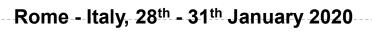


International Academy of Astronautics – IAA 5th IAA Conference on University Satellite Missions and CubeSat Workshop

NANOSATC-BR3 CONCEPT DESIGN USING MODEL-BASED SYSTEMS ENGINEERING (MBSE)


<u>Artur Gustavo Slongo</u>*, Lorenzzo Quevedo Mantovani*, Nelson Jorge Schuch*, Otávio Santos Cupertino Durão**, Fátima Mattiello-Francisco**, André Luís da Silva***, Andrei Piccinini Legg*** and Eduardo Escobar Bürger***

- * Southern Regional Space Research Center CRCRS/COCRE/INPE-MCTIC, in collaboration with the Santa Maria Space Science Laboratory LACESM/CT-UFSM, Santa Maria, RS, Brazil, arturgustavoslongo@gmail.com, lorenzzo.mantovani@gmail.com, njschuch@gmail.com.
- ** National Institute for Space Research (INPE/MCTIC), São José dos Campos SP, Brazil. otavio.durao@inpe.br,

fatima.mattiello@inpe.br.

*** Federal University of Santa Maria - UFSM, Technology Center, Professors, Santa Maria - RS, Brazil.

n.br, andrei.legg@gmail.com, eduardoebrg@gmail.com

we do not see the second of th

SUMMARY

- NANOSATC-BR program;
- 2. NANOSATC-BR3;
- 3. OBJECTIVES;
- 4. MODEL-BASED SYSTEM ENGINEERING;
- 5. CAPELLA ARCADIA;
- 6. NCBR3 CONCEPT DESIGN WITH MBSE;
- 7. NCBR3 MISSION CONCEPT;
- 8. DISCUSSION;
- 9. CONCLUSIONS.

NANOSATC-BR1

- > 1U platform and GS purchased from ISL/ISIS, through international bid in 2010;
- Magnetometer (INPE/MCTIC), Fault Tolerant FPGA (UFRGS) and IC on/off driver (SMDH/UFSM);
- Operational since 2014



Figure 1 - NANOSATC-BR1
http://www.inpe.br/crs/nanosat/galeria.php

NANOSATC-BR2

- Langmuir Probe (INPE/MCTIC), Attitude Determination System (Cooperation INPE/MCTIC with UFMG UFABC), Other ICs (SMDH and UFRGS) and two magnetometers;
- Currently at Assembly, Integration & Tests process.

Figure 1 - NANOSATC-BR2 EM

NANOSATC-BR3

- Currently in its Conceptual Phase of Development;
- To study Space Radiation and develop Capacity building;
- Constraint: Reuse NANOSATC-BR1 EM;
- Stakeholders and their needs:
 - > **INPE Scientists** need to validate a radiation protective material in space.
 - > **UFRN/CRN** technologists need to validate their transceiver in space environment.
 - > **UFSM and UFRGS** technicians and Professors need to validate their integrated circuits against space radiation.
 - > Galileo Mission Scientists need to analyze the dynamics of trapped particles in radiation belts and their influence on embedded electronics.

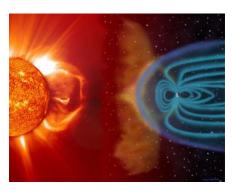


Figure 2 - NASA / SOHO

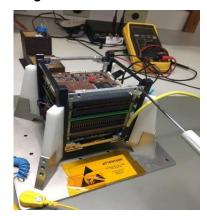
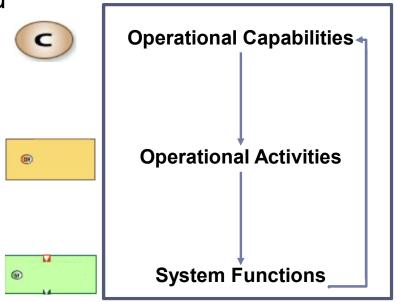


Figure 3 – NCBR3 EM


Wedens of the second of the se

OBJECTIVE

Use an MBSE software with an embedded Systems Engineering method to:

Identify Mission needs and their interrelation;

- Identify high level system functions;
- Develop a mission concept;
- Capture requirements;
- Build the first NCBR3 Model;
- Introduce the use of MBSE in the Program.

"Formalized application of modeling to support requirements definition, design, analysis, verification and validation activities"

- ➤One of the main Goals:
 - ➤ Integrate information, communication and the analysis of systems engineering products.
- ➤ Modeling is based on three pillars:
 - ➤**Tool**: Concerns to the instrument (usually software) that will be used to develop the work;
 - ➤ Language: Method of communication between the user and the tool (similar to a programming language);
 - ➤ **Method**: process that sometimes is conveniently embedded in the tool.

CAPELLA - ARCADIA

- Integration of all model views;
- Open source;
- Largely used by space industry;
- Meets all three pillars;
- Four steps of development;
- > Interactive and recursive
- method.

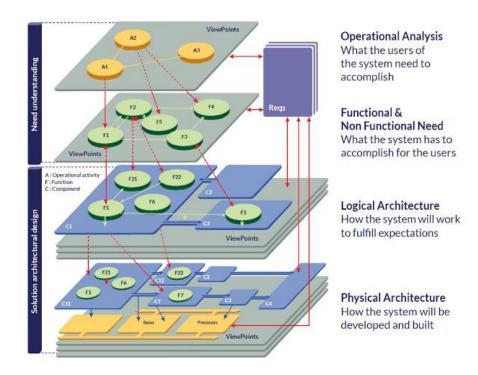


Figure 5: The Arcadia Method

Source: https://www.eclipse.org/capella/arcadia.html

Operational Capabilities:

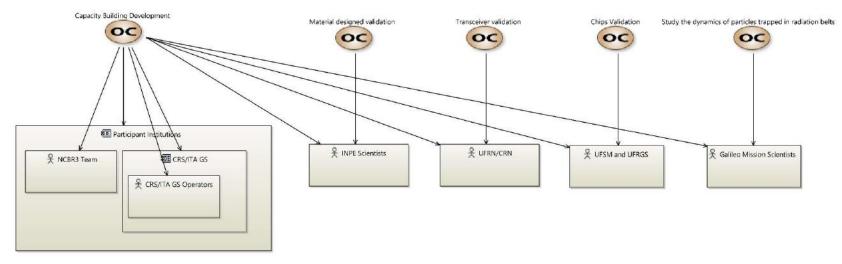
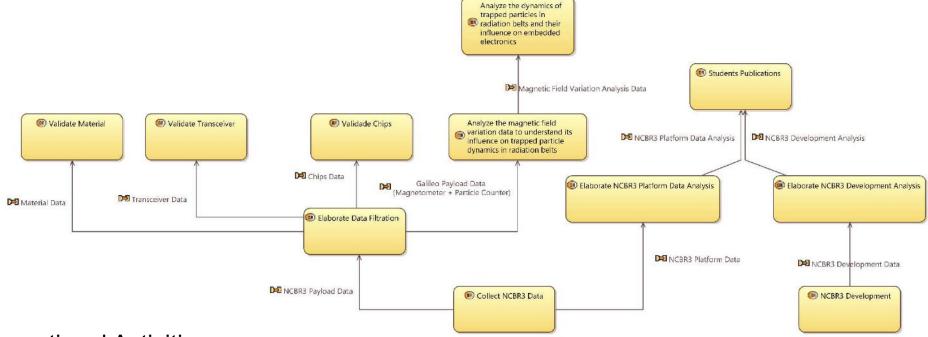
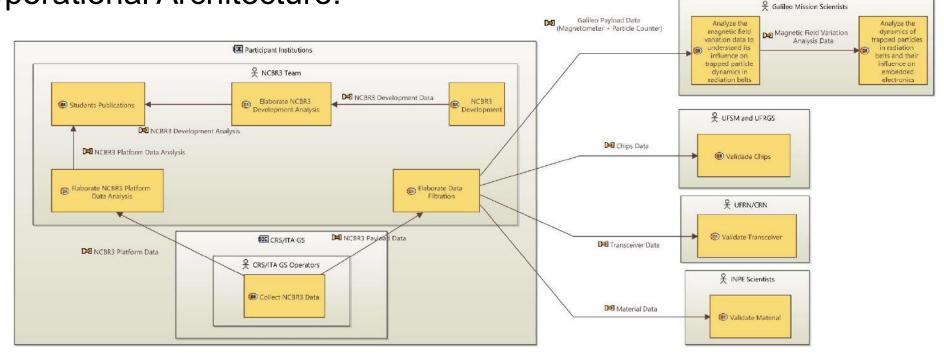



Figure 4: Operational Capabilities

- > Operational Capabilities (Needs);
- > Actors (Stakeholders).

Operational Activities Interaction:



Operational Activities;

Figure 6: Operational Activities Interaction

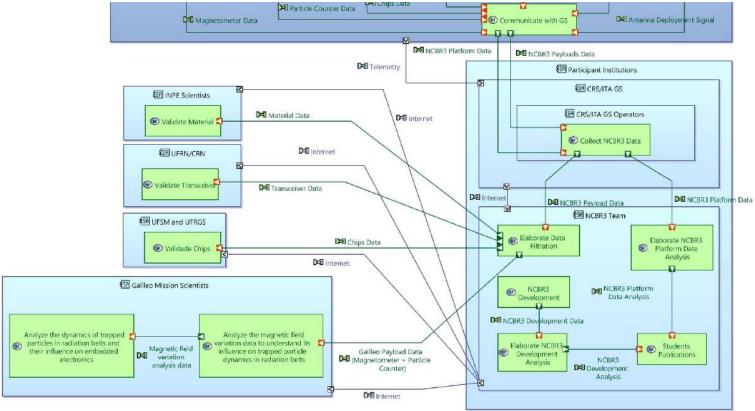
Operational Architecture:

- Operational Activities;
- > Actors.

Figure 7: Operational Architecture

System Architecture:

- Actors;
- System;
- > System High-Level Functions.


Figure 8: System Architecture

SH POD

System Architecture:

12

Figure 9: System Architecture

NCBR3 MISSION CONCEPT

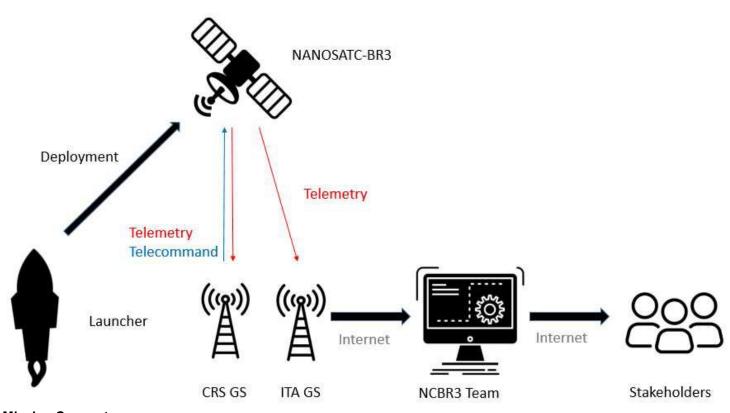


Figure 10: NCBR3 Mission Concept

Moc James Control of the Control of

DISCUSSION

> MBSE main contributions:

- > Hidden requirements;
- > Improve communication;
- Visual tool unify system understanding;
- System boundaries and basic functions;
- Viable system concept;
- Reduced project paper work;
- > Traceability raises reliability.

CONCLUSIONS

> MBSE:

- Made possible a much more structured mission Phase 0;
- > Has educational purposes competence;
- Consolidates and unifies understanding;
- > Very useful to Project Reviews.

> Future Works:

- > Further modeling through next steps;
- > Encourage MBSE culture within NANOSATC-BR Program.

ACKNOWLEDGMENTS

To:

- The authors thank the **Brazilian Space Agency AEB**, **SEXEC/MCTIC**, **COCRE/INPE-MCTIC**, **UFSM-FATEC** for the support, opportunity and grants for the Brazilian INPE-UFSM NANOSATC-BR Cubesat Development Program, with its CubeSats: the NANOSATC-BR1, NANOSATC-BR2 & the NANOSATC-BR3 Projects.
- The authors thank and acknowledge to **Eng. Abe Bonnema and the ISIS's Board of Directors** for the support to the Brazilian students and for the NANOSATC-BR, CubeSats Development Program, the NANOSATC-BR1, NANOSATC-BR2 & the NANOSATC-BR3 Projects.
- Dr. Nelson Jorge Schuch thanks the **National Council for Scientific and Technological Development (CNPq)** for the fellowship under the number 300886/2016-0. The authors thank to MCTIC-CNPq/(INPE/PCI-PIBIC-PIBIT) and to FATEC Programs for fellowships.

The NANOSATC-BR Program site is: www.inpe.br/crs/nanosat/

Muito Obrigado

Thanks

Grazie

International Academy of Astronautics - IAA

5th IAA Conference on University Satellite Missions and CubeSat

Workshop

