pixels for SS2 were selected in the WV-2 and hyperspectral data, respectively. 

Due to the greater representativeness of SS3, 500 and 1,000 pixels were 

selected for this class in the WV-2 and hyperspectral data, respectively. More 

pixels were selected for the hyperspectral data due to their higher spatial 

resolution (smaller pixel size). The random selection procedure was repeated for 

each classification to maintain the independence among the test sets. The test 

samples of tree species correspond to 50% of ITCs not used in the training or 

validation steps. In this way, the ITC identity was kept, the classifier had no 

contact with the test samples during the training step and the evaluation was able 

to provide an unbiased sense of model effectiveness (RUSSEL; NORVIG, 2009). 

From the confusion matrices, different agreement indices were calculated: (a) 

overall accuracy (OA); (b) precision (i. e. producer’s accuracy), (c) recall (i. e. 

user’s accuracies); (d) F-measure and; (e) Kappa index. The OA was calculated 

as the total number of correctly classified samples divided by the total number 

of samples. The Kappa index measures the agreement of prediction with the 

true class. This metric compares an observed accuracy with an expected 

accuracy, considering the random chance of classifying correctly (COHEN, 

1960). Precision is the proportion of the samples that truly belong to a specific 

class among all those classified as that class, while recall is the proportion of 

samples which were classified to a specific class among all samples that truly 

belong to that class (NEVALAINEN et al., 2017).  

In tree species classification, for a given class, differences in precision and 

recall accuracy indicate if the species is more or less abundant in test data 

predictions relative to its true abundance. High precision values relative to recall 

(alternatively low commission error and high omission error) means that the 

model was careful when predicting the species, but in doing so, there were 
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many individuals of that species that were not predicted. Ultimately, the species 

is underpredicted or had fewer individuals of that species than the ones actually 

existing in reality. Lower precision values relative to recall (high commission 

error and low omission error) means that the model was able to include all the 

individuals which belong to that species, but it also included individuals of other 

classes. Lastly, the species is overpredicted or included more individuals of that 

species than the ones actually existing in reality. Evaluating the relative 

magnitude of precision and recall for a given class is useful when the 

application of the classification is to determine relative abundances of species 

(GRAVES et al., 2016). Finally, the F-measure is a harmonic mean of precision 

and recall and was calculated to measure the performance at the class level 

(Equation 3.3): 

𝐹 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
    (3.3) 

F-measure increases with higher precision and recall and/or greater similarity 

between precision and recall. While the F-measure does indicate the similarity 

of precision and recall measurements (more similarity implies a higher F-

measure), it does not indicate which metric is larger or smaller.  

The z test was applied to the Kappa indices of all classifications with a 

significance level of 5%, i.e., a confidence interval of 95%. The value of the 

normal distribution of z is obtained by the ratio of the difference between two 

given Kappa indices to the difference between their respective variances 

(SKIDMORE, 1999). If z > 1.96, the test is significant, and the null hypothesis is 

rejected, leading us to conclude that there exists a significant difference 

between the obtained results. 

All the classification maps of the successional forest stages were generated, 

and the non-forest areas were removed by a CHM mask, considering pixel 

values below 0.5 m and a spectral mean of NDVI<0.2. These thresholds were 

visually chosen because they separated forest from non-forest areas, including 

few buildings existing in Area 1. On the other hand, mapping of tree species 

were restricted to the sample locations, since the production of species maps in 

tropical ecosystems is puzzling, as hundreds of species compose the canopy 
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and a large degree of uncertainty is obtained when classifying all the image 

pixels (FÉRET; ASNER, 2013; FERREIRA et al., 2016). For the visualization of 

correctly classified ITCs, the raster calculator of QGIS was used. When the 

raster with the sample ITC species was equal to the classified species, the 

sample locations were classified accordingly. Otherwise, a zero value was 

assigned. This procedure aimed to evaluate the potential of each method to 

correctly label the pixels within the ITCs when considering all the samples 

(training and test sets). A probability approach has not been used in this case, 

as reported by Ferreira et al. (2016), because in some cases it was verified that 

even correctly classified ITCs presented low probability.  

As a final step, even aware of the uncertainties in expanding the tree species 

classification over the entire area, the maps of the two best classification results 

of each area were made to analyze the representativeness and abundance of 

each species, and to evaluate if two different classifiers present some 

agreement in classification. In this case, the non-forest areas were removed by 

a CHM mask, considering pixel values below 2 m. Expanding the classification, 

the species that were not included in this study were misclassified, but they 

were not included in the confusion matrices reckoning. 
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4 RESULTS 

4.1 Successional forest stages mapping 

4.1.1 Feature selection and variable importance 

Figure 4.1 shows the importance values of the most important variables for 

successional forest stages classification according to the data. When 

hyperspectral data were used, the most important features were four textural 

metrics extracted from the band centered at 780 nm (ent, SM, var and con – 

Table 3.10), followed by the CHM. The VNIR bands centered at the green 

region (580, 591 and 609 nm) stand out from the other spectral bands, while the 

sixth and eight MNFs were more important than the first ones. Regarding the 

PPC features, only the zmax presented a higher importance value compared to 

other features. 

For WV-2, the CHM was the most important feature, followed by two textural 

metrics of the NIR band (SM and dis) and two VIs (NDVI65 and GNDVI73). The 

NIR bands centered at 810 and 910 nm were more important compared to other 

bands. In these data, the VIs presented higher values than the hyperspectral 

data.  

In the FSRF dataset, 15 features of WV-2 and 30 of the hyperspectral data 

were selected (Figure 4.1). The feature selected from the WV-2 data comprised 

three VNIR bands, the CHM, six texture features and five VIs. From the 

hyperspectral data, six VNIR bands, the CHM, five PPC features, three MNF 

and 15 texture features were selected. 
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Figure 4.1- MDG values reported as the Gini index of the feature selected for the forest 
successional stages classification according to the data. 

 

Source: Author’s production. 

In order to check the spectral separability among the classes, reflectance (WV-2 

data) and radiance (hyperspectral data) curves of the three successional stages 

were generated considering the mean spectral response and the standard 

deviation of the training samples (Figure 4.2). It can be observed that in the 

visible region (480–660 nm) the successional stages present similar reflectance 

values, while in the NIR region (700–900 nm) the stages tend to be more 

separable from each other. In the NIR range of both data, the SS2 presented 

relatively higher radiance values than the other stages, followed by the SS1 in 

the hyperspectral data and the SS3 in the WV-2 data. 

The use of hyperspectral data allowed the construction of more detailed 

spectral curves in comparison with multispectral data. For instance, it can be 

noticed that the curves presented a slight decrease at the 775 nm region that 

does not appear in the WV-2 data.  
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Figure 4.2- Mean reflectance (with standard deviation) of successional forest stages 
samples according to the data. A) Hyperspectral data; B) WV-2 data. 

 

Source: Author’s production. 

The CHM was considered one of the most important features in both data. In 

Figure 4.3, it can be observed that it clearly discriminates the successional 

stages classes. As expected, the SS3 presented higher height values, followed 

by the SS2 and SS1 classes. In the case of the WV-2 data, when the CHM using 

both DTM and DSM from LiDAR data was employed, more overlap between the 

SS2 and SS1 was observed, which can be due to the lower points density that 

generated the DSM in comparison with the DSM-PPC. 
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Figure 4.3- Boxplots showing the distribution of CHM values of the successional stages 
samples used in each data. The central lines within each box are the 
medians. The box edges represent the upper and lower quartiles. 
Outliers are plotted individually. 

 

Source: Author’s production. 

 

4.1.2 Classification results 

Figure 4.4 shows the classification results according to the dataset and 

classifier for the WV-2 and the hyperspectral data. The best general result was 

achieved with the RF classifier associated with the VNIR_CHM_MNF dataset of 

the hyperspectral data (99.28% of OA and 0.99 of Kappa), similar to the 

VNIR_CHM dataset performance that reached 99% of OA. The worst result 

using the hyperspectral data was achieved with the VNIR dataset and the RF 

classifier, with 84.28% of OA and Kappa of 0.75. For the WV-2, the best result 

was achieved using the RF classifier and the FSRF dataset (OA of 91.22% and 

Kappa of 0.85). Similarly to the hyperspectral data, the WV-2 data had the worst 

accuracy when only the VNIR dataset was employed, 73.44% of OA and 0.57 of 

Kappa, but in this case using the SVM classifier. Globally, the OAs were higher 

than 80% and 90% when the WV-2 and the hyperspectral data were 

respectively employed. 
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Figure 4.4- Kappa and overall accuracy (OA) of successional forest stages 
classification for each classifier/dataset according to the data used. 

 

Source: Author’s production. 

The incorporation of the CHM-LiDAR to the WV-2 VNIR dataset led to a marked 

increase of 17.34% and 9% in OA when the SVM and RF were respectively 

employed. When the CHM was added to the VNIR dataset of the hyperspectral 

data, an increase of 3.17% and 14.72% for each classifier (SVM and RF) was 

observed. The incorporation of the PPC features to the VNIR dataset of the 

hyperspectral data led to a smaller increase in comparison with the addition of 

the CHM, 1.39% and 8.45% for SVM and RF classifiers, respectively. When the 

CHM and the PPC features were applied together with the VNIR bands of the 

hyperspectral data, the accuracy increased up to 6.34% and 11% for the SVM 

and RF in relation to the VNIR dataset. The inclusion of other features, such as 

GLCM, MNF and VIs, to the VNIR dataset also led to a significant increase in 

comparison with the VNIR dataset for both data. For WV-2, the increase was 

about 5% to 13% when the RF and SVM were respectively employed, while for 

the hyperspectral data, these values reached 9% and 5%. 
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Figure 4.5 shows the F-measure of each successional stage class. Using the 

hyperspectral data, except for the VNIR dataset, all the classes presented F-

measures higher than 0.85. The SS1 and SS3 classes reached F-measures 

equal to 1 in some datasets. When the WV-2 data were employed, an F-

measure higher than 0.75 for all classes in most datasets was reached. In these 

data, the SS3 reached a better accuracy than the other two stages, with an F-

measure higher than 0.9 in most cases. This can be explained by the fact that in 

these data the CHM presented some overlap between SS1 and SS2 as shown in 

Figure 4.3. 

Figure 4.5- F-measure of successional stages classes according to the data and 
classifier. The black bars indicate the minimum and maximum values 
varying according to the dataset. 

 

Source: Author’s production. 

In the confusion matrices (Appendix A), it can be observed a higher confusion 

occurred in the SS2 stage. It was somehow expected, since this stage presents 

characteristics of both SS1 and SS3 stages. When the WV-2 data were 

employed, more confusion occurred between SS1 and SS2 stages, while for the 

hyperspectral data, the highest confusion was between the SS2 and SS3 stages. 
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4.1.3 Classification maps 

Figure 4.6 shows the classification maps using the hyperspectral and the WV-2 

data and different datasets. In general, the classification results agreed with the 

sampled classes (Figure 4.6 A and 4.7 A). It can be observed that when only 

the VNIR bands were used, more SS3 segments were wrongly classified as SS1 

or SS2 stages in both data (WV-2 and hyperspectral). In this case, the 

incorporation of height information of the CHM provided a better discrimination 

of this stage (Figure 4.6, C-D and 4.7, C-D).  

Figure 4.6- Classification maps using the hyperspectral data. A) Hyperspectral image 
(R14G23B4 composition) with the sample locations; B) SVM classifier 
associated with the VNIR dataset; C) SVM classifier associated with the 
VNIR_CHM_PPC dataset; D) RF classifier associated with the 
VNIR_CHM_MNF. 

 

Source: Author’s production. 
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Figure 4.7- Classification maps using the WV-2 data. A) WV-2 image (R3G8B5 
composition) with the sample locations; B) SVM classifier associated 
with the VNIR dataset; C) SVM classifier associated with the VNIR_CHM 
dataset; D) RF classifier associated with the FSRF dataset. 

 

Source: Author’s production. 

One visible difference in the classification maps that did not appear in the 

confusion matrices concerns two clearings existing in the area (rounded shape), 

and one deforestation trail (linear shape) (Figure 4.8). These regions were 

classified as SS1 or SS2 in the classification maps generated by the best result 

of each input data (Figure 4.8, A-B), which is somehow expected, because they 

have shorter vegetation when comparing with its surroundings. On the other 

hand, parts of them were wrongly classified as SS3 when using the VNIR 

dataset (Figures 4.6 and 4.7, B). 
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Figure 4.8- Clearing areas highlighted in the hyperspectral data. A) Best classification 
result using the hyperspectral data (RF with VNIR_CHM_MNF dataset); 
B) Best classification result using the WV-2 data (RF with FSRF 
dataset). 

 

Source: Author’s production. 

4.2 Tree species mapping 

4.2.1 Individual tree crown delineation 

The three methods tested for ITC delineation provided different results. Even 

with the parameter optimization, the MRG algorithm resulted in an 

oversegmentation for most of the crowns in both areas (Figure 4.9 and 4.10). 

The MCRC method (only applied to Area 1) tended to group more than one ITC, 

even different species, into the same segment (Figure 4.9, C), while the itcIMG 

missed some ITCs, mainly in Area 2 (Figure 4.10, B).  
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Figure 4.9- Example of segmentation results for Area 1: A) and a) MRG_CHM result; 
B) and b) itcIMG result; C) and c) MCRC result. 

 

Source: Author’s production. 

Figure 4.10 – Example of segmentation results for Area 2. A) MRG result; B) itcIMG 
result. 

 

Source: Author’s production. 
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The segmentation results according to the evaluation metrics are presented in 

Table 4.1. Except for MRG and MCRC experiments in Area 1, the metric values 

of P&R were relatively low, demonstrating that the segmentation results had a 

good balance between over and undersegmentation. The closer the value is to 

zero, the better the spatial match between reference and the resulting 

segments, and thus the larger the overlapping area between them (EISANK et 

al., 2014). For all methods in both areas, AFI presented a value higher than 0, 

suggesting that the reference polygons are usually larger in size compared with 

the references (GU et al., 2018).  

Despite its oversegmentation, the MRG had in general a good performance in 

capturing the edges of the ITCs (Figure 4.11, A). The inclusion of the CHM in 

the MRG method reduced the excessive number of segments, bringing some 

improvement in delineation. After the MRG_CHM has been refined by the JM 

distance (MRG_CHM_JM), a better delineation was reached (Figure 4.11, B), 

with some ITCs represented by only one segment. The visual evaluation 

corroborates the metric values, since the P&R values reduced from 0.29 to 

0.15, the AFI values reduced from 0.58 to 0.45, and the C values from 0.74 to 

0.62 with the MRG_CHM_JM experiment. This result indicates that besides 

reducing the oversegmentation, the definition of the edges from the crowns was 

also improved according to the C metric. The itcIMG method also achieved a 

good result in Area 1 according to the evaluation metrics (Figure 4.9, B). The 

AFI values suggested an oversegmentation when using the MCRC, which 

occurred for some ITCs (Figure 4.9, C). This method was not suitable to capture 

the edges of the ITCs, missing some trees and involving different species in the 

same segment, which can be due to the use of the PPC instead of an optical 

image. The MRG results for Area 2 were similar to those obtained for Area 1, 

while the itcIMG results missed some ITCs in that area, what can be observed 

in Figure 4.10 (B). 
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Table 4.1- Evaluation metrics for each segmentation result according to the study area. 
 Area 1 Area 2 

 Metric MRG MRG_CHM 
MRG 

CHM_JM itcIMG MCRC MRG 
MRG 
CHM itcIMG 

P&R 0.29 0.17 0.15 0.15 0.57 0.19 0.17 0.22 
AFI 0.58 0.45 0.45 0.43 0.77 0.45 0.55 0.46 
C 0.74 0.62 0.62 0.62 0.91 0.69 0.41 0.74 

Source: Author’s production. 

Figure 4.11- Details of segmentation results in Area 1 with reference ITCs highlighted 
in red color. (A) Reference and the MRG segmentation result; (B) 
Reference and the MRG_CHM result refined by the JM distance. 

 

Source: Author’s production. 

4.2.2 Feature selection and variable importance 

Figure 4.12 shows the importance of each feature according to the JM distance. 

The elevation metrics extracted from the PPC and the CHM were the most 

important features to discriminate the tree species classes of both areas. Other 

important features for Area 1 were two VIs (PSSR and NDVI), the GLCM 

texture mean of the band centered at 679 nm, and the second and the third 

MNF output bands. In this area, all the VNIR spectral bands showed similar JM 

values, except for a slight increase in the red region.  

For Area 2, besides the CHM and PPC features, the first and second MNF 

together with the GLCM texture mean of the bands centered at 679 and 780 nm 

were regarded as the most important ones. The bands located in the NIR region 

were slightly more important than the visible bands for this area, while the VIs 

were less important as compared with Area 1. For Area 2, all the features 

presented a lower JM value than Area 1, what probably impacted the 

classification accuracies (c.f. Section 4.2.3). 
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Figure 4.12- Variable importance according to JM distance for each area. 

 
Source: Author’s production. 

Figures 4.13 and 4.14 show the spectral profile (and standard deviation) of each 

class separately and together, respectively. It can be observed that in the region 

corresponding to the visible range (506–700 nm), the difference in radiance 

values of the tree species is limited. Araucaria angustifolia had the lowest 

radiance values in the entire spectrum for both areas. The discrimination among 

the tree species seems to be more pronounced in the NIR range (700–819 nm). 

However, even in this region, some groups of species are hardly discernible, 

mainly for Area 1, such as: Araucaria angustifolia, Campomanesia xanthocarpa 

and Schinus sp1; Podocarpus lambertii, Mimosa scabrella and Ocotea sp.; and 

Cinnamodendron dinisii and Schinus sp2. For Area 2, three species are clearly 

distinguishable in this region: Araucaria angustifolia, Sebastiania 

commersoniana and Schinus sp1, what explains the higher JM values in the 

NIR region for this area.  

 

 

 

 

 

 

 

https://www.mdpi.com/2072-4292/9/8/838/htm#fig_body_display_remotesensing-09-00838-f005
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Figure 4.13- Mean reflectance (with standard deviation) of tree species classified in this 
study. 

 

Source: Author’s production. 

Figure 4.14- Spectral profile mean of all tree species for Area 1 (A) and Area 2 (B). 

 

Source: Author’s production. 

Figure 4.15 shows the distribution of two PPC features (zmax and zq5) and the 

CHM values extracted from the samples of each class. It can be noticed that the 

CHM clearly separates some tree species classes. Campomanesia 
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xanthocarpa presented lower height values in both study areas. Besides this 

species, Mimosa scabrella, Luehea divaricata and Lithraea brasiliensis can be 

discriminated from other species due to their lower heights in Area 1 (Figure 

4.15, B). In Area 2, even more species can be differentiated with the CHM, what 

justifies the higher importance value assigned to this feature in this area (Figure 

4.15, D).  

It can be observed in Figure 4.15 (A) that the PPC features discriminate some 

classes that were not separated with the CHM in Area 1, such as both Schinus 

classes, Campomanesia xanthocarpa, Lithraea brasiliensis, Luehea divaricata, 

and Ocotea sp. On the other hand, in Area 2 (Figure 4.15, C), with the 

exception of Ocotea sp. and Sebastiania commersoniana, other species 

presented great overlaps in PPC values, which accounts for the smaller 

increase in accuracy when these features were employed (c. f. Section 4.2.3). 
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Figure 4.15- Boxplots showing the distribution of the PPC and the CHM values of the 
tree species samples in Area 1 (A, B) and Area 2 (C, D). The central 
lines within each box are the medians. The boxes edges represent the 
upper and lower quartiles. Outliers are plotted individually. 

 

 
Source: Author’s production. 

In the FS using the SFFS method associated with the JM distance, 46 features 

were selected for Area 1, comprising all the groups of generated features: 18 of 

the 25 VNIR bands corresponding to different regions of the spectrum, all the 

PPC features, the CHM, 7 MNFs, 10 textural features and all the VIs. For Area 

2, 49 features were selected: 21 VNIR bands, all the PPC features, the CHM, 4 

MNFs, 3 VIs and 14 textural features. 
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4.2.3 Classification results 

4.2.3.1 Overall results  

The classification results employing different datasets, classifiers and 

approaches are presented in Table 4.2 and summarized in Table 4.3, while the 

best results are showed in Figure 4.16. 

Table 4.2- Classification results according to the area/classifier/dataset/approach. Best 
result for each classifier/approach is highlighted. 1Best results for each 
area that does not significantly differ among themselves. 

Classifier Dataset Area 1 Area 2 
OA (%) Kappa  OA (%) Kappa  

SVM 

VNIR 62.67 0.57 48.91 0.41 
VNIR_CHM 67.90 0.63 63.93 0.58 
VNIR_PPC 68.61 0.64 51.50 0.44 
VNIR_CHM_PPC 76.04 0.73 63.10 0.57 
VNIR_CHM_PPC_MNF 76.55 0.73 62.35 0.57 
VNIR_CHM_PPC_GLCM 74.56 0.71 61.98 0.56 
VNIR_CHM_PPC_VI 77.66 0.74 62.94 0.57 
VNIR_CHM_PPC_MNF_VI 77.10 0.74 62.25 0.56 
VNIR_MNF_GLCM_VI 61.91 0.56 47.34 0.39 
MNF_CHM_PPC 68.97 0.64 56.47 0.50 
MNF_CHM_PPC_VI 73.60 0.70 59.06 0.53 
FSJM 74.68 0.71 57.66 0.52 
full 72.59 0.68 61.90 0.56 
MV best SVM result for each area* 82.52 0.801 75.47 0.721 
OBIA (VNIR_CHM_PPC_VI) 73.52 0.69 - - 

RF 

VNIR 59.24 0.52 48.60 0.40 
VNIR_CHM 66.06 0.60 66.02 0.61 
VNIR_PPC 51.46 0.44 63.43 0.58 
VNIR_CHM_PPC 55.91 0.50 65.45 0.60 
VNIR_CHM_PPC_MNF 57.54 0.52 65.94 0.60 
VNIR_CHM_PPC_GLCM 56.60 0.50 66.51 0.61 
VNIR_CHM_PPC_VI 55.59 0.49 65.61 0.60 
VNIR_CHM_PPC_MNF_VI 56.71 0.51 66.21 0.61 
VNIR_MNF_GLCM_VI 59.17 0.52 48.97 0.40 
MNF_CHM_PPC 52.72 0.46 61.72 0.56 
MNF_CHM_PPC_VI 53.82 0.47 63.28 0.57 
FSJM 56.32 0.50 52.08 0.46 
full 57.74 0.52 67.37 0.62 
OBIA(VNIR_CHM_PPC_VI_MNF) 68.00 0.63 - - 

continue 
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Table 4.2- Conclusion. 

Classifier Dataset 
Area 1 Area 2 

OA (%) Kappa  OA (%) Kappa  

wSVM 
VNIR 56.42 0.51 48.98 0.42 
VNIR_CHM_PPC 74.37 0.71 65.15 0.60 
best SVM result for each area* 75.03 0.72 65.60 0.60 

CNN 
VNIR 84.37 0.821 74.95 0.711 
VNIR_CHM 79.19 0.76 73.12 0.69 
VNIR_CHM_PPC 77.17 0.74 70.36 0.65 

*Majority Vote (MV) rule and wSVM classifier applied to VNIR_CHM_PPC_VI dataset 
in Area 1 and VNIR_CHM dataset in Area 2. 
Source: Author’s production. 
 
Table 4.3- Summary of classifiers, approaches, datasets and accuracies related to tree 

species classification in both areas. Refer to Table 3.13 for a full 
description of features that compose the datasets. 

 

Classifier Approach 
Area 1 Area 2 

Number of 
datasets 

Accuracy 
(%) 

Number of 
datasets 

Accuracy 
(%) 

SVM pixel 13 63-78 13 49-64 
 OBIA 1 74 - - 
 MV rule 1 83 1 75 

RF pixel 13 53-66 13 49-67 
 OBIA 1 68 - - 
 MV rule 1 - 1 75 

wSVM pixel 3 56-75 3 49-65 
CNN pixel 3 77-84 3 70-75 

Source: Author’s production. 
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Figure 4.16- Summary of the best results reached by each classifier/dataset/approach 
according to the study area. 

 

Source: Author’s production. 

For Area 1, the best general result was achieved by the CNN classifier 

associated with the VNIR dataset (OA 84.37% and Kappa 0.82). The second 

best result for this area was reached when the MV rule approach was applied to 

the SVM classification associated with the VNIR_CHM_PPC_VI dataset (OA 

82.52% and Kappa 0.80). For Area 2, the opposite occurred: the best general 

result was achieved after the MV approach was applied to the SVM 

classification using the VNIR_CHM dataset (OA 75.47% and Kappa 0.72), while 

the second best result was reached by the CNN algorithm associated with the 

VNIR dataset (OA of 74.95% and Kappa of 0.71).  

When the pixel-based approaches were compared, the CNN classifier reached 

the best results for both areas. The SVM classifier had a significant superior 

performance than the RF in Area 1. On the other hand, it was slightly below to 

the RF in Area 2. The OBIA approach (applied only to Area 1) using the SVM 

algorithm presented a lower accuracy comparing with the SVM adopting a pixel-

based classification. In its turn, the RF classifier had a slight increase in OA with 

OBIA when compared with the pixel-based RF classification. The wSVM had a 

superior performance than the conventional SVM only in Area 2.  



83 
 

Figure 4.17 illustrates the increase (or decrease) in OA when different features 

were added, and different approaches were employed for the SVM and RF 

methods related to the classifications using only the VNIR dataset and the pixel-

based approach. It is possible to notice that the performance of the classifiers 

varied according to the dataset and study area. Except for the RF applied to 

Area 1, the inclusion of the CHM and PPC features led to an increase between 

13% and 17% in relation to the VNIR dataset. For Area 1, the SVM associated 

with the VNIR_CHM_PPC_VI dataset reached the best result, with an increase 

of 15% in relation to the VNIR dataset. The same increase (15%) was observed 

for the SVM in Area 2 in relation to the VNIR dataset when the VNIR_CHM and 

VNIR_CHM_PPC datasets were employed. 

For the RF classifier in Area 1, the best result was achieved using the 

VNIR_CHM, with an increase of 7% in OA compared to the VNIR dataset. 

When the OBIA approach was employed, the increase in relation to pixel-based 

classification using the VNIR dataset was about 9%, 2% more than the pixel-

based approach. In Area 2, the full dataset allowed an increase of 19% in 

relation to the VNIR dataset. The inclusion of other hyperspectral features (i.e. 

VI, MNF and GLCM) to the VNIR dataset did not significantly change the results 

in both areas for neither the RF nor SVM classifiers.  

When the best pixel-based classification result of the SVM algorithm was 

aggregated into segments using the MV rule, a marked increase of 20% and 

27% was observed in relation to the VNIR dataset results for Areas 1 and 2, 

respectively. Comparing the MV and the pixel-based classification using the 

same dataset (VNIR_CHM_PPC_VI for Area 1, and VNIR_CHM for Area 2), the 

increase was nearly 5% and up to 11%, respectively. Contrary to machine 

learning classifiers, the addition of the CHM and PPC features to the VNIR 

dataset led to a decrease of approximately 7% and 4.5% in OA of both areas 

when the CNN classifier was employed. 

 

 



84 
 

Figure 4.17- Differences in overall accuracy with the inclusion of features and 
approaches in relation to VNIR dataset, SVM and RF classifiers.  

 

Source: Author’s production. 

4.2.3.2 Tree species classification accuracies in Area 1 

Figure 4.18 shows the average F-measure of each tree species and classifier in 

Area 1. The black bars indicate the minimum and maximum F-values, which 

varied according to the dataset used by each classifier. As expected, the tree 

species were not equally classified, and some of them presented more 

variability in the F-measure values when different datasets/classifiers were 

employed. Regarding the classifiers, it can be observed that the RF presented 

higher variability in the F-measure results for most species as compared to 

other classifiers. Generally, classes with fewer samples presented more 

variability in accuracy, such as Cinnamodendron dinisii and both Schinus 

classes. In the case of the CNN, however, species as Cinnamodendron dinisii, 
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Araucaria angustifolia, Campomanesia xanthocarpa, Cedrela fissilis, Mimosa 

scabrella, Ocotea sp. and Podocarpus lambertii presented very low variability in 

the F-measure values, even when the dataset was altered. 

Figure 4.18- F-measure of each tree species class for Area 1 according to the 
classifier. Black bars indicate the minimum and maximum values varying 
according to the dataset. 

 

Source: Author’s production. 

Figure 4.19 summarized the F-measure of tree species reached by the best 

result for each classifier. The CNN presented the best result for nine of fourteen 

tree species, with the F-measure varying between 0.8 and 1 for most of them. 

For Lithraea brasiliensis, Nectandra megapotamica, Podocarpus lambertii and 

Schinus sp2, the SVM and wSVM were the best classifiers, reaching similar 

results. The RF classifier achieved the highest accuracy for Mimosa scabrella. 

This classifier had the lowest performance for this area, with some species 

presenting F-measures below 0.5 even for the best dataset, as Podocarpus 

lambertii and Schinus sp2. 
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Figure 4.19- F-measure of tree species according to the best dataset result for each 
classifier in Area 1 considering the pixel approach. 

 

Source: Author’s production. 

Regarding the datasets, when SVM, RF and wSVM classifiers were employed, 

the inclusion of PPC features or CHM led to a marked increase in accuracy for 

almost all the classes (Figure 4.20). For SVM and wSVM, the F-measure for 

most tree species were typically well over 0.7 when the PPC features were 

included in the dataset, and both methods reached similar results. When the 

MV rule was applied to the best SVM result, with exception of Schinus sp1, all 

the classes presented an increase in F-measure. Conversely, when the PPC 

features or the CHM were included in the CNN classifier, except for Schinus 

sp2, all the classes presented a decrease between 0.01 and 0.4 in F-measure. 

On the other hand, Schinus sp2 presented an increase of 0.4 when the CHM 

was included in CNN classifier.  
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Figure 4.20- Difference in F-measure accuracy for each species and classifier 
according to the dataset/approach in relation to the pixel-based 
classification using the VNIR dataset in Area 1. 

 

Source: Author’s production. 
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The confusion matrices of Area 1 (Appendix B) depict that the incorporation of 

the PPC features helps to differentiate some specific classes when the SVM 

was used. In the datasets without the PPC features and the CHM, the main 

confusion among the species occurred with Schinus sp2, which was wrongly 

assigned to other classes such as Podocarpus lambertii, Cupania vernalis and 

Cedrela fissilis, and had other classes incorrectly assigned to it, namely: 

Cinnamodendron dinisii, Matayba elaeagnoides and Nectandra megapotamica. 

In these datasets, it also can be noticed that Nectandra megapotamica and 

Matayba elaeagnoides were incorrectly classified as Ocotea sp., and Nectandra 

megapotamica and Matayba elaeagnoides confused with each other. When the 

PPC features and the CHM were incorporated to the datasets, these confusions 

were generally reduced, but Schinus sp1 was incorrectly classified as Mimosa 

scabrella, what explains the decrease in the F-measure of that species in 

comparison with the use of the VNIR_CHM dataset. The wSVM had a similar 

behavior to the SVM, with the difference that Schinus sp1 presented an 

increase in the F-measure with the VNIR_CHM_PPC_VI dataset.  

The inclusion of PPC features to RF classifier led to a decrease in F-measure of 

some species, which explains the lower OA of this method in comparison to the 

use of VNIR or VNIR_CHM dataset. In this case, PPC features markedly 

decreased the accuracy of Schinus sp1 that was wrongly assigned to Mimosa 

scabrella, and also increased the confusion among species as Ocotea sp. and 

Matayba elaeagnoides. Even looking the best results of each classifier, 

including CNN, some confusion among Matayba elaeagnoides and Ocotea sp. 

persisted. 

4.2.3.3 Tree species classification accuracies in Area 2 

Figure 4.21 shows the average, minimum and maximum F-measures for each 

tree species in Area 2 according to the classifier. It was observed that most tree 

species classes had a lower accuracy as compared with Area 1, many of them 

with F-measures lower than 0.6. For Area 2, the RF classifier reached a general 

better performance than the SVM, mainly for some tree species, such as 

Campomanesia xanthocarpa, Nectandra megapotamica and Podocarpus 
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lambertii. In this area, the wSVM classifier had a better performance than the 

conventional SVM, which was more evident for some classes, like 

Campomanesia xanthocarpa, Cedrela fissilis and Erythrina falcata. The CNN 

classifier outperformed other classifiers, presenting F-measures over 0.8 for 

many classes and less variability in F-measures accuracies. However, it totally 

misclassified the species Campomanesia xathocarpa. Again, the RF presented 

more variability in the F-measure values. 

Figure 4.21- F-measure of each tree species class for Area 2 according to the 
classifier. Black bars indicate the minimum and maximum values varying 
according to the dataset. 

 

Source: Author’s production. 

Figure 4.22 shows the species accuracies of the best dataset for each classifier 

used in the pixel approach for Area 2. The CNN achieved the best result for 

seven, of the 11 tree species, very notable for six classes, as Cedrela fissilis, 

Erythrina falcata, Nectandra megapotamica, Ocotea sp., Schinus 

therebinthifolius and Sebastiania commersoniana. RF reached the best result 

for Araucaria angustifolia and Campomanesia xathocarpa, while wSVM had the 

best result for Luehea divaricata.  
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Figure 4.22- F-measure of tree species according to the best dataset result for each 
classifier in Area 2 considering the pixel approach. 

 

Source: Author’s production. 

Similarly to Area 1, almost all the tree species presented an increase in F-

measures when the CHM and PPC features were added to the VNIR dataset 

with the SVM, wSVM and RF classifiers (Figure 4.23). In the confusion matrices 

of the VNIR dataset (Appendix B), it can be noticed that Podocarpus lambertii 

was wrongly assigned to a lot of different species, such as Ocotea sp., Cedrela 

fissilis, Campomanesia xanthocarpa and Araucaria angustifolia, while Luehea 

divaricata was wrongly assigned to Podocarpus lambertii. Campomanesia 

xanthocarpa was wrongly classified as Lithraea brasiliensis and Luehea 

divaricata when only the VNIR bands were used. The incorporation of the CHM 

and PPC features markedly reduced the confusion among these classes in 

machine learning classifiers. Again, except for Cedrela fissilis and Araucaria 

angustifolia, all the tree species presented a decrease between 0.01 and 0.13 in 

F-measures when the PPC or the CHM were included in the CNN classifier. 
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Figure 4.23- Difference in F-measure accuracy for each species and classifier 
according to the dataset/approach in relation to the pixel-based 
classification using the VNIR dataset in Area 2. 

 

 

Source: Author’s production. 
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4.2.3.4 Species prediction errors and imbalanced sample set 

The boxplots of Figures 4.24 and 4.25 were built using the precision and recall 

values of 36 classification results for Area 1, and 33 for Area 2, considering all 

the variations regarding the dataset, classifier and approach. The differences 

between precision and recall for each species were highly variable, both 

regarding the level of accuracy of each class and the metric with the greatest 

value. Only one species (Araucaria angustifolia) had both high precision and 

recall values, and less variability in accuracies for both study areas, which was 

reflected in its higher F-measure.  

Regarding Area 1 (Figure 4.24), species with more ITC samples, such as 

Matayba elaeagnoides and Ocotea sp., kept a balance between precision and 

recall, but their accuracies varied according to the dataset/classifier adopted. 

Both Schinus classes, with fewer ITC samples, presented high variability in 

precision and recall. In the classification results, it was observed that usually 

when one classifier/dataset improved the accuracy of one of these species, the 

other one tended to present a reduced accuracy. These species were not 

grouped into the same class, because despite belonging to the same genus, 

they have distinct spectral and structural characteristics. Even aware that their 

few ITC samples is the probable cause of the high variability in accuracies, 

these species were not discarded from the sample set, because the aim was to 

represent as many species as possible. Species such as Campomanesia 

xathocarpa, Cupania vernalis, Luehea divaricata and Podocarpus lambertii 

tended to present higher precision than recall. This trend indicates that these 

species are underpredicted in classification models. There were a few notable 

exceptions to this trend, particularly Cinnamondedron dinisii that despite having 

few samples, presented higher values and a certain balance between precision 

and recall. On the other hand, species as Lithraea brasiliensis, Mimosa 

scabrella and Nectandra megapotamica presented higher recall than precision, 

indicating higher commission errors, i.e. these species were overpredicted and 

other species have been wrongly assigned to them. 
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Figure 4.24- Species-level recall and precision percentage accuracy across 36 
classification models for Area 1. Precision is equivalent to user´s 
accuracy; recall is equivalent to producer´s accuracy. Higher precision 
relative to recall means the species has lower commission errors than 
omission errors. 

 
Source: Author’s production. 

Figure 4.25 shows the precision and recall values of tree species for Area 2. In 

this area, besides Araucaria angustifolia, Lithraea brasiliensis presented a 

balance and lower variability in precision and recall values. Other species also 

presented a balance between these metrics, but higher variability, such as 

Campomanesia xathocarpa, Nectandra megapotamica and Podocarpus 

lambertii. This means that the prediction of these species varied according to 

the dataset and the employed classifier. It should be emphasized that in the 

case of Campomanesia xanthocarpa, the three CNN classification models 

contributed to this higher variability, because this species was totally 

misclassified by this algorithm. This fact also increases the precision and recall 

of the classes that have been confused with it, such as Erythrina falcata, 

Luehea divaricata and Nectandra megapotamica. The classes with fewer ITC 

samples, such as Erythrina falcata and Sebastiania commersoniana, had higher 

recall than precision, what indicates that individuals from other classes were 

wrongly assigned to them. On the other hand, species such as Ocotea sp. and 
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Schinus sp1, had higher precision than recall; consequently, they tended to be 

wrongly classified as other classes. 

Figure 4.25- Species-level recall and precision percentage accuracy across 33 
classification models for Area 2. Precision is equivalent to user´s 
accuracy; recall is equivalent to producer´s accuracy. Higher precision 
relative to recall means the species has lower commission errors than 
omission errors. 

 
Source: Author’s production. 

In this study, a variation of the SVM classifier, the wSVM, was adopted as an 

attempt to deal with the imbalanced sample set problem. In Figure 4.26 it can 

be observed the F-measure of each tree species when either the SVM or the 

wSVM were employed, according to the number of pixel samples. It was 

expected that the wSVM would increase the accuracy of minority classes. In 

Area 1, when considering the same dataset (VNIR_CHM_PPC_VI), the wSVM 

reached a better accuracy for Schinus sp1, with an F-measure of 0.73, in 

comparison with 0.51 reached by the conventional SVM. Conversely, Ocotea 

sp., the species with the highest number of samples, had a decrease from 0.82 

to 0.74 in the F-measure when the wSVM was employed. In this case, to favor 

minority classes, the algorithm can negatively affect the majority ones. For other 

classes, the accuracies of both methods were very similar.  



95 
 

In Area 2, the wSVM had an equal or better performance than the conventional 

SVM for all the classes. Classes with fewer samples, such as Campomanesia 

xanthocarpa and Erythrina falcata, had a more pronounced increase when the 

wSVM was employed. For the former one, the F-measure increased from 0.35 

to 0.40, while for Erythrina falcata it raised from 0.44 to 0.49. In this area, the 

wSVM reached a better performance even for classes with more samples, such 

as Podocarpus lambertii and Araucaria angustifolia. The wSVM not only gives 

different weights to each class, but also to each sample. In this case, if one 

sample is not considered good, i.e. is not close to the class cluster, it will 

receive a smaller weight. Thus, this algorithm could improve the accuracy of 

majority classes as well. 

Figure 4.26- F-measure of each tree species when either the SVM or wSVM were 
employed in relation to the number of pixel samples per class. Species 
ordered according to the number of pixel samples.  

 

Source: Author’s production. 
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4.2.4 Tree species maps 

Figure 4.27 and 4.28 show the classification maps considering each ITC sample 

of Area 1 and Area 2 (training and test sets). The maps were produced in order 

to see the proportion of pixels correctly labeled within each ITC, and if the 

species were detected by the classification method. The proposed approach 

produced reliable results considering only the ITCs checked in the field.  

In general, the methods detected the species and assigned the correct class to 

the ITCs. However, in some cases, only few pixels inside the ITCs were 

correctly classified, meaning that the method detected the species, but did not 

classify the entire ITC accordingly. In other minor cases, all the ITC was 

misclassified, which was mainly observed for the small-sized ones.  

In Area 2 (Figure 4.28), the CNN totally misclassified one ITC of 

Campomanesia xanthocarpa used as test sample. However, the classified 

images allowed to observe that the two ITCs used as training samples were 

correctly classified. All the methods misclassified a small ITC of Nectandra 

megapotamica. 
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Figure 4.27- Details of classification maps using the best dataset result for SVM, RF 
and CNN classifiers in Area 1. A) Reference samples; B) the SVM 
classifier (VNIR_CHM_PPC dataset) after the MV rule − the red circle 
shows missing ITCs of Podocarpus; C) OBIA associated with the RF 
classifier and the VNIR_CHM_PPC_VI_MNF dataset − the red circles 
show two missing ITCs of Nectandra and one of Podocarpus; D) the 
CNN classifier with VNIR dataset − the red circle shows one missing ITC 
of Nectandra; E)The SVM classifier associated with VNIR_CHM_PPC 
dataset in a pixel-based classification- the red circle shows missing ITCs 
of Podocarpus; F)The RF classifier associated with VNIR_CHM dataset 
in a pixel-based classification- the red circles show two missing ITCs of 
Podocarpus and one of Nectandra. 

 

Source: Author’s production. 
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Figure 4.28- Details of classification maps using the best dataset result for SVM, RF 
and CNN classifiers in Area 2. A) Reference samples; B) the SVM 
classifier (VNIR_CHM dataset) after the MV rule − the red circles show 
missing ITCs of Nectandra and a poorly detected ITC of 
Campomanesia; C) the RF classifier and the VNIR_CHM dataset − the 
red circles show one missing ITC of Nectandra, one of Erythrina, and a  
poorly detected ITC of Campomanesia; D) the CNN classifier with the 
VNIR dataset − the red circles show one missing ITC of Nectandra and 
one of Campomanesia. 

 

Source: Author’s production. 
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In order to check if the classification maps present some agreement regarding 

the tree species abundance and distribution over the areas, the entire 

classification maps of the two best methods for each area (Figures 4.29 and 

4.31) was considered, which were the SVM associated with the MV rule 

approach and the CNN. The percentage of coverage area by each tree species 

according to each map was also computed (Figures 4.30 and 4.32). No official 

information regarding real tree species distribution over the entire areas is 

available, and this analysis was only conducted to verify the differences among 

the methods. 

For Area 1, one can observe that the maps presented some disagreements 

regarding the distribution of the species over the area. It occurred mainly in the 

western part of the area, where the SS2 stage predominates. The SVM model 

classified that portion as Mimosa scabrella, while the CNN confused several 

tree species among themselves. Also, it can be noticed in Figure 4.29 that the 

CNN has the tendency to classify much more areas as Araucaria angustifolia, 

and fewer ones as Ocotea sp. and Mimosa scabrella in comparison with the 

SVM. Despite the differences in species distribution, except for Araucaria 

angustifolia, Mimosa scabrella and Ocotea sp., the maps presented some 

agreement regarding the percentage of coverage area by each tree species 

(Figure 4.30). 
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Figure 4.29- Classification maps of Area 1: the SVM associated with the 
VNIR_CHM_PPC_VI dataset and the MV rule; the CNN associated with 
the VNIR dataset. 

 

Source: Author’s production. 

Figure 4.30- Percentage of tree species coverage area based on classification results 
of the SVM and CNN maps of Figure 4.29. 

 

Source: Author’s production. 

For Area 2, more agreement can be observed regarding the distribution of 

species like Araucaria angustifolia, Ocotea sp., Luehea divaricata and 
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Podocarpus lambertii (Figure 4.31). Similarly to Area 1, the CNN classified more 

areas as Araucaria angustifolia, on the contrary to Area 1, more areas were 

classified as Ocotea sp. as well (Figure 4.32). The SVM, on the other hand, 

classified more areas as Lithraea brasiliensis and Campomanesia xanthocarpa. 

The latter one was totally misclassified by the CNN according to the test set; 

thus, it confirmed that this algorithm underestimates this class. 

Figure 4.31- Classification maps of Area 2: the SVM associated with the VNIR_CHM 
dataset and the MV rule; the CNN associated with the VNIR dataset. 

 

Source: Author’s production. 

Figure 4.32- Percentage of tree species coverage area based on the classification 
results of the SVM and CNN maps of Figure 4.31. 

 

Source: Author’s production. 
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5 DISCUSSION 

5.1 Considerations about the successional forest stages classification 

Comparing the WV-2 and the hyperspectral data, the best accuracies for 

successional forest stages were reached when the latter one was used. With an 

OA of 99.28% and Kappa index of 0.99, this study surpassed previous works 

concerning the successional forest stages classification. In fact, to the best of 

our knowledge, this is the first study involving UAV and hyperspectral data for 

this purpose, which encourages further studies using remote sensing for the 

successional forest stages mapping. Different of what was observed in tree 

species maps, successional stages maps proved to be more stable regarding 

their distribution and coverage area when different classifiers and datasets are 

alternately used. Furthermore, they are produced more easily, because a 

person that has a relative knowledge of the study area can collect training 

samples using high spatial resolution images instead of conducting an 

extensive fieldwork. The WV-2 data also reached satisfactory accuracies, with 

the best OA of 91.22%.  

Regarding the classifier’s performance, it was observed that the SVM and RF 

reached similar accuracies, varying according to the dataset. The RF reached 

the best general performance, which corroborates the work of Sothe et al. 

(2017b), which compared both methods to classify successional forest stages 

using RapidEye and OLI/Landsat-8. However, the best general result achieved 

by Sothe et al. (2017a) for the same purpose but using MSI/Sentinel-2 instead 

of RapidEye, was reached with the SVM algorithm. In any case, both methods 

proved to be an attractive alternative for successional forest stages 

classification. 

For both data (WV-2 and hyperspectral), the best general result had the CHM 

band included in the dataset. In fact, the CHM showed to be the most important 

feature to discriminate the successional forest stages when the WV-2 data was 

employed, and the sixth more important when using the hyperspectral data. 

This result was somehow expected, since the height is a good feature to 

discriminate such classes: SS1, besides the differences in the species 
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composition, has a shorter height and a smaller number of vertical strata than 

SS2 that has a lower height than SS3. This was also pointed out by Castillo et al. 

(2012), who used LiDAR data from the LVIS sensor to classify three 

successional stages of vegetation in a tropical rainforest of Costa Rica. They 

demonstrated that changes in forest vertical structure (such as height) 

associated with the main successional stages of the forest can be effectively 

identified with LiDAR data. Berveglieri et al. (2016) developed an approach to 

classify successional stages based only on the vertical structure variations of 

DSM derived from optical images. Bispo et al. (2019) reached an accuracy of 

87% when using height information extracted from the TanDEM-X synthetic 

aperture radar (SAR) interferometry to classify three successional forest stages 

and a primary forest class in the Amazon Forest. Sothe et al. (2019b) concluded 

that the inclusion of the CHM and LiDAR features to the WV-2 data improved 

the discrimination of vegetation classes, such as two successional stages, 

Araucaria angustifolia and reforestation. In this study, the use of a higher spatial 

resolution CHM, i.e. with DSM provided by a dense PPC instead of a sparse 

LiDAR point cloud, did not make substantially difference. Different from what 

occurred in tree species classification, the PPC features were not as useful as 

the CHM to classify successional forest stages.  

Despite the great importance of the CHM, if this kind of data is lacking, an OA of 

86.44% was reached when other multispectral features were included in the 

WV-2 data (MNF, GLCM, VIs). With the hyperspectral data, results without the 

CHM or PPC features were also promising, with an OA of 96.44% when the 

SVM algorithm and the VNIR_MNF_GLCM_VI dataset were used. In this study, 

textural features were very important for the successional forest stages 

classification. Considering that these features aggregate contextual information 

through a neighborhood window, they smooth the image, reducing the impact of 

noisy pixels, shadows or small clearings that are eventually found throughout 

the vegetation, thus, also decreasing the spectral mixture at the pixel level 

(SOTHE et al., 2017a). This could be especially advantageous when 

hyperspectral data are applied, since the contextual window can smooth their 

great variability caused by their high spatial resolution. In fact, 15 texture 



104 
 

features were selected in the FS process for these data. On other hand, it may 

have masked spectral differences among tree species, since these features had 

few or negative effect for tree species classification.  

The use of textural information was acknowledged as a strong attribute for 

differentiating vegetation classes by several authors (ARAÚJO, 2006; YU et al., 

2006; SETTE; MAILLARD, 2011; ROSLANI et al., 2013; GOMES; MAILLARD, 

2015; TOPALOGLU et al., 2016; SOTHE et al., 2017ab). Sette and Maillard 

(2011) classified successional forest stages of a Dense Ombrophilous Forest in 

the Atlantic Rain Forest with FORMOSAT-2 imagery and obtained an OA of 

60.5% based only on visible bands, which rose to 91% when the classification 

also relied on textural attributes. Araújo (2006) verified an improvement in the 

discrimination between trees and grass with the introduction of an attribute 

indirectly based on texture, which considered the number of subobjects 

contained within each of these two classes in an immediately lower 

segmentation level. According to the author, since the texture of the tree class 

is rougher due to the presence of shadow amid the canopy leaves, this class 

tended to present a higher number of subobjects in comparison to grass. 

VIs were more important for the WV-2 data than for the hyperspectral data. 

Band ratios and VIs generated using different band combinations have 

advantages for vegetation differentiation and biomass estimation, because 

these features can reduce Bi-directional Reflectance Distribution Function 

(BRDF) errors and do not saturate as quickly as single band data (COLGAN et 

al., 2012). In this study, the WV-2 scene presented more shadows due to the 

geometry of the data acquisition, thus VIs may have minimized this effect, 

besides being important features for the successional stages discrimination. 

According to Pu and Landry (2012), large view-angles (close to 30°) were found 

to be problematic when classifying tree species from the WV-2 data due to a 

notably increased amount of occlusion, and in the particular case of this work, 

also shading. This is one of the reasons why the WV-2 data were applied only 

for classifying successional stages and not tree species in the present case. 

Other authors also reported the importance of VIs for vegetation classification. 

Sothe et al. (2017a) reported that the VIs derived from OLI/Landsat-8 data had 
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great importance for successional forest stages classification, which was not 

observed when they used MSI/Sentinel-2 data. Maschler et al. (2018) found 

great improvement in tree species classification accuracies when VIs and 

principal components were aggregated to the classifications.  

Regarding the spectral differences among the stages, in Figure 4.2 it was 

observed that in both WV-2 and hyperspectral data, the successional forest 

stages can be better discriminated in the NIR region, and the SS2 was the stage 

with the highest reflectance and radiance values in this region. Ponzoni and 

Rezende (2004), when classifying the successional stages with TM/Landsat-5 

images, also observed that the SS2 presented higher reflectance values than 

the other stages in the NIR region. These authors were surprised by this 

behavior, as it would be expected that as the canopy's roughness increased, its 

reflectance in this spectral region should decrease due to the mutual shading of 

a stratum or dominant trees protruding from the upper canopy and thus, the 

SS1, with fewer vertical strata, would have higher values. However, the higher 

values of SS2 can be explained by the fact that in this stage more multiple 

scattering of electromagnetic radiation by the leaves is expected than for the 

SS1, at the same time that it suffers lower effect of shadows than SS3, due to 

the lower number of vertical strata. 

Followed by the SS2, in the WV-2 data, the SS1 presented higher reflectance 

values than the SS3, while for the hyperspectral data, the opposite occurred. 

Since the WV-2 scene used in this study has a high off-nadir angle (28.2º), 

more shadows are present in comparison with the hyperspectral data. The 

shadow effects resulting from the geometry of the data acquisition are more 

pronounced in the SS3 stages, due to their higher number of vertical strata and 

canopy's roughness, therefore reducing the reflectance response of this stage. 

Although the WV-2 is a multispectral sensor, the bands situated in the yellow 

and red-edge regions and the two bands in the NIR region allow a better 

characterization of vegetation classes in comparison with further high spatial 

resolution multispectral sensors with only four bands (e.g., GeoEye, IKONOS, 

QuickBird). However, none of the data (hyperspectral, WV-2) include the short-
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wave infrared (SWIR) region, which would be interesting for the successional 

forest stages classification, as pointed out by Sothe et al. (2017a).  

Several authors highlighted the importance of both the SWIR and red-edge 

spectral regions for classifying forest types and agricultural fields (TIGGES et 

al., 2013; RAMOELO et al., 2015; IMMITZER et al., 2016; SOTHE et al., 

2017a). Immitzer et al. (2016), when using Sentinel-2 data for discriminating 

vegetation species and cultures with the RF classifier, concluded that the SWIR 

and red-edge bands had a decisive importance for the image classification. 

Ramoelo et al. (2015), when using Sentinel-2 data and the RF algorithm, 

verified that the SWIR-1 and SWIR-2 bands together with the first red-edge 

band achieved the highest importance values for assessing leaf nitrogen 

content in the African savannah. Sothe et al. (2017a), when using MSI/Sentinel-

2 and OLI/Landsat-8 data to classify successional forest stages of the MOF, 

found that textural means of SWIR bands were the most important variables for 

classification according to the RF ranking variable importance. 

Despite its lowest OA, the use of a satellite data, instead of the UAV-

hyperspectral data, allows mapping of larger areas and are less complex 

regarding processing tasks. On the other hand, UAV data can be more flexible 

regarding the field campaigns and weather conditions, but it is restricted to 

smaller areas. Both data enable the inspection and control of irregular activities 

(e.g., deforestation, illegal logging and forestry, etc.) as well as the conception 

of strategies for forest management and conservation. The information derived 

from these data can also support environmental regularization initiatives, such 

as the Rural Environmental Register (Cadastro Ambiental Rural- CAR), a 

governmental program in Brazil designed for the inventory of natural assets and 

land cover/land use in rural properties (SOTHE et al., 2017a). 

5.2 Considerations about the ITC delineation 

This study tested three methods for ITC delineation, one traditional 

segmentation algorithm (MRG), and two specifically focused on ITC delineation 

(itcIMG and MCRC). Although the last two ones are specifically designed for 

ITC delineation, they need some improvement to be applied in this context (i.e. 
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tropical forests). While the itcIMG assumed a round shape for the ITCs and 

missed some suppressed trees, the MCRC led to an undersegmented result, 

where more ITCs, and even different species, were grouped into the same 

segment.  

Despite being different methods, both itcIMG and MCRC start the segmentation 

assuming that the brightest points of the image correspond to treetops. For the 

MCRC method, these points are defined as priors and were computed based on 

the CHM, whereas for itcIMG the NIR band was used to compute the seeds or 

brightest points. While using the brightest points as the top of the trees is a 

reasonable approach in temperate or boreal forests, particularly in coniferous 

stands, this is likely too simplistic for tropical forest environments due to the 

variety of architectures and crown sizes existing in these areas. For a large 

rounded ITC, the brightest pixels may appear not at the point of maximum 

height but rather on the border exposed to the sun, while for flat ITCs there 

could be no difference in brightness at all (WAGNER et al., 2018). The irregular 

shapes and sizes of ITCs may also result in more than one prior per ITC. 

Furthermore, tropical forests have different strata with tree heights varying 

according to the species, resulting in cases that any prior (and consequently 

any segment) is generated for suppressed trees. Tochon et al. (2015) reported 

that brightness is not adequate to enhance spectral differences among 

individuals, particularly in high-resolution images with pixels that are smaller 

than ITCs.  

The MRG is not a specific algorithm for ITC delineation, but because it allows 

the use of parameters as shape, compactness and color, it was the method that 

better captured the edges of the ITCs. Also, in the adopted case, instead of 

setting the seeds in the brightest points, they were randomly selected by the 

algorithm. However, conversely to what occurs when using the PPC data, the 

use of spectral bands alone in the MRG algorithm led to an oversegmentation, 

in which each ITC was represented by more than one segment. Wagner et al. 

(2018) listed three major limitations for delineating ITCs based on the spectral 

characteristics of tropical forests, which can be related to the oversegmentation 

results obtained in this work: (i) trees may be partially covered by lianas, 
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thereby altering the spectral response of species (KALACSKA et al., 2007), and 

generating more segments for the same ITC; (ii) a tree can have new leaves 

only in part of its crown, which results in marked different spectral responses for 

the same crown (LOPES et al., 2016), and also results in more segments per 

ITC, and; (iii) due to the diverse architecture and leaf characteristics of tropical 

trees, the intra-crown spectral variability among different species is also likely to 

be highly diverse (FERREIRA et al., 2016).  

The same issue was approached by Tochon et al. (2015), when proposing a 

method based on the binary partition tree (BPT) to segment two tropical forests 

using hyperspectral data. The authors argued that the segmentation applied to 

dense tropical forests is an ill-posed task: a given image can often be 

segmented at several levels of details, due to the complex architecture of the 

top of the canopy. It was also observed by Wagner et al. (2018) when proposing 

a method based on interactive successive steps for ITC detection and 

delineation, which included the rolling ball algorithm and mathematical 

morphological operations, bimodal distribution parameters estimations and focal 

statistics, using WV-2 images. Despite their optimistic results, they indicated as 

the main limitations the underestimation of small trees and the 

oversegmentation of the large ITCs. 

The MCRC method was tested using the raw PPC, which can also be related to 

its poor performance. Due to the passive nature of the optical sensor, it does 

not penetrate the vegetation as it occurs with LiDAR data, what makes it difficult 

to discriminate two close ITCs with similar heights or suppressed ITCs. Indeed, 

preliminary tests conducted with the other function of itcSegment package, the 

itcLIDAR, using the raw PPC led to the same problem and were discarded for 

further analyses.  

Larsen et al. (2011) reported that especially when dealing with complex forest 

types, it is difficult to reach a good ITC delineation using only a common 

segmentation approach, and it may even require many processing steps e.g., 

(TOCHON et al., 2015; WAGNER et al., 2018). In a review article made by 

Zhen et al. (2016), it was verified that most of the studies in this line were 

https://www.sciencedirect.com/topics/computer-science/morphological-operations
https://www.sciencedirect.com/topics/computer-science/parameter-estimation


109 
 

developed for coniferous forests, and only 11% of them explored the fusion of 

active and passive sensors for this purpose, even fewer encompassed distinct 

forest environments. In this study, methods involving the integration of 

hyperspectral data and 3D information, such as LiDAR and PPC, can be an 

alternative to improve the ITC delineation, providing a balance between over 

and undersegmentation. While the PPC avoids the generation of an excessive 

number of segments resulting from the spectral variability inside the ITCs, the 

spectral bands can provide information regarding the variability among species, 

avoiding two ITCs from being grouped into one segment. Another alternative to 

be explored is to include a consistent hierarchy of segmentations (TOCHON et 

al., 2015), keeping smaller ITCs at a more detailed segmentation level than 

larger ones  e. g., (MASCHLER et al., 2018). 

When the CHM band was included in the MRG algorithm, the oversegmentation 

was reduced and the borders of the ITC were still well delineated. Besides that, 

the use of the JM distance to merge homogeneous segments was considered a 

proper way to reduce oversegmentation, as also reported by Ferreira et al. 

(2014; 2016). Thus, the MRG method using the CHM and spectral bands 

refined by the JM, both visually and according to evaluation metrics, proved to 

be the best result obtained in this study. 

5.3 Considerations about variable importance and tree species 
classification using machine learning methods  

This study showed that the combination of the CHM and PPC features with the 

VNIR bands led to a significant increase in classification accuracies when 

machine learning methods were applied (RF, SVM and wSVM). One of the first 

works involving the investigation of UAV-based photogrammetry and 

hyperspectral imagery for tree species classification was made by Nevalainen 

et al. (2017), in which they reached 95% of OA when classifying tree species in 

a boreal forest using features extracted from UAV-borne hyperspectral data and 

the thereof derived PPC. Later, Tuominen et al. (2018) tested the use of UAV-

borne hyperspectral data and PPC features to classify 26 tree species in an 

arboretum located in Finland and reported an increase of 0.07 in the Kappa 
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index when they combined the VNIR bands with 3D features (Kappa of 0.77). 

The aforementioned studies reached better or similar accuracies to this study, 

but none of them involved tropical environments. Nevalainen et al. (2017) 

classified only four tree species in a boreal forest and, despite the high number 

of tree species, the study of Tuominen et al. (2018) was conducted in an 

arboretum area with the tree species distributed in homogeneous stands, which 

makes the area suitable for testing tree species recognition both at a stand and 

individual tree level.  

The findings of this study using machine learning methods are consistent with 

other studies involving airborne hyperspectral data for tree species classification 

in tropical forest environments. Féret and Asner (2013) reached an OA of 

73.2% using the pixel-based approach to classify 17 tree species in a Hawaiian 

tropical forest with airborne hyperspectral data, and 74.9% when they classified 

only 10 species, acknowledging the decline in the prediction accuracy when 

increasing the number of classes. When testing machine learning algorithms to 

classify eight tree species of a subtropical forest in Brazil, Ferreira et al. (2016) 

achieved an average classification accuracy of 70% using the VNIR 

hyperspectral bands. In that case, the inclusion of SWIR bands increased the 

accuracy to 84%. Using hyperspectral data with visible, NIR and SWIR bands, 

Clark and Roberts (2012) reached an OA of 71.5% in the pixel-based approach 

to classify seven emerged-canopy species in a tropical forest in Costa Rica. 

Regarding studies involving other highly diverse environments, Piironen et al. 

(2017) reached 57% of OA when classifying 31 tree species in a diverse 

agroforestry landscape in Africa. Graves et al. (2016) classified 20 tree species 

and one mixed-species class in a tropical agricultural landscape in Panama and 

reported an OA of 62%.  

The importance of 3D information, such as that derived from LiDAR, for tree 

species classification has been reported in several studies. Deng et al. (2016) 

performed the classification of tree species in a temperate forest and obtained 

an improvement of up 14% when the LiDAR-derived features were employed 

together with an RGB ortophoto. Shen and Cao (2017) had an improvement of 

0.4% to 5.6% when using both hyperspectral and airborne LiDAR features to 
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classify tree species in a subtropical forest. Similarly, Piiroinen et al. (2017) 

found an increase of 6% when LiDAR features were added to the hyperspectral 

bands for classifying tree species in a diverse African agroforestry. Dalponte et 

al. (2008) and Jones et al. (2010) reported that LiDAR combined with 

hyperspectral data increased the classification accuracy in approximately 2%, 

with a greater improvement for some tree species.  

It can also be noticed that the improvement with 3D information was more 

evident for some species, such as Schinus sp2, Ocotea sp., Nectandra 

megapotamica and Matayba eleaeagnoides in Area 1. Ocotea sp. class 

comprises two species of Ocotea genus (O. pulchella and O. puberula), which 

result in a more diverse spectral behavior. Furthermore, Ocotea sp. and 

Nectandra megapotamica belong to the same family (Lauraceae), having 

similar spectral characteristics. In this case, the spectral similarity among these 

tree species can be solved with the inclusion of the PPC features. The PPC 

features may also capture differences in the crown structure of Matayba 

elaeagnoides and Ocotea sp., since the former has a wider top with irregular 

branching, while the latter has a smaller and rounded top (LORENZI, 1992). For 

Area 2, when the VNIR dataset was used with machine learning methods, most 

of the confusion was associated with Podocarpus lambertii. This species is a 

conifer and presents irregular or cuneiform crowns. These structure differences 

could help in discriminating it from other broadleaves species when the PPC 

features were incorporated into the models. 

The inclusion of the height information (CHM) improved the accuracies about 

5% to 7% for Area 1, and 15 to 17% for Area 2. Indeed, the CHM was more 

important than the PPC features for Area 2, which may be due to the lower PPC 

density of this area, besides particularities of it and its individual trees. In the 

studies of Cho et al. (2012), Naidoo et al. (2012) and Asner et al. (2008), the 

tree height derived from LiDAR was an important variable for mapping tree 

species in two completely different forest ecosystems (savannas and tropical 

forest). On the other hand, Ghosh et al. (2014) concluded that there is no 

significant effect of the height information on tree species classification 

accuracies in a temperate forest. According to Fassnacht et al. (2016), the 
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canopy height per se is not a good predictor to classify tree species as the 

height of a tree varies with age, site conditions and competition and only to a 

minor degree with species. However, in tropical forests, this predictor can be 

useful to discriminate species belonging to different successional groups as 

pioneer, secondary and climatic, since they may have different heights 

according to their capacity to adjust to differentiated lighting levels 

(BOARDMAN, 1977). In Area 1, there was a great confusion between Schinus 

sp1 and Mimosa scabrella, and between the latter and Podocarpus lambertii in 

the datasets without the CHM information. These three species belong to 

different successional groups: Schinus sp1 and Mimosa scabrella are 

considered pioneer species, while Podocarpus lambertii is a late secondary or 

climatic shade-tolerant species (LORENZI, 1992). As a shade-tolerant species, 

Podocarpus lambertii can live under the shadow of other trees and, therefore, 

might present a lower height. Despite both are pioneer species, Mimosa 

scabrella and Schinus sp1 have different heights (Figure 4.15), which can be 

due to particularities of the area. For instance, it was verified that Mimosa 

scabrella samples were located near the road or clearing areas. The lack of 

competition for light could have caused their limited growth in height. On the 

other hand, Schinus sp1 samples were found in the middle of the forest, which 

could have led to their high growth rate, as this species searches for light. For 

this reason, when the height information was incorporated, there was an 

increase in classification accuracies of these species.  

Araucaria angustifolia, the most frequent tree in the two study areas, presented 

stable accuracies even with the inclusion of 3D information, showing that even 

the use of the VNIR bands alone can discriminate this tree species. One 

observes that this species presents the lowest radiance values in the entire 

spectrum of the VNIR bands (Figure 4.2). According to Roberts et al. (2004), 

coniferous trees generally have lower reflectance values in the NIR region 

compared to broadleaf trees, which is closely related to their needle structure 

and the higher absorption of coniferous needles. Furthermore, the crown size 

and shape of coniferous trees influence the hemispherical directional 

reflectance factor (HDRF), and hence their reflectance as well (RAUTIAINEN; 
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STENBERG, 2005). On the other hand, Podocarpus lambertii, another conifer 

found in the study areas, tended to present more confusion with some broadleaf 

species, especially when the VNIR dataset was used. This may have occurred 

because its shape is not conical as a typical conifer, which confers this species 

a similar spectral response to other species in both study areas. Its branch 

structure brought about confusion with broadleaves species with small leaves, 

such as Mimosa scabrella in Area 1, even with the inclusion of the PPC 

features. 

For both areas, the use of the MV rule significantly increased the accuracy of 

the pixel-based classification (5% and 11%), while OBIA approach (only applied 

to Area 1) did not make significant difference. These findings corroborate other 

studies that compared tree species classification using pixel-based and MV 

approaches (CLARK et al., 2005; DALPONTE et al., 2013; 2014; FERREIRA et 

al., 2016), and also further studies comparing these two approaches with OBIA 

(CLARK; ROBERTS 2012; FÉRET; ASNER, 2013). Clark and Roberts (2012) 

compared the OBIA approach, composed by the mean spectra of each ITC, 

with per-pixel and MV approaches. The pixel-based classification had roughly 

the same performance (nearly 70% OA) to the one achieved when using the 

average spectra from ITCs in an OBIA approach, however, when applying the 

MV, the accuracy rose to 87%. Féret and Asner (2013) reached better results 

when using the MV approach (83.6%), followed by the OBIA approach (79.6%) 

and lastly the pixel-based classification (74.9% of OA), when classifying species 

of a tropical forest. However, for the MV and OBIA classification, they had to 

reduce the number of classes from 17 to 10, due to the limited number of pixels 

and ITCs labeled to train the classifiers. Furthermore, similarly to this study, the 

authors pointed out that the segmentation did not delineate ITCs correctly, but 

each crown was instead composed by several segments. 

According to Clark and Roberts (2012), considering the MV of pixels within 

ITCs, the error from any misclassified pixels within a crown is minimized, what 

leads to higher accuracies. However, in this approach, the ITCs may have high 

internal spectral variability, since they can receive the correct species label with 

only a fourth of the correctly classified pixels. The OBIA can be a better 
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alternative to deal with the spectral variability within the classes, which is 

common when high spectral resolution data is used, but in this case more ITC 

samples are needed. Furthermore, shadow, underlying objects, and other 

materials within an ITC may decrease the purity of its extracted spectra and 

further reduce classification accuracy (LIU; WU, 2018). Concerning this, Liu and 

Wu (2018) proposed a pixel weighting approach in which they extract the 

illuminated-leaf fraction at each pixel using a spectral mixture analysis (SMA) 

model and then calculate the ITC spectra using the illuminated-leaf fractions as 

weights. 

For Area 1, all the VNIR bands showed similar importance according to the JM 

distance. Only slightly higher values can be noticed for the first two bands (506 

to 519 nm), and four bands between 659 and 690 nm. These regions include 

the green peak and the chlorophyll absorption features, previously reported to 

contain useful information for the separation of tree species with hyperspectral 

data (NAIDOO et al., 2012; FASSNACHT et al., 2014; FERREIRA et al., 2016). 

The NIR bands, regarded as an important region for the tree species 

classification (CLARK; ROBERTS, 2012; DALPONTE et al., 2012; PIIROINEN 

et al., 2017), were not relevant for Area 1, while for Area 2 these bands had the 

highest JM values. In this region, the tree structure has the strongest impact 

(PONZONI et al., 2012) and the changes in the viewing angle may reduce the 

relative spectral differences among the species (NEVALAINEN et al., 2017). 

Due to the limited spectral range of the FPI camera (500–900 nm), the complete 

infrared region (including SWIR) could not be fully tested and evaluated in this 

study. Ferreira et al. (2016) reported 14% of increase in accuracy when 

including SWIR bands for tree species classification. Tuominen et al. (2018) 

reached the best result when combining VNIR and SWIR bands with 3D 

features extracted from the PPC. Nevertheless, their second-best result was 

achieved using only VNIR bands and 3D features, suggesting that these 

features can somehow compensate for the lack of the SWIR data. 

In fact, the CHM and PPC features were markedly more important than the 

hyperspectral features (i.e. VI, MNF and GLCM features). The use of all the 

VNIR bands, hyperspectral features, the CHM and PPC features in the full 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/purity
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dataset did not improve the accuracy when compared to the use of the 

VNIR_CHM_PPC dataset (except for the RF in Area 2). For Area 1, using the 

SVM algorithm, an increase of 1.6% was observed when the VIs were added to 

the VNIR_CHM_PPC dataset, while the addition of the GLCM features led to a 

decrease in accuracy for most cases. Ferreira et al. (2016) reported an increase 

in the classification accuracy (of up to 5%) adding the VIs to the VNIR dataset. 

Maschler et al. (2018) found great improvement in tree species classification 

accuracies when VIs and principal components were aggregated to the 

classifications, while the inclusion of textural metrics had only a small effect. 

Although it was not the most important spectral region according to the JM 

distance for Area 1, the VIs containing at least one NIR band (PSSR and NDVI) 

were more important than the PSRI and PRI for the tree species classification in 

this work. In the study of Naidoo et al. (2012), the NDVI was also scored as one 

of the most important VIs to classify eight savanna tree species with 

hyperspectral data. The use of MNF features (MNF_CHM_PPC dataset) 

instead of the VNIR bands (MNF_CHM_PPC dataset) led to a decrease of 

2.34% to 7% in OA when considering both areas and the SVM and RF 

classifiers. Ghosh et al. (2014) and Piiroinen et al. (2017) reported an 

improvement when MNF components were used instead of spectral bands, but 

it is worth stressing that in those cases they had hyperspectral data with more 

than 100 bands. The MNF transformation reduced the dimensionality and 

redundancy inherent in high spectral resolution data and, thus, provided better 

accuracies (GHOSH et al., 2014).  

In the FS process, 46 out of the original 68 features were selected for Area 1, 

and 49 for Area 2, which mostly resulted in a non-significant increase in 

accuracy when compared with the full dataset for both areas. Similarly to the 

use of MNF components, studies that performed the FS in the hyperspectral 

data for tree species classification generally dealt with more than 100 spectral 

bands (DALPONTE et al., 2012; FASSNACHT et al., 2014; FERREIRA et al., 

2016; PIIROINEN et al., 2017; MASCHLER et al., 2018). However, the 

hyperspectral data of this study contain only 25 bands, and thus the spectral 

information is not as redundant as when more than 100 hyperspectral bands 
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are used. Furthermore, according to Fassnacht et al. (2014), the FS is 

commonly applied to reduce the processing time and to enable a meaningful 

interpretation of the selected predictors, not necessarily resulting in significant 

increases of classification accuracies. Deng et al. (2016), when testing a FS 

process for tree species classification, stated that for the same feature there 

were different contribution degrees to species classification in different loops, 

indicating that the importance of a feature is changeable and greatly depends 

on the combination with other features. Therefore, it is difficult to determine a 

combination of features that can benefit all the tree species classes at the same 

time. Piiroinen et al. (2017) reported that the FS process had only a small 

impact on tree species classification accuracies, but they highlighted its 

importance to achieve the same level of accuracy with a smaller number of 

input features. 

Regarding the classifiers, the SVM clearly outperformed the RF for Area 1, but it 

was worse than the RF in Area 2. Studies comparing both methods for tree 

species classification indicated that the SVM had a similar (GHOSH et al., 2014; 

BALLANTI et al., 2016) or superior  performance than the RF (DALPONTE et 

al., 2012; DENG et al., 2016; FERREIRA et al., 2016; PIIROINEN et al., 2017; 

RACZKO; ZAGAJEWSKI, 2017). Some studies showed that the SVM performs 

better than the RF in the presence of small or imbalanced datasets. In this 

situation, the RF tends to focus more on the prediction accuracy of the majority 

class, which often results in poor accuracy for the minority classes (CHEN et al., 

2004; DALPONTE et al., 2012). However, this was not verified in this study, 

since Area 2 also presents a small and imbalanced sample set, and the RF was 

superior to the SVM in that case. Piiroinen et al. (2017) observed that the fusion 

of LiDAR features with MNF components improved significantly the accuracy for 

the SVM algorithm, while for the RF classifier there was not a statistically 

significant improvement between these datasets. Similar behavior was reported 

by Deng et al. (2016), when comparing the SVM and RF algorithms for tree 

species classification. They observed more accuracy gain when features were 

added to the SVM classifier instead of the RF. In this study, the RF performance 

decreased with the addition of other features, including the PPC features, for 



117 
 

the VNIR_CHM dataset in Area 1, but it remained relatively stable in Area 2. In 

such situations, the impact of data fusion depends on the classifier (PIIROINEN 

et al., 2017) and, in our case, also on the study area peculiarities. In fact, it is 

difficult to keep the generalization of the classification process when changing 

the datasets and study areas, and this is one of the reasons underlying the 

findings of Fassnacht et al. (2016), who reported on the importance of 

integrating more than a single test site in any comparative study of tree species 

classification. 

The wSVM outperformed the SVM only in Area 2. Since the wSVM assigns 

different weights to different classes (or samples), it forces the new separating 

hyperplane to pay more attention to the minority class samples (NGUYEN, 

2019), which are more remarkable in this area. Another fact to consider is that 

besides the class, this algorithm also assigns different weights to each sample. 

Area 2 presents larger coregistration errors among the bands than Area 1, such 

as non reliable pixel samples, e.g., those situated on the border of ITCs where 

these errors can be more noticeable, and hence may receive a lower weight in 

the classification process. In fact, it was verified that for Area 2, even classes 

with more samples had an increase in accuracy when the wSVM was applied. 

Finally, although all the machine learning classifiers have parameters to be 

optimized, the parameter values used in this work provided an output similar or 

even more accurate when compared to other studies e. g., (DALPONTE et al. 

2012; IMMITZER et al. 2016; RACZKO; ZAGAJEWSKI; 2017). According to 

Maxwell et al. (2018), some algorithms have been reported to be robust to 

parameter settings, and machine learning may still outperform parametric 

classifiers, such as maximum likelihood, even with little effort to tune 

hyperparameters. 

5.4 Considerations about tree species classification using the deep 
learning method  

The CNN classifier outperformed machine learning classifiers for both areas, 

reaching the best performance when the VNIR dataset was used. Conversely, 

machine learning methods had a poorer performance when only the VNIR 
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bands were employed. As pointed by Li Y. et al. (2017) and Gao et al. (2018), 

the main advantage of deep learning methods, as CNN, is that they can extract 

spatial and spectral features automatically from the original images, learning 

features through training, with minimal prior knowledge about the task.  

When the PPC features and CHM were add to the VNIR dataset in the machine 

learning classifiers, and the results were incorporated into segments by a MV 

approach, they reached a performance similar to the CNN in both areas. The MV 

rule includes spatial context when it aggregates the pixels into segments, leading 

to higher accuracies and reducing the ‘salt and pepper’ effect in classifications. 

Regarding CNN, it can be observed that the classification images, even without 

the further use of segments (MV), were more homogeneous and had the 

tendency to correct a larger proportion of pixels inside the ITCs than the pixel-

based classifications using machine learning methods. This can be associated 

with the contextual window (patch sizes) used to reckon features, considering the 

information of the pixel neighborhood. In the case of trees, the spatial structure of 

canopies is related to the tree size: if a pixel falls in a specific tree, its neighbors 

are also likely to be in the same tree and have similar information. Information in 

neighboring pixels is related to the information in a focal pixel and these 

relationships decay with distance. CNN classifiers operate according to such 

principle of detecting patterns in groups of adjacent pixels and relate them to 

background information (FRICKER et al., 2019). 

Another fact to consider is that besides the need of ITC segments in a MV rule 

approach, more features are necessary in machine learning methods to reach 

similar accuracies to those attained by the CNN. Indeed, contrary to machine 

learning methods, the CNN presented a decrease in accuracy for most classes 

when the PPC, the CHM or both are included in the dataset. This may be 

occurred due to the increase of training parameters when more bands were 

added to the dataset, leading to overfitting, i.e. a reduction in the generalization 

ability of the algorithm (LIU et al., 2019). Another possible explanation is that the 

PPC features were manually extracted before their inclusion in the algorithm. As 

a CNN automatically extracts its own features, the inclusion of the raw PPC 

instead of rasterized features could enable the extraction of more useful features 
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by this algorithm. A similar behavior was observed by Sothe et al. (2019b) when 

comparing CNN and ensemble methods using WV-2 data, LiDAR features, and 

their integration. Despite the difference was very small, the CNN had the best 

performance when WV-2 data were employed using only the spectral bands; and 

the worst accuracy when only LiDAR features were used. However, in that case, 

even for the CNN, an increase in accuracy was observed when LiDAR features 

were integrated into the WV-2 data, which can be due to the intensity features of 

LiDAR, and not the elevation ones. Hartling et al. (2019) also reached the best 

OA for a dense CNN when multispectral bands of WV-3 were employed together 

with LiDAR data, but they used only the intensity image instead of elevation 

features. 

According to He et al. (2018), most of the existing methods do not extract 

informative features from LiDAR-derived rasterized data in a deep manner. 

Hamraz et al. (2018) pointed out that LiDAR point clouds are not easily 

processed by the human visual system, and hence the expert-designed 

features may as well be suboptimal and likely miss useful information. Qi et al. 

(2016; 2017) mentioned that 3D data have attracted less attention in view of 

their more costly acquisition/processing and their both less intuitive and 

conventional representation formats, which demand non-trivial pre-processing 

techniques to discretize the data and make them usable for deep learning 

methods. In this respect, some approaches can be explored in future works, 

such as voxel spaces to create representations that can drive and be processed 

by a 3D CNN (MATURANA; SCHERER, 2015; WU et al. 2015; GUAN et al., 

2019) or even the use of morphological and multiattribute profiles to extract 

Until the present moment, there are few recent studies exploring CNN for tree 

species classification purposes (PÖLÖNEN et al., 2018; FRICKER et al., 2019; 

GUAN et al., 2019; HARTLING et al., 2019). Pölönen et al. (2018) reached 96.2% 

of OA when classifying three tree species of a boreal forest using a 3D CNN and 

hyperspectral data, while Guan et al. (2019) reached 96.4% of OA when 

classifying 10 tree species using mobile LiDAR data and a 3D CNN in an urban 

environment. Such high OA values are usually associated with validation samples 

internally generated by the CNN during training. Hartling et al. (2019) compared a 
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dense CNN architecture to the RF and SVM methods to classify eight tree species 

in an urban area using WV-2, WV-3 and LiDAR data. In their study, the CNN 

classifier reached 82.6% of OA in comparison to 60% achieved by machine 

learning methods. Fricker et al. (2019) reached a F-score of 0.87 when classifying 

seven tree species in a mixed-conifer forest in USA. The results of this study are 

comparable to those of the above mentioned works, given that Pölönen et al. 

(2018) and Fricker et al. (2019) handled a limited number of species, none of them 

in tropical forests, and both Guan et al. (2019) and Hartling et al. (2019) studied 

urban areas, which represent a more controlled environment. Likewise our study, 

Hartling et al. (2019) emphasized the ability of the CNN to extract information from 

the input dataset and pointed out that the addition of features, such as VIs and 

texture, tended to decrease the OA of the CNN. 

Although outperforming other methods for the majority of the analyzed tree 

species in both areas, the CNN totally misclassified Campomanesia 

xanthocarpa in Area 2. Even so, their training samples were correctly classified, 

which can be a specific case of overfitting, since different ITCs were used as 

test samples to evaluate the methods. 

The non-dependence of former steps of feature extraction and segmentation 

before the classification makes the CNN concept an attractive solution for tree 

species classification in highly diverse environments, even in the presence of 

small sample sets, if a data augmentation process is applied. On the other 

hand, the processing time and computer power requirements are the biggest 

disadvantages of such method. Huang et al. (2002) noted that the higher 

accuracy of artificial neural networks (ANNs) algorithms compared to decision 

trees was offset by the larger computational cost. However, when considering 

the VNIR dataset and the pixel-based approach, this study showed that the 

CNN reached accuracies between 22% and 26% higher than those of RF and 

SVM for both areas, which can counterbalance the price of its high 

computational cost. 
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5.5 Considerations about the number of ITC samples, tree species 
classes and evaluation method 

According to Ferét and Asner (2013), the minimum number of samples per 

species required to perform optimal classification is a limiting factor in tropical 

forest studies due to the difficulty and high cost of tree localization on the 

ground. While Baldeck and Asner (2014) suggest approximately 20 ITCs as the 

focal number to achieve optimal classification accuracy in an 11-class model, 

Graves et al. (2016) suggest that in a model with 21 classes, all the classes 

should have at least 20 to 30 ITCs per class to produce accurate and reliable 

classification predictions, allowing for a split of the ITCs into training and test 

groups. This study, similarly to other studies involving the classification of a 

considerable number of tree species e.g., (FÉRET; ASNER, 2013; LEE et al., 

2016; PIIROINEN et al., 2017; TUOMINEN et al., 2018; BRABANT et al., 2019), 

had few ITC samples for some classes. This, coupled with the fact that not all 

the species were considered in the classification models, is an obstacle to 

extrapolate the classification over the entire area, because it may result in a 

map with many uncertainties. 

It can be noticed, for instance, that the maps of Figures 4.29 and 4.31 presented 

similar accuracies according to confusion matrices but are different regarding the 

species distribution over the area. Even so, these classified images could be used 

in some general ecological applications, such as assessing patterns of species 

composition and abundance across environmental gradients or land management 

units, considering that such classifications are in compliance to a certain extent 

with each other regarding the proportion of every species. They can also be useful 

for the identification of areas of high or low tree cover and species diversity, the 

identification of ecological groups of tree species (like pioneer, secondary, and 

climax), to support the successional forest stages classification as well as to 

provide landscape estimates of aboveground biomass (GRAVES et al., 2016). For 

more focused applications, where accurate predictions of species location and 

identity is needed, such as monitoring endangered tree species (e.g., Araucaria 

angustifolia and Cedrela fissilis), other techniques, like semi-supervised methods 

where a focal group of species is identified from a background of unknown species 
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(BALDECK; ASNER, 2014; BALDECK et al., 2015), can be a better approach 

(GRAVES et al., 2016). 

It was verified that not always the classes with fewer samples had the lowest 

classification accuracy. However, those classes with only two or three ITCs tended 

to present more variability in accuracies when changing the dataset and classifier 

and may eventually have their cover area underestimated in the classification 

results. Graves et al. (2016) observed that species with more training samples 

presented lower variability across the iterations of the classification process. Our 

study showed a similar pattern; here though, the iterations here regard changing 

datasets and classifiers, i.e. each classification scheme did run only once.  

In such situations, another issue that deserves attention is the evaluation method. 

This study adopted a simple split in training and test sets, which is pointed out as 

one of the most popular approaches for statistically assessing tree species 

classifications (FASSNACHT et al., 2016). On the other hand, Lyons et al. (2018) 

reported that a simple split of data into training and test sets results in a large 

variance in estimates of accuracy and mapped area, mainly when dealing with 

small sample sets. In this case, when the classes are not completely 

representative of the full population of trees in the study area, the reported 

accuracies could be optimistic (FASSNACHT et al., 2016). Nevertheless, a study 

conducted by Sothe et al. (2019a) using the same dataset and the SVM classifier 

adopted the Leave-One-Out (LOO) strategy to evaluate the models in Area 1 and 

reached an accuracy of 72.4% for the best dataset (VNIR_PPC_CHM_VI), which 

is about 5% below the present study. However, this strategy was not adopted in 

this work, since the use of LOO with the CNN algorithm would be extremely time-

consuming. This is one of the main reasons why studies concerning CNN-based 

classifications followed the simple split strategy (LI Y. et al., 2017; GAO et al., 

2018; ZHANG et al., 2018; PÖLÖNEN et al., 2018; FRICKER et al., 2019; 

HARTLING et al., 2019), which is ultimately able to provide a fair comparison 

among classifiers. 
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5.6 Considerations about the use of UAV-borne data 

The use of an UAV hyperspectral camera proved to be a cheap and fast way to 

acquire data for successional stages and tree species classification in a highly 

diverse forest. When considering different UAV sensors, the advantages of the 

image-frame approach over the traditional pushbroom or whiskbroom scanning 

approaches include the possibility to collect image blocks with stereoscopic 

multiple object views maintaining the geometric and radiometric constraints 

provided by the rigid rectangular image geometry (HONKAVAARA et al., 2013). 

Although the UAV laser scanning technique has developed rapidly in recent years, 

the high prices of the sensors still render this technique expensive, and cameras 

which are mounted on the UAVs, are less expensive and more accessible than 

light laser scanners (SALACH et al., 2018). Regardless of that, the main 

disadvantage of the PPC is the lack of vegetation penetration which can be an 

obstacle for ITC delineation and estimation of structure parameters. 

When machine learning methods were applied, the use of the PPC features 

increased strongly the classification accuracy of Area 1, however, due to the lower 

density of points and particularities of the area, this increase was not so 

pronounced as the CHM for Area 2. This suggests that the flight campaigns should 

be planned in order to acquire a higher overlap among the images and 

consequently, a denser PPC. The CHM generated from the DSM of the PPC 

proved to be very useful for tree species classification for both areas. 

The disadvantages of the current first-generation frame format hyperspectral 

cameras are the poorer spectral resolution (FWHM of 10–30 nm) and the smaller 

number of spectral bands in respect to more mature pushbroom techniques, which 

typically provide hundreds of spectral bands with FWHMs of 2–10 nm 

(HONKAVAARA et al., 2016). Besides that, a special care must be taken to align 

the spectral bands during the preprocessing steps. Since fewer GCPs were used 

for band registration in Area 2, it presented more problems related to 

misalignments between the bands, which may have negatively affected the results. 

In the future, the spectral performance of the FPI cameras is expected to improve, 
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and the latest commercial cameras already offer improved performances 

(www.rikola.fi) (HONKAVAARA et al., 2016; AASEN et al., 2018).  
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6 CONCLUSION AND FUTURE STUDIES 

This study investigated two major topics concerning the mapping of subtropical 

forests: i) the ability of UAV-based PPC, UAV-hyperspectral and WV-2 data to 

map successional forest stages using machine learning methods; ii) the ability 

of UAV-based PPC and UAV-hyperspectral data for ITC delineation and tree 

species classification using machine and deep learning methods. For 

successional forest stages classification, the SVM and RF classifiers were 

tested using an OBIA approach and up to 14 datasets depending on the data 

(WV-2 and hyperspectral) (c.f. Table 3.13). For tree species classification, four 

different classifiers (SVM, wSVM, RF and CNN), three classification approaches 

(per-pixel, OBIA, MV rule) and 13 datasets composed of up to 68 features (c.f. 

Tables 3.13, 4.2 and 4.3) were tested. Regarding the hypotheses presented, 

the following considerations can be made:  

a) The successional forest stages can be well discriminated with either 

multispectral (WV-2) or hyperspectral data: both data showed a great 

potential for classifying the successional forest stages. The accuracies 

generally were over 80% for the WV-2 data and 90% for the 

hyperspectral data, reaching 99.28% with the latter one associated 

with the VNIR_CHM_MNF dataset and the RF classifier. The addition 

of textural features, MNF and VIs in the classification process was 

important to increase the accuracy of both input data as compared 

with the exclusive use of the VNIR dataset. The CHM was the most 

important feature when the WV-2 data were used, but not 

indispensable if other multispectral features are alternately 

incorporated. Texture features were among the most important ones 

for the employed hyperspectral data, which can be due to their 

property of smoothing the high level of information, a characteristic 

derived from their refined spatial and spectral resolution. VIs were 

more important for the WV-2 data, since they may have attenuated the 

shadow effects caused by the data acquisition geometry. It is worth 

mentioning that the adopted methodology may be easily applied to 
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further subtropical areas of the Atlantic Rain Forest with similar 

characteristics. Finally, the flexibility of the UAV data regarding 

weather conditions and temporal resolution must be highlighted, as 

well as the synoptic and systemic data acquisition capabilities of the 

WV-2 sensor. 

b) The inclusion of 3D features derived from the PPC improved the tree 

species and successional forest stages classification: the inclusion of 

PPC features and the CHM provided a marked accuracy increase in 

the tree species classification results when machine learning methods 

were applied (SVM, wSVM and RF), between 13% and 17% 

depending on the classifier and the study area. However, a decrease 

was observed when these features were included in the CNN 

classification. Regarding the successional forest stages, the inclusion 

of the PPC features and the CHM improved the accuracy between 

6.3% and 13% in comparison with the VNIR dataset. 

c) The use of the UAV-based PPC and hyperspectral data is effective for 

ITCs delineation in subtropical forests: three segmentation algorithms 

were tested for the ITC delineation; however, none of them reached a 

proper result for all reference ITCs. The MRG method tended to 

oversegment the ITCs, while the itcIMG and MCRC undersegmented 

or even missed some suppressed ITCs. With the inclusion of the CHM 

in the MRG segmentation and merging homogenous segments with 

the JM distance, a better result was obtained.  

d) The use of ITCs as a classification unit (i.e. OBIA or the MV rule at an 

object level) increases the tree species classification accuracies of 

machine learning methods in relation to the pixel-based classification: 

The OBIA approach (only applied to Area 1) did not increase the OA 

for the SVM, while a slight increase was observed for the RF algorithm 

in comparison with the other pixel-based classifications. When the 

pixel-based classifications were aggregated into segments through a 

MV rule, it was observed a marked increase in accuracy for both study 
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areas (5% for Area 1 and 11% for Area 2), considering the same 

datasets individually. This can be explained by the fact that this 

procedure reduced the classification errors associated with the 

spectral variability of high spatial resolution data.  

e) Classifiers dealing with the imbalanced sample sets can increase the 

accuracy of less represented tree species classes: the wSVM, a new 

SVM approach to work with imbalanced sample sets and unreliable 

samples, improved the accuracy not only for some lesser represented 

classes, but for some major classes in Area 2 as well. The use of a 

CNN architecture associated with a previous step to balance the 

samples set was also a promising approach to classify tree species in 

both areas, since the method outperformed all the other algorithms 

when pixel-based approaches are compared. 

f) The CNN algorithm can effectively classify tree species using fewer 

features than machine learning methods with comparable accuracy 

indices: when considering the pixel-based approach, CNN 

outperformed the RF and SVM for both areas, with an OA of 84.4% in 

Area 1, and 74.95% in Area 2, using only the VNIR bands. In fact, this 

method was more accurate than the SVM and RF when considering 

only the VNIR dataset, between 22% and 26%.  

As final considerations, it can be stated that machine learning methods also 

provided good results for tree species classification. The SVM and RF had a 

similar performance for Area 2, but the SVM was significantly better than the RF 

in Area 1. In both areas, when the best dataset result of the SVM was 

associated with the MV rule approach, a performance similar to that obtained by 

the CNN was reached. However, in the case of machine learning methods, 

besides the use of segments, the PPC features and the CHM were crucial to 

increase the accuracy. Neither the inclusion of hyperspectral features nor the 

FS process changed the results for the tree species classification. 
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This work indicated that the adopted approaches for the semiautomatic 

classification of three successional forest stages and 16 tree species in patches 

of a subtropical portion of the Atlantic Rain Forest are promising. The herein 

produced findings are relevant for the conservation of this severely threatened 

biome, being potentially useful for optimizing mapping and monitoring of its 

forest remnants. Furthermore, the methodology can be used to classify specific 

tree species, such as the endangered ones, like Araucaria angustifolia and 

Cedrela fissilis. In further studies, a feasible approach for improving the 

classification performance is envisaged so as to explore the ITC delineation 

methods for tropical forest environments, combining PPC and hyperspectral 

data. This proper delineation can be associated with an OBIA classification at 

an ITC level. Moreover, increasing the number of ITC samples in a way to 

enable a more robust model and consistent classification is also a goal to be 

pursued. The generalization of the classification is another issue to consider, 

since the use of two study areas, instead of one, showed that the particularities 

of each area should be duly taken into account when choosing the most reliable 

features and algorithms for the purpose of classifying tree species. 

Finally, it is also necessary to explore methods involving the extraction of deep 

features directly from the PPC using the CNN classifier. This algorithm showed 

a great potential for classifying tree species using only the VNIR bands, but it 

did not benefit from the PPC features manually extracted before the 

classification. It is believed that this algorithm can perform even better if a more 

robust technique to extract 3D features is implemented. 
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APPENDIX A – CONFUSION MATRICES OF SUCCESSIONAL FOREST 
STAGES CLASSIFICATION 

Table A.1- Confusion matrices of successional forest stages classification using WV-2 
data. 

 SVM_VNIR   RF_VNIR 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 183 58 110 351  SS1 144 16 23 183 
SS2 10 94 6 110  SS2 10 109 5 124 
SS3 0 48 384 432  SS3 39 75 472 586 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_VNIR_CHM    RF_VNIR_CHM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 181 42 1 224  SS1 178 60 0 238 
SS2 10 145 8 163  SS2 13 128 0 141 
SS3 2 13 491 506  SS3 2 12 500 514 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_VNIR_CHM_MNF    RF_VNIR_CHM_MNF 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 178 42 10 230  SS1 178 60 0 238 
SS2 10 158 11 179  SS2 13 129 0 142 
SS3 5 0 479 484  SS3 2 11 500 513 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_VNIR_CHM_GLCM    RF_VNIR_CHM_GLCM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 178 42 10 230  SS1 169 37 0 206 
SS2 10 136 5 151  SS2 13 143 0 156 
SS3 5 22 485 512  SS3 11 20 500 531 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_VNIR_CHM_VI    RF_VNIR_CHM_VI 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 178 39 10 227  SS1 180 40 0 220 
SS2 10 135 8 153  SS2 13 140 0 153 
SS3 5 26 482 513  SS3 0 20 500 520 
Total 200 200 500 900  Total 200 200 500 900 
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  SVM_VNIR_MNF_GLCM_VI    RF_VNIR_MNF_GLCM_VI 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 172 42 15 229  SS1 171 24 24 219 
SS2 10 127 6 143  SS2 3 129 5 137 
SS3 11 31 479 521  SS3 19 47 471 537 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_MNF_CHM    RF_MNF_CHM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 177 69 5 251  SS1 181 77 0 258 
SS2 10 130 0 140  SS2 10 112 0 122 
SS3 6 1 495 502  SS3 2 11 500 513 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_FSRF    RF_FSRF 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 178 39 0 219  SS1 180 39 0 219 
SS2 15 141 0 154  SS2 13 141 0 154 
SS3 0 20 500 520  SS3 0 20 500 520 
Total 200 200 500 900  Total 200 200 500 900 

           
  SVM_full    RF_full 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 164 38 10 212  SS1 174 42 5 221 
SS2 10 152 8 170  SS2 13 141 0 154 
SS3 19 10 482 511  SS3 6 17 495 518 
Total 200 200 500 900  Total 200 200 500 900 
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Table A.2- Confusion matrices of successional forest stages classification using 
Hyperspectral data. 

 SVM_VNIR   RF_VNIR 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 56 34 490  SS1 400 10 64 474 
SS2 0 306 21 327  SS2 0 352 171 523 
SS3 0 38 945 983  SS3 0 38 765 803 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           
  SVM_VNIR_CHM    RF_VNIR_CHM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 21 13 434  SS1 400 0 0 400 
SS2 0 379 58 437  SS2 0 400 18 418 
SS3 0 0 929 929  SS3 0 0 982 982 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           
  SVM_VNIR_CHM_MNF    RF_VNIR_CHM_MNF 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 13 10 423  SS1 400 0 0 400 
SS2 0 387 48 435  SS2 0 400 13 413 
SS3 0 0 942 942  SS3 0 0 987 987 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           
  SVM_VNIR_CHM_GLCM    RF_VNIR_CHM_GLCM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 21 13 434  SS1 400 0 24 424 
SS2 0 379 50 429  SS2 0 390 111 501 
SS3 0 0 937 937  SS3 0 10 865 875 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           
  SVM_VNIR_CHM_VI    RF_VNIR_CHM_VI 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 13 10 423  SS1 400 0 26 426 
SS2 0 387 78 465  SS2 0 399 51 450 
SS3 0 0 912 912  SS3 0 1 923 924 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           
  SVM_VNIR_MNF_GLCM_VI    RF_VNIR_MNF_GLCM_VI 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 25 31 456  SS1 400 0 44 444 
SS2 0 375 8 383  SS2 0 386 57 443 
SS3 0 0 961 961  SS3 0 14 899 913 
Total 400 400 1,000 1,800  Total 400 400 1,000 1,800 

           



157 
 

  SVM_MNF_CHM    RF_MNF_CHM 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 0 0 400  SS1 400 0 0 400 
SS2 0 400 79 479  SS2 0 385 21 406 
SS3 0 0 921 921  SS3 0 15 979 994 
Total 400 400 1,000 1,800   Total 400 400 1,000 1,800 

           
  SVM_VNIR_PPC    RF_VNIR_PPC 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 0 60 460  SS1 400 13 38 451 
SS2 0 388 52 440  SS2 0 387 79 466 
SS3 0 12 888 900  SS3 0 0 883 883 
Total 400 400 1,000 1,800   Total 400 400 1,000 1,800 

  
 
          

 SVM_VNIR_CHM_PPC   RF_VNIR_CHM_PPC 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 0 0 400  SS1 400 0 24 424 
SS2 0 400 35 435  SS2 0 400 60 460 
SS3 0 0 965 965  SS3 0 0 916 916 
Total 400 400 1,000 1,800   Total 400 400 1,000 1,800 

           
 SVM_VNIR_CHM_PPC_MNF   RF_VNIR_CHM_PPC_MNF 
Class SS1 SS2 SS3 Total  Class SS1 SS2 SS3 Total 
SS1 400 0 0 400  SS1 400 0 26 426 
SS2 0 400 39 439  SS2 0 400 65 465 
SS3 0 0 961 961  SS3 0 0 909 909 
Total 400 400 1,000 1,800   Total 400 400 1,000 1,800 
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APPENDIX B – CONFUSION MATRICES OF TREE SPECIES 
CLASSIFICATION  

Note: species ID according to Table 3.2. 

Table B.1- Confusion matrices using the SVM algorithm in Area 1. 

  VNIR 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,087 234 1 4,820 230 1,053 0 339 227 170 141 301 0 79 

2 355 11,349 515 113 241 22 7 18 192 93 901 352 50 54 

3 2 923 5,104 4 0 0 0 1 2 14 127 297 502 7 

4 148 40 0 3,278 1 725 0 2 38 50 81 10 0 0 

5 564 235 4 190 6,168 5 0 7 6 0 818 1 0 0 

6 387 139 1 933 10 10,207 56 880 1,028 646 549 254 2 65 

7 0 0 3 6 0 1 1,080 21 741 362 98 50 2 4 

8 255 85 163 94 45 80 26 2,350 658 306 349 372 0 564 

9 79 371 123 323 1 98 415 165 9,822 897 2,615 711 60 45 

10 80 1 10 199 0 73 127 30 2,488 1,461 1,073 114 8 20 

11 1,376 366 186 164 35 54 748 92 7,027 2,087 31,622 1,265 72 4 

12 3 113 3,590 108 0 15 4 7 161 87 315 1,671 114 104 

13 0 48 148 0 0 0 0 0 0 7 138 400 1,532 0 

14 1 1 19 22 0 3 262 28 380 299 80 65 3 42 

               

  VNIR_CHM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,212 209 3 5,511 314 209 0 63 16 121 45 596 0 295 

2 208 12,070 108 85 80 45 7 22 61 75 743 456 56 182 

3 3 142 8,681 29 10 0 0 0 0 40 21 551 80 38 

4 189 10 0 3,726 102 240 0 2 30 44 123 34 0 10 

5 193 184 28 29 6,139 0 0 2 0 0 427 0 0 2 

6 154 95 0 33 1 10,961 72 433 2,660 291 541 12 0 0 

7 0 0 0 0 0 0 1,337 12 1,380 340 206 0 4 0 

8 78 102 0 39 6 339 14 3,146 743 270 386 281 0 258 

9 113 383 82 42 0 112 401 126 9,209 697 2,673 1,049 213 6 

10 0 3 0 84 0 279 186 23 1,613 1,954 1,602 41 8 2 

11 1,184 534 117 551 79 86 651 71 6,860 2,264 31,937 414 113 78 

12 2 161 754 44 0 64 0 11 81 65 69 1,530 361 92 

13 1 9 94 0 0 0 0 0 0 17 53 741 1,508 0 

14 0 3 0 81 0 1 57 29 117 301 81 158 2 25 
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  VNIR_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,979 32 0 2,098 0 0 0 0 132 14 1,828 611 0 0 

2 159 10,594 986 11 0 101 67 8 141 46 758 230 22 47 

3 0 16 3,978 0 0 0 0 0 16 4 3 64 1,730 0 

4 96 12 0 6,248 6 58 0 0 183 54 306 70 0 0 

5 0 271 0 13 6,684 0 0 0 0 0 627 0 0 0 

6 0 503 10 0 0 11,866 0 7 1,954 855 0 16 2 0 

7 0 0 12 0 0 0 2,045 81 1,056 9 0 0 0 1 

8 0 0 284 0 0 0 86 3,651 1,023 25 0 15 0 828 

9 0 131 306 1,861 0 140 362 113 11,117 123 5,492 504 13 50 

10 4 3 9 0 0 25 13 11 1,011 3,003 1 16 8 0 

11 1,089 2,289 44 23 41 85 152 52 6,134 2,345 29,400 110 120 0 

12 10 54 4,157 0 0 61 0 6 2 0 492 3,420 0 21 

13 0 0 79 0 0 0 0 0 1 1 0 28 450 0 

14 0 0 2 0 0 0 0 11 0 0 0 779 0 41 

 

  VNIR_CHM_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,244 24 0 2,257 0 1 0 0 0 17 196 307 0 0 

2 79 11,859 279 4 0 76 22 13 27 41 697 213 59 0 

3 0 9 5,450 0 0 0 0 0 0 19 0 120 1,607 10 

4 23 93 0 7,790 286 0 0 0 88 27 537 242 0 0 

5 0 497 0 14 6,366 0 0 0 1 0 379 0 0 0 

6 0 135 0 0 0 11,714 0 0 5,077 805 6 0 1 0 

7 0 0 0 0 0 0 2,496 38 1 3 0 0 0 0 

8 0 0 0 0 0 0 4 3,762 1,148 0 0 1 0 133 

9 0 340 50 35 0 210 10 91 13,165 107 6,344 7 15 0 

10 0 0 0 0 0 39 33 0 234 4,570 0 16 63 0 

11 987 835 4 154 79 129 160 13 3,024 887 30,605 132 227 0 

12 4 113 4,057 0 0 167 0 5 1 3 143 4,341 0 222 

13 0 0 12 0 0 0 0 0 4 0 0 46 373 0 

14 0 0 15 0 0 0 0 18 0 0 0 438 0 623 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

    



160 
 

 

  VNIR_CHM_PPC_MNF 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,258 33 0 2,513 0 6 0 0 0 19 193 391 0 0 

2 61 12,211 240 7 0 57 23 7 32 38 610 203 79 1 

3 0 7 5,809 0 0 0 0 0 0 15 0 112 1,123 11 

4 20 80 0 7,593 68 0 0 0 126 14 422 172 0 0 

5 1 601 0 6 6,587 0 0 0 0 0 529 0 0 0 

6 0 227 0 0 0 11,772 0 0 4,356 550 5 1 1 0 

7 0 0 0 0 0 0 2,461 44 0 0 0 0 0 0 

8 0 0 0 0 0 0 8 3,773 1,001 0 0 1 0 116 

9 4 260 37 16 0 190 19 93 11,426 94 5,065 45 24 0 

10 0 2 0 0 0 55 39 0 378 4,702 0 18 38 0 

11 991 375 3 119 76 129 175 13 5,442 1,036 31,760 213 199 0 

12 2 109 3,755 0 0 127 0 5 6 11 323 4,204 0 199 

13 0 0 3 0 0 0 0 0 3 0 0 76 881 0 

14 0 0 20 0 0 0 0 5 0 0 0 427 0 661 

               

  VNIR_CHM_PPC_GLCM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,064 23 0 4,053 0 25 0 0 14 55 463 546 0 0 

2 149 11,592 338 15 2 124 21 2 36 160 544 254 105 4 

3 0 1 7,054 0 0 0 0 0 0 15 0 384 663 7 

4 87 0 0 6,095 55 0 0 0 110 27 187 85 0 0 

5 0 1,373 0 21 6,632 0 0 0 0 0 764 0 0 0 

6 10 430 0 0 0 11,862 0 3 2,707 406 31 0 2 0 

7 0 0 0 0 0 0 2,347 6 67 11 0 0 0 0 

8 0 0 0 0 0 0 16 3,810 1,451 2 0 8 0 329 

9 12 57 85 6 0 91 39 96 10,447 98 5,525 158 3 0 

10 0 0 0 0 0 85 32 0 1,027 4,286 0 16 14 0 

11 1,015 326 0 64 42 38 270 1 6,903 1,352 31,290 136 56 0 

12 0 103 2,334 0 0 111 0 6 7 64 103 3,799 61 179 

13 0 0 10 0 0 0 0 0 1 3 0 122 1,441 0 

14 0 0 46 0 0 0 0 16 0 0 0 355 0 469 
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  VNIR_CHM_PPC_VI 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,323 19 0 2,247 0 0 0 0 2 19 314 294 0 0 

2 62 12,051 302 3 1 73 24 11 17 45 688 208 72 1 

3 0 2 5,771 0 0 0 0 0 0 16 0 119 1,192 16 

4 23 90 0 7,819 240 1 0 0 92 34 379 227 0 0 

5 0 642 0 19 6,436 0 0 0 0 0 469 0 0 0 

6 0 146 0 0 0 11,788 0 3 4,805 715 2 0 0 0 

7 0 0 0 0 0 0 2,482 44 0 0 0 0 0 0 

8 0 0 0 0 0 0 7 3,764 1,099 0 0 10 0 142 

9 0 334 17 11 0 152 15 96 13,013 113 4,933 11 17 0 

10 0 1 0 0 0 48 24 0 344 4,676 0 14 53 0 

11 927 505 3 155 54 126 173 10 3,394 850 31,919 172 180 0 

12 2 115 3,757 0 0 148 0 6 2 10 203 4,264 0 238 

13 0 0 1 0 0 0 0 0 2 1 0 73 831 0 

14 0 0 16 0 0 0 0 6 0 0 0 471 0 591 

  VNIR_VI_MNF_GLCM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,225 527 6 5,198 86 1,290 2 360 161 244 113 414 0 112 

2 455 10,615 586 159 131 22 0 8 87 68 1,008 506 17 59 

3 3 950 5,068 0 0 0 0 0 0 19 107 332 568 0 

4 221 29 0 3,357 19 1,232 0 1 59 27 63 14 0 0 

5 341 660 0 128 6,398 0 0 0 0 0 1,029 0 0 0 

6 288 250 2 591 17 9,516 41 1,116 627 718 93 252 1 46 

7 0 0 3 0 0 0 1,126 11 879 369 71 23 0 1 

8 241 101 97 124 0 84 19 2,107 451 354 207 327 1 560 

9 19 32 39 292 3 89 385 186 9,465 743 2,267 605 6 56 

10 57 2 6 149 0 36 179 39 3,476 1,567 1,287 106 10 29 

11 1,483 606 110 175 77 36 728 40 6,889 1,907 32,058 943 51 7 

12 4 76 3,852 76 0 28 0 8 74 86 327 1,712 271 84 

13 0 57 76 0 0 0 0 0 0 21 172 502 1,418 0 

14 0 0 22 5 0 3 245 64 602 356 105 127 2 34 
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  VNIR_CHM_PPC_VI_MNF 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,310 40 0 2,417 0 5 0 0 6 21 353 371 0 0 

2 69 12,246 246 6 2 55 24 7 28 46 609 200 64 5 

3 0 5 6,100 0 0 0 0 0 0 17 0 141 928 11 

4 14 18 0 7,716 57 1 0 0 94 23 358 140 0 0 

5 0 694 0 13 6,601 0 0 0 0 0 614 0 0 0 

6 1 193 0 0 0 11,725 0 0 4,073 543 8 0 0 0 

7 0 0 0 0 0 0 2,445 50 0 0 0 0 0 0 

8 0 0 0 0 0 0 7 3,769 1,030 0 0 8 0 138 

9 5 276 26 11 0 208 16 95 11,092 97 4,460 49 19 0 

10 0 1 0 0 0 93 35 0 444 4,694 1 12 38 0 

11 935 323 2 91 71 127 198 10 5,994 1,015 32,281 239 179 0 

12 3 109 3,459 0 0 122 0 7 8 22 223 4,196 0 217 

13 0 0 3 0 0 0 0 0 1 1 0 79 1,117 0 

14 0 0 31 0 0 0 0 2 0 0 0 428 0 617 

               

  MNF_CHM_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,130 22 0 1,374 0 0 0 0 0 22 67 334 0 0 

2 57 10,906 393 1 0 69 40 10 30 24 583 150 55 0 

3 0 3 4,731 0 0 0 0 0 0 29 0 0 1,735 5 

4 6 25 0 8,476 297 3 0 0 108 38 514 280 0 0 

5 0 829 0 129 6,328 0 0 0 0 0 568 0 0 0 

6 0 324 0 0 0 11,206 0 0 5,404 1,288 6 0 0 0 

7 0 0 0 0 0 0 2,477 85 3 0 0 0 0 0 

8 0 0 0 0 0 0 2 3,725 957 0 0 0 0 96 

9 1 301 151 92 1 594 1 98 10,926 121 12,311 0 12 3 

10 0 6 0 0 0 119 32 0 17 3,956 0 18 62 0 

11 1,143 1,334 6 182 105 141 173 1 5,316 1,000 24,842 112 424 0 

12 0 155 4,562 0 0 204 0 4 0 1 16 4,602 0 244 

13 0 0 0 0 0 0 0 0 9 0 0 0 57 1 

14 0 0 24 0 0 0 0 17 0 0 0 367 0 639 
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MNF_CHM_PPC_VI 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,273 34 0 1,731 0 3 0 0 0 26 43 336 0 0 

2 46 11,547 294 1 0 85 28 7 22 34 519 153 62 1 

3 0 3 5,038 0 0 0 0 0 2 13 0 1 1,314 12 

4 6 5 0 8,254 179 1 0 0 91 43 304 274 0 0 

5 3 901 0 76 6,457 0 0 0 0 0 595 0 0 0 

6 0 322 0 0 0 11,486 0 0 5,105 1,095 8 0 1 0 

7 0 0 0 0 0 0 2,484 87 1 0 0 0 1 0 

8 0 0 0 0 0 0 2 3,737 863 0 0 0 0 116 

9 1 194 131 56 7 353 4 90 14,057 107 11,025 15 28 3 

10 0 8 0 0 0 118 34 0 91 4,265 0 16 61 0 

11 1,008 759 7 136 88 131 173 10 2,534 888 26,365 148 254 0 

12 0 132 4,366 0 0 159 0 5 0 8 48 4,563 0 214 

13 0 0 11 0 0 0 0 0 4 0 0 0 624 0 

14 0 0 20 0 0 0 0 4 0 0 0 357 0 642 

  full 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,944 22 0 5,554 0 27 0 0 13 45 422 501 0 0 

2 130 11,827 283 14 5 81 9 0 27 124 537 198 64 13 

3 0 0 7,093 0 0 0 0 0 0 11 0 345 561 1 

4 92 0 0 4,616 33 2 0 0 98 41 159 72 0 0 

5 7 1,171 0 32 6,659 0 0 0 0 0 865 0 0 0 

6 14 311 0 0 0 11,772 0 7 2,592 496 28 1 0 0 

7 0 0 0 0 0 0 2,332 9 77 12 0 0 0 0 

8 0 0 0 0 0 0 19 3,813 1,383 1 0 11 0 336 

9 10 48 55 3 0 133 41 91 8,576 77 4,775 238 2 0 

10 0 3 0 0 0 158 44 0 745 4,075 3 13 14 0 

11 1,140 429 0 35 34 45 280 1 9,257 1,489 32,022 203 85 0 

12 0 94 2,342 0 0 118 0 6 2 100 96 3,595 70 203 

13 0 0 31 0 0 0 0 0 0 8 0 249 1,549 0 

14 0 0 63 0 0 0 0 13 0 0 0 437 0 435 
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  MV (VNIR_CHM_PPC_VI) 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,918 0 0 2,557 0 0 0 0 0 0 66 650 0 0 

2 0 13,486 0 51 0 207 13 0 72 2 714 296 52 0 

3 0 0 5,936 0 0 0 2 0 0 1 0 125 1,319 9 

4 0 16 0 7,575 0 0 0 0 101 64 203 29 0 0 

5 0 117 0 6 6,671 0 0 0 0 0 349 0 0 0 

6 0 40 0 0 0 11,837 0 0 5,556 327 0 0 44 0 

7 0 0 0 0 0 0 2,680 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3,909 954 0 0 0 0 0 

9 0 0 0 0 0 201 0 0 13,755 0 3,183 0 0 0 

10 0 0 0 0 0 0 0 0 0 5,399 0 20 40 0 

11 419 164 0 63 21 0 30 0 2,187 630 34,392 0 120 0 

12 0 82 3,931 0 0 91 0 0 0 0 0 4,418 0 101 

13 0 0 0 0 0 0 0 0 0 0 0 0 765 0 

14 0 0 0 0 0 0 0 0 0 0 0 325 0 878 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

  

  FSJM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,045 30 0 2,799 0 11 0 0 5 26 388 403 0 0 

2 84 11,992 232 8 7 80 15 3 36 75 575 192 65 9 

3 0 4 6,544 0 0 0 0 0 0 11 0 273 720 2 

4 32 2 0 7,289 30 0 0 0 119 23 193 132 0 0 

5 2 1,031 0 11 6,609 0 0 0 0 0 788 0 0 0 

6 10 224 0 0 0 11,673 0 0 3,163 486 18 2 0 0 

7 0 0 0 0 0 0 2,399 20 4 1 0 0 0 0 

8 0 0 0 0 0 0 7 3,749 1,041 0 0 10 0 195 

9 14 206 32 31 0 192 25 146 8,895 59 4,966 163 4 0 

10 0 4 0 0 0 154 34 0 915 4,549 1 10 30 0 

11 1,149 319 13 116 85 114 245 6 8,582 1,202 31,829 251 143 0 

12 1 93 3,005 0 0 112 0 10 6 47 149 3,854 21 207 

13 0 0 2 0 0 0 0 0 4 0 0 153 1,362 0 

14 0 0 39 0 0 0 0 6 0 0 0 420 0 575 
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  OBIA (VNIR_CHM_PPC_VI) 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 5,943 80 0 62 0 0 0 0 504 414 943 403 0 0 

2 674 9,396 9 219 0 70 22 0 19 31 812 460 0 0 

3 0 62 9,007 0 0 0 0 0 0 6 0 704 470 12 

4 0 0 0 9,531 0 0 0 0 1 0 336 196 0 0 

5 0 3,645 0 355 6,669 0 0 0 0 0 1,583 0 0 0 

6 0 0 45 0 0 12,082 0 0 593 168 0 0 35 0 

7 0 0 0 0 0 0 2,079 0 158 0 0 0 0 0 

8 0 0 0 0 0 0 91 3,816 511 0 0 27 0 962 

9 11 2 6 0 0 4 273 11 6,099 803 372 420 8 0 

10 0 0 0 0 0 0 14 0 0 3,822 0 0 0 0 

11 2,709 720 0 87 62 151 246 23 14,885 1,235 34,861 48 37 0 

12 0 0 585 0 0 29 0 0 0 0 0 2,721 174 0 

13 0 0 0 0 0 0 0 0 0 0 0 172 1,621 0 

14 0 0 215 0 0 0 0 90 0 0 0 712 0 14 

 

Table B.2- Confusion matrices using the wSVM algorithm in Area 1. 

  VNIR 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 5,450 223 0 4,096 87 1,064 1 425 250 170 55 178 0 80 

2 392 11,440 328 78 234 26 9 8 234 89 1,194 336 15 19 

3 2 1,130 4,109 0 0 0 1 0 0 12 195 239 303 0 

4 283 43 0 3,601 0 1,055 0 11 50 63 109 14 0 0 

5 886 337 0 375 6,386 15 0 14 13 0 1,180 10 0 1 

6 487 198 1 1,171 2 9,986 63 1,159 895 646 648 304 0 58 

7 0 0 8 10 0 0 1,496 36 2,440 617 454 88 2 1 

8 668 203 120 101 20 73 20 1,868 969 303 661 565 0 507 

9 29 121 50 310 0 27 251 186 6,375 572 2,234 399 8 35 

10 85 1 28 365 0 42 313 84 7,118 2,613 4,722 264 27 45 

11 1,051 81 18 31 2 29 161 46 2,397 402 25,722 347 20 2 

12 1 47 4,891 100 0 18 13 13 299 126 456 1,856 274 209 

13 0 79 199 0 0 0 0 0 0 16 285 812 1,689 0 

14 3 2 115 16 0 1 397 90 1,730 850 992 451 7 31 
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  VNIR_CHM_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,198 7 0 1,918 0 6 0 0 4 14 369 424 0 0 

2 153 11,932 211 5 0 103 20 13 25 66 744 217 100 0 

3 0 0 5,276 0 0 0 0 0 0 10 2 140 1,037 2 

4 47 45 0 8,008 283 0 0 0 69 25 253 111 0 0 

5 0 505 0 21 6,425 0 0 0 0 0 926 0 0 0 

6 0 262 0 0 0 11,935 0 0 3,869 539 4 0 0 0 

7 0 0 0 0 0 0 2,517 43 12 0 0 0 0 0 

8 0 0 0 0 0 0 13 3,747 1,324 0 0 11 0 143 

9 1 142 86 203 0 44 22 108 14,345 81 10,700 6 11 8 

10 0 2 0 0 0 9 48 0 872 4,886 0 15 80 0 

11 933 887 4 99 23 50 105 1 2,244 856 25,665 78 126 0 

12 5 123 4,229 0 0 189 0 6 2 1 244 4,355 1 195 

13 0 0 22 0 0 0 0 0 4 1 0 5 990 0 

14 0 0 39 0 0 0 0 22 0 0 0 501 0 640 

                        

  VNIR_CHM_PPC_VI 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,220 14 0 2,196 0 8 0 0 4 21 585 356 0 0 

2 138 11,996 266 8 0 115 19 13 35 76 729 227 82 0 

3 0 0 5,302 0 0 0 0 0 0 6 0 153 686 1 

4 77 13 0 7,688 155 4 0 0 49 25 215 76 0 0 

5 0 479 0 7 6,539 0 0 0 0 0 919 0 0 0 

6 1 289 0 0 0 11,913 0 0 3,726 548 3 0 0 0 

7 0 0 0 0 0 0 2,489 40 14 1 0 0 0 0 

8 0 0 0 0 0 0 13 3,750 1,309 0 0 22 0 174 

9 0 117 96 156 0 57 29 115 14,027 126 9,427 11 10 2 

10 0 1 0 0 0 34 47 0 888 4,761 0 13 66 0 

11 896 879 25 199 37 47 128 8 2,713 899 26,850 85 147 0 

12 5 117 4,097 0 0 158 0 6 5 15 179 4,384 2 207 

13 0 0 17 0 0 0 0 0 0 1 0 9 1,352 0 

14 0 0 64 0 0 0 0 8 0 0 0 527 0 604 
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Table B.3- Confusion matrices using the RF algorithm in Area 1. 

  VNIR 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 5,662 372 1 5,496 30 1,926 2 404 247 208 75 148 0 46 

2 345 10,904 596 80 228 37 9 7 231 73 847 555 41 53 

3 0 1,312 4,946 0 0 1 0 0 0 4 134 500 413 0 

4 79 2 0 2,116 0 1,392 0 10 19 138 29 5 0 0 

5 658 200 0 335 6,333 23 0 21 19 0 562 8 0 0 

6 243 174 0 1,212 0 8,708 54 1,228 448 469 300 187 0 65 

7 0 0 0 0 0 0 125 2 354 30 8 13 0 0 

8 376 246 77 182 4 62 29 1,578 762 320 212 669 0 408 

9 25 120 40 405 0 39 1,071 488 9,179 1,716 2,186 505 0 248 

10 23 0 3 28 0 5 17 9 221 250 39 16 0 10 

11 1,926 516 282 376 136 134 1,306 170 10,916 3,017 34,015 1,712 69 54 

12 0 14 3,852 24 0 9 2 6 56 44 267 1,289 183 90 

13 0 45 39 0 0 0 0 0 0 5 229 181 1,637 0 

14 0 0 31 0 0 0 110 17 318 205 4 75 2 14 

                     
 
 
  

      

  VNIR_CHM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,803 228 10 7,734 431 523 0 90 7 264 40 599 0 338 

2 128 11,841 46 20 95 56 10 11 93 61 1,105 491 77 64 

3 2 47 9,243 43 0 0 0 0 0 39 17 1,041 1 16 

4 35 0 0 1,700 1 223 0 2 6 33 31 6 0 2 

5 105 284 33 88 5,991 3 0 8 0 9 349 5 0 3 

6 562 147 0 7 1 10,737 61 536 1,508 230 321 5 0 0 

7 0 0 0 0 0 0 184 1 946 68 24 0 0 0 

8 26 296 0 104 12 318 39 2,647 600 423 319 464 0 312 

9 111 210 13 13 0 49 1,040 347 9,955 1,072 2,222 224 16 39 

10 0 0 0 0 0 243 79 38 129 613 98 5 0 0 

11 1,564 815 65 523 200 159 1,288 169 9,271 3,328 34,090 1,427 78 105 

12 1 37 449 22 0 25 0 10 18 24 161 1,203 446 89 

13 0 0 0 0 0 0 0 0 0 0 93 251 1,721 0 

14 0 0 8 0 0 0 24 81 237 315 37 142 6 20 
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  VNIR_CHM_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,342 6 0 40 0 0 0 0 633 28 1,480 319 0 0 

2 18 9,557 228 0 0 387 99 44 122 1 2,826 352 0 9 

3 0 0 3,623 0 0 0 0 0 0 21 0 16 2,060 0 

4 12 22 0 5,735 577 0 0 0 130 6 263 388 0 0 

5 0 72 0 1,481 5,524 0 0 0 24 0 652 0 0 0 

6 1 828 0 0 0 11,413 0 0 2,842 367 0 86 0 0 

7 0 0 0 0 0 0 2,202 12 438 0 0 0 0 0 

8 0 0 74 0 0 0 2 3,461 1,347 0 0 0 0 436 

9 0 0 291 2,321 0 439 334 350 8,214 834 13,331 0 0 89 

10 38 0 0 0 0 17 0 1 2,050 3,641 4 1 10 0 

11 1,837 3,273 133 677 630 22 88 61 6,965 1,581 16,834 157 275 0 

12 89 147 5,314 0 0 58 0 2 0 0 3,517 3,949 0 76 

13 0 0 95 0 0 0 0 0 5 0 0 0 0 0 

14 0 0 109 0 0 0 0 9 0 0 0 595 0 378 

               

  VNIR_PPC_CHM_MNF 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,458 1 0 8 0 0 0 0 1 3 517 387 0 0 

2 101 10,104 321 0 0 250 73 27 42 6 1,984 316 2 2 

3 0 0 3,537 0 0 0 0 0 0 9 0 7 2,162 0 

4 28 18 0 5,900 339 0 0 0 61 6 204 328 0 0 

5 0 14 0 1,450 5,885 0 0 0 13 0 575 0 0 0 

6 26 812 0 0 0 11,861 0 0 4,119 607 0 55 5 0 

7 0 0 0 0 0 0 2,231 23 598 0 0 0 0 0 

8 0 0 62 0 0 0 14 3,591 1,082 0 0 0 0 445 

9 0 0 317 2,409 0 152 332 220 8,266 207 13,533 0 0 22 

10 37 7 0 0 0 3 0 0 1,249 3,937 56 1 10 0 

11 1,629 2,858 49 487 507 6 75 74 7,339 1,704 17,508 107 166 0 

12 58 91 5,238 0 0 64 0 3 0 0 4,530 3,572 0 110 

13 0 0 225 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 118 0 0 0 0 2 0 0 0 1,090 0 409 
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  VNIR_PPC_CHM_GLCM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,184 0 0 51 0 2 0 0 357 35 1,064 403 0 0 

2 125 9,941 361 0 0 392 68 33 266 14 3,474 346 15 5 

3 0 0 3,650 0 0 0 0 0 0 2 0 15 2,157 0 

4 12 14 0 6,060 173 0 0 0 121 27 145 201 0 0 

5 0 259 0 850 5,974 0 0 0 7 0 569 0 0 0 

6 9 870 0 0 0 11,715 0 0 2,858 264 0 54 4 0 

7 0 0 0 0 0 0 2,180 12 557 0 0 0 0 0 

8 0 0 192 0 0 0 10 3,539 1,354 0 0 1 0 732 

9 0 0 103 2,552 0 152 364 247 7,965 950 13,396 5 0 27 

10 62 0 1 0 0 3 0 4 1,797 3,298 1 0 32 0 

11 1,931 2,717 37 741 584 15 103 96 7,488 1,889 17,183 237 137 0 

12 14 104 5,186 0 0 57 0 4 0 0 3,075 4,027 0 46 

13 0 0 295 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 42 0 0 0 0 5 0 0 0 574 0 178 

                               

  VNIR_PPC_CHM_VI 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,282 6 0 3 0 0 0 0 515 15 1,440 270 0 0 

2 24 8,899 288 0 0 387 111 52 189 0 2,787 343 0 18 

3 0 0 3,477 0 0 0 0 0 0 23 0 0 1,607 0 

4 8 22 0 5,989 647 0 0 0 372 21 394 362 0 0 

5 0 52 0 1,675 5,500 0 0 0 16 0 785 0 0 0 

6 2 812 0 0 0 11,369 0 0 2,483 345 0 81 1 0 

7 0 0 0 0 0 0 2,198 15 462 0 0 0 0 0 

8 0 0 107 0 0 0 2 3,456 1,369 0 0 1 0 403 

9 0 0 427 1,988 0 473 328 349 8,338 973 13,286 0 0 51 

10 38 1 0 0 0 21 0 0 2,343 3,607 0 0 1 0 

11 1,777 3,979 66 599 584 31 86 55 6,683 1,495 16,748 219 736 0 

12 206 134 5,166 0 0 55 0 2 0 0 3,467 4,097 0 72 

13 0 0 195 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 141 0 0 0 0 11 0 0 0 490 0 444 
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  VNIR_PPC_CHM_VI_MNF 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,238 2 0 8 0 0 0 0 0 16 522 424 0 0 

2 113 9,253 321 0 0 262 74 20 51 7 2,224 307 3 2 

3 0 0 3,505 0 0 0 0 0 1 4 0 4 2,162 0 

4 38 11 0 5,968 270 0 0 0 62 11 179 216 0 0 

5 0 276 0 1,301 5,970 0 0 0 11 0 621 0 0 0 

6 1 801 0 0 0 11,875 0 0 4,333 565 0 58 0 0 

7 0 0 0 0 0 0 2,203 20 675 0 0 0 0 0 

8 0 0 129 0 0 0 27 3,574 1,078 1 0 2 0 513 

9 0 0 270 2,556 0 130 335 235 8,202 234 13,616 2 0 18 

10 25 2 0 0 0 1 0 0 1,083 3,716 10 0 5 0 

11 1,688 3,459 45 421 491 4 86 85 7,274 1,925 17,548 190 175 0 

12 234 101 5,160 0 0 64 0 2 0 0 4,187 3,642 0 93 

13 0 0 288 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 149 0 0 0 0 4 0 0 0 1,018 0 362 

                

  VNIR_VI_MNF_GLCM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 5,853 345 1 5,679 14 2,403 0 397 151 247 77 226 0 52 

2 435 10,235 481 193 191 37 3 2 95 48 687 510 26 49 

3 0 1,118 4,750 0 0 0 0 0 0 0 85 474 388 0 

4 128 0 0 2,117 1 1,699 0 2 18 91 31 6 0 0 

5 364 932 0 198 6,438 1 0 0 0 0 695 0 0 0 

6 161 206 0 1,084 1 7,972 39 1,323 407 427 125 167 0 67 

7 0 0 0 0 0 0 209 0 310 90 1 13 0 0 

8 385 238 88 236 10 77 24 1,644 634 400 269 758 0 542 

9 41 56 17 383 0 38 1,167 458 9,430 1,692 1,737 396 2 148 

10 9 0 1 21 0 3 16 17 304 294 35 31 0 13 

11 1,961 735 310 320 76 96 1,174 69 10,561 2,933 34,791 1,757 57 20 

12 0 9 4,170 23 0 10 1 9 16 47 182 1,217 185 86 

13 0 31 24 0 0 0 0 0 0 11 183 253 1,685 0 

14 0 0 25 0 0 0 92 19 844 199 9 55 2 11 
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  MNF_PPC_CHM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,499 4 0 87 0 1 0 0 0 4 84 89 0 0 

2 85 7,108 498 0 0 349 48 53 39 1 1,482 372 1 0 

3 0 0 3,431 0 0 0 0 0 0 35 0 0 1,673 0 

4 11 65 0 3,129 605 0 0 0 296 0 580 634 0 0 

5 0 16 0 2,011 5,548 0 0 0 25 0 573 0 0 0 

6 5 656 0 0 0 10,608 0 0 4,043 914 0 76 18 0 

7 0 0 0 0 0 0 2,273 43 532 0 0 0 0 0 

8 0 0 58 0 0 0 2 3,573 903 0 0 0 0 349 

9 0 1 227 1,458 0 1,291 331 237 7,846 184 12,740 0 0 28 

10 9 35 0 0 0 29 0 0 1,525 4,018 16 0 19 0 

11 1,454 5,647 98 3,569 578 7 71 28 7,548 1,323 18,374 88 634 0 

12 274 373 5,148 0 0 51 0 0 0 0 5,058 3,306 0 121 

13 0 0 30 0 0 0 0 0 13 0 0 0 0 0 

14 0 0 377 0 0 0 0 6 0 0 0 1,298 0 490 

               

  MNF_PPC_CHM_VI 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,787 6 0 1 0 0 0 0 0 0 118 134 0 0 

2 29 7,333 482 0 0 310 55 36 36 0 1,501 422 0 2 

3 0 0 3,490 0 0 0 0 0 0 33 0 0 1,991 0 

4 20 68 0 3,589 616 0 0 0 72 0 495 522 0 0 

5 0 122 0 1,991 5,593 0 0 0 14 0 636 0 0 0 

6 0 688 0 0 0 10,577 0 0 3,690 824 0 74 1 0 

7 0 0 0 0 0 0 2,259 47 528 0 0 0 0 0 

8 0 0 102 0 0 0 3 3,581 898 0 0 0 0 370 

9 0 70 197 1,376 0 1,359 334 215 7,947 184 12,611 0 0 30 

10 6 58 0 0 0 31 0 0 1,683 4,112 0 0 8 0 

11 1,494 5,239 43 3,297 522 11 74 50 7,902 1,326 18,527 104 345 0 

12 1 321 5,319 0 0 48 0 2 0 0 5,019 3,563 0 122 

13 0 0 45 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 189 0 0 0 0 9 0 0 0 1,044 0 464 
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  full 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7,316 0 0 13 0 0 0 0 6 23 465 466 0 0 

2 144 9,819 395 0 0 257 56 0 146 11 2,641 317 22 3 

3 0 0 3,522 0 0 0 0 0 0 1 0 0 2,193 0 

4 39 8 0 6,380 101 0 0 0 69 11 158 187 0 0 

5 0 348 0 1,245 6,211 0 0 0 7 0 718 0 0 0 

6 4 853 2 0 0 11,921 0 0 3,856 502 0 45 2 0 

7 0 0 0 0 0 0 2,190 20 599 0 0 0 0 0 

8 0 0 146 0 0 0 27 3,614 1,252 3 0 4 0 619 

9 0 0 84 2,116 0 93 364 188 8,042 251 13,341 4 0 20 

10 45 0 0 0 0 0 0 3 1,118 3,623 4 0 18 0 

11 1,697 2,794 23 500 419 5 88 101 7,675 2,054 17,848 168 110 0 

12 92 83 5,183 0 0 60 0 5 0 0 3,732 3,798 0 69 

13 0 0 441 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 71 0 0 0 0 9 0 0 0 874 0 277 

               

  FSJM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,804 0 0 10 0 0 0 0 8 13 1,085 388 0 0 

2 90 9,932 334 0 0 262 73 9 65 15 2,075 320 3 3 

3 0 0 3,492 0 0 0 0 0 0 4 0 10 2,136 0 

4 49 7 0 6,096 168 0 0 0 86 26 203 169 0 0 

5 0 54 0 1,511 6,029 0 0 0 12 0 749 0 0 0 

6 7 846 0 0 0 11,837 0 0 4,093 453 0 47 0 0 

7 0 0 0 0 0 0 2,205 12 598 0 0 0 0 0 

8 0 0 166 0 0 0 10 3,510 1,212 4 0 4 0 667 

9 0 0 305 2,105 0 175 345 309 8,066 257 13,408 3 0 44 

10 31 0 0 0 0 2 1 1 964 3,677 0 3 1 0 

11 2,324 2,958 53 532 534 1 91 90 7,666 2,030 16,942 277 205 0 

12 32 108 5,158 0 0 59 0 2 0 0 4,445 3,693 0 85 

13 0 0 260 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 99 0 0 0 0 7 0 0 0 949 0 189 
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  OBIA (VNIR_CHM_PPC_VI_MNF) 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,115 80 0 4,881 0 58 0 0 0 79 328 1,165 0 0 

2 745 9,671 8 273 0 588 14 37 349 84 683 1,227 74 21 

3 0 0 4,530 0 0 0 0 0 0 0 0 492 2,256 0 

4 0 0 0 3,420 0 0 0 0 1 335 211 0 0 0 

5 332 3,180 0 442 6,713 0 0 0 0 0 989 0 0 0 

6 0 763 42 0 0 11,685 19 0 304 790 0 0 0 0 

7 0 0 0 0 0 0 1,182 0 519 0 0 0 0 0 

8 0 0 5 0 0 0 24 3,824 100 0 0 49 0 922 

9 0 2 345 979 0 4 1,414 56 15,205 1,271 3,515 0 0 0 

10 0 0 0 0 0 0 12 0 282 1,573 0 0 0 0 

11 2,145 209 0 259 18 1 60 23 6,010 2,347 33,181 129 15 0 

12 0 0 4,936 0 0 0 0 0 0 0 0 2,395 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 105 0 0 

14 0 0 1 0 0 0 0 0 0 0 0 301 0 45 

 

Table B.4- Confusion matrices using the CNN algorithm in Area 1. 

  VNIR 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,528 19 0 2,791 0 99 0 0 35 0 0 0 0 0 

2 180 13,511 0 98 0 0 0 0 0 35 479 11 0 0 

3 0 22 5,009 0 0 0 0 0 39 0 0 902 3 0 

4 35 0 0 6,317 0 0 0 0 97 0 61 67 0 0 

5 11 295 0 4 6,753 0 0 0 5 0 681 0 0 0 

6 0 69 0 0 0 12,110 0 0 241 1,583 0 0 0 0 

7 0 0 0 0 0 0 2,601 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 1 3,966 10 1 0 7 0 781 

9 0 0 0 1,034 0 124 0 0 18,521 29 2,191 3 0 0 

10 60 0 0 24 0 0 0 0 980 4,709 2 0 152 0 

11 474 12 0 6 0 0 0 0 2,848 171 35,525 986 0 0 

12 0 0 4,892 0 0 0 0 0 20 0 0 3,917 40 53 

13 0 0 0 12 0 0 0 0 0 0 0 0 2,146 0 

14 0 0 0 4 0 0 138 0 2 11 0 6 0 167 
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  VNIR_CHM 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 8,077 265 0 3,116 0 231 34 11 366 50 4 165 0 0 

2 45 11,833 0 174 0 25 0 110 0 195 422 43 0 1 

3 0 1,514 6,152 0 0 0 0 0 258 1 22 627 53 29 

4 0 3 0 5,372 0 0 0 0 213 0 96 110 0 0 

5 72 310 0 80 6,749 0 0 0 0 0 1,302 0 0 0 

6 0 3 0 0 0 11,922 4 10 735 919 169 1 0 0 

7 0 0 0 0 0 0 2,574 0 0 0 0 0 0 16 

8 0 0 40 0 0 0 13 3,739 103 125 0 0 0 302 

9 0 0 0 1,330 0 111 27 6 14,253 598 1,359 73 0 0 

10 21 0 0 18 0 44 0 0 1,596 4,044 1 0 630 0 

11 1,073 0 0 184 4 0 0 0 3,497 363 35,564 1,106 256 0 

12 0 0 3,331 0 0 0 9 0 350 244 0 3,649 0 0 

13 0 0 164 16 0 0 0 66 1,427 0 0 40 1,402 0 

14 0 0 214 0 0 0 79 24 0 0 0 0 0 653 

  VNIR_CHM_PPC 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 6,974 347 5 2,989 0 181 0 0 94 57 0 9 0 0 

2 51 12,570 0 103 0 3 0 2 0 12 382 18 3 0 

3 23 238 5,968 0 0 0 0 1 896 7 5 725 162 0 

4 0 15 0 2,230 0 5 0 0 239 0 87 256 0 0 

5 0 442 0 301 6,730 0 0 0 0 0 1,685 0 0 0 

6 2 134 2 189 0 12,022 3 0 714 1,614 15 16 0 0 

7 0 133 0 0 0 0 2,531 0 1 0 0 0 0 4 

8 0 0 12 0 0 0 61 3,881 387 105 0 11 0 540 

9 7 0 0 4,068 0 118 0 40 16,469 327 1,647 0 0 0 

10 210 7 0 0 0 4 0 0 138 3,632 0 0 550 0 

11 2,021 31 0 354 23 0 0 0 3,610 715 35,118 1,672 22 0 

12 0 2 3,914 0 0 0 0 0 175 63 0 3,100 65 0 

13 0 9 0 56 0 0 0 0 11 0 0 92 1,539 0 

14 0 0 0 0 0 0 145 42 64 7 0 0 0 457 
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Table B.5- Confusion matrices using the SVM algorithm in Area 2 

  VNIR 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 2,876 81 100 882 11 483 7 39 24 15 9 

2 219 10,505 385 25 103 77 200 9 1,037 23 35 

4 307 32 4,443 726 140 47 34 118 84 1 11 

5 340 103 99 80 300 480 264 197 1,136 26 393 

6 149 96 255 46 2,562 262 106 656 2,213 14 62 

15 54 3 3 2 3 502 14 31 74 2 1 

10 308 49 75 27 26 192 244 107 254 6 21 

11 1,571 177 103 20 529 321 311 968 1,185 54 68 

12 3,104 491 576 268 321 423 195 184 1,203 370 730 

13 52 12 1 0 1 0 0 2 270 508 372 

16 24 0 20 4 4 11 23 19 120 24 686 

            

  VNIR_CHM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,784 28 710 480 0 0 2 137 25 29 0 

2 125 10,902 289 0 136 89 277 24 1,004 0 8 

4 539 0 4,455 765 0 0 158 113 5 9 26 

5 415 0 2 834 0 41 44 154 35 139 473 

6 1 194 61 0 2,607 321 372 52 400 0 0 

15 1 0 0 0 8 827 1 2 92 0 0 

10 181 1 4 0 13 332 459 77 62 0 0 

11 1,552 162 199 0 515 480 1 1,209 1,945 0 0 

12 858 262 129 0 721 708 9 525 3,977 0 0 

13 489 0 22 1 0 0 16 9 0 800 707 

16 59 0 189 0 0 0 59 28 55 66 1,174 
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  VNIR_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 2,763 80 103 889 12 483 8 37 26 16 9 

2 204 10,540 377 26 105 77 198 9 1,046 23 31 

4 260 33 4,448 714 135 48 36 120 86 1 14 

5 345 64 95 83 289 476 259 213 1,152 26 410 

6 122 95 254 44 2,576 260 106 640 2,223 18 65 

15 54 3 3 2 3 501 14 30 74 1 0 

10 269 50 74 28 26 195 241 107 256 4 17 

11 1,735 179 104 22 530 322 310 965 1,161 94 74 

12 3,028 492 577 269 320 424 201 188 1,203 351 738 

13 90 13 1 0 1 0 0 2 282 499 425 

16 134 0 24 3 3 12 25 19 91 10 605 

                        

  VNIR_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,642 28 714 479 0 0 4 139 26 27 2 

2 126 10,905 285 0 136 90 279 21 1,010 0 8 

4 486 0 4,447 766 0 0 149 110 4 7 27 

5 357 0 3 835 0 42 26 167 36 147 490 

6 1 192 61 0 2,604 321 370 51 404 0 0 

15 1 0 0 0 8 832 1 2 91 0 0 

10 179 1 3 0 12 332 460 79 64 0 0 

11 1,572 161 201 0 518 476 2 1,191 1,930 31 3 

12 856 262 123 0 722 705 9 527 3,974 0 0 

13 544 0 23 0 0 0 16 14 0 784 825 

16 240 0 200 0 0 0 82 29 61 47 1,033 

                
  

 
  

      

  VNIR_CHM_PPC_MNF 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,561 20 529 474 0 0 7 127 30 30 2 

2 88 10,918 341 0 153 89 271 28 1,088 0 4 

4 453 0 4,575 874 0 0 100 97 4 7 37 

5 356 0 7 729 0 35 48 173 64 144 522 

6 7 207 109 0 2,666 387 345 55 444 0 0 

15 0 1 0 0 5 696 0 13 74 0 0 

10 193 5 5 0 15 335 490 46 51 0 0 

11 1,651 193 166 0 552 572 17 1,191 2,061 30 3 

12 967 205 131 0 609 684 8 577 3,721 0 0 

13 539 0 29 3 0 0 16 5 0 774 811 

16 189 0 168 0 0 0 96 18 63 58 1,009 
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  VNIR_CHM_PPC_GLCM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,434 29 719 443 0 0 43 202 76 35 17 

2 42 10,925 134 0 167 87 194 8 873 0 0 

4 485 0 4,517 938 0 0 72 155 0 5 51 

5 580 0 38 682 0 191 15 79 34 97 536 

6 8 149 75 0 2,520 228 360 53 457 0 0 

15 0 9 0 0 28 796 0 0 78 0 0 

10 361 23 11 0 8 224 528 24 24 0 0 

11 1,313 128 167 0 700 427 36 1,195 1,948 114 22 

12 946 286 184 0 577 845 16 580 4,086 0 12 

13 467 0 41 13 0 0 29 9 0 752 1,040 

16 368 0 174 4 0 0 105 25 24 40 710 

                        

 
VNIR_CHM_PPC_VI 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,731 11 786 525 0 0 6 130 51 38 11 

2 90 10,862 233 0 140 82 250 21 972 0 0 

4 481 0 4,382 860 0 0 127 116 10 6 49 

5 471 0 9 690 0 51 31 171 44 143 490 

6 8 202 81 0 2,653 342 377 51 417 0 0 

15 0 1 0 0 5 830 1 2 68 0 0 

10 162 3 11 0 11 338 494 56 60 1 0 

11 1,412 243 211 4 493 446 17 1,169 1,893 42 5 

12 897 227 129 0 696 709 6 572 4,037 0 2 

13 468 0 28 1 0 0 17 11 0 742 792 

16 284 0 190 0 2 0 72 31 48 71 1,039 

                    

 
VNIR_CHM_PPC_VI_MNF 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,630 16 575 502 0 0 5 116 38 38 3 

2 65 10,901 300 0 157 82 248 25 1,063 0 3 

4 464 0 4,504 955 0 0 85 101 10 4 38 

5 487 0 10 619 0 42 47 189 65 136 499 

6 6 186 123 0 2,655 391 331 60 518 0 0 

15 0 1 0 0 4 712 1 9 69 0 0 

10 178 4 21 0 17 334 539 34 50 0 0 

11 1,462 265 193 2 534 548 19 1,171 1,955 36 3 

12 1,016 176 136 0 633 688 10 609 3,778 0 2 

13 485 0 22 0 0 0 17 3 0 751 817 

16 211 0 176 2 0 1 96 13 54 78 1,023 
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VNIR_VI_MNF_GLCM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 2,533 69 118 765 27 613 13 44 46 12 0 

2 297 10,736 292 39 123 74 175 1 1,097 28 26 

4 416 2 4,256 899 190 31 56 111 84 10 7 

5 499 49 107 44 300 545 195 250 1,158 29 345 

6 136 76 331 45 2,425 125 145 495 1,965 15 60 

15 53 2 3 6 6 358 5 37 38 3 1 

10 514 40 64 44 21 198 213 109 305 7 22 

11 1,453 160 211 1 593 209 391 1,021 1,006 130 84 

12 3,035 399 674 236 315 644 162 250 1,563 425 839 

13 53 15 1 0 0 0 0 0 252 342 352 

16 15 1 3 1 0 1 43 12 86 42 652 

                        

 
MNF_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,369 27 958 642 7 0 48 280 52 11 9 

2 231 10,450 212 0 168 65 263 32 1,253 0 0 

4 1,257 1 4,159 650 0 0 102 166 5 36 62 

5 249 0 8 778 0 14 13 173 11 272 292 

6 7 456 175 0 1,700 500 658 54 416 0 0 

15 0 0 0 0 170 391 0 1 53 0 0 

10 136 4 3 0 101 415 198 339 193 0 0 

11 1,468 321 294 0 871 847 5 591 1,437 0 0 

12 945 290 113 0 983 566 24 676 4,172 0 0 

13 178 0 9 9 0 0 7 0 0 655 1,110 

16 164 0 129 1 0 0 80 18 8 69 915 

  

 
MNF_CHM_PPC_VI 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,627 12 946 630 2 0 25 161 55 26 1 

2 248 10,790 177 0 176 65 287 28 1,190 5 10 

4 960 0 4,170 782 0 0 108 153 13 13 50 

5 446 0 17 653 0 19 18 175 32 193 278 

6 20 304 183 0 2,208 469 562 66 544 0 0 

15 0 3 0 0 48 516 0 2 41 0 0 

10 130 10 14 0 57 469 278 118 103 0 0 

11 1,266 244 219 6 678 579 7 917 1,697 49 8 

12 920 186 134 0 831 681 18 681 3,910 0 0 

13 267 0 9 1 0 0 12 11 0 663 1,095 

16 120 0 191 8 0 0 83 18 15 94 946 
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FSJM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 5,375 0 61 261 0 0 3 0 0 46 2 

2 0 9,729 399 0 17 90 78 6 1,701 0 0 

4 1,024 0 2,134 961 0 0 0 0 0 12 131 

5 126 0 54 858 2 399 37 252 64 29 0 

6 29 2,584 300 0 3,087 25 160 0 282 1 3 

15 0 0 304 0 0 1,726 0 1 28 0 0 

10 89 59 28 0 0 0 868 0 0 0 0 

11 37 156 2,396 0 1 556 127 2,000 3,483 29 6 

12 1,911 391 91 0 893 0 0 0 2,138 4 0 

13 364 0 2 0 0 0 0 0 0 879 730 

16 49 0 868 0 0 2 125 71 272 41 1,516 

                        

 
full 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,511 17 573 461 0 5 29 158 61 40 14 

2 35 11,011 197 0 196 99 194 2 950 0 2 

4 496 0 4,524 1,051 1 0 46 136 0 9 50 

5 664 0 30 563 0 178 25 107 39 93 489 

6 7 156 118 0 2,555 283 286 62 524 0 0 

15 0 12 0 0 30 742 2 9 85 0 0 

10 308 18 9 0 1 214 566 14 27 0 0 

11 1,260 146 220 0 690 481 84 1,294 2,071 88 19 

12 1,030 189 234 0 527 796 19 519 3,801 0 5 

13 425 0 37 5 0 0 27 4 0 757 1,027 

16 268 0 118 0 0 0 120 25 42 56 782 

                 
        

 
MV (VNIR_CHM) 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 5,200 0 4 0 94 0 0 0 0 0 2 

2 2 11,546 382 0 0 1 196 0 257 0 63 

4 274 0 5,621 691 0 0 222 158 0 0 0 

5 317 0 0 1,389 0 27 0 115 0 61 25 

6 0 3 0 0 2,473 0 0 0 64 0 0 

15 0 0 0 0 0 578 0 0 0 0 0 

10 0 0 0 0 0 0 962 0 0 0 0 

11 1,713 0 0 0 557 1,413 0 1,531 0 0 0 

12 1,084 0 53 0 876 779 18 526 7,279 0 0 

13 302 0 0 0 0 0 0 0 0 982 2,029 

16 0 0 0 0 0 0 0 0 0 0 269 
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Table B.6- Confusion matrices using the wSVM algorithm in Area 2 

  VNIR 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 3,052 269 146 879 15 640 9 44 33 10 7 

2 291 10,574 302 20 43 63 153 0 786 19 28 

4 317 41 4,882 830 178 29 30 139 74 0 15 

5 376 523 128 87 356 432 277 290 1,422 16 414 

6 112 310 475 60 2,845 214 139 570 2,284 14 27 

15 177 35 6 8 6 641 32 46 120 2 1 

10 628 217 108 43 33 241 320 143 443 6 29 

11 1,483 376 146 14 413 238 278 914 1,186 42 61 

12 2,362 527 404 130 104 291 122 175 905 269 348 

13 143 24 1 0 1 0 2 0 507 632 563 

16 63 23 39 9 6 9 36 9 208 31 895 

            

 
VNIR_CHM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,845 40 681 494 0 0 6 103 16 30 1 

2 9 10,554 66 0 45 54 182 0 477 0 0 

4 424 0 4,743 790 0 0 141 125 2 9 23 

5 326 0 10 795 0 36 28 133 23 114 457 

6 2 380 87 0 2,989 376 360 67 374 0 0 

15 0 0 0 0 20 945 0 3 103 0 0 

10 284 1 7 0 16 419 500 60 38 0 0 

11 1,509 194 91 0 441 407 65 1,224 2,182 12 0 

12 962 380 172 0 488 559 8 585 4,343 0 0 

13 562 0 28 0 0 0 19 3 1 820 699 

16 81 0 175 1 1 2 89 27 41 58 1,208 

                        

 
VNIR_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,769 38 724 422 0 0 6 113 25 26 5 

2 18 10,612 58 0 47 60 183 0 523 0 1 

4 343 0 4,698 796 0 0 129 133 2 4 27 

5 299 0 13 862 0 40 21 131 27 125 456 

6 0 332 68 0 2,952 344 364 54 343 0 0 

15 0 0 0 0 21 946 0 4 80 0 0 

10 275 0 4 0 16 417 503 60 33 0 0 

11 1,507 210 104 0 433 423 49 1,242 2,224 37 3 

12 906 357 165 0 531 568 20 552 4,289 0 0 

13 591 0 29 0 0 0 19 14 0 792 825 

16 296 0 197 0 0 0 104 27 54 59 1,071 
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Table B.7- Confusion matrices using the RF algorithm in Area 2. 

  VNIR 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 2,311 5 100 557 19 703 11 57 15 1 1 

2 643 11,172 425 98 134 63 240 0 991 59 159 

4 391 1 4,385 854 232 40 22 155 25 3 10 

5 189 4 66 48 116 153 106 234 427 16 85 

6 175 54 344 113 2,228 332 190 586 2,376 16 60 

15 3 0 0 0 0 136 1 10 2 0 0 

10 349 1 12 10 2 59 41 28 20 0 1 

11 1,024 86 166 54 851 617 462 924 915 12 57 

12 3,909 225 560 346 418 695 325 328 2,790 800 1,632 

13 4 1 1 0 0 0 0 0 31 132 126 

16 6 0 1 0 0 0 0 8 8 4 257 

                        

 
VNIR_CHM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,828 2 690 427 0 0 19 399 43 0 1 

2 54 11,010 155 1 118 68 157 0 457 0 9 

4 682 0 4,910 495 0 0 205 142 2 5 109 

5 283 0 1 1,154 0 0 4 159 0 304 272 

6 0 186 40 0 2,045 292 125 18 246 0 0 

15 0 0 0 0 10 481 0 0 0 0 0 

10 77 0 0 0 22 124 786 44 10 0 0 

11 1,843 88 89 0 741 849 22 977 1,141 3 3 

12 898 263 103 1 1,064 984 24 575 5,695 0 52 

13 326 0 46 0 0 0 34 14 0 652 1,307 

16 13 0 26 2 0 0 22 2 6 79 635 

 
VNIR_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,309 8 1,618 242 54 0 4 778 212 1 0 

2 17 10,820 109 0 20 50 119 2 553 0 0 

4 1,410 24 3,930 340 0 0 265 137 15 0 16 

5 574 0 1 1,493 0 1 0 120 0 594 534 

6 18 251 35 0 1,687 305 0 11 177 0 0 

15 0 0 0 0 34 564 0 0 0 0 0 

10 121 0 0 0 44 92 984 92 143 0 0 

11 1,373 221 78 0 868 1,332 0 843 341 0 0 

12 1,047 225 122 0 1,288 454 0 344 6,145 0 4 

13 120 0 42 0 0 0 26 0 0 376 1,111 

16 15 0 125 5 5 0 0 3 14 72 723 
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VNIR_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,323 0 1,659 300 15 0 14 678 166 4 0 

2 14 11,000 84 0 40 52 122 4 342 0 0 

4 1,559 10 4,010 229 0 0 271 142 1 0 26 

5 493 0 1 1,551 0 1 0 133 0 359 326 

6 4 251 0 0 1,620 93 0 0 197 0 0 

15 0 0 0 0 40 803 0 0 4 0 0 

10 99 0 1 0 12 107 981 69 113 0 0 

11 1,692 219 47 0 778 1,040 0 866 467 0 0 

12 675 69 98 0 1,495 702 0 433 6,309 0 0 

13 127 0 47 0 0 0 10 5 0 677 1,289 

16 18 0 113 0 0 0 0 0 1 3 747 

                        

 
VNIR_CHM_PPC_MNF 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,500 0 1,477 310 6 0 5 686 152 12 0 

2 20 11,022 65 0 36 50 127 3 409 0 0 

4 1,532 11 4,248 233 0 0 285 119 0 0 34 

5 334 0 1 1,537 0 0 0 120 0 353 239 

6 2 260 2 0 1,725 178 0 4 281 0 0 

15 0 0 0 0 53 785 0 0 5 0 0 

10 91 0 5 0 13 133 976 84 98 0 0 

11 1,545 184 16 0 743 1,044 0 679 454 0 0 

12 837 72 104 0 1,424 608 0 631 6,199 0 0 

13 125 0 45 0 0 0 5 3 0 673 1,324 

16 18 0 97 0 0 0 0 1 2 5 791 

            

  VNIR_CHM_PPC_GLCM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,584 0 1,604 286 15 0 40 692 124 3 0 

2 24 11,207 92 0 36 41 124 1 292 0 0 

4 1,379 7 4,089 214 0 0 203 108 0 6 21 

5 345 0 1 1,580 0 0 0 99 0 358 300 

6 3 194 2 0 1,708 119 0 6 184 0 0 

15 0 0 0 0 84 713 0 0 1 0 0 

10 110 0 1 0 8 58 979 55 100 0 0 

11 1,534 94 27 0 860 1,061 0 854 431 0 0 

12 858 47 129 0 1,289 806 0 512 6,467 0 0 

13 154 0 56 0 0 0 52 3 0 645 1,470 

16 13 0 59 0 0 0 0 0 1 31 597 
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  VNIR_CHM_PPC_VI 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,342 0 1,667 305 11 0 7 623 134 9 0 

2 27 10,997 81 0 33 47 123 2 345 0 0 

4 1,532 9 4,051 219 0 0 263 137 0 0 54 

5 441 0 4 1,550 0 2 0 123 0 352 264 

6 7 230 0 0 1,692 150 1 0 169 0 0 

15 0 0 0 0 35 754 0 0 6 0 0 

10 113 0 0 0 9 129 979 73 125 0 0 

11 1,650 225 40 0 727 946 0 879 498 0 0 

12 736 88 118 0 1,493 770 0 489 6,323 0 0 

13 140 0 18 0 0 0 25 3 0 673 1,340 

16 16 0 81 6 0 0 0 1 0 9 730 

                        

 
VNIR_CHM_PPC_VI_MNF 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,446 0 1,458 328 7 0 7 698 132 8 0 

2 16 11,043 52 0 35 42 125 2 371 0 0 

4 1,562 11 4,334 236 0 0 284 122 0 1 46 

5 336 0 1 1,516 0 1 0 132 0 353 237 

6 15 251 4 0 1,782 195 1 0 252 0 0 

15 0 0 0 0 43 758 0 0 5 0 0 

10 78 0 0 0 11 114 977 78 63 0 0 

11 1,456 170 20 0 728 990 0 670 486 0 0 

12 950 74 114 0 1,394 698 0 622 6,290 0 0 

13 139 0 21 0 0 0 4 4 0 667 1,318 

16 6 0 56 0 0 0 0 2 1 14 787 

                        

 
VNIR_VI_MNF_GLCM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 2,272 6 82 522 58 859 25 133 27 1 0 

2 614 11,157 395 95 149 37 231 0 840 57 55 

4 432 8 4,297 889 241 27 23 133 36 12 10 

5 236 3 74 44 116 116 73 185 388 22 69 

6 345 63 335 127 1,912 273 246 517 2,018 25 45 

15 7 0 0 1 0 68 1 24 3 0 0 

10 275 12 18 4 1 62 26 24 32 3 1 

11 1,320 89 146 40 928 581 485 888 889 22 82 

12 3,480 211 711 354 595 775 278 426 3,292 629 1,580 

13 1 0 0 0 0 0 2 0 65 251 148 

16 22 0 2 4 0 0 8 0 10 21 398 
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MNF_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,099 11 1,763 376 14 0 0 789 192 4 0 

2 2 10,339 33 0 56 37 135 1 372 0 0 

4 2,168 33 3,887 185 0 0 293 171 0 1 39 

5 560 0 6 1,519 0 1 0 94 0 353 257 

6 4 432 0 0 1,600 195 0 13 142 0 0 

15 0 0 0 0 114 775 0 0 0 0 0 

10 96 0 65 0 9 63 968 119 167 0 0 

11 1,067 534 47 0 721 991 0 562 1,054 0 0 

12 776 199 72 0 1,486 736 0 559 5,673 0 0 

13 187 1 122 0 0 0 2 18 0 682 1,183 

16 45 0 65 0 0 0 0 4 0 3 909 

                        

 
MNF_CHM_PPC_VI 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,363 10 1,678 326 10 0 0 776 179 7 0 

2 3 10,478 30 0 37 32 137 2 386 0 0 

4 1,955 22 4,048 223 0 0 294 177 0 0 69 

5 378 0 20 1,531 0 1 0 100 0 354 242 

6 6 334 0 0 1,588 197 0 11 165 0 0 

15 0 0 0 0 127 765 0 0 1 0 0 

10 86 0 47 0 6 83 966 117 98 0 0 

11 1,106 532 57 0 680 894 0 545 777 0 0 

12 858 172 74 0 1,552 826 0 579 5,993 0 0 

13 225 1 42 0 0 0 1 17 0 673 1,231 

16 24 0 64 0 0 0 0 6 1 9 846 

                        

 
FSJM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 5,872 0 0 761 0 0 0 0 0 115 0 

2 0 5,819 887 0 5 26 274 0 3,966 0 0 

4 1,625 0 2,187 1 0 0 0 0 0 13 2,167 

5 19 0 4 1,314 0 108 1 126 4 31 0 

6 16 1,237 417 0 3,608 98 3 0 367 0 0 

15 0 0 0 0 0 2,374 0 0 0 0 0 

10 0 5,849 77 0 0 0 1,083 0 0 0 0 

11 0 14 2,875 0 0 192 37 2,203 1,599 0 0 

12 1,322 0 0 4 387 0 0 0 2,032 31 1 

13 150 0 0 0 0 0 0 0 0 851 190 

16 0 0 190 0 0 0 0 1 0 0 30 
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full 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,655 0 1,335 297 8 0 23 691 85 13 0 

2 25 11,216 64 0 30 42 129 4 311 0 0 

4 1,318 3 4,411 236 0 0 243 103 0 1 11 

5 317 0 0 1,547 0 1 0 156 0 345 242 

6 8 220 14 0 1,805 261 0 4 275 0 0 

15 0 0 0 0 75 689 0 0 2 0 0 

10 112 0 0 0 7 65 974 55 66 0 0 

11 1,414 58 28 0 700 1,019 0 763 382 0 0 

12 997 52 139 0 1,375 721 0 551 6,478 0 0 

13 149 0 33 0 0 0 29 2 0 659 1,477 

16 9 0 36 0 0 0 0 1 1 25 658 

 

Table B.8- Confusion matrices using the CNN algorithm in Area 2. 

  VNIR 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,878 0 0 1,693 0 0 0 0 0 5 0 

2 0 12,762 174 0 0 0 43 2 2,754 0 0 

4 725 0 5,522 384 0 0 0 0 0 0 0 

5 64 0 0 0 0 152 182 286 24 0 0 

6 0 0 110 0 3,951 0 0 0 1,258 0 0 

15 0 0 0 0 0 2,638 29 0 10 0 0 

10 1 0 1 0 0 0 1,083 0 4 0 0 

11 0 0 13 0 0 0 62 2,057 1,189 0 0 

12 3,345 0 238 14 46 0 0 0 2,367 0 86 

13 0 0 0 0 0 0 0 0 6 1,041 0 

16 0 0 0 0 0 0 0 0 0 0 2,308 

 
VNIR_CHM 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 4,765 0 0 1,494 0 0 0 0 0 0 0 

2 0 12,762 93 0 0 0 272 0 2,540 0 0 

4 743 0 5,627 597 0 0 0 0 0 0 6 

5 160 0 2 0 0 516 0 0 326 0 0 

6 0 0 146 0 3,955 0 0 0 339 0 0 

15 0 0 0 0 0 2,274 0 0 9 0 0 

10 82 0 0 0 0 0 1,033 0 85 0 0 

11 0 0 142 0 0 0 94 2,345 2,647 0 0 

12 3,247 0 28 0 42 0 0 0 1,536 0 0 

13 16 0 0 0 0 0 0 0 49 1,046 68 

16 0 0 20 0 0 0 0 0 81 0 2,320 
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VNIR_CHM_PPC 

ID 1 2 4 5 6 15 10 11 12 13 16 

1 3,575 0 0 1,601 0 0 0 0 0 0 0 

2 0 12,762 212 0 0 0 416 0 1,479 0 0 

4 376 0 5,006 320 0 0 0 0 0 0 0 

5 340 0 2 0 0 394 0 0 428 0 0 

6 0 0 35 0 3,990 0 0 0 1,554 0 0 

15 0 0 0 0 0 2,396 24 0 3 0 0 

10 0 0 1 0 0 0 921 0 42 0 0 

11 0 0 327 0 0 0 1 2,345 2,136 0 0 

12 4,722 0 141 170 7 0 37 0 1,897 0 76 

13 0 0 0 0 0 0 0 0 73 1,046 15 

16 0 0 334 0 0 0 0 0 0 0 2,303 
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