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Abstract. This work presents a new strategy combining the Shvab-Zel’dovich and flamelet formulations to solve the
droplet combustion problem, in which thermodynamic and transport properties are considered dependent on composition
and temperature. By following Shvab-Zel’dovich procedure, combinations among the conservation equations are used to
eliminate the chemical reaction term. Four independent functions (three mixture fraction functions and excess enthalpy)
are found and they are conservative in the whole domain. The first mixture fraction function combines the fuel and oxidant
species conservation equations, the second one combines fuel andH2O species conservation equations and the last one,
fuel andCO2 species conservation equations. The excess enthalpy function is formed by a combination among fuel and
oxidant species and energy conservation equations. By following the flamelet description, the excess of enthalpy and
the fuel andH2O and fuel andCO2 mixture fractions are written in terms of fuel and oxidant mixture fraction. The
integration of the equations for these three functions can be done by any very well known methods. The dependence of
these three functions on spatial coordinate is found by the integration of the fuel and oxidant mixture fraction equation.
This new strategy accelerates the integration of the system of equations because the two eigenvalues of the problem, i.e.
the droplet surface temperature and vaporisation constant, are determined separately. The first one is found by the excess
enthalpy equation written in the mixture fraction space and the second one is found by the mixture fraction conservation
equation.
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1. INTRODUCTION

Spray combustion (reacting multi-phase flow), as well as non reacting and reacting mono-phase flows, present pro-
cesses in different spatial and temporal scales. With the now-a-days computational capability, a simulation of this kind
of problem is not feasible economically in certain cases and not possible in other cases. To avoid the integration of all
processes in all scales, the simulation grid is chosen to cover the processes in the largest spatial scales and the processes in
the other scales are included in the simulation via parameters, which are determined by separated analysis. If the sub-grid
processes can be described analytically, those parameters are determined by expressions, with practically no cost to the
largest scales problem simulation. In most of time, those parameters are not determined by an analytical expression, but by
a numerical solution. In these cases, the cost to obtain the numerical solution of the sub-grid processes is counted on the
whole problem simulation time. Thereby, beyond representing well the physics, the sub-grid processes modelling must
be computationally economic. The combustion of individual droplet problem is the sub-grid information necessary to
perform the spray combustion simulation. Therefore, the model for the droplet combustion must be simple, fast integrated
and represent well the experimental results. In this sense, the present work proposes a procedure to describe the droplet
combustion by making use of an extended Shvab-Zel’dovich and flamelet formulations considering the thermodynamical
properties dependent on composition and temperature.

It is not the aim of this paper to explore the all aspects of the droplet combustion, but to present this new procedure.
Thereby, even with a extensive literature on droplet combustion, only those papers linked closely to the development of
the procedure will be mentioned.

The description of the droplet combustion is relatively simple for normal pressure, because the gas phase close to
the droplet behaves quasi-steadily when analized by the droplet lifetime. The problem of droplet combustion presents
a analytical solution for the case of thermodynamic and the transport coefficients constant (Spalding, 1953; Godsave,
1953). To avoid the integration of the conservation equations with the chemical reaction term, it was imposed the con-
dition of infinitely thin flame, which permitted to divide the domain in two zones (fuel zone and oxygen zone) and to
perform the integration of the conservation equations. At the flame, it was imposed continuity and flux conservation. An
improvement on the model occurred by imposing a linear variation of the thermodynamic and transport coefficients on the
temperature (Goldsmith and Penner, 1954). Instead of integrating the equations avoiding to cross the flame, it was used
the Shvab-Zel’dovich procedure to eliminate the chemical reaction term, which permitted to integrate continuously from
one boundary to another. The next step in the improvement of the droplet combustion model was done by incorporating
the dependence of the transport coefficients on a power of the temperature (Kassoy and Williams, 1968). The complete
dependence on the composition and temperature of the transport coefficients was considered, but the process of integration
of the equations avoided to cross the flame (Raghunandan and Mukunda, 1977). Another strategy was adopted, using the
previous model but incorporating the Shvab-Zel’dovich formulation to eliminate the chemical reaction term (Williams,
1985).

More recently, extensions for the droplet combustion were presented. The problem, in which the transport coefficients
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were considered dependent on a power of the temperature and constant specific heat, was solved analytically (Fachini,
1999). This model was able to treat the Lewis number for the fuel and oxygen constant but different from unity. To avoid
the integration of the chemical reaction term, the Shvab-Zel’dovich’s formulation was employed, but even with that the
integration was only possible with the partition of the domain in fuel zone and oxygen zone. The continuous integration in
whole domain is possible only in a numerical way (Lima et al., 2006). This numerical procedure was used to analyse the
influence of soot in the droplet combustion (Fachini, 2006). This strategy of analysis, an extension for the droplet model
is proposed with thermodynamic coefficients dependent on the composition and temperature and the transport coefficients
dependent on a temperature power.

The dependent variables from the Shvab-Zel’dovich’s formulation are conserved, i.e. the equations for the mixture
fraction functions and excess enthalpy do not present source term. However, they are not passive because the flow field
influentiates their behaviour. The flow field acts on the droplet problem by two mechanisms: fluxes of the excess enthalpy
and the mixture fraction functions at the droplet surface and the differences among the molecular diffusive velocities. The
first source is eliminated combining the mixture fraction functions and the excess enthalpy in a such way that the fluxes of
the new variables are zero at the droplet. However, to eliminate the second source is necessary to impose Lewis number
equal to one (Sirignano, 2002). This imposition limits the application of the passive, conservative variables (super-scalar
variables) formulation to fuels with molecular weight close to that of the ambient oxidant gas.

2. MATHEMATICAL FORMULATION

Formulation of quasi-steady droplet combustion is presented elsewhere (Fachini, 1999). Thus, because of that only
the essential parts of it will be explicitly presented.

Considering the ambient conditions to be characterised by the temperatureT∞, densityρ∞, oxygen mass fraction
YO∞. Without loosing any important feature of the problem, the transport coefficients (thermal conductivity and diffusion
coefficient) are supposed to depend on a power of temperature, according tok/k∞ = Di/Di ∞ = (T/T∞)n = θn. The
pressure specific heat for the gases mixture is determined by

∑
i Yi cpi. The non-dimensional quasi-steady conservation

equations, describing the gas phase around the droplet with radiusā at timet (ā0 at the timet = 0), are expressed by

x2%v = λ(τ) (1)
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The definition of the non-dimensional independent variables are as following: the timeτ ≡ t/tc, wheretc is the
vaporisation timetc ≡ ε(ā2

0/α∞) and the radial coordinatex ≡ r/ā0; ε ≡ ρ∞/ρl is the ratio of the gas density to
the liquid density andα∞ ≡ k∞/(ρ∞cp∞) is the thermal diffusivity. The definition of the non-dimensional dependent
variables (temperature, density, oxygen mass fraction, fuel mass fraction and velocity, respectively) are as following:
θ ≡ T/T∞, % ≡ ρ/ρ∞, yO ≡ YO/YO∞, yF ≡ YF andv ≡ V ā0/α∞. The parameters in Eqs. (2) are defined as: Lewis
numberLei ≡ α∞/Di ∞ (i = F,O ≡ O2, N ≡ N2,H ≡ H2O,C ≡ CO2), SH ≡ LeHνH/LeF , SC ≡ LeCνC/LeF ,
S ≡ LeOνO/[YO(∞)LeF ], νO2/YO(∞) is mass of air to burn stoichiometrically a unit of mass of fuel according to the
reactionF + νOO2 → νHH2O + νCCO2. Heat of combustionQ is defined asQ ≡ q/(LeF cp∞T∞). The functionh
represents the enthalpy, defined as

h ≡ 1
cp∞T∞

∫ T

Tref

∑
i

YicpidT

in which i = F, O, N, H, C andcp∞ = YO(∞)cpO(T∞) + YN (∞)cpN (T∞).
Since the fuel oxidation kinetic mechanism is supposed to be one-step and the reaction rate follows Arrhenius type,
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whereWi is the molecular weight of speciesi and the non-dimensional activation energy is defined byθa ≡ E/RT∞;
The non-dimensional vaporisation rate isλ = ṁ/(4πā0k∞/cp) and the non-dimensional droplet radius,a = ā/ā0.

According tod2 law, the ratioλ/a, known as vaporisation constant and defined asβ, depends on the heat flux to the
droplet imposed by the flame and is a constant value.
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Equations (2) are integrated from the droplet surfacex = a to the ambient atmospherex → ∞, the flame is at a
position between these two boundaries. The conditions for these two boundaries are: atx = a ≡ ā/ā0:

x2θn

LeH
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= λyH ,
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−x2θn
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θ = θs, yF = yFs = exp[γ(1− θb/θs)] (4)

and forx →∞:

θ − 1 = yO − 1 = yF = yH = yC = 0 (5)

The subscripts represents the droplet surface condition. The non-dimensional latent heatl is expressed byL/(cpT∞), q−

is the heat to inside the droplet. The modified non-dimensional latent heatγ is defined asγ = L/RTb.
In this work, it is admitted uniform temperature profile inside the droplet and close to the boiling value,θ = θs < θb.

Thereby, the mass conservation equation for the liquid phase leads to

da2

dτ
= −2

λ

a
(6)

The closure for the system of equations is provided by the dimensionless equation of state of the gas,%θ = 1.
According to the type of the problem, at the flamex = xp, the properties are

θ − θp = yF − yFp = y0 − yOp = 0 (7)

Equation (7) expresses the droplet problem in a general form, either fuel and oxygen leak by the flame. Under
reactants leakage condition, the flow field analysis does not provide a closed solution. The flame properties (position
and temperature of the flame) and the droplet properties (droplet temperature and vaporisation rate) are determined as a
function of the fuel leakage quantity. For these conditions, the Shvab-Zel’dovich formulation with the excess enthalpy
H ≡ (S + 1)θ/Q + yF + yO and the fuel and oxygen mixture fractionZ ≡ SyF − yO + 1 (Fachini, 1999),
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is not able to solve the problem in a closed form. To determine the solution is necessary to integrate the species conserva-
tion equations together with Eqs. (8) and (9).

The equations forH andZ satisfy the boundary conditions at the droplet surfacex = a, which are determined from
Eq. (3),
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at the flamex = xp, the boundary conditions are given from Eq. (7),

H(xp) = (S + 1)θp/Q + yFp + yOp, Z(xp) = SyFp − yOp + 1, (12)

and for the ambient atmospherex →∞

H(∞) = (S + 1)/Q + 1, Z(∞) = 0, (13)
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3. BURKE-SCHUMANN KINETIC

Burke-Schumann kinetic mechanism considers the reactions infinitely fast, thereby by the flame there is no leakage
of reactants. The following condition is satisfiedyF .yO = 0, or yFp = yOp = 0 at the flame. Under this condition, the
flame takes place where the fuel flux meets the oxidant flux in stoichiometric proportion and the position is defined as
x = xp = xf . Thereby, by imposing no leakage condition, Eqs. (8) and (9) simplify to (Fachini, 1999; Fachini et al.,
1999),
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in which
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From the definition of the functionsH andZ, the original variables are defined as following:

θ =
{

[H − (Z − 1)/S]Q/(S + 1), Z > 1
[H + (Z − 1)]Q/(S + 1), Z < 1 ,
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The fuel andH2O and fuel andCO2 mixture fractions are found in the same way as the previous conservative
functions,
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By expressing the fuel mass fraction in terms of mixture fractionZ in Eqs. (16) and (17) and integrating Eqs. (14)
and (17) from the droplet surface up to a positionx, the following system of equations are found
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The value ofFH andFZ are given by Eqs. (10) and (11).
The system of equations (18) to (21) has two eigenvalues: the droplet surface temperatureθs and the vaporisation con-

stantβ ≡ λ/a. As the equations are written, the determination of these eigenvalues occurs simultaneously and together
with the solution.

3.1 Simplification for the condition θs < θb

For the conditionθs < θb, the fuel mass fraction at the droplet surface never reaches the value one. Thus, the fuel
mass fraction flux at that position is different from zero, according Eq. (4), and the Z flux is different from zero. As a
consequence, the right side of Eq. (19) is also different from zero atx = a,

∫ Z

Zs
+FZ 6= 0. Under this condition, the
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excess enthalpyH and the fuel andH2O and fuel andCO2 mixture fractions equations, Eqs. (18), (20) and (21), to can
be expressed as a function of the mixture fractionZ as following (Fachini, 1999; Lima et al., 2006; Fachini, 2006)
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From Eq. (25), the mixture fractionZ is a function of the position,Z = Z(x). From Eqs. (10), (11) and (13), the
behaviour ofZ can be studied. SinceZs > Z(∞) and ∂Z/∂x|a < 0, thenZ decreases monotonically andx = x(Z) is
found.

The advantage of this formulation over that represented by Eqs. (18) to (21) is the decouple of the eigenvalues. As can
be seen, the system of equations represented by (22), (23) and (24) can be integrated independently from (25). Therefore,
the eigenvalueθs is determined independently from the other one,β. Once knowingθs and the temperature profileθ(Z),
the value forZs is specified and problem characterised by Eq. (19) is solved andβ andZ = Z(x) are determined with
the imposition of two boundary conditions:Z(x = a) = Zs andZ(x →∞) = 0, according to Eqs. (11) and (13).

4. COMMENTS

The problem integration can follow by two ways: explicit or implicit. The explicit method is as following. The
solution of Eq. (22) permits to determine the temperature at the droplet surfaceθs, the eigenvalue of the excess enthalpy
equation and, at same time, the limit of the mixture fractionZ spaceZs (0 ≤ Z ≤ Zs) via Eq. (4). As part of the solution
of Eq. (22), the flame temperatureθf (Z = 1) is obtained. Note that the limit of the boundaryZ = Zs in the mixture
fractionZ space depends onH2O andCO2 mass fractions, which are initially a guess. The equations foryH andyC [Eqs.
(23) and (24)] can be integrated to have a better approximation for those species profiles. The procedure is repeated up to
converging the solutions. After that, the integration of the equation for mixture fractionZ is proceeded to determine the
dependence of the dependent variables on the physical spacex. The position of the flamexf is determined by imposing
the conditionZ = 1. The implicit method consists of integrating simultaneously Eqs. (22) to (25).

The problem presents another eigenvalue besides the droplet surface temperatureθs, the vaporisation constantβ ≡
λ/a. As expressed by the mixture fraction equation, this eigenvalue is the boundary of the problem in the physical space,
λ/x = λ/a, atZ = Zs. All parameters in the problem influentiate the vaporisation constantβ, β = β(n, LeF , LeO).

The difference between the specific heat constant model and the specific heat variable model is expressed explicitly
by the source term in the excess enthalpy equation (18),

[(S + 1)/Q][(θ − h)− (θs − hs)]

Note that, the source term becomes zero for specific heat constant.
According to the equation for functionH, the model for droplet combustion with specific heat constant is overes-

timated in parts of the domain where the condition(θ − h) − (θs − hs) < 0 is found and is underestimated where
(θ − h)− (θs − hs) > 0. The effect of considering specific heat constant is already known, but the present work reveals
directly this feature in the model.

It is worth to mention that transport coefficients as well as thermodynamic coefficients have influence on the droplet
properties, i.e. vaporisation rateβ and the droplet temperatureθs, and on the flame properties, i.e. flame positionxf

flame temperatureθf . Explicitly on the excess enthalpy equation via enthalpy, thermodynamic coefficients influentiate
the temperature profile, as seen in Figure 1, and implicitly on the reactants profiles via temperature dependence of transport
coefficients on temperature (see Figure 2).

The considered hypotheses are infinitely thin flame (or infinitely fast reaction) and the transport coefficients are pro-
portional. From this analysis, it is seen that the second hypotheses can be partially modified. The proportionality among
the transport coefficients is still necessary, but it can be different depending on which flame side (fuel zone or oxygen
zone) is being considered.
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Figure 1. Non-dimensional temperatureθ ≡ T/T∞ as a function of non-dimensional radiusx/a

Figure 2. Reactants mass fractionsyf + yo as a function of non-dimensional radiusx/a
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The figures 1 and 2 show the temperature and reactants profiles around a droplet of radiusa. The maximum value of
θ in figure 1 and the minimum value for theyf + yo function determine the value of the flame positionxf . These figures
show that the flame position comes closer to the experimental value when the variation of the thermodynamics coefficients
on the temperature and composition is considered. This value decreases from 30.75 to 19.41. The valuexf = 19.41 is
still far from the experimental one, that is about7 and the causes for the discrepancies among the experimental results and
theoretical results are due to the soot formation and radiative energy loss (Jackson and Avedisian, 1994; Mikami et al.,
1994; Jackson and Avedisian, 1996; Nayagan et al., 1998; Manzello et al., 2000). Thereby, the inclusion in the model of
these two processes will bring the experimental results close to the theoretical results (Kumar et al., 2002; Fachini, 2006).

5. CONCLUSION

In order to include a droplet combustion model in a spray combustion simulation, the model must represents well the
physics and be very computationally economic. Based on that, it is presented a droplet combustion model in which is con-
sidered the thermodynamic and transport coefficients variable with temperature and composition. The Shvab-Zel’dovich
formulation is employed to avoid the chemical reaction term and to reduce the system of equations and the flamelet for-
mulation is employed to avoid the calculation of the two eigenvalues simultaneously. Due to the characteristic of the
problem, the system of equations could be simplified to a first order ordinary differential equation system. This system of
equations permits to be integrated explicitly or implicitly.
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