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“When we read, another person thinks for us: we merely repeat his mental 

process. In learning to write, the pupil goes over with his pen what the teacher 

has outlined in pencil: so in reading; the greater part of the work of thought is 

already done for us. This is why it relieves us to take up a book after being 

occupied with our own thoughts. And in reading, the mind is, in fact, only the 

playground of another’s thoughts. So it comes about that if anyone spends almost 

the whole day in reading, and by way of relaxation devotes the intervals to some 

thoughtless pastime, he gradually loses the capacity for thinking; just as the man 

who always rides, at last forgets how to walk. This is the case with many learned 

persons: they have read themselves stupid.” 

 

Arthur Schopenhauer 
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ABSTRACT 

One of the key issues of monitoring inland water quality is spatial-temporal 
sampling because water quality can rapidly change due to natural and 
anthropogenic influence. Remote sensing of inland waters is a reliable tool for 
monitoring water quality in large areas and time-series. However, the traditional 
method of calibrating bio-optical algorithms for limnological parameters (e.g., 
Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and Colored Dissolved 
Organic Matter (CDOM)) is limited to bio-optical characteristics of the study 
sites used for algorithm calibration. Consequently, bio-optical algorithms are 
not suitable for monitoring inland waters on a macro-scale level. On the other 
hand, monitoring Optical Water Types (OWT) has shown a macro-scale 
application, while those OWTs also represent changes in Chl-a, TSM, and 
CDOM concentrations. Thus, monitoring Brazilian OWTs could be a useful tool 
for water management on a wide scale. The objective of this study is to create 
a method for monitoring the water quality of Brazilian inland waters using 
OWTs. The study is described in three chapters; the chapter 3 assesses the 
uncertainties related to the merging of spectra measurements obtained under 
different protocols of computing remote sensing reflectance (Rrs); the chapter 
4 describes the identification of Brazilian OWTs using hyperspectral in situ Rrs, 
which was acquired for water bodies encompassing a wide range of optical 
characteristics in Brazil; the chapter 5 describes the training of classification 
algorithms for detecting the OWTs using satellite sensors. In the chapter 3, it 
is shown that Rrs computed on Kutser’s method is lower than that of Mobley’s 
in all water types, with bias reaching up to -100%. Both methods allow 
satisfactory calibration of bio-optical algorithms when they are used apart, but 
there is a significant accuracy reduction when both methods are mixed in the 
same database. Furthermore, almost half of the samples are labeled with 
different clusters depending on the Rrs method. Hence, merge both methods 
for calibrating bio-optical algorithms is viable when a validation dataset is used, 
but spectral clustering should be avoided. In the chapter 4, a total of eight 
OWTs are computed based on Rrs shape and magnitude, which represent 
different optical and limnological characteristics of Brazilian waters. The OWT 
1 represents transparent waters with low TSM, Chl-a, and CDOM 
concentrations; the OWT 2 represents transparent waters with moderate 
CDOM and TSM; OWT 4 is characterized by waters with algae bloom in aquatic 
system with moderate TSM concentration; OWT 5 is characterized by waters 
with algae bloom in low TSM concentration; OWT 6 is composed by waters 
with severe algae bloom density; OWT 7 is characterized by waters with the 
highest CDOM concentration; OWT 8 is waters with high TSM concentration; 
OWT 9 is waters with the highest scattering and TSM concentration. In the 
chapter 5, classification algorithms are trained for detecting the OWTs in 
satellite images of Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+. 
Sentinel-2 MSI has the best spectral resolution for classifying OWTs and 
exhibited satisfactory accuracy (Recall from 0.77 to 0.99) in satellite images. 
On the other hand, Landsat-8 OLI and Landsat-7 ETM+ classifications are 
profoundly affected by the overestimation of near-infrared bands, causing weak 
accuracy water bodies characterized by algae blooms (OWTs 4, 5, and 6). In 
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conclusion, the proposed have many applications, such as i) support of 
sampling design and survey campaigns; ii) detection of water quality anomalies  
caused by abrupt changes such in sediment loading and onset of algal blooms; 
iii) it could also be used for a census of Brazilian surface waters and provide 
reliable data in a macroscale level; last, iv) It could be used for improving the 
accuracy and the scope of semi-analytical algorithms based on Rrs by using the 
OWT in the calibration and validation process. 

Keywords: Remote sensing. Optical Water Types. Inland Waters. 
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USO DE TIPOS ÓPTICOS DE ÁGUA PARA O MONITORAMENTO 
DAS ÁGUAS INTERIORES BRASILEIRAS POR SATÉLITES 

 
 

RESUMO 

Um dos fatores limitantes para se monitorar a qualidade das  águas interiores 
é a cobertura espaço-temporal de amostragens, visto que a qualidade da água 
pode mudar rapidamente por causas naturais ou antropogênicas. O 
sensoriamento remoto de águas interiores é uma excelente ferramenta para 
monitorar com maior frequência grandes regiões. Entretanto, o método 
tradicional de calibração de algoritmos bio-ópticos para a estimativa de 
parâmetros como concentração de Material Total Suspenso (TSM), clorofila-a 
(Chl-a), e matéria orgânica colorida dissolvida (CDOM) tem sua aplicação 
limitada às regiões para as quais estes foram calibrados, e, portanto, não 
podem ser aplicados em macro escala. Por outro lado, o monitoramento de 
tipos ópticos de água (OWT) possui aplicação em macro escala pois estes 
também representam alterações em TSM, Chl-a, e CDOM. Sendo assim, o 
uso de OWTs para o monitoramento de grandes regiões, como o território 
brasileiro, pode ser vantajoso. Essa vantagem fundamenta o objetivo deste 
estudo, de criar um método para o monitoramento das águas brasileiras 
usando OWTs. Este estudo encontra-se descrito em três capítulos; o capítulo 
3 investiga as incertezas geradas quando diferentes métodos de correção de 
glint para o cálculo da reflectância de sensoriamento remoto (Rrs) são 
misturados para formar uma única base de dados; o capítulo 4 descreve como 
as OWTs de sistemas aquáticos interiores brasileiros foram geradas a partir 
de medidas de Rrs hiperespectral representativas de um amplo range de 
características ópticas dos corpos de água do Brasil; o capítulo 5 descreve o 
processo de treinamento de algoritmos classificadores desenvolvidos para 
detectar OWTs definidas por dados hiper espectrais aplicados a sensores 
multiespectrais. Nos resultados do capítulo 3, a Rrs calculada utilizando o 
método do Kutser é mais baixa que a Rrs calculada pelo método do Mobley em 
todos tipos de água, sendo que a Rrs do Kutser pode subestimar em até -100% 
a Rrs corrigida por Mobley. Ambos os métodos permitem calibrar algoritmos 
bio-ópticos quando são usados separados, mas quando são combinados em 
uma única base de dados, pode haver uma queda significativa na acurácia dos 
algoritmos. Além disso, o processo de classificação (clustering) de espectros 
de Rrs, aproximadamente metade das amostras são agrupadas em classes 
distintas em função do  método de correção de glint utilizado. Portanto, ambos 
os métodos de correção de glint podem ser combinados para calibração de 
algoritmos bio-ópticos, desde que uma base de dados de avaliação seja 
utilizada. Por outro lado, deve se evitar clusterizar espectros combinando os 
dois métodos. No capítulo 4, um total de oito OWTs foram obtidas utilizando a 
forma e magnitude da Rrs, cujas propriedades ópticas e limnológicas são 
distintas. A OWT 1 compreende águas transparentes com baixa concentração 
de TSM, Chl-a e CDOM; a OWT 2 compreende águas transparentes com 
moderada concentração de CDOM e TSM; a OWT 4 inclui águas com floração 
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de algas em ambientes com concentração moderada de TSM; a OWT 5 
compreende  águas com floração de algas em ambientes com baixa 
concentração de TSM; a OWT 6 inclui águas com florações de algas com alta 
densidade; a OWT 7 compreende águas com elevadas concentrações de 
CDOM; a OWT 8 são águas com alta concentração de TSM; e a OWT 9 são 
águas com alto retro espalhamento e as mais altas concentrações de TSM. No 
capítulo 5, algoritmos classificadores foram treinados para detectarem as 
OWTs em imagens dos sensores Sentinel-2 MSI, Landsat-8 OLI e Landsat-7 
ETM+. Sentinel-2 MSI mostrou a melhor capacidade espectral para classificar 
as OWTs. Nas imagens de satélite, o desempenho dos classificadores é muito 
sensível a correção atmosférica, sendo o Sentinel-2 MSI o que apresenta o 
melhor desempenho entre as imagens orbitais. Por outro lado, as 
classificações das imagens obtidas por Landsat-8 OLI e Landsat-7 ETM+ 
foram significativamente afetadas pela super estimação de suas bandas no 
infravermelho próximo, o que levou à redução da acurácia de classificação de 
OWTs relacionadas a floração de algas (OWTs 4, 5 e 6). Concluindo, a 
utilização do método proposto neste estudo para o monitoramento das águas 
interiores brasileiras pode: i) fornecer subsídios  para o delineamento amostral  
e para o planejamento de campanhas de campo; ii) permitir detecção de 
anomalias em mudanças abruptas do ambiente, como alto aporte de 
sedimentos e a floração de algas; iii) o método pode também ser utilizado para 
um cadastro das águas superficiais brasileiras, informação essencial para 
determinar um nível de referência da qualidade da água contra qual medir 
impactos antropogênicos e naturais em um nível de macro escala.; iv) melhorar 
a acurácia de algoritmos semi-analíticos baseados em Rrs, usando as OWTs 
durante o processo de calibração e validação. 

Keywords: Sensoriamento Remoto. Tipos Ópticos de Água. Águas Interiores. 
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1 INTRODUCTION 

Inland waters comprise many environments such as lakes, ponds, wetlands, 

bogs, artificial reservoirs, rivers, and estuaries. Those environments are essential 

for human activities, providing resources for energy production, farming, 

aquaculture, navigation, and recreation, urban and industrial activities. As a 

consequence, those human uses cause environmental impacts on water quality, 

such as increased turbidity, eutrophication level, and frequency of toxic algal 

blooms. The increased degradation of inland waters causes losses of ecosystem 

services, human health hazards, socioeconomic impacts, and adverse effects on 

the aquatic biota (JØRGENSEN et al., 2012). For that reason, studies and 

monitoring programs of water quality are needed for giving scientific support to 

the sustainable use of water resources and the development of ecosystem 

restoration programs. 

Various studies on water quality are based on satellite remote sensing, which, 

compared to in situ data collection has the advantage of frequent data acquisition 

over vast areas of the Earth’s surface (CAIRO et al., 2020; DOGLIOTTI et al., 

2016; MACIEL et al., 2019). However, these studies are mostly regional and time-

specific. Estimate essential information (e.g., total suspended matter (TSM), 

chlorophyll-a (Chl-a), and colored dissolved organic matter (CDOM) 

concentrations) from remote sensing requires calibration of bio-optical 

algorithms, and each calibration tends to be specific for an exclusive range of 

optically active constituents (OACs) composition, size distribution, and 

concentration. Regarding inland waters, each waterbody, depending on its 

drainage basin features and land-use history, has different ranges of 

concentration and biogeochemistry, demanding specific calibrations. Likewise, 

even analytical and semi-analytical bio-optical algorithms are also time-specific 

since OACs type and range are in constant change. Hence, the monitoring of 

vast areas encompassing different water bodies requires a considerable effort in 

the calibration process. This effort involves surveys, human resources, and 

financing, limiting the monitoring capability of large areas and the application of 

satellite time-series in the study of highly dynamic environments. 
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Alternatively, several studies have shown that approaches relying on optical 

water types (OWT) can be applied for monitoring different water bodies and in 

studies relying on the application of satellite time-series (DEYONG et al., 2013; 

HUANG et al., 2014; LIU et al., 2013; LUBAC; LOISEL, 2007; REINART et al., 

2003; SHI et al., 2013a; SPYRAKOS et al., 2018; SUN et al., 2014; 

VANTREPOTTE et al., 2012). This approach consists of using radiometric 

measurements (e.g., remote sensing reflectance (Rrs)) for classifying water 

masses in a way that each class represents specific ranges of CDOM, Chl-a, and 

TSM concentration. Then, the classification provides a qualitative knowledge 

about  the waterbody properties such as water masses with different degrees of 

clarity and turbidity (CHEN et al., 2004 ; LOBO et al., 2012), presence of algae 

blooms, and rich in dissolved organic carbon (DOC) concentration (LOBO et al., 

2012). Furthermore, the clustering of OWTs may also improve the performance 

of Chl-a algorithms (CAIRO et al., 2020; SHI et al., 2013b) and TSM 

concentration (VANTREPOTTE et al., 2012). These classes may have similar 

OACs ranges, then, allowing for a more accurate algorithm calibration for each 

OWT. Therefore, for monitoring vast regions composed of several water bodies 

and for time series applications, this approach could be an alternative to the 

search for regional algorithms. 

Brazil is the 5th
 larger country in the world and covers 47% of the South American 

continent (8.5 e6 km²). Brazil has surface water availability of 78600 m³ s-1, 

corresponding to 12% of the surface fresh water available in the world (BRASIL, 

2012). These waters are subjected to quality degradation, such as eutrophication 

and an increase in algae bloom caused by crop and animal production systems 

(SHIGAKI et al., 2006), and increase of turbidity and TSM concentration caused 

by dam failures (HATJE et al., 2017). Many studies have been carried out in 

specific waterbodies, but there is a considerable gap in the assessment of time 

changes in the level of the Brazilian inland water degradation. The elimination of 

that gap at the national level is relying only on in situ methods and on the 

calibration of regional bio-optical algorithms for each waterbody, which is a 

difficult task. Thus, the development of an optical classification of Brazilian inland 
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waters and a method for detecting them based on orbital sensors could bridge 

that spatial-temporal gap of water quality data. 

 

1.1 Hypothesis 

OWTs can be used for satellite monitoring of Brazilian inland waters. 

 

1.2 Objective 

The objective of this study is to create a method for monitoring the Brazilian inland 

waters using OWTs. Thus, three specifics objectives are set and comprise three 

chapters of this study. Chapter 3 assess if a database composed of Kutser’s and 

Mobley’s glint removal methods (KUTSER et al., 2013; MOBLEY, 1999) can be 

used in the same database for establishing the Brazilian OWTs. Chapter 4 

establishes the Brazilian OWTs based on in situ Rrs. Chapter 5 train classification 

algorithms for detecting the Brazilian OWTs using different orbital sensors. Based 

on these objectives, the following research questions are addressed in this 

dissertation: 

• Can the Kutser’s and Mobley’s glint removal be used in the same database 

for computing OWT? (Chapter 3) 

• What are the Brazilian OWTs? (Chapter 4) 

• How to detect the Brazilian OWTs in satellite images? (Chapter 5) 
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2 THEORY 

2.1 Optically active constituents 

The main Optically Active Constituents (OACs) are the CDOM, algae particles 

(Phy), and non-algae particles (NAP). Each component interacts with 

electromagnetic radiation (EMR) and makes it possible to detect them by remote 

sensing. Besides, monitoring the OACs is necessary because they also have an 

essential role in the water quality of inland waters (KIRK, 2011). This section 

describes the composition of each OAC and its influence in inland waters. 

CDOM is the fraction of dissolved organic matter which interacts with EMR. This 

fraction is derived from the dissolved humic substances, which are a 

heterogeneous group of compounds consisting of polymers of aromatic rings 

formed due to the decomposition of carbon material by microbial activity. The 

CDOM varies in size, solubility, and molecular weight and is classified into 2 

types: (1) humic acids, which are the precipitate fraction resulting from its 

acidification, and (2) fulvic acid, which is the remaining material. Both fractions 

are chemically similar, but humic acid molecules are larger than those of fulvic 

acid (KIRK, 2011).  

The CDOM role in aquatic environments is associated with photobleaching, 

pollutants, and absorbing hazardous EMR. Photobleaching is the process 

through which CDOM is degraded by EMR, affecting nutrient availability and the 

production of CO2 (BUSHAW et al., 1996). Pollutants can strongly bind with 

CDOM and thereby have its transport and toxicity affected (SANTOS et al., 2008). 

CDOM absorbs ultraviolet radiation that can damage phytoplankton 

(WILLIAMSON et al., 2001). On the other hand, CDOM increases light 

attenuation and limits the EMR available for photosynthesis (EVANS et al., 2005). 

Phy is composed by the pigments and cell structure of phytoplankton, which are 

living organisms comprising of diverse phylum, from prokaryotic cells such as 

Cyanophyta to eukaryotic cells such as Cryptophyta. Most phytoplankton is 

autotrophic and dependent on their pigments for absorbing EMR and producing 

energy and organic matter. For example, blue-green algae that have Chl-a, 

phycocyanin, and phycoerythrin pigments. Moreover, phytoplankton size also 
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differs into pico (0.2 – 2 µm), nano (2 – 20 µm), micro (20 – 200 µm), meso (0.2 

– 2 mm), and macro (> 2 mm) (REYNOLDS, 2007). 

For evaluating the water quality of inland waters, a standard measurement related 

to Phy is the Chl-a concentration. This measurement is easily obtained by 

standalone and survey devices, as well as laboratory analysis. The Chl-a 

concentration is used as a proxy of the phytoplankton biomass, although the 

relationship between Chl-a concentration and phytoplankton biomass differs in 

different species (REYNOLDS, 2007). Monitoring Chl-a concentration can aid the 

identification of algae blooms, whose occurrence is related to a fast increase of 

organic matter in the waterbody, leading to hypoxia and mortality of heterotrophic 

fauna. Moreover, a toxic algae bloom can also contaminate water supplies and 

impact animal and human health. Furthermore, changes in the Chl-a 

concentration can indicate sewers and agricultural contaminants (LIBES, 2009). 

NAP consists of mineral particles derived from land erosion, resuspension of 

bottom sediments, organic components like bacteria, dead cells, and the 

fragment of cells. Thus, NAP varies in size, composition, and concentration. NAP 

size can be expressed as particle size distribution in the water column, the 

composition by its refraction index, and concentration by mass in a volume of 

water (KIRK, 2011). TSM is the limnological measurement related to NAP. 

Although, TSM can also include part of Phy depending on the laboratory method. 

The TSM influence on the aquatic environment is related to turbidity and transport 

of adsorbed compounds. The increase of TSM concentration increases the 

turbidity, and so, light attenuation. Higher light attenuation means less EMR 

available for photosynthesis; thus, a reduced amount of organic matter and 

energy available to the heterotrophic fauna (REYNOLDS, 2007). Also, TSM can 

adsorb some compounds enabling the distribution of nutrients in the waterbody. 

On the other hand,  particles also help the spread of pollution (HATJE et al., 

2017). 
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2.2 Optical properties of inland waters 

The optical properties of water are divided into inherent optical properties (IOPs) 

and apparent optical properties (AOPs). IOPs are dependent only upon the 

medium, and therefore are independent of the ambient light field and environment 

conditions. On the other hand, AOPs are dependent on the medium, geometric 

structure of the ambient light field, and environment conditions (MOBLEY, 1994). 

Both IOPs and AOPs comprise various parameters. The next sections describe 

only the IOPs and AOPs variables relevant to this project and the optical 

properties of each OAC. 

 

2.2.1 Inherent and apparent optical properties 

This topic represents a summary of IOPs and AOPs described by MOBLEY, 

(1994). Considering a small volume of water (ΔV) and thickness (Δr) illuminated 

by a collimated beam of monochromatic light of spectral radiant power (Φ), W 

nm-1, some part of incident radiant power (Φi) is absorbed in the water (Φa), while 

another part of the incident radiant power is scattered out of the beam at all 

directions (Φs), and the remaining radiant power is transmitted through the 

volume with no change in the direction (Φt). Disregarding the inelastic scattering 

(fluorescence), all the incident radiant power in a volume of water follows the 

conservative radiative transfer defined by the Kirchhoff's law: 

 

Φi(λ)  =  Φa(λ)  +  Φs(λ) +  Φt(λ)                                           (2. 1) 

 

Hence, the spectral absorptance A (λ) is the fraction of incident power that is 

absorbed within the volume: 

 

A (λ) =  
Φa (λ)

Φi(λ)
                                                           (2. 2) 
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Likewise, the spectral scatterance B (λ) is the fraction part of the incident power 

that is scattered out of the beam: 

 

B (λ) =  
Φs (λ)

Φi (λ)
                                                            (2. 3) 

 

Thus, the IOPs can be defined using these variables. The spectral absorption 

coefficient a (λ) is defined as: 

 

a(λ) = lim
Δr→0

A (λ)

Δr
    (m−1)                                              (2. 4) 

 

So the spectral scattering coefficient b (λ) is defined as: 

 

b(λ) = lim
Δr→0

B (λ)

Δr
    (m−1)                                           (2. 5) 

 

The scattering direction in the water column can also be taken into account. The 

volume scattering function β (ψ; λ) is the fraction of incident radiant power 

scattered out the beam into a solid angle (ΔΩ) centered on a specific scattering 

angle ψ. The β (ψ; λ) is defined as: 

 

β (ψ;  λ) =  lim
Δr→0

lim
ΔΩ→0

B (ψ;  λ)

(Δr ΔΩ) 
    (m−1sr−1)                           (2. 6) 

 

Integrating β (ψ; λ) overall directions gives b(λ): 
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b(λ) =  2π ∫ β(ψ;  λ) sin ψ dψ    (m−1)
π

0

                              (2. 7) 

 

This integration is often divided into forwarding scattering bf (0 ≤ ψ ≤ π/2) and 

backscattering bb (π/2 ≤ ψ ≤ π), where 0 is the downward zenith direction. The 

forward and backscattering coefficients are, respectively: 

 

bf(λ) =  2π ∫ β(ψ;  λ) sin ψ dψ    (m−1) 

π
2

0

                              (2. 8) 

 

bb (λ) =  2π ∫ β(ψ;  λ) sin ψ dψ    (m−1) 
π

π
2

                            (2. 9) 

 

The IOPs are represented by Eq. 2.4 to Eq. 2.9, and they are useful for comparing 

the optical properties of different water bodies; however, obtaining them by orbital 

sensors requires sophisticated modeling. On the other hand, the foremost AOPs 

utilized in inland waters, the Rrs, is easily obtained from orbital sensors. The Rrs 

is defined by the following equation: 

 

Rrs(θ, ϕ; λ) =
Lw(θ, ϕ; λ)

Ed(λ)
    (sr−1)                                   (2. 10) 

 

Where Lw (θ,ϕ;λ) is the water-leaving radiance into the specific zenith (θ) and 

azimuth (ϕ) angles, which is measured at the orbital sensor, and Ed is the 

downwelling irradiance incident in the water surface. Rrs is a measure of how 

much the downwelling EMR incident onto the water surface is returned in the 

direction (θ, ϕ), so it can be detected by a radiometer pointed in the opposite 

direction and operated in orbital sensors. Furthermore, Rrs is related to the IOPs 

by the following equations: 
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R = ∝
bb

a
                                                              (2. 11) 

Rrs =
t− t+

n²
 

R

Q(1 −  γR)
   (sr−1)                                        (2. 12) 

 

Where R is the irradiance reflectance just below the surface, ∝ is the 

proportionality constant that depends on the radiance distribution (e. g., solar 

zenith angle, diffuse sky lighting, and sea state), t- is the radiance transmittance 

from below to above the surface, t+ is the irradiance transmittance from above to 

below the surface, n is the refractive index of water, γ is the water-to-air internal 

reflection coefficient, and Q is the ratio of Eu (Irradiance ascendant below the 

surface) and Lu (radiance ascendant below the surface) (LEE et al., 1998). 

 

2.2.2 Optical properties of the OACs 

The primary influence of CDOM is its absorption, while scattering is not 

significant. CDOM absorbs very little in the red, but there is a fast increase in the 

absorption with decreasing wavelength, reaching its maximum in the ultraviolet 

(MOBLEY, 1994). The CDOM spectral absorption coefficient (aCDOM) can be 

described by the model (BRICAUD et al., 1981): 

 

aCDOM (λ) =  aCDOM(λ0)exp(−S(λ −  λ0))       (𝑚−1)                   (2. 13) 

 

Where S is the slope and determines how fast the absorption reduces with 

increasing wavelength. The value of aCDOM (λ) depends on the CDOM 

concentration, while the value of S depends on the relative proportions of humic 

and fulvic acids. Consequently, aCDOM (λ) is different for each region, for example, 

in the Estonian aquatic systems aCDOM (400 nm) varies from 0 to 85 m-1 

(OGASHAWARA et al., 2017). 
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The CDOM composition affects the slope and spectral shape of a (λ) . In the 

Sweden lakes, Wünsch et al. (2018) report different spectral shapes in response 

to CDOM molecule size. For smaller molecules (mainly composed of fulvic acids), 

the slope is higher than that of larger molecules (mainly composed of humic 

acids). Thus, the slope of absorption can be used for inferring the CDOM 

composition. Likewise, Silva (2018) uses the aCDOM slope to infer the CDOM 

molecular weight, and further the CDOM source. 

CDOM also has fluorescence properties once excited by EMR in the ultraviolet 

region, emitting broadband in the blue area. Chen et al. (2017) show the spectral 

response of Hangzhou Bay and Qiandao lake after exciting it with an EMR at 405 

nm. An emission peak at 508 nm is observed and is highly correlated with the 

CDOM absorption coefficient at 440 nm (R² = 0.9; R² = 0.87). Moreover, the peak 

position of CDOM fluorescence can also change according to its molecular size. 

After excited by EMR at 275 nm, the emission peak changes to longer 

wavelengths as the molecule’s size increases (R² = 0.53) (WÜNSCH et al., 2018). 

The optical properties of Phy depend on its concentration, pigments, and cell 

structure of phytoplankton. Pigments have a variety of absorption peaks along 

the visible spectrum. For pigments dissolved in solvents with no influence of cell 

structure, Chl-a absorption peaks are at 432 nm and 662 nm; chlorophyll-b 

absorptions peaks are at 458 nm and 646 nm; chlorophyll-c absorption peaks at 

444 nm and 630 nm; fucoxanthin absorption peak is at 450 nm; and β-Carotene 

absorption peak is at 452 nm (BIDIGARE et al., 1990). Each species of 

phytoplankton has different intracell concentration and relative proportion of 

pigments, thus, each species can have different specific absorption spectrums 

aphy(λ). 

Cell size and concentration of phytoplankton can also affect absorption along the 

visible spectrum. Morel & Bricaud (1981) analyzed the influence of cell size on 

the absorption coefficient of phy (intracellular self-shading), where for the same 

Chl-a concentration, they observed a flatting process at 430 nm absorption peak 

when the diameter of the cell increases. Ciotti et al. (2002) observe the same 

pattern for natural phytoplankton communities; the absorption of picoplankton 
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was more flattened in the blue region than that of the microplankton. Hence, for 

the same Chl-a concentration, absorption is reduced by the self-shading effect, 

which is increased by a larger particle size (DUYSENS, 1956). 

Phytoplankton can also contribute significantly to the scattering, which varies 

from among species. Species with mineralized cell walls such as diatoms and 

coccolithophores have higher scattering than those with no mineralized cell walls 

(GANF et al., 1989). Furthermore, species can be compared using the specific 

scattering coefficient (bc). Species such as Scenedemus bijuga, Chlamydomonas 

sp.,  Nostoc sp. and Anabaena oscillarioides have bc (550 nm) of 0.107, 0.044, 

0.113 and 0.139, respectively (Davies-Colley et al.,1986). 

Phytoplankton also expresses fluorescence emission when excited, with spectral 

peak varying with species. Johnsen & Sakshaug (2007) analysis the fluorescence 

excitation in 33 marine phytoplankton species divided into pigment groups. They 

observe that spectral fluorescence excitation differs under low and high light 

conditions but also in different pigment groups. 

The NAP optical characteristics are mainly on the absorption and scattering but 

no considerable in fluorescence. The NAP absorption is low in the red and 

increases towards blue, decreasing again in the ultraviolet. Its absorption has a 

similar shape to CDOM absorption, caused by humic particulate or humic 

substance adsorbed in the mineral particles. Thus, NAP absorption follows an 

exponential equation similar to CDOM absorption: 

 

aNAP(λ) =  aNAP(λ0)exp(−S ∗ (λ –  λ0))        (m−1)                     (2. 14) 

 

Where aNAP(λ) is the NAP absorption coefficient, and S is the slope.  The slope 

is typically smaller than that of CDOM. Studies in coastal waters report values of 

0.0123 ± 0.0013 nm-1 (KIRK, 2011). 

The scattering in aquatic environments is highly modified by NAP concentration, 

size, and refraction index. Simulated results of oceanic waters by Roesler & Boss 

(2008) at 555 nm demonstrate the influence of each parameter. The 
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concentration increases the scattering coefficient with small changes in the 

β (ψ;  λ) shape. Different refractive index show, not only distinctive b(λ) but also 

changes in the shape of β (ψ;  λ). The particle size distribution (Junge value) is 

positively correlated with the scattering coefficient; the higher the Junge value 

(proportion of small particles is more present than larger particles), the higher is 

the scattering. Also, Junge values change the shape of β (ψ;  λ), which small 

junge values has a higher slope and shoulders next to 60° and 110º. 

For all NAP particle sizes in the water column, smaller particles are responsible 

for most of the scattering. Peng et al. (2009) analyzed the influence of particle 

size in the scattering and backscattering of Superior Lake waters. From particle 

sizes from 0.5 to 10 µm, particle sizes up to 2.05 µm are responsible for 50% of 

the total scattering; and particle sizes up to 2.93 µm are responsible for 50% of 

total backscattering. Thus, their study demonstrates that between 0.5 and 10 µm, 

smaller particles scatter more EMR than bigger particles. 

The a(λ) and b(λ) of water bodies combine CDOM, Phy, and NAP. Thus, the 

absorption and scattering coefficient can be defined as: 

 

a(λ) =  aCDOM(λ) + aphy(λ) +  aNAP(λ)  (m−1)                            (2. 15) 

 

b(λ) =  bphy(λ) +  bNAP(λ)  (m−1)                                      (2. 16) 

 

Where aCDOM(λ), aphy(λ) and aNAP(λ) are the absorption coefficient of CDOM, 

Phy, and NAP, respectively. And bphy(λ) and bNAP(λ) scattering coefficient of Phy 

and NAP, respectively. The spectral Rrs (λ) is influenced by both a(λ) and b(λ), 

and the ambient light field (see eq. 2.11 and 2.12). Furthermore, the IOPs are 

influenced by CDOM concentration and size, phytoplankton concentration, 

species and size, and NAP concentration. Thus, the Rrs spectral shape and 

magnitude are influenced by all those parameters. 
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The contribution of each OAC may differ in different water bodies. For example, 

Sun et al. (2010) compare the influence of Phy and NAP in the scattering and 

absorption in the Taihu Lake. For all visible spectral range, Phy has a small 

influence in b, contributing less than 10% to the total scattering; in contrast, NAP 

contributes up to 90 %. For the same spectral range, Phy varied from 0.3 to 3.9 

% of total bb, while NAP contributed up to 100%. Considering the absorption, Phy 

and NAP have a similar contribution to the total absorption, both ranging from 20 

to 70 % in the visible spectral range. 

As CDOM, phy, and NAP change absorption and scattering; consequently, they 

also change the reflectance. Lobo et al. (2012) show the reflectance spectra for 

different TSS, Chl-a, and DOC concentrations. Clear waters with a low 

concentration of all limnological parameters exhibit low reflectance on the NIR 

region, increasing towards lower wavelengths, with the highest peak at 550 nm. 

Waters rich in DOC and low Chl-a and TSM concentration have a flat shape in 

the visible spectrum and low reflectance in the NIR region. High TSM 

concentration increases reflectance in the most of the spectrum, for instance, 

from the mean of 13 mg l-1 to mean of 580 mg l-1, the reflectance at 600 nm 

increases from 4% to 12%. This reflectance increase shows the influence of 

bNAP(λ) in high concentrations. Furthermore, waters with high Chl-a 

concentration have a reflectance peak at 700 nm and increases with the 

concentration. This peak position also changes from 680 to 715 nm when Chl-a 

concentration rises (GITELSON, 1992). 

 

2.3 Optical classification of natural waters 

A well-known optical classification of natural waters is the case 1 and case 2 

waters (MOREL; PRIEUR, 1977). Case 1 water has phytoplankton concentration 

much higher than other water components, having Chl-a and carotenoids as the 

main absorbers. In contrast, case 2 are waters that have inorganic particles as 

the main absorbers, with pigments playing a less critical role. Both classes have 

distinct spectral shapes of absorption and reflectance. In case 1, the spectral 

absorption curve is V-shape due to the absorption of Chl-a and carotenoid, 
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centered at 440 and 670 nm, respectively. In case 2, there is no absorption peak 

due to the steady increase of absorption towards shorter wavelengths, leading to 

a flattering shape. 

Recently, optical classification of natural waters has been carried out in numerous 

studies with two main purposes: (1) to understand the environment dynamics 

based on a categorical approach and (2) to optimize the performance of bio-

optical algorithms for estimating Chl-a and TSM concentration. In the categorical 

approach, water masses are clustered into classes according to their optical 

properties, which may have different limnological parameters such as Chl-a or 

TSM concentration. For example, Reinart et al. (2003) classify lakes and coastal 

waters of Estonia and south Finland in five bio-optical classes using optical and 

limnological parameters. Each class has significant differences in Secchi depth 

(Zsd), Chl-a, and TSM concentration, which are well correlated with the trophic 

state of Estonian lakes. Thus, those water classes are named Clear, Moderate, 

Turbid, Very Turbid, and Brown according to their optical and limnological 

characteristics. This approach categorizes the waters and simplifies the 

interpretation, which differs from the use of algorithms for retrieving quantitative 

results. 

Optimizing algorithms involves the classification of OWTs in order to adjust 

specific algorithms for each class. Optically similar classes tend to have 

comparable OACs. As a result, algorithm calibration for each optical class 

becomes more accurate than those developed for a mixture of optically distinct 

water types. For example, Vantrepotte et al. (2012) show that the optical 

classification improved the relationship between TSM concentration and Rrs at 

670 nm. They have obtained three classes and by comparing the mean absolute 

relative difference MARD (%) in each one of them, before and after tuning the 

algorithm reported the following results: Classes 1, 2 improved their MARD from 

57%, 80% to 42%, 47% , respectively, and class 3 had a small degradation from 

38% to 42% highly compensating the overall classification accuracy . Likewise, 

for optimizing Chl-a algorithms, Shi et al. (2013) optically have classified waters 

of Taihu, Chaohu, and Dianchi lakes, and Three Gorges and Three Indiana 

reservoirs. They show that by adjusting a three-band factor algorithm for each 
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class, the overall results improved from R² = 0.81 (Chl-a = 0.81x +6.62) to R² = 

0.95 (Chl-a = 0.95x + 1.01). 

Regarding the use of optical properties for classifying water masses with different 

limnological parameters, Spyrakos et al. (2018) show that OWTs derived from 

different regions have different TSM and Chl-a concentration. Thirteen different 

spectrums of Rrs represented different mean and variance concentration of Chl-

a and TSM. Although some classes have different spectrum shapes but no 

differences in the Chl-a and TSM concentration, those differences are the result 

of other optical parameters not assessed in the study, such as composition and 

cell size of phytoplankton or CDOM concentration. In summary, the Rrs spectrum 

shape enables the retrieval of OWTs with different limnological concentrations of 

optically contrasting waters types around the globe and can be used for 

monitoring inland waters. For this reason, normalized Rrs is suitable for 

establishing OWTs in diverse environments. 

After establishing optical water classes using in situ data, it is necessary to train 

an algorithm for retrieving the same classes from orbital sensors. For example, 

Lobo et al. (2012) generated ten reference spectrum of Rrs to classify Amazon 

water types. First, they have classified sample data using limnological parameters 

retrieving a reference spectral Rrs for each class. Then, they have used the 

spectral angle mapper (SAM) for detecting those classes using Hyperion images. 

Although the detection of optical classes defined by hyperspectral data may 

suggest that hyperspectral orbital sensors are necessary, the multispectral 

sensors can also be used for detecting them. Lobo et al. (2012) have used MERIS 

images for detecting the hyperspectral classes. In fact, using ground truth data, 

MERIS results outperformed Hyperion’s, with accuracies of 67% and 48%, 

respectively. The authors highlighted that low and spectrally variable Hyperion 

SNR Hyperion  had a more significant impact on the classification performance 

than the smaller spectral resolution of MERIS. 

Retrieving optical classes from different water systems is also possible. For 

example, combining data from the eastern English Channel, the southern North 

Sea, and French Guiana, Vantrepotte et al. (2012) have used in situ Rrs and 
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SeaWiFS images for classifying those waters. First, the OWTs are established 

using normalized hyperspectral Rrs by its integer. Second, a novelty detection 

based on Mahalanobis distance and SeaWiFS simulated bands is applied for 

detecting those classes in SeaWiFS images. Likewise, Shi et al. (2013) classify 

Taihu, Chaohu and Dianchi lakes, and Three Gorges and Three Indiana 

reservoirs. They also use hyperspectral in situ Rrs for retrieving optical classes, 

which are then applied to MERIS images. Although both authors detect OWTs in 

different environments, they do not report the accuracy of their classification 

results. For this reason, the accuracy of detecting hyperspectral classes in 

different water systems is not well-known. 

 

2.4 Classification algorithms 

The classification algorithms can be unsupervised (clustering) and supervised. 

Clustering algorithms are used when the classes are not known, and the objective 

is only grouping data into classes with similar characteristics. Supervised 

algorithms are used when the classes are known, and the objective is to classify 

new datasets. Two unsupervised algorithms often used in optical classification of 

waters are the k-means (SPYRAKOS et al., 2018; ZHANG et al., 2015) and the 

hierarchical (CHEN et al., 2004; LUBAC; LOISEL, 2007; SHI et al., 2013b; 

VANTREPOTTE et al., 2012) methods. The supervised algorithms reported in 

the literature are SAM (LOBO et al., 2012), decision trees (HUANG et al., 2014; 

LIU et al., 2013; SHI et al., 2013a; SHI et al., 2013b) and novelty detection using 

Mahalanobis distance (MÉLIN et al., 2011; VANTREPOTTE et al., 2012). This 

section describes the most used algorithms for the optical classification of waters. 

 

2.4.1 Clustering algorithms 

The k-means algorithm uses as input the desired number of clusters (k), the 

tolerance, and the objective function. The algorithm composed of 3 steps: (1) 

random or chosen initial centroids (with the number of clusters) in defining n-

dimension plan; (2) each sample position in this Euclidean plan is associated with 

the nearest centroid using a similarity criterion (e.g., Euclidean distance); (3) the 
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mean of each group is calculated and updated as the new centroid. Then, the 

distance of the previous and new centroids is calculated, if the distance is lower 

than a chosen tolerance, the clustering ends, or if the distance is higher than the 

tolerance, the steps two a three are repeated. In the case that initial centroids are 

random, each time that k-means algorithm is executed, different clusters are 

created. Thus, k-means are executed several times and the best clustering is 

computed by using an objective function, such as the sum squared error (SSE). 

After executing k-means n times, the centroids converge to the lower SSE (TAN 

et al., 2008). 

The hierarchic agglomerative algorithm is also used for clustering optical data. 

This algorithm starts with each sample being one individual group; then, the most 

similar groups are merged according to a distance measurement. This distance 

is obtained from a distance matrix. When two groups are merged, the distance 

matrix is updated, and two groups are merged again. This process continues until 

the desired number of clusters or a threshold of distance is reached. For 

comparing the distance of clusters composed of two or more samples, the 

minimum distance, maximum distance, centroids distance, or the Ward linkage 

method can be used. The Ward method is the most used agglomerative 

clustering approach and uses SSE as the distance measurement. Ward method 

combines all possible groups; then, the outcome combination with minimum 

increase in SSE is selected to be merged. However, the agglomerative methods 

are computationally expensive and sensitive to noisy data. 

 

2.4.2 Supervised algorithms 

The spectral angle mapper (SAM) measures the spectral similarity between a set 

of spectra and a reference spectrum. This algorithm calculates the angle between 

two spectra, treating them as vectors in a space with dimensionality equal to the 

number of bands. The lines connecting each spectrum point and the origin forms 

an angle between them. Notice that the angle between them is the same 

regardless of their length; thus, this comparison is not influenced by the Rrs 

magnitude and the angle is a function of the spectral shape. The computation 
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consists of taking the arccosine of the dot product of the spectrum (KRUSE et al., 

1993). The equation can be written as: 

 

αng =  cos−1  (
∑  tirefi

nb
i=1

(∑  ti
2nb

i=1 )
1

2⁄
 (∑  refi

2nb
i=1 )

1
2⁄

)

)                               (2. 17) 

 

Where αng is the angle between the target spectrum (t) and the reference 

spectrum (ref) calculated for a given number of bands (nb). The closest αng is 

from zero, the highest is the similarity between them. Thus, spectrum references 

and a defined threshold of αng can be used for classifying different spectrums. 

Novelty detection based on Mahalanobis distance assumes that the subsets of 

Rrs of each OWT are described by a multivariate log-normal distribution with a 

mean (μ) and covariance matrix (∑) (BISHOP, 1994). The probability density 

function (P) of a target to a given OWT is computed using the following equation: 

 

P(x) =  
1 

2πd/2 | ∑ |
1/2

 
 exp [−

1

2
∆M

2 ]                                      (2. 18) 

 

where x is the log(Rrs) of a sample; d is the dimension (e.g., number of bands or 

wavelengths) of x; the |∑| is the matrix determinant of ∑; and the ∆M
2  is the 

Mahalanobis distance between a sample and a reference Rrs of the respective 

OWT, which is computed using the equation: 

 

∆M 
2 = (x − μ)T ∑−1 (x − μ)                                                 (2. 19) 

 

where T is the transpose, and ∑-1 is the inverse matrix. Further, the ∆M 
2 has to be 

compared to a theoretical threshold (∆T 
2 ), where ∆M 

2 lower than ∆T
2 , the sample x 

statistically belongs to the respective OWT. The ∆T 
2 may be computed from the 
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Chi-square distribution that represents a given percentage of the data distribution 

for a degree of freedom corresponding to the dimension d (VANTREPOTTE et 

al., 2012). 

A decision tree algorithm splits the data based on Boolean rules, where those 

rules are trained using the input data. All rules follow a logical path, building the 

decision tree classifier (Figure 2.1). When a set of decision trees are built 

throughout bootstrap subsamples, the model is called random forest (RF). 

Generally, RF models tend to be more robust since they are less sensitive to 

overfitting when no meaningful rules are generated in the decision tree, which 

leads to misclassifications in the independent data (TAN et al., 2008). 

 

Figure 2.1 – Decision tree example. 

 

Source: Cairo et al. (2020). 

 

Support Vector Machine (SVM)  Classifier (SVC) is a classification algorithm 

widely used in machine learning problems, and its application in remote sensing 

has been widely used (MOUNTRAKIS et al., 2011). In its simplest form, the SVC 

is a binary classifier based on a margin hyperplane that maximizes the margin 
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limit of decision between classes in a high dimension space (e.g., number of 

bands), minimizing the misclassifications (Figure 2.2). The margin hyperplane is 

computed using support vectors (closest samples between two classes) (TAN et 

al., 2008). Although this machine learning algorithm has not been used for 

classifying OWTs, its approach using hyperplanes with a maximized limit could 

be favorable for classifying OWTs. 

 

 

Figure 2.2 - Linear support vector machine example. 

 
Source: Mountrakis et al. (2011). 
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3  INCONSISTENCIES BETWEEN KUTSER’S AND MOBLEY’S GLINT 

REMOVAL METHODS AND HOW THEY AFFECT ALGORITHM 

CALIBRATION AND SPECTRAL CLUSTERING: ASSESSMENT FOR INLAND 

WATERS1 

3.1 Introduction 

Monitoring the quality of inland waters using remote sensing relies on in situ 

measurements of Rrs and OACs, such as Chl-a, TSM, and CDOM concentration. 

The measurements of in situ Rrs are used for calibrating/validating algorithms and 

for clustering waters types optically, which is then applied to orbital sensors 

images for the effective monitoring of broad areas and time series (LOBO et al., 

2012, 2015; MACIEL et al., 2019; MILLER; MCKEE, 2004; PETUS et al., 2010; 

SHI et al., 2013b; SPYRAKOS et al., 2018; VANTREPOTTE et al., 2012). The 

above-water Rrs measurements are affected by sun and sky glint onto the water’s 

surface, which increases the Rrs intensity (MOBLEY, 1999). Consequently, glint 

can cause a weak relationship between the concentration of OACs and Rrs, which 

may result in weak calibrated algorithms. For this reason, removing glint is a 

critical part of computing Rrs. 

Mobley (1999) and Kutser et al. (2013) are well-established glint removal 

methods (called here as deglint). Mobley’s method measures the downwelling 

sky radiance (Ls) and estimates how much of Ls is reflected as glint to the sensor 

direction using the factor ρ. This factor was computed using a radiative transfer 

model and relies on wind speed and sensor/sun nadir and azimuth angles. 

Despite the correction, Mobley (1999) mentions that some residual sun glint may 

still persist after deglinting. Kutser’s method assumes that Rrs of the water body 

is insignificant in the ranges 350 - 380 nm and 890 - 900 nm, being any signal in 

those spectral ranges assumed as glint; then, a power function is computed using 

these spectral ranges which are then subtracted from the Rrs (380 - 890 nm). 

Kutser’s method may lead to overcorrection when the assumption of insignificant 

 
 

1 This chapter will be submited to a indexed scientific journal. 
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Rrs (350 - 380 nm; 890 - 900 nm) is not valid, such as in water bodies with high 

TSM or Chl-a concentrations. Therefore, the Rrs intensity and shape computed 

using each of those methods may not be comparable since Mobley’s method 

tends to undercorrect Rrs, while Kutser’s method tends to overcorrect Rrs. 

A few studies have compared the performance of methods for computing in situ 

Rrs using different approaches. Bernardo et al. (2018) evaluated four deglint 

methods by comparing the estimated Rrs to simulated Rrs. Zibordi et al. (2012) 

assessed five systems/methods for computing in situ Rrs by comparing them to a 

single reference measurement. Garaba and Zielinski (2013) compared 

differences in five deglint methods in spectral sign (negative/positive) and 

intensity values. Although these studies have provided valuable results on how 

different methods produce different in situ Rrs, there has not been any attempt to 

assess the effect of merging Rrs computed by different measuring methods on 

calibrating/validating algorithms and on spectral clustering. Sharing Rrs data from 

different sources has increased in the remote sensing of inland waters, and 

merging Rrs from different measuring methods for calibrating/validating 

algorithms and optically clustering waters is likely to occur. 

This chapter investigates the inconsistencies between the Rrs() derived from 

Kutser’s and Mobley’s deglint methods, and how those inconsistencies affect the 

calibration of TSM/Chl-a algorithms and the spectral clustering. Section 3.3.1 

gives an overview of limnological and radiometric data. Section 3.3.2 analyses 

the inconsistencies between Kutser’s and Mobley’s methods. Section 3.3.3 

analyses two case studies for TSM/Chl-a algorithms calibration using merged 

data. Issues regarding optical clustering are discussed in section 3.3.4. 

 

3.2 Methods 

3.2.1 Study area and sampling stations 

Radiometric, Chl-a, TSM, and dissolved organic carbon (DOC) concentration 

measurements were carried out in 394 stations in diverse reservoirs, rivers, and 

lakes in Brazil (Figure 3.1). The reservoirs are Funil (n = 9), Ibitinga (n = 32), 
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Itaipu (n = 21), Nova Avanhandava (n = 19), and Três Marias (n = 22). The lakes 

are Bua (n = 15), Pantaleão (n = 12), Mamirauá (n = 57), Pirarara (n = 18), Paru 

(n = 3), Curuai (n = 120), Pacoval (n = 2), Aramanaí (n = 8), Monte Alegre (n = 

23); and the rivers are Japurá (n = 5) and Tapajós (n = 28). 

 

Figure 3.1. Study area and sampling stations. 

 

The localization of (1) Nova Avanhandava reservoir; (2) Três Marias reservoir; (3) 
Ibitinga reservoir; (4) Bua Bua lake, Pantaleão lake, Mamirauá lake, Pirarara lake, and 
Japurá river; (5) Funil reservoir; (6) Itaipu reservoir; (7) Paru lake, Curuai lake, Tapajós 
river, Pacoval lake, Aramanaí lake, and Monte Alegre lake. 

Source: The author. 

 

All data except for Nova Avanhandava were accessed from the LabISA 

(www.dpi.inpe.br/labisa/) database. All measurements of Chl-a, TSM, and DOC 

concentration from LabISA followed the Nush (1980), Wetzel and Likens (1991), 

and APHA (1985) methods, respectively. Survey campaign details can be found 

in Ferreira (2014) for Três Marias; Jorge (2018) for Pantaleão, Bua Bua, 

Mamirauá, Pirarara, and Japurá; Rotta et al. (2016) for Nova Avanhandava; de 

Carvalho et al. (2017) and D. Maciel (2019) for Paru, Curuai, Tapajós, Pacoval, 
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Aramanaí, and Monte Alegre; Barbosa et al. (2016) for Funil reservoir. For Itaipu 

reservoir, there is no published study yet. 

 

3.2.2 Radiometric measurements and deglint 

The instrument employed was three intercalibrated TriOS-RAMSES 

spectroradiometers operating from 320 to 950 nm (3 nm of spectral resolution). 

Concurrently, the irradiance incident onto the water surface (Es (λ)) was 

measured above the water by a cosine sensor, the total upwelling radiance 

leaving the water (Lt (λ)) was measured approximately 40º nadir angle (θ) and 

135º azimuthal angle (ϕ) from the sun, and the downwelling sky radiance (Ls (λ)) 

was measured an approximately 130º θ and 135º ϕ from the sun. 

Numerous n replicate radiometric measurements were taken for each sampling 

station. First, all replicates were resampled to 1 nm of spectral resolution, 

because Lt, Ls, and Es slightly differ in the wavelengths measured. Further, Rrs 

equation and deglint were done for each concomitant replicate and later 

represented by the median Rrs (λ) for each station. 

Two different datasets composed of each deglint method were produced using 

all samples. The methods used were Mobley (1999) and Kutser et al. (2013). The 

Eq. (1) computed the Rrs using Mobley method: 

 

 Rrs(Mobley)
(λ, θ, Φ) =

Lt(λ, θ, Φ) − (ρLs(λ, θ, Φ))

Es(λ)
                        (3. 1) 

 

Where Rrs (Mobley) is the Rrs computed using the Mobley’s method, and p is the 

proportionality factor that relates how much of Ls was reflected towards the 

sensor direction. For all samples, the p = 0.028 was used because the value is 

adequate for wind speed lower than 5 m s-1 at the 40º θ and 135º ϕ (MOBLEY, 

1999), which is the conditions of all sampling stations used here 

Beforehand calculating the Rrs using Kutser’s method, the Rrs with no glint 

correction was calculated by: 
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Rrs(Glint)
(λ, θ, Φ) =

Lt(λ, θ, Φ)

Es(λ)
                                              (3. 2) 

 

Where Rrs (Glint) is the Rrs without glint correction. 

Furthermore, the Rrs using Kutser’s method was calculated using the equation: 

 

Rrs(Kutser)
(λ, θ, Φ) = Rrs(Glint)

(λ, θ, Φ) − Rrs(pow function)
(λ, θ, Φ)           (3. 3) 

 

where Rrs (Kutser) is the Rrs computed using the Kutser’s method, and Rrs (pow function) 

is the Rrs computed by an adjusted power function using all wavelengths between 

350 – 380 nm and 890 – 900nm. The software program used to compute the Rrs 

(pow function) was the curve fit module from the SciPy ecosystem v1.3 

(www.scipy.org). 

Last, for evaluating the changes in the Rrs shape, each replicate for all methods 

was normalized by its integer from 400 to 800 nm by: 

 

Rrs(shape)
(λ, θ, Φ) =

Rrs(λ, θ, Φ)

∫ Rrs(λ, θ, Φ)dλ
800

400

                                  (3. 4) 

 

Where Rrs (shape) is the normalized Rrs by its integer (finite approximation per 1 nm). 

Further, the Rrs (shape) (λ) median for each station was computed. 

 

3.2.3 Limnological classification 

The dataset was split into four limnological classes using different ranges of TSM 

and Chl-a. The purpose of splitting the data into limnological classes is related to 

the assumption of insignificant Rrs in the ultraviolet and near infra-red (NIR) 

assumed by Kutser’s method, which may not hold with increasing TSM or Chl-a. 
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Consequently, the dissimilarities between Kutser’s and Mobley’s methods may 

increase as TSM and Chl-a increases. 

The following thresholds were used in the classification: Class A with TSM and 

Chl-a are lower than 10 g m-³ / mg m-³, respectively; Class B with TSM or Chl-a 

between 10 and 20 g m-³ / mg m-³, and the other one lower than 20 g m-³ / mg m-

³; Class C with TSM or Chl-a between 20 and 40 g m-³ / mg m-³, and the other 

one lower than 40 g m-³ / mg m-³; Class D with TSM or Chl-a between 40 and 100 

g m-³ / mg m-³, and the other one lower than 100 g m-³ / mg m-³. For example, a 

sampling station with TSM = 5 g m-³  and Chl-a = 5 mg m-³ is class A, a sampling 

station with TSM = 5 g m-³  and Chl-a = 15 mg m-³ is class B, a sampling station 

with TSM =25 g m-³  and Chl-a = 5 mg m-³ is class C, and a sampling station of 

TSM = 45 g m-³  and Chl-a = 15 mg m-³ is class D. Several TSM and Chl-a 

thresholds were tested, and we chose these particular thresholds since TSM and 

Chl-a showed significant differences (Mann Whitney U test, α = 0.01; (MANN, 

H.B., WHITNEY, 1947)) between all classes with a representative number of 

samples for each one. 

 

3.2.4 Estimation of Kutser and Mobley inconsistencies 

For comparing Kutser and Mobley Rrs, four statistical analyses were employed 

for each wavelength from 400 nm to 800 nm, the bias (sr-1), normalized bias (%), 

Pearson correlation (R), and Wilcoxon signed-rank test (WILCOXON, 1945). The 

bias (sr-1) was computed using the equation: 

 

bias(sr−1)(λ) = Rrs(Kutser)(λ) − Rrs(Mobley)(λ)                        (3. 5) 

 

And normalized bias (%) using the following equation: 

 

bias(%)(λ) =
Rrs(Kutser)(λ) − Rrs(Mobley)(λ)

Rrs(Mobley)(λ)
× 100                 (3. 6) 
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The bias (sr-1) and normalized bias (%) denotes how much of Rrs (Kutser) 

underestimates or overestimates Rrs (Mobley) in steradian and percentage, 

respectively. 

The Wilcoxon test was performed between the associated samples of Kutser’s 

and Mobley’s methods, for each wavelength using their replicates. The number 

of replicates varied for each sample with a minimum of 20. Wilcoxon test 

evaluated if the median of the spectra for each wavelength corrected by both 

Kutser’s and Mobley’s methods showed significant differences (α = 0.01). The 

selection of the Wilcoxon test instead of Student’s t-test relates to the fact that 

most samples showed no normal distribution and outliers. The software program 

used to compute the Wilcoxon signed-rank test was the Wilcoxon module from 

the SciPy ecosystem v1.3 (www.scipy.org). 

For each limnological class, the Pearson correlation between the Kutser and 

Mobley concomitant samples was computed. 

 

3.2.5 Algorithms calibration 

The calibration performance of TSM and Chl-a algorithms were assessed for 

three datasets: Kutser deglinted spectra, Mobley deglinted spectra, and Merged 

deglinted spectra. For this purpose, Curuai and Ibitinga were utilized as case 

studies for TSM and Chl-a algorithms, respectively. At Curuai lake, D. Maciel 

(MACIEL et al., 2019) calibrated TSM algorithms and concluded that Band 4 (655 

nm; Rrs(B4oli)) of Landsat-8 OLI and Bands 6 (740 nm; Rrs(B6msi)) and 7 (783 nm; 

Rrs(B7msi)) of Sentinel-2 MSI produced satisfactory results (R² = 0.91; MAPE = 

from 30 to 32 %). For Ibitinga reservoir, Cairo et al. (CAIRO et al., 2019b) 

calibrated Chl-a algorithms and reported that the normalized chlorophyll index 

(NDCI) (MISHRA; MISHRA, 2012), two bands Ratio (2B),  and 3 bands ratio (3B) 

(GITELSON et al., 2003) had satisfactory performance (R² = from 0.78 to 0.98; 

MAPE = from 22 to 28 %). The NDCI, 2B and 3B ratios were computed using 

simulated Sentinel-2 MSI bands 3 (560 nm; Rrs(B3msi)),  4 (665 nm; Rrs(B4msi)), 5 

(705 nm; Rrs(B5msi)) and Rrs(B6msi). Therefore, those bands and indexes were 
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used to evaluate the effect of merging spectra submitted to both Mobley’s and 

Kutser’s deglint method in algorithm calibration. 

First, the Landsat-8 OLI and Sentinel-2 MSI bands were simulated using the 

equation: 

 

Rrs(Bn) =
∫ Rrs(λ)RFBn

(λ)
ΔBn

dλ

ΔBn
                                         (3. 7) 

 

Where Bn is a specific band according to sensor design, Rrs(Bnsensor) is the Rrs 

for each band, ΔBn is the bandwidth, and RFBn (λ) is the response function for 

each sensor band. The response function for each band was accessed at the 

Goddard Space Flight Center (https://landsat.gsfc.nasa.gov) and at the European 

Space Agency (https://earth.esa.int) websites. The simulated bands were 

Rrs(B4oli), Rrs(B3msi), Rrs(B4msi), Rrs(B5msi), Rrs(B6msi), and Rrs(B7msi) using both 

Rrs (Kutser) and Rrs (Mobley). Further, NDCI was calculated by the equation: 

 

NDCI =
Rrs(B5msi) − Rrs(B4msi)

Rrs(B5msi) + Rrs(B4msi) 
                                                      (3. 8) 

 

The 2B was calculated by the equation: 

 

2B =
Rrs(B5msi)

Rrs(B3msi)
                                                               (3. 9) 

 

And the 3B was calculated by the equation: 

 

3B = (
1

Rrs(B4msi)
−

1

Rrs(B5msi)
) Rrs(B6msi)                                   (3. 10) 
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The bands and indexes were then used for calibrating TSM and Chl-a algorithms, 

separately for Mobley, Kutser, and the Merged dataset of half of each method. 

The calibration procedures for the Mobley, Kutser, and Merged datasets were 

done 1000 times. At each interaction, the Merged dataset was randomly mixed, 

and all samples were split into train and test, containing 70% and 30% of 

samples, respectively. The same training and test samples were utilized for 

Mobley, Kutser, and Merged datasets at each interaction. 

The calibration procedures were empirical using linear and non-linear least 

squared methods to fit a linear, power, and polynomial (2º order) functions. The 

power function was not computed for Chl-a because NDCI showed negative 

values, which is unfeasible for the algorithm adjustment. The software program 

used to adjust the empirical models was the line regress and curve fit modules 

from the SciPy ecosystem v1.3 (www.scipy.org). 

The calibrated algorithms were evaluated in terms of coefficient of determination 

(R²), root means squared error (RMSE), and the mean absolute percentage error 

(MAPE). All statistical measurements were taken in the test dataset. The RMSE 

was calculated by: 

 

RMSE = √
1

n
∑ (Yi − Ji)2

n

i=1
                                                   (3. 11) 

 

And the MAPE by the equation: 

 

MAPE =
100

n
∑ |

Yi − Ji

Yi
|

n

i=1

                                             (3. 12) 

 

Where n is the number of predictions, Y is the observed data, and J is the 

predicted data by the algorithm. 
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3.2.6 Spectral clustering 

In order to understand the effect of merging Kutser’s and Mobley’s methods in 

the spectral clustering, the k-means algorithm (MACQUEEN, 1967) was applied, 

using the Rrs (shape) from 400 to 800 nm as input. The purpose of using all 

wavelengths is to assess the divergence between both methods in the Euclidean 

space with equal weight to all wavelengths. Consequently, any dimensionality 

reduction, such as principal component analysis and functional data analysis, 

was discarded. Although being aware that the use of all wavelengths may not 

hold the assumption of independence among variables, but as dimensionality 

reduction is dataset dependent, it would prevent trough comparisons between 

Kutser and Mobley datasets. The software program used to compute the k-means 

algorithm was the KMeans module from the Scikit-learn v0.21 (www.scikit-

learn.org). 

The k-means algorithm may be outlined in two steps: (1) compute the centroids 

for each cluster, and (2) label each sample to the nearest centroid. Here, the 

Mobley dataset was used for defining the clusters' centroids. Then, the Mobley 

and Kutser samples were labeled to the nearest clusters’ centroid using 

Euclidean distance. Considering the Mobley labeled dataset as True values, a 

confusion matrix can be generated between both methods. This method 

represents a viable alternative to assess the influence of changing the deglint 

method in the spectral clustering process. 

Eight clusters were chosen using the gap statistic (TIBSHIRANI et al., 2001) after 

running several k-means in the Mobley dataset. The k-means algorithm was 

computed using random seeds in 1000 interactions, and the balanced accuracy 

for each confusion matrix was computed. Furthermore, one interaction was 

chosen to demonstrate how the optical clusters differed when changing from 

Mobley to Kutser Rrs (shape). 
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3.3 Results and discussion 

3.3.1 The limnological and radiometric characteristics of limnological classes 

The mean Chl-a and TSM between limnological classes showed significant 

differences, while for DOC, there were no significant differences among classes 

(Table 3.1). The TSM and Chl-a mean and standard deviation increased from 

classes A to D, and consequently, in the classes with higher concentration, 

Kutser’s method should overcorrect Rrs. Hence, the four limnological classes are 

distinct groups, and they are suitable for comparing inconsistencies between 

Kutser and Mobley inconsistencies throughout the different ranges of TSM and 

Chl-a. 

 

Table 3.1 - The mean and standard deviation (SD) of  Chl-a, TSM, and DOC 
concentrations for classes A, B, C, and D. 

Class n 

Chl-a (mg m-3)  TSM (g m-3)  DOC (g m-3) 

Mean SD  Mean SD  Mean SD 

A 147 4.7 2.9  4.1 2.4  3.5 1.8 

B 112 10.7 5.2  10.4 5.4  5.3 2.3 

C 89 18.6 11.4  19.9 10.3  5.7 3.8 

D 46 35.2 24.7  39.9 27.9  4.6 2.3 

Source: The author. 

 

The four limnological classes showed distinct Rrs intensity and spectral shape 

(Figure 3.2). The means of Rrs (Mobley) and Rrs (Kutser) increased from class A to D 

as a result of higher TSM, mainly in the NIR, where the mean Rrs increased from 

0 to 0.02. On the other hand, the Rrs (Kutser) nearby to 400 nm did not show 

significant changes from class A to D. Furthermore, Chl-a features diagnostic 

(absorption at 665 nm and the red edge next to 700 nm) appeared in classes C 

and D, caused by the higher Chl-a concentration in those classes. As expected, 

Kutser’s method computed lower Rrs than that of Mobley’s in all limnological 

classes, since Kutser’s method may overcorrect (KUTSER et al., 2013) and 

Mobley may overestimate Rrs (MOBLEY, 1999). 
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Figure 3.2 - The mean (solid line) and samples (shaded lines) of Rrs (Mobley) (red color) and 
Rrs (Kutser) (blue color) for the limnological classes A, B, C, and D. 

 

Source: The author. 

 

3.3.2 Inconsistencies between Kutser’s and Mobley’s deglint methods 

Kutser’s and Mobley’s methods significantly differed in the proportion of Rrs 

removed as glint signal (Figure 3.2). Kutser’s method reduced Rrs (Glint) from 15 to 

100%, even higher than 100% causing negative Rrs (n = 125). On the other hand, 

Mobley’s method reduced between 0 and 80% of Rrs. For all limnological classes, 

the mean of the glint signal removed by Kutser’s method was higher than that of 

Mobley’s throughout the spectrum, particularly in the blue and NIR regions. The 

higher significant difference in the blue region was associated with the higher 

slope of the Rrs (pow function) when compared to that of the ρLs. Overall, results show 

that even in lower concentrations (Class A) where overcorrection of Kutser’s 
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method is not expected, the mean of Rrs removed was higher than that of 

Mobley’s. 

 

Figure 3.3 - The mean (dashed line) and standard deviation (shaded area) of glint 
removed by Mobley’s (red color) and Kutser’s (blue color) methods for 
classes A, B, C, and D. 

 

Source: The author. 

 

In all samples analyzed, the Rrs (Kutser) and Rrs (Mobley) showed significant 

inconsistencies (Figure 3.4). The mean bias between both methods increased 

from class A to D, but the mean normalized bias was steady in all limnological 

classes except in the range between 700 nm and 800 nm. Furthermore, Kutser’s 

and Mobley’s methods showed significant differences throughout the spectrum in 

all samples of classes C and D, and in most samples of classes A and B. 

Nevertheless, there was a significant positive correlation between both methods 

in all limnological classes. The steady correlations and normalized bias between 

500 and 710 nm throughout the classes suggest that the inconsistencies between 

both methods do not change in different TSM and Chl-a concentrations 

investigated here. On the other hand, for measurements above 710 nm, the 

inconsistencies between both methods reduce as the TSM/Chl-a concentration 

increases. The most remarkable result emerging from the data is that Kutser’s 

method always underestimates Mobley’s in the entire range of TSM and Chl-a, 
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with normalized bias varying from -20% to -100%. This result is much higher with 

respect to those reported in comparisons of other methods of measuring in situ 

Rrs, which the highest absolute relative percentage difference of 21.2 % between 

the TACCS-S (Tethered Attenuation Coefficient Chain Sensor) and WiSPER 

(Wire-Stabilized Profiling Environmental Radiometer) (ZIBORDI et al., 2012). 

 

Figure 3.4 - The divergences between Kutser’s and Mobley’s methods for classes A, B, 
C, and D. 

 

The a) is the mean (solid lines) and SD (shaded area) bias (sr-1); b) is the normalized 
mean and SD bias (%); c) is the Pearson correlation; d) is the percentage of samples 
for each class that showed significant differences between Rrs (Kutser) and Rrs (Mobley). 

Source: The author. 

 

3.3.3 The effect of merging Kutser’s and Mobley’s methods in the algorithms 

calibration 

The significance of merging Rrs (Kutser) and Rrs (Mobley) for calibration of TSM and 

Chl-a algorithms was evaluated using data from the Curuai Lake and Ibitinga 

Reservoir, respectively. The significance of differences between the metrics (R², 

RMSE, and MAPE) describing the changes was statistically assessed with the 

Wilcoxon signed-rank test using the results of 1000 interactions. Therefore, all 

comparisons made between datasets represent changes in the R², RMSE, and 

MAPE medians. 
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The simulated bands of Sentinel-2 MSI (Rrs(B6msi), and Rrs(B7msi)) and Landsat-

8 OLI Rrs(B4oli), Rrs (Kutser) and Rrs (Mobley) showed satisfactory performance for 

estimating TSM in the Curuai Lake (Table 3.2). The application of Mobley’s 

method allowed the retrieval of slightly more accurate estimates than that of 

Kutser’s using Rrs(B4oli), while Kutser’s method surpasses Mobley’s using 

Rrs(B6msi)  and Rrs(B7msi). Mobley Rrs(B4oli) showed statistically significant higher 

R² and lower RMSE than that of Kutser’s method, although MAPE exhibited no 

differences. On the other hand, Kutser Rrs(B6msi) and Rrs(B7msi) presented 

statistically significant better performance than Mobley’s method regarding R², 

RMSE, and MAPE. This pattern occurred in the linear, power, and polynomial 

adjustments, suggesting that neither of the methods affects the relationship 

between Rrs and TSM. Moreover, the linear relationship between all the bands 

and TSM (Figure 3.5: 1, 2, and 3 subplots) explains the small difference in the 

linear, power, and polynomial adjustments. 

 

Table 3.2 - The mean statistical results of calibrated algorithms for TSM in the Curuai 
Lake, after 1000 interactions.  

 Linear  Power  Polynomial 

Band Dataset 

R² RMSE 

(g m-³) 

MAPE 

(%) 

 R² RMSE 

(g m-³) 

MAPE 

(%) 

 R² RMSE 

(g m-³) 

MAPE 

(%) 

Rrs(B4oli) Mobley 0.66 10.3 60  0.7 10.4 53  0.68 11.3 54 

Kutser 0.61 11.3 60  0.65 12 52  0.63 13.1 53 

Merged 0.56 11.9 61  0.58 11.9 57  0.58 12.5 58 

             

Rrs(B6msi) Mobley 0.76 8.5 54  0.78 8.1 51  0.78 8.2 53 

Kutser 0.85 6.8 40  0.87 6.3 37  0.87 6.4 38 

Merged 0.55 11.9 62  0.55 12.1 62  0.55 12.2 62 

             

Rrs(B7msi) Mobley 0.77 8.3 53  0.78 8 51  0.78 8.1 52 

Kutser 0.85 6.7 40  0.87 6.3 37  0.87 6.4 38 

Merged 0.58 11.5 61  0.58 11.7 60  0.58 11.9 60 

The columns are the linear, power, and polynomial adjustments, and their respective R², 
RMSE, and MAPE. The rows are the simulated bands and the datasets used for 
simulating the bands. 

Source: The author. 
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The performance of all bands and adjustments for estimating TSM in the Curuai 

Lake showed weaker performance with the Merged dataset in relation to that 

when either Kutser or Mobley datasets were used. The changes of R², RMSE, 

and MAPE between the Merged and Kutser or Mobley were statistically different 

except the RMSE of OB4 power and polynomial adjustments. The decrease in 

performance varied from R² = 0.05, RMSE = 0.06 gm³, and MAPE = 1% (Rrs(B4oli) 

linear model) to R² = 0.23, RMSE = 4 gm³, and MAPE = 11% (Rrs(B6msi) power 

model). The Rrs(B4oli) algorithms exhibited the lowest decreases, while Rrs(B6msi) 

and Rrs(B7msi) algorithms presented the highest drop in performance. As reported 

earlier (section 3.3.2), the normalized bias means between Kutser’s and Mobley’s 

methods at 655 nm where Rrs(B4oli) is centered has been -25%, while the 

normalized bias means of 740 nm and 783 nm where Rrs(B6msi) and Rrs(B7msi) 

are centered, has varied from -50% to -90%. As a result, the higher difference of 

Rrs(B6msi) and Rrs(B7msi) produced a more dispersed distribution than that of 

Rrs(B4oli) regarding their relationship with TSM (Figure 3.5: 1, 2, and 3 subplots), 

reducing their algorithm performances. 

Chl-a calibrated algorithms using NDCI, 2B, and 3B indexes in the Ibitinga 

Reservoir exhibited acceptable performance using Rrs (Kutser) and Rrs (Mobley) in most 

cases (Table 3.3). For the NDCI and 3B, both deglint methods exhibited adequate 

performance, but Mobley’s method showed statistically significant better results 

than those of Kutser’s linear and polynomial adjustments. Surprisingly, the 

Mobley 2B showed poor performance, while Kutser 2B produced consistent 

results.  The Mobley 2B and Chl-a relationship showed a dispersed distribution 

(Figure 3.5, subplot 5), while Kutser 2B and Chl-a relationship were linear. The 

reason for this rather unexpected result is not apparent, but It seems that Mobley 

uncertainties in the Rrs(B3msi) (560 nm) could have a more considerable influence 

than Kutser uncertainties for the 2B model. Presumably, the Rrs(B6msi) (740 nm) 

should not be the reason for Mobley 2B's poor performance, since Rrs(B6msi) was 

also employed in the 3B and exhibited acceptable results. 
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Figure 3.5 - Scatter plots between simulated bands/indexes with TSM and Chl-a 

 

Subplots from 1 to 3 are for the Curuai Lake. Subplots from 4 to 6 are for Ibitinga 
Reservoir. The red dots are using the Mobley dataset, and the blue dots are the Kutser 
dataset. 

Source: The author. 

 

Although the significant reduction of algorithms performance using the Merged 

dataset in the Curuai Lake, the Merged dataset of Ibitinga showed a minor 

reduction in the performance of NDCI and 3B algorithms. The linear and 

polynomial adjustments of the Merged dataset using NDCI exhibited higher 
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MAPE than using individual deglint methods, but R² and RMSE did not show 

significant changes compared to Kutser’s. Considering 3B, the Merged dataset 

did not present significant changes except the MAPE of the Polynomial model. 

The minimum reduction in model performance when using NDCI and 3B was a 

consequence of a less dispersed distribution regarding their relationship with Chl-

a for Mobley and Kutser datasets (Figure 3.5; subplots 4 and 6). The less 

dispersed relationship occurred because the equations of NDCI and 3B take into 

account the relative proportion between bands, which diminished the effect of the 

bias between Kutser’s and Mobley’s methods. Therefore, calibrating algorithms 

using NDCI and 2B are less sensitive by the bias between Kutser’s and Mobley’s 

methods than using individual bands. 

 

Table 3.3 - The mean statistical results of calibrated algorithms for Chl-a in the Ibitinga 
reservoir, after 1000 interactions. 

 Linear  Polynomial 

Index Dataset R² RMSE (g m³) MAPE (%)  R² RMSE (g m³) MAPE (%) 

NDCI Mobley 0.66 9.5 42  0.65 9.8 47 

Kutser 0.54 11.4 51  0.52 12.2 54 

Merged 0.55 11.3 55  0.52 12.4 60 

         

2B Mobley 0.08 17 133  0.08 17 137 

Kutser 0.6 10.7 57  0.58 11.3 58 

Merged 0.16 16.5 126  0.21 16.1 112 

         

3B Mobley 0.65 10 44  0.61 12.4 52 

Kutser 0.59 15.4 80  0.54 20.2 65 

Merged 0.6 12.1 66  0.55 18.7 78 

The columns are the linear and polynomial adjustments, and their respective R², RMSE, 
and MAPE. The rows are the indexes and the datasets used for each index. 

Source: The author. 

 

3.3.4 The effect of merging Kutser’s and Mobley’s methods in the spectral 

clustering 

The Kutser Rrs (shape) was strongly modified by negative Rrs values, and for this 

reason, 125 samples were removed when labeling Kutser and Mobley Rrs (shape) 
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to the cluster centroids. Thus, in all 1000 interactions, the confusion matrixes and 

the computed balanced accuracy were not influenced by unusual Rrs shapes. 

After running a thousand k-means interactions with random seeds, swapping 

from Mobley to Kutser dataset in the labeling step modified a large number of 

samples. The balanced accuracy mean and standard deviation were 0.55 and 

0.2, respectively, which means that changing Rrs (shape) from Mobley to Kutser 

assigned almost half (cluster weighted) samples to different clusters. 

To illustrate the change of spectral shape from Mobley to Kutser dataset, a 

random clustering interaction was chosen. For the eight clusters mean, the Kutser 

Rrs (shape) was lower than Mobley Rrs (shape) from 400 to 500 nm and from 700 to 

800 nm (Figure 3.6). On the other hand, Mobley Rrs (shape) Mobley was lower than 

Kutser from 500 nm to 700 nm. This difference was a result of the higher removal 

of Rrs (Glint) from Kutser than Mobley in the blue and NIR region (see section 3.3.2). 

Those differences were accentuated in the Rrs (shape) equation, which reduces the 

influence of Rrs intensity but increases the influence of relative proportion among 

wavelengths. 

Changing from Mobley to Kutser in the k-means labeling step packed most 

samples to a few clusters (Table 3.4). The most remarkable result was that cluster 

1 samples computed by Kutser were nearer to cluster 8 centroid than cluster 1 

centroid, which lead to Kutser not labeling any sample as cluster 1. This change 

occurred because Kutser was not able to compute flat spectral shapes, as Mobley 

did, caused by the significant removal of Rrs (Glint) in the blue and NIR regions. For 

the remaining clusters, most samples of cluster 7 changed to cluster 2, and 

clusters 4 and 6 changed to cluster 5. In those cases, the samples were packed 

between similar clusters, which presumably should be more sensitive to changes 

in the Rrs (shape) when changing deglint methods. Therefore, merging both methods 

led to two outcomes: (1) Kutser produced a different spectral shape in cases of 

flat spectral shape computed using Mobley, and (2) Kutser led samples of similar 

clusters to pack into a single one. 
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Figure 3.6 - The mean (solid lines) and standard deviation (shaded area) of Rrs (shape) for 
a clustering interaction using the Mobley Rrs (shape) in the labeling procedure. 

 

The red is the Mobley Rrs (shape), and the blue is the Kutser Rrs (shape) for the same samples. 

Source: The author. 

 

Table 3.4 - Confusion matrix between Kutser and Mobley labeled data for the same 
clustering interaction. 

 

 Kutser dataset 

M
o
b

le
y
 d

a
ta

s
e
t 

Clusters 1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 4 

2 0 18 0 0 0 0 0 0 

3 0 0 2 0 0 0 0 0 

4 0 0 0 18 29 0 0 0 

5 0 0 0 0 92 0 0 0 

6 0 0 0 2 46 0 0 1 

7 0 28 1 0 0 0 5 0 

8 0 0 1 3 0 0 0 28 

Source: The author. 
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The results show that when Kutser’s and Mobley’s Rrs (shape) are merged in the 

spectral clustering, the samples are labeled to different clusters depending on the 

method, which can cause unexpected results. Such unexpected results may be 

erroneous representative samples of optical clusters and retrieve poor results for 

algorithms based in those clusters. Assuming that the spectral shape is a result 

of the OACs, and therefore samples among one cluster have more similar OACs 

than other clusters, label an Rrs (shape) sample using Kutser to the cluster centroid 

computed by Mobley could produce a cluster with heterogeneous OACs. 

Furthermore, calibrate algorithms based in a non-homogeneous cluster may not 

show better results than the generic approach. 

 

3.4 Conclusion 

We have demonstrated that Rrs estimated using Kutser’s and Mobley’s methods 

are significantly different from 400 to 800 nm in a wide range of TSM/Chl-a 

conditions, where Kutser’s method underestimated Rrs computed using Mobley’s 

method in all cases, mainly in the blue and NIR region. We have also shown that 

both methods are useful for calibrating TSM/Chl-a algorithms, but their particular 

performance varies with bands and assessment indexes. The strong point of our 

study lies in demonstrating the effect of merging Rrs computed using Kutser’s and 

Mobley’s methods in calibrating TSM/Chl-a algorithms and spectral clustering. 

The use of datasets subject to both deglint methods reduced the performance of 

both, TSM and Chl-a algorithms, and labeled samples to different clusters. 

Our study could help researchers that are handling large databases with different 

deglint methods for calibrating TSM/Chl-a algorithms and spectral clustering. 

However, our results are limited between Kutser’s and Mobley’s methods. Since 

studies that focus on validation between in situ methods for computing Rrs are 

quite rare, further studies need to be carried out to establish whether different 

methods are comparable in terms of algorithm calibration and spectral clustering. 
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4 BRAZILIAN OPTICAL WATER TYPES2 

4.1 Introduction 

The Brazilian waters are composed of distinct aquatic environments due to its 

continental territory and diversified environments, which results in waters with 

high variability of TSM, Chl-a, and CDOM concentrations. In the Amazon basin, 

rivers and floodplain lakes exhibit black waters that are rich in dissolved organic 

carbon, white waters with high TSM concentration, and clear waters with low 

TSM, Chl-a, and CDOM concentrations (SIOLI, 1968). Some tropical reservoirs 

present a high level of eutrophication due to severe algae blooms and high Chl-

a concentration (AUGUSTO-SILVA et al., 2014; BARBOSA et al., 2016; CAIRO 

et al., 2016; LONDE, 2008). On the other hand, other reservoirs are oligotrophic 

with high water transparency and low TSM, Chl-a, and CDOM concentrations 

(BARBOSA et al., 2014; CURTARELLI et al., 2019; FERREIRA, 2014; ROTTA 

et al., 2019). Coastal waters area is susceptible to harmful algal bloom of 

(ALVES; MAFRA, 2018), which may reach the inner shelf of estuaries 

(NOERNBERG et al., 2017). This comprehensive range of environments and 

limnological properties responds to the occurrence of numerous OWTs with 

distinct Rrs  shapes and magnitudes. 

Rrs responds mostly to the backscattering and absorption properties of Chl-a, 

TSM, and CDOM (KIRK, 2011). The Rrs at 430 nm and 675 nm are reduced by 

Chl-a absorption peaks (MOREL; BRICAUD, 1981). In conditions of high Chl-a 

concentration, an Rrs peak next to 700 nm is created as a result of increased 

particulate scattering offset by dramatically increasing water absorption at 

wavelengths larger than 700 nm, and the adjacent  Chl-a  absorption  band  at  

675 nm (MARK W. MATTHEWS, 2017). TSM derived from algae and non-algae 

particles intensify the backscattering (SUN et al., 2010) and, consequently, the 

Rrs intensity throughout all spectrum from 400 to 750 nm. Where CDOM has a 

high absorption influence (MILLER et al., 2002), Rrs magnitude is reduced in the 

blue range. Despite the fact that  Rrs is an apparent optical property (AOP) and 

 
 

2 This chapter will be submited to a indexed scientific journal. 
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modified by the light field geometry and envinronmental conditions, it has been 

widely used for defining OWT with distinct  Chl-a, TSM, and CDOM 

concentrations (MOORE et al., 2014; SPYRAKOS et al., 2018; VANTREPOTTE 

et al., 2012). 

Since OWTs based on Rrs discriminate changes in Chl-a, TSM, and CDOM 

concentrations, this approach has been applied for describing aquatic 

environments and detecting water changes in time-series. Spyrakos et al. (2018) 

investigated the major OWTs of inland and coastal waters around the world 

based on Rrs shape, discussing their limnological and the inherent optical 

properties (IOP). Uudeberg et al. (2019) studied the OWTs of lakes from the 

boreal regions and coastal areas using key features of Rrs such as wavelength 

maximum, slopes, and amplitude. Further, they developed remote sensing 

methods for detecting those boreal OWTs on Sentinel-2 MSI and Sentinel-3 OLCI 

images. Vantrepotte et al. (2012) analyzed the OWTs of different coastal regions 

and developed a remote sensing scheme for detecting them using SeaWiFS 

images. Then, the SeaWiFS provided substantial spatial-temporal data for the 

OWTs. 

Furthermore, OWTs has been used for improving remote sensing algorithms by 

various researches, who established OWTs and then calibrated specific 

algorithms for each of them (CAIRO et al., 2020; LE et al., 2011; MOORE et al., 

2014; SHI et al., 2013b). In those studies, each OWT had identical features (e.g., 

Chl-a range or absorption dominated by CDOM), which improved the 

performance of their algorithms. For example, the OWTs of Cairo et al. (2020) 

exhibited a substantial difference in Chl-a ranges, where the bio-optical 

algorithms were adjusted for each OWT and consequently Chl-a range. When 

the algorithms were adjusted to specific ranges of Chl-a, the overall estimation of 

Chl-a surpassed that of estimated for a unique algorithm. 

Many studies defined OWTs of a variety of regions, but none of them have 

addressed Brazilian waters. Even though OWTs using global data have already 

been produced (SPYRAKOS et al., 2018), including Brazilian waters, those 

OWTs were based only in the Rrs shape. The waters of the Amazon basin show 
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distinct variability in the Rrs intensity where black waters with high CDOM 

concentration are associated with low Rrs. While white waters with high TSM 

concentration are related to high Rrs (JORGE et al., 2017). Despite the 

importance of using Rrs shape rather than Rrs magnitude in coastal waters 

(VANTREPOTTE et al., 2012), the removal of Rrs intensity from the analysis 

would decrease the representativeness of OWTs of Brazilian waters. Therefore, 

a study that focuses on Brazilian waters that combine the Rrs shape and 

magnitude could improve the present characterization of the Brazilian OWTs 

provided by the global data. Such OWTs could support remote sensing 

applications such as detecting algal blooms and high sediment loadings and also 

improve algorithms for estimating Chl-a, TSM, and CDOM concentrations. 

Therefore, the objective of this study focuses on characterizing the OWTs of 

Brazilian waters. First, we compute the OWTs using Rrs shape and intensity. 

Second,  their optical and limnological characteristics are exhibited and 

evaluated. Last, we discuss the OWTs sources. 

 

4.2 Material and methods 

4.2.1 Study area and survey campaigns 

The survey campaigns were carried out in 19 water bodies in Brazil with a total 

of 483 sample stations, where radiometric measurements and limnological 

samples were taken from 2013 to 2018 (Figure 4.1). All Rrs measurements of 

those sample stations follow the Mobley (1999), while data from Kutser (2013) 

was not merged due to the uncertainty increase in defining the OWTs. The water 

bodies consist of several lakes, rivers, reservoirs, and a subtropical estuary, 

encompassing several different optical and limnological conditions that occur in 

the Brazilian waters. 

Mamirauá (n = 71), Pantaleão (n = 12), Bua Bua (n = 15), and Pirarara (n = 13) 

lakes are located in the Solimões floodplain at the confluence of Japurá (n = 4) 

and Solimões rivers (Figure 4.1; 1). Survey campaigns were carried out in the 

rising and receding water periods. In the rising period, high input of organic matter 
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occurs in Bua Bua and Mamirauá lakes, while high sediment loading occurs in 

Pirarara and Pantaleão lakes (JORGE et al., 2017). 

Paru (n = 3), Curuai (n = 125), Pacoval (n = 2), Aramanaí (n = 8), and Monte 

Alegre (n = 23) lakes and Amazon (n = 1) and Tapajós (n = 29) rivers are located 

in the lower basin of Amazon river (Figure 4.1 ; 2 & 4) (de Carvalho et al., 2017; 

Lobo et al., 2015; Maciel et al., 2019). In the Amazon region, the waters may vary 

among black waters rich in dissolved organic carbon, white waters with high TSM 

concentration, and transparent waters with low TSM, Chl-a, and CDOM 

concentrations (SIOLI, 1968). 

 

Figure 4.1 - Study areas and sampling stations located in the Brazilian waters. 

 

The (1) are Bua Bua, Pirarara, Pantaleão, Mamirauá, and Japurá river; (2) are Paru, 
Curuai, Amazon and Tapajós rivers; (3) is Três Marias reservoir, (4) are Aramanaí, 
Pacoval, and Monte Alegre, (5) is Itaipu reservoir, (6) is Ibitinga reservoir, (7) is Funil 
reservoir, (8) is the ECP, (9) is the Nova Avanhandava reservoir, and (10) is Paraibuna 
reservoir. 

Source: The author. 
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Três Marias reservoir (n = 22) is located in the Minas Gerais state (Figure 4.1; 3) 

has been classified as having transparent waters with low TSM, Chl-a, and 

CDOM concentrations (FERREIRA, 2014). Itaipu reservoir (n = 23) is located in 

Paraná state at the Paraguay border (Figure 4.1; 5), having waters varying from 

high transparency to turbid waters (RIBEIRO FILHO et al., 2011). Paraibuna 

reservoir (n = 18) is located in the São Paulo state (Figure 4.1; 10), with waters 

also characterized as very transparent (CURTARELLI et al., 2019). 

Ibitinga and Nova Avanhandava reservoirs are located in the Tietê river cascade 

system (Figure 4.1; 6 & 9), which is one of the most industrialized and densely 

populated drainage basins in Brazil. Survey campaigns in Ibitinga reservoir (n = 

38) were conducted under oligotrophic to cyanobacterial blooms conditions 

(CAIRO et al., 2016, 2019b). For Nova Avanhandava (n = 40), the bio-optical 

conditions were characterized as transparent waters in all campaigns 

(RODRIGUES et al., 2015; ROTTA et al., 2016). 

Funil reservoir (n = 14) is located in the Rio de Janeiro state (Figure 4.1; 7) and 

is characterized by eutrophic waters (BARBOSA et al., 2016). The Estuarine 

Complex of Paranaguá (ECP) (n = 13) is located on the Paraná state coast 

(Figure 4.1; 8), where low turbid waters were found (DA SILVA et al., 2019). 

 

4.2.2  AOPs, IOPs, and limnological measurements 

The above-water radiometric measurements were taken using a Hand-Held 2 

VNIR for the Paraibuna reservoir and the ECP. While three intercalibrated TriOS-

RAMSES spectroradiometers were used for the remaining water bodies. The 

method of Mobley (1999) was used for computing the Rrs. The total water-leaving 

radiance (Lt (λ, θ, ϕ)), the downwelling sky radiance (Ls (λ, θ, ϕ)), and the total 

irradiance incident onto the water surface (Es (λ)) were measured. The 

wavelength (λ) interval used in this study ranged from 400 to 800 nm, where the 

spectral resolution of 3 nm of both devices was resampled to 1 nm. Taking the 

sun as a reference, the nadir (θ) and azimuth (ϕ) angles of Lt were 40º and 135º, 

respectively, while the nadir and azimuth of Ls were 130º and 135º, respectively. 

Then, the Rrs was computed using the equation: 
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Rrs(λ) =
Lt(λ) − ρLs(λ)

Es(λ)
    (sr−1)                                      (4. 1) 

 

Where ρ is a factor that relates how much of Ls is reflected in the water-air 

interface towards the sensor direction, and it is a function of wind speed, solar 

zenith angle, and sensor zenith and azimuth angle. The ρ = 0.028 was utilized 

here since it is suitable for the geometry of acquisition used here and at wind 

speeds lower than 5 m s-1 in blue sky conditions or at any wind speed in overcast 

skies (MOBLEY, 1999). Thus, the ρLs accounts for the glint in the Rrs 

measurement that must be removed. 

In situ absorption and attenuation coefficients (m-1) measurements were carried 

out with a 15 cm and 25 cm pathlength AC-S attenuation–absorption meter with 

the spectral range from 400 to 750 nm and spectral resolution of 3.5 nm. The 

influence of temperature and water was removed following manual protocols 

(WET LABS, 2009), while scattering correction was done using the method of 

Kirk (1992) using the scattering constant fraction of 0.18. The 15 cm AC-S was 

used in very turbid waters while 25 cm AC-S was used in more transparent 

waters. As the AC-S profiles were taken in different depths depending on the 

survey campaign, we standardized using the median from 30 to 80 cm depth. 

Further, the measurements were resampled to 1 nm of spectral resolution, and 

scattering coefficient (m-1) was computed by subtracting absorption from 

attenuation. 

The limnological parameters measured were Chl-a (mg m-3), TSM (g m-3), CDOM 

(m-1), and Secchi depth (Zsd) (m). For CDOM, the absorption coefficient at 440 

nm was used as a proxy to its concentration. The limnological measurements 

were taken using different methods, and details for each method are in the 

studies mentioned in section 4.2.1. 

It is worth mentioning that some Rrs measurements do not have concomitant 

limnological, absorption, attenuation, and scattering measurements. The Japurá 

river and Itaipu reservoir do not have CDOM data. The AC-S measurements were 
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not taken in ECP, Funil, Itaipu, Pacoval, Pantaleão, Paraibuna, Amazon river, 

and Japurá river. Nevertheless, this should not influence the analysis because all 

OWTs exhibited representative limnological and AC-S measurements for 

characterizing them. 

 

4.2.3 Establishment of the optical water types 

For establishing the OWTs based on their shape and magnitude, first, the Rrs (λ) 

shape was emphasized by normalizing the Rrs (λ) using its integer 

(VANTREPOTTE et al., 2012), utilizing the following equation: 

 

Rrs (shape)(λ) =
Rrs(λ)

∫ Rrs
800

400
(λ) dλ

                                              (4. 2) 

 

Where Rrs (shape) is the normalized Rrs by its integer computed by finite 

approximation using 1 nm of spectral resolution, from 400 to 800 nm. 

Furthermore, the Functional Data Analysis (FDA) method (RAMSAY, 2006) was 

used in each sample of Rrs (shape). In this method, spectral Rrs (shape) is viewed as 

a function of the wavelength that varies according to its basis coefficients. The 

use of basis coefficients for clustering has been proposed by Spyrakos et al. 

(2018) who have shown their following advantages of the Rrs (shape) values: (1) 

reduction of data dimensionality supporting the assumption of independence 

among variables (FRALEY, 1998); (2) data noise reduction; and (3) capture of 

key Rrs (shape) features by the basis functions. Since the number of basis functions 

that estimate the Rrs (shape) controls the degree of flexibility, numbers varying from 

15 to 35 were tested in the dataset. In other words, a small number of basis leads 

to a smoother Rrs (shape) than numerous basis. On the other hand, a small number 

of basis can fail to capture the Rrs (shape) curves. A total of 25 cubic basis functions 

equally spaced from 400 to 800 nm resulted in a reliable estimate of Rrs (shape) 

while removing data noise. All functions related to FDA are implemented in the 

R-Project (RAMSAY et al., 2018). 
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The k-means algorithms (MACQUEEN, 1967) was used for clustering the basis 

functions. First, the Gap statistic (TIBSHIRANI et al., 2001) was used for choosing 

the optimal number of clusters (k). As Gap has not stabilized with increase k in 

the present study dataset, the number of k was set at the point where the Gap 

curve reaches the horizontal asymptote. For defining the initial seeds, the k-

means++ algorithm (ARTHUR; VASSILVITSKII, 2007) was used, since it speeds 

up the convergence and improves the accuracy of the k-means algorithm. 

Furthermore, the k-means algorithm was fed with the initial seeds, and the 

convergence tolerance was set to 0.001. The implemented version of k-means 

utilized was the KMeans module from the Scikit-learn v0.21 (PEDREGOSA et al., 

2011). 

 

4.3 Results and discussion 

4.3.1 Clusters and adjustments to OWTs 

A total of 16 clusters was originated using the k-means algorithm. However, many 

clusters showed very similar Rrs (shape) and no difference in TSM, Chl-a, or CDOM 

concentrations. To avoid redundancy among the OWTs, the number of clusters 

was reduced to 7 by merging the most similar clusters due to the Euclidean 

similarity of Rrs (shape). Thus, those 7 clusters could show a consistent difference 

in Rrs (shape) and also in their TSM, Chl-a, and CDOM concentrations. 

Furthermore, one cluster showed high variability in Rrs (λ), TSM, and CDOM, but 

very similar Rrs (shape) (λ). Since this high variability represents distinct optical and 

limnological properties but has an interrelated spectral shape, this cluster was 

separated using the Rrs (650). The Rrs (650) lower than 0.01 is the OWT 7 (Figure 

4.2), the Rrs (650) between 0.01 and 0.038 is the OWT 8, and the Rrs (650) higher 

than 0.038 is the OWT 9. Those thresholds at 650 nm were set because they 

provided the best way for splitting  OWTS 7, 8, and 9. As shown in Figure 4.2, 

the OWTs 7, 8, and 9 have some similarities in Rrs (shape), but their Rrs is what 

differs them mostly. In other words, the Rrs (shape) could provide a suitable 

clustering of OWTs at first, but the Rrs (signal intensity) should not be entirely 
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removed from the establishment of OWTs. Thus, the nine OWTs defined here 

were based on Rrs (shape) and Rrs. 

 

Figure 4.2 - The mean (solid line) and SD (shaded area) of Rrs (black and left y-axis) and 
Rrs (shape) (blue and right y-axis) of all OWTs. 

 

Source: The author. 

 

To assure representative samples of each OWT regarding their Rrs (shape) (λ) and 

Rrs (650), the similarity among samples was computed using the silhouette 

(ROUSSEEUW, 1987). The silhouette measures if a sample is more related to 

samples without their OWTs than to those within their OWTs. In practice, a 

sample silhouette lower than 0 means that this sample is more related to samples 

outside its OWT than within its OWT. First, the silhouette of all samples was 

computed using the basis coefficients in the Euclidean space. Here, the OWTs 

7, 8, and 9 were considered as a single OWT since they have similar Rrs (shape) (λ). 
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Further, the silhouette was calculated among OWTs 7, 8, and 9 using the Rrs 

(650) as input. A total of 105 samples showed a silhouette lower than 0 and were 

removed, resulting in 378 samples representing all OWTs. This large number of 

samples occurred because some Rrs (shape) samples were transient among OWTs, 

which have resulted in negative silhouettes. Since the OWTs are based in k-

means, and there is no fuzziness among them, the removal of those transient 

samples was essential for retrieving cohesive OWTs. 

 

4.3.2 The OWTs 

The OWT 1 is a very transparent water type with low Chl-a, TSM, and CDOM 

concentration (Figure 4.3; Table 4.1). The Rrs (shape) has a high slope increasing 

from 400 to 570 nm (Figure 4.2) that further decreases to 800 nm, where a weak 

absorption Chl-a feature at 675 nm is visible. The median Rrs is relatively low, 

reaching up to 0.01 sr-1 due to the low scattering coefficient (Figure 4.4). The Chl-

a, TSM, and CDOM concentrations are low. This limnological condition results in 

very transparent waters with low attenuation caused by low absorption and 

scattering coefficients. The OWT 1 was found in ECP, Funil, Ibitinga, Nova 

Avanhandava, Paraibuna, Tapajós, and Três Marias (Table 4.2). 

The OWT 2 is moderately transparent water with high CDOM concentration. The 

Rrs (shape) has a high slope increasing from 400 nm to 570 nm, caused by the high 

slope of the absorption coefficient found in those waters (Figure 4.4). Further, the 

Rrs (shape) slightly decreases towards 700 nm and significantly drops in the near 

infra-red (NIR) region. Two absorption features are evident at 610 nm and 675 

nm. The mean of Rrs reaches up to 0.012 at 570 nm. The water transparency is 

moderate, where the scattering coefficient dominates attenuation at most 

wavelengths, while the absorption coefficient contributes more than the scattering 

coefficient to attenuation close to 400 nm. The Chl-a and TSM are low while the 

CDOM is high and shows high variability. The OWT 2 was found in Bua Bua, 

Curuai, Ibitinga, Itaipu, Mamirauá, Monte Alegre, Pantaleão, Pirarara, Tapajós, 

and Três Marias. 
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Table 4.1 - The median (med), interquartile range (IQR), and the number of samples (n) 
of Chl-a concentration, TSM concentration, CDOM concentration, and Zsd, of 
all OWTs. 

OWT  Chl-a (mg m-3)  TSM (g m-3)  CDOM (m-1)  Zsd (m) 

1 

med: 6.04 

QRT: 6.18 

n: (77) 

2.64 

2.94 

(76) 

0.6 

0.46 

(55) 

2.35 

1.0 

(52) 

2 

5.28 

7.93 

(75) 

5.14 

4.1 

 (75) 

1.71 

1.56 

(59) 

1.3 

0.5 

(75) 

3 

8.72 

6.89 

(26) 

1.9 

2.3 

(25) 

0.96 

0.28 

(26) 

2.4 

1.20 

(25) 

4 

33.1 

19.1 

(28) 

14.38 

10.5 

(28) 

1.76 

0.48 

(24) 

0.59 

0.34 

(29) 

5 

39.6 

29.7 

(14) 

6.1 

3.25 

(14) 

0.7 

0.16 

(14) 

1.76 

0.34 

(12) 

6 

180.4 

101 

 (7) 

25.75 

11.8 

(7) 

0.98 

0.21 

(7) 

0.7 

0.33 

(6) 

7 

 14.62 

9.6 

(15) 

 
8.2 

3.67 

(15) 

 
4.07 

1.4 

 (14) 

 
1.0 

0.35 

(15) 

8 

 8.26 

7.67 

(102) 

 
19.55 

13.0 

(102) 

 
1.8 

0.62 

(88) 

 
0.4 

0.15 

(102) 

9 

 12.13 

15.6 

(14) 

 93.25 

49.1 

(14) 

 1.18 

0.27 

(14) 

 0.16 

0.06 

(14) 

Source: The author. 
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Figure 4.3 - Limnological characteristics of each OWT. The measurements are Chl-a 
concentration, TSM concentration, CDOM concentration, and  Zsd. 

 

Source: The author. 

 

OWT 3 is a very transparent water type with the influence of residual glint. The 

Rrs (shape) has a low slope increasing from 400 to 570 nm, and a low slope 

decreasing from 570 to 800 nm. The TSM and Chl-a concentrations are low, while 

CDOM showed a moderate concentration. The water transparency is similar to 

OWT 1, which both show the highest transparency among all OWTs, caused by 

the low TSM concentration, which favors low scattering and absorption 

coefficients. Thus, OWT 3 is artificial since it is a result of erroneous 

measurements instead of changes in the OACs. The OWT 3 was found in Funil, 

Ibitinga, Mamirauá, Nova Avanhandava, Tapajós, and Três Marias. 
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Figure 4.4 - The absorption (a), scattering (b), and attenuation (c) coefficients of all 
OWTs. 

 

The values of OWT 8 and 9 are multiplied by 0.1 to preserve homogeneity in the y scale 
among subplots. 

Source: The author. 

 

In the OWT 3, the Rrs (shape) and Rrs are strongly influenced by residual glint, which 

is supported by three observations. First, the slope from 400 to 550 nm of Rrs 

(shape) of OWT 3 should be higher than OWT 1 since OWT 3 has a higher CDOM 

concentration and higher absorption coefficient in the same range. The lower 

slope of OWT 3 than OWT 1 may be caused by the residual glint in the blue 

range. Second, the mean Rrs (NIR) is very high, taking into account the TSM 

concentration similar to OWT 1. Also, the mean Rrs (NIR) is noisy, which was also 

checked in the individual samples. Even the higher scattering coefficient of OWT 

3 than OWT 1 should not justify the high signal in the NIR range. Thus, the OWT 

3 is more dependent on the glint removal method than a response of the Chl-a, 

TSM, and CDOM influence. 
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Table 4.2 - The number of representative samples of each OWT per region. 
  OWTS 

Region  1 2 3 4 5 6 7 8 9 

Amazon river  - - - - - - - - 1 

Aramanaí lake  - - - - - - - 6 - 

Bua Bua lake  - 15 - - - - - - - 

Curuai lake  - 5 - 21 - 2 - 54 11 

ECP  11 - - - - - - - - 

Funil reservoir  9 - 1 - 2 1 - - - 

Ibitinga reservoir  1 1 12 2 12 5 - - - 

Itaipu reservoir  - 13 - - - - - - - 

Japurá river  - - - - - - - 4 - 

Mamirauá lake  - 13 5 5 - - 15 17 - 

Monte Alegre lake  - 3 - 1 - - - 12 - 

Nova Avanhandava reservoir  27 - 4 - - - - - - 

Pacoval lake  - - - - - - - 2 - 

Pantaleão lake  - 6 - - - - - - - 

Paraibuna reservoir  5 - - - - - - - - 

Paru lake  - - - - - - - 2 - 

Pirarara lake  - 9 - - - - - 6 - 

Tapajós river  6 10 4 - - - - - - 

Três Marias reservoir  20 1 1 - - - - - - 

Source: The author. 

 

The OWT 4 and 5 are high algae bloom that have comparable Chl-a 

concentrations but occurs in two specific circumstances: the OWT 4 occurs under 

higher TSM concentration from terrestrial input while OWT 5 occurs in lower TSM 

that mainly comes from the algae bloom. This difference is supported by three 

observations: (1) the OWT 4 has a higher TSM/Chl-a ratio than OWT 5; (2) the 

OWT 4 mainly occurs in Curuai lake where terrestrial input of TSM from Amazon 

river and sediment resuspension induced by wind is significant (BOURGOIN et 

al., 2007), and OWT 5 mainly occurs in Ibitinga reservoir where TSM that comes 

from its tributaries rapidly settles down due its low flow velocity (CAIRO et al., 

2016); and (3) correlation between Chl-a and TSM for OWT 4 (r = 0.48) is lower 

than that of OWT 5 (r = 0.89), what indicates that the primary source of TSM in 

OWT 5 is related to phytoplankton. 

Regarding the OWT 4, the Rrs (shape) has a moderate slope increasing from 400 to 

570 nm, a very low decrease from 570 no 700 nm where two absorption features 

at 620 and 675 nm are visible. Further, the Rrs (shape) decreases in the NIR region. 

The mean Rrs is moderate and reaches up to 0.02, where the peaks occur in 570 
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and 700 nm. The Zsd in those water is low caused by the high attenuation. The 

Chl-a and TSM concentrations are high with moderate variability, where the 

CDOM concentration is moderate. The OWT 4 was found in Curuai, Ibitinga, 

Mamirauá, and Monte Alegre. 

Considering the OWT 5, the Rrs (shape) has a high slope from 400 to 550 nm 

showing the Chl-a absorption feature at 440 nm. Further, the Rrs (shape) decreases 

from 550 to 700 nm with a perceptible absorption feature at 620 and 675 nm and 

decreases in the NIR region. The mean Rrs reaches up to 0.012, and the two 

main peaks are at 550 and 700 nm. The Chl-a concentration is high, while CDOM 

and TSM concentrations are low. The OWT 5 was found in Funil and Ibitinga. 

The OWT 6 is extreme algae bloom with a vegetation-like spectrum. The Rrs (shape) 

significantly increases from 440 to 550 nm, where an absorption feature is visible 

at 430 - 440 nm. Further, the Rrs (shape) decreases from 550 to 675 nm, where two 

great absorption features are visible at 630 nm and 675 nm. The Rrs (shape) highly 

increase from 685 to 710 nm, characterizing the red-edge feature found in high 

Chl-a concentrations. The Chl-a concentration is the highest among all OWT 

caused by the intense algae bloom with a moderate TSM concentration and low 

CDOM. The water transparency is low caused by significant attenuation, where 

absorption and scattering contribute almost equally to attenuation in the Chl-a 

absorption peaks. The OWT 6 was found in Curuai, Funil, and Ibitinga. 

The OWT 7 are waters rich in CDOM with the lowest Rrs of all OWTs, with the Rrs 

mean close to 0.005 nm in all wavelengths. The Rrs (shape) has a low slope 

increasing from 400 to 570 nm. Furthermore, Rrs (shape) changes to flat like shape 

from 570 to 700nm, and significant drops in the NIR region. A moderate 

absorption feature is noticeable at 675 nm. The water transparency is very low 

with is corroborated by the high attenuation, where absorption contributes more 

than scattering to attenuation in the blue range while scattering dominates in 

longer wavelengths. The CDOM concentration is the highest of all OWTs and 

shows moderate variation. The Chl-a median is moderate, and the TSM median 

is low. The OWT 7 was exclusively found in Mamirauá lake. 
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The OWT 8 is high scattering waters with high TSM concentration, being the 

second-highest TSM concentration that comes mainly from terrestrial input. The 

Rrs (shape) has a moderate slope from 400 to 570 nm as a function of the absorption 

coefficient, which changes to flat shape from 570 to 700 nm, and significantly 

drops in the NIR region. Two moderate absorption features are visible at 600 nm 

and 675 nm. The median Rrs reaches up 0.025 from 570 to 700 nm as a result of 

the second-highest scattering coefficient of all OWTs. Furthermore, the high 

scattering also causes very low water transparency where the median Zsd is 0.4 

m. Regarding the limnological conditions, the TSM concentration is the second-

highest among all of those OWTs that are not from an algae bloom. The OWT 8 

was found in Curuai, Pacoval, Japurá, Mamirauá, Monte Alegre, Aramanaí, Paru, 

and Pirarara. 

The OWT 9 is high scattering waters that show the lowest water transparency, 

the highest TSM concentration, and the highest Rrs magnitude. The Rrs (shape) has 

a moderate slope increasing from 400 to 700 nm where a weak Chl-a absorption 

feature is visible at 675 nm, and further, the Rrs (shape) decreases in the NIR region. 

This progressive increase to 700 nm is related to the higher absorption in the 

lower wavelengths while scattering changes lesser throughout the spectrum. The 

mean Rrs is the highest of all OWTs, reaching up to 0.055, which is evidenced by 

the high scattering coefficient. The Chl-a and CDOM concentrations are 

moderate, while TSM is the highest of all OWTs, with the median reaching up to 

93.25 g m-3. This high TSM concentration causes the lowest water transparency 

with a median Zsd of 0.16 and the highest attenuation of all OWTs. The OWT 9 

was found in Curuai and Amazon river. 

 

4.3.3 The sources of OWTs 

In the forest of Amazon floodplains, the OWT 2 and 7 originate from resuspension 

of organic carbon in podzol soils, which characterize them with high dissolved 

organic carbon concentrations (SIOLI, 1968) and consequently a high CDOM. 

The OWTs 8 and 9 come from rivers that originate in the Andean regions (e. g., 

Madeira and Solimões rivers), where the high erosion is conditioned by soil type, 
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terrain shape, and the amount of rain (SIOLI, 1951). In the rising period with the 

increase of water level, the waters of OWTs 8 and 9 flows into the floodplain 

lakes. During the high water level period in the Tapajós river, the TSM is more 

diluted in the water (LOBO et al., 2015), causing low TSM concentrations and the 

occurrence of OWT 1. In Curuai lake, the sedimentation of TSM that increases 

the light availability and nutrient input from cattle range is an example of algae 

bloom causes (BARBOSA, 2007) and the occurrence of OWTs 4 and 6. 

An example of the OWT variation related to the Amazon basin is observed in the 

lakes located at the confluence of Japurá and Solimões rivers. In the rising water 

period, the resuspension of organic matter starts to increase, and OWT 2 takes 

place at Bua Bua and Mamirauá. Increasing the input organic matter, CDOM 

increases, and OWT 2 found in Mamirauá changes to OWT 7. Further, the OWT 

8 coming from the Japurá river should also inundate Mamirauá lake. Thus, OWT 

8 is also found in Mamirauá, while at Bua Bua, the OWT does not change. This 

example is limited by a minimal period of water sampling but illustrates how the 

OWT may change in de Amazon floodplains. 

Ibitinga reservoir drainage basin is surrounded by sugar cane plantations that 

increase the availability of phosphorus and nitrogen, which further cause algae 

bloom (TUNDISI et al., 2008). The intensity of the bloom may vary from OTW 5 

in low TSM or OWT 4 in high TSM concentration to OWT 6 when the bloom 

density significantly increases. High CDOM concentration may occur by the runoff 

of organic matter from reservoir banks near the Jacaré-Pepira river (CAIRO et 

al., 2016), and consequently, cause OWT 2 to occurs in Ibitinga reservoir. Since 

the occurrence of algae bloom varies throughout the year (Cairo et al., 2016), 

when algae bloom is not occurring, the OWT 1 should occur. 

In Nova Avanhandava, the input of TSM that comes from rivers is low even in the 

rainy period, and Chl-a concentration may increase up to 38.59 mg m-3 in the dry 

period (RODRIGUES et al., 2017). The OWT 1 occurs in the dry period in Nova 

Avanhandava in areas with low Chl-a concentration. 

In Funil reservoir, OWTs 5 and 6 also occur but probably caused by the 

accumulation of nutrients that comes from São Paulo state sewage (AUGUSTO-
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SILVA et al., 2014). Further, OWT 1 may occur when algae bloom is not 

occurring. 

Três Marias is located in the upstream São Francisco basin, where its main 

tributaries have its sources located in a National park at Canastra ridge, a very 

conserved and low degraded area. All those characteristics contribute to low input 

of TSM and CDOM and no occurrence of algae bloom, causing the predominance 

of OWT 1 in the Três Marias reservoir. In the Paraibuna reservoir, even in high 

precipitation periods, the input of TSM and CDOM is low, and no algae bloom 

occurs (CURTARELLI et al., 2019), causing the dominance of OWT 1. In the 

Itaipu reservoir, we did not find any study related to CDOM that would explain the 

OWT 2 occurrence. 

The OWTs 1 samples show TSM lower than 10 g m-3  except for waters in the 

ECP, which comprises all outliers of TSM concentration of OWT 1. The medians 

of the TSM concentration of OWT 1 are 2.64 g m-3. On the other hand, the TSM 

concentration of  ECP in those OWTs varies from 18.8 to 29.9 g m-3. Since all 

other outliers that occur in all limnological concentrations are not specific to a 

region or survey campaign, the TSM from ECP should have a specific meaning. 

Due June 2016 when the ECP data was collected (DA SILVA et al., 2019), there 

are evidences that a massive bloom of Dinophysis acuminata followed by a bloom 

of a Noctiluca scintillans occurred next to the ECP in the southern Brazilian coast  

(ALVES; MAFRA, 2018; NOERNBERG et al., 2017; SOBRINHO et al., 2018). 

Since Noctiluca scintillans are mainly composed of organic matter and have large 

cells that can reach up to 2 mm (SOBRINHO et al., 2018), it could reduce the 

refractive index and junge particle size distribution of TSM in the ECP. Particles 

that have a low refractive index and a low junge particle size distribution have 

lower scattering than that’s of high refractive index and high junge particle size 

(ROESLER; BOSS, 2008). Therefore, increase TSM concentration while the 

refractive index and junge particle size distribution should have a minor change 

in the scattering and, consequently, the Rrs. Therefore, it should explain the 

reason for ECP with a higher TSM concentration shows the OWT 1 that is mainly 

characterized as low TSM concentration in other environments. 



63 

 

4.3.4 The Brazilian OWTs from a global perspective 

Comparing the Rrs (shape) of OWTs computed here to global OWTs found in inland 

waters (SPYRAKOS et al., 2018), the Brazilian OWTs showed some similarities 

and particularities. The OWT 6 is comparable to their OWT 1 that represents 

hypereutrophic waters with the scum of cyanobacterial bloom and vegetation-like 

Rrs. The OWT 5 is also comparable to their OWT 8 that are productive waters 

with cyanobacteria abundance and with Rrs peak close to 700 nm. On the other 

hand, their OWT 10 that is related to CDOM rich waters differs from OWT 7 that 

is the CDOM rich waters in Brazil. The Rrs (700) of OWT 10 can reach up to 0.05, 

while the Rrs (λ) of OWT 7 is lower than 0.01. Furthermore, the OWTs 8 and 9 

are analogous in Rrs shape to their OWT 5, which are sediment-laden waters, but 

their OWT 5 presented a wider variety of Rrs (λ) than that’s of OWTs 8 and 9. 

Those divergences occurred because the Rrs magnitude was utilized for 

separating the OWTs 7, 8, and 9, while the global OWTs were based exclusively 

on the Rrs shape. 

The OWT 13 that represents clear blue waters (SPYRAKOS et al., 2018) was not 

registered in this study. The OWT  13 has the Rrs in the blue region higher than 

that of green and red with TSM and Chl-a concentration medians lower than 1 g 

m-3
 and 1 mg m-3, respectively. Such waters could occur in the coastal waters, 

but the ECP Rrs (shape) did not show any samples related to such OWT. 

Considering the other water bodies studied, the probability of OWT 13 occurrence 

is very low to the extent of our knowledge. 

Comparing the OWTs identified in this study with those from different regions,  

Rrs (shape) may be similar, but the ranges of Chl-a, TSM, and CDOM concentrations 

can differ. For example, the Rrs (shape) of class 4 of turbid productive waters of 

inland waters in China (HUANG et al., 2014) is analogous to our OWT 4 but with 

higher Rrs and Chl-a concentration. Moreover, the Rrs (shape) of OWTs 2, 3, and 5 

of Europe and China waters (ELEVELD et al., 2017) are similar to our OWTs 1, 

5, and 4, respectively. However, their OWT 2 has higher TSM and CDOM 

concentrations than our OWT 1; their OWT 3 has higher TSM and CDOM and 

lower Chl-a concentrations than our OWT 5; their OWT 5 has higher TSM and 
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lower CDOM concentration than our OWT 4. In such cases, we hypothesize that 

the presence of other factors affecting water components, scattering and 

absorption coefficients and consequently, Rrs explain those divergences. Among 

them, parameters  such as particle Junge distribution and refractive index 

(ROESLER; BOSS, 2008), CDOM molecular size (WÜNSCH et al., 2018), 

phytoplankton cell size and packaging effect (MOREL; BRICAUD, 1981) and 

species (JOHNSEN; SAKSHAUG, 2007). A better understanding would require 

absorption coefficients of CDOM, non-algae particles, and algae particles. 

Unfortunately, we do not have representative data for such comparisons. 

 

4.4 Conclusion 

This study characterizes 8 OWTs found in Brazilian waters using a rich dataset 

that represents different environmental conditions. The OWTs differ in Rrs shape 

and intensity, resulting in different combinations of Chl-a, TSM, and CDOM 

concentrations. Summarizing the OWTs that are presented here: the OWT 1 is 

transparent waters with low TSM, Chl-a, and CDOM concentrations; the OWT 2 

is transparent waters dominated for CDOM; OWT 4 is high algae bloom in 

moderate TSM concentration; OWT 5 is high algae bloom in low TSM 

concentration; OWT 6 represents intensive algae bloom; the OWT 7 represents 

waters with the highest CDOM concentration; OWT 8 is water with high TSM 

concentration; OWT 9 are high scattering waters with the highest TSM 

concentration; 

From this point forward, the OWTs defined here will support remote sensing 

applications of detecting spatial patterns and abrupt changes in waters quality, 

such as detecting OWTs related to algae bloom or high sediment loadings. 

Moreover, the OWTs could also be used for boosting algorithms of TSM, Chl-a, 

and CDOM concentrations, where specific algorithms may be calibrated for each 

OWT. 
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5 SATELLITE DETECTION OF BRAZILIAN OPTICAL WATER TYPES3 

5.1 Introduction 

A previous study identified 8 OWTs in Brazilian waters based on hyperspectral 

Rrs intensity and shape (Rrs (shape)) with different characteristics of Chl-a, TSM, 

and CDOM concentrations. OWT 1 is transparent waters with low Chl-a, TSM, 

and CDOM concentration. OWT 2 is moderate transparent waters with high 

CDOM concentration and moderate TSM. OWT 4 is waters with algae bloom that 

occurs in turbid waters. OWT 5 is waters with algae bloom that occurs in 

transparent waters. OWT 6 is waters with the highest algae bloom density. OWT 

7 is waters dominated by CDOM and shows the highest CDOM level. OWT 8 is 

turbid waters dominated by TSM. OWT 9 is very turbid waters with the highest 

TSM concentration. Notice that OWT 3 is an artifact caused by erroneous 

measurements, and for this reason, was not considered in this chapter. Those 

OWTs were characterized in different environments in Brazil. However, this 

characterization was limited to in situ data, which may not hold well representative 

spatial-temporal variations of each water body. 

To overcome the spatial-temporal gap of in situ data, a couple of studies have 

proposed using satellite remote sensing for detecting. Vantrepotte et al. (2012) 

defined OWTs using in situ Rrs in coastal waters and then trained a method for 

detecting them in SeaWiFS images. Uudeberg et al. (2019) evaluated the 

capability of detecting OWTs of boreal lakes and coastal waters using Sentinel-2 

MSI and Sentinel-3 OLCI. Shi et al. (2013) tuned Chl-a bio-optical algorithms for 

specific OWTs, and further developed a decision three method for detecting those 

OWTs in MERIS images. 

Three challenges arise when detecting hyperspectral OWTs based on in situ data 

in remote sensing images. First, most available orbital sensors are multispectral, 

and thus the spectral resolution is limited to few bands. Second, the uncertainty 

between in situ and satellite Rrs caused by atmospheric correction, signal to noise 

 
 

3 This chapter will be submited to a indexed scientific journal. 
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ratio (SNR), the difference of spatial resolution, and adjacent effects (JORGE et 

al., 2017; MARTINS et al., 2017). Those uncertainties can lead to 

misclassification and have a significant influence on accuracy. For example, a 

low SNR can misclassify OWTs more than a degraded spectral resolution (LOBO 

et al., 2012). Likewise, misclassification can also depend on atmospheric 

correction (UUDEBERG et al., 2019). Third, the spatial-temporal coverage of 

remote sensing images surpasses that of in situ data. Consequently, those 

images should cover OWTs not used for training the classification algorithms. 

Traditional classification algorithms are not capable of novelty detection, and they 

will force any unknow OWT to a known OWT. Hence, any classification algorithm 

for OWTs based on in situ hyperspectral data should address all those issues. 

The objective of this study is to develop a classification algorithm for detecting 

the Brazilian OWTs by remote sensing images. For this purpose, Sentinel-2 MSI, 

Landsat-8 OLI, and Landsat-7 ETM+ were tested. First, the classification 

algorithm of Support Vector Machines Classifier (SVC) and Random Forest (RF) 

were trained and validated using in situ simulated bands. Second, the 

classification algorithms were evaluated in satellite images. Last, the 

performance of each classification algorithm in each sensor was compared in 

three study areas. 

 

5.2 Material and methods 

5.2.1 In situ radiometric data 

The above-water radiometric measurements were taken using a Hand-Held 2 

VNIR and three intercalibrated TriOS-RAMSES. The Mobley (1999) method was 

used for computing Rrs. The total water-leaving radiance (Lt (λ, θ, ϕ)), the 

downwelling sky radiance (Ls (λ, θ, ϕ)), and the total irradiance incident onto the 

water surface (Es (λ)) were measured. The wavelength (λ) range assessed here 

were from 400 to 800 nm, where the spectral resolution of 3 nm of both devices 

was resampled to 1 nm. Considering the sun as a reference, the nadir (θ) and 

azimuth (ϕ) angles of Lt were 40º and 135º, respectively, while the nadir and 
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azimuth of Ls were 130º and 135º, respectively. Then, the Rrs was computed 

using the equation: 

Rrs(λ) =
Lt(λ) − ρLs(λ)

Es(λ)
    (sr−1)                                            (5. 1) 

Where ρ is a factor that relates how much of Ls is reflected in the water-air 

interface towards the sensor direction, and it is a function of wind speed, solar 

zenith angle, and sensor zenith and azimuth angle. The ρ = 0.028 was applied 

since it is suitable for the acquisition geometry used here and at wind speeds 

lower than 5 m s-1 in blue sky conditions or at any wind speed in overcast skies 

(MOBLEY, 1999). 

 

5.2.2 Satellite images 

The Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+ data were utilized to 

classify the OWTs. Those sensors were chosen because they have suitable 

spatial resolution and a considerable temporal coverage for monitoring inland 

waters (Table 5.1). Even though those sensors were not designed for water 

applications, they have demonstrated reliable applications in aquatic 

environments (CAIRO et al., 2019a; DA SILVA et al., 2019; LOBO et al., 2015; 

MACIEL et al., 2019; MILLER et al., 2011; MISHRA; GARG, 2011; RODRIGUES 

et al., 2017). We are aware that sensors such as Sentinel-3 OLCI have bands 

tuned for water environments. However, their 300 m spatial resolution would only 

be useful for a small number of large water bodies, limiting the operational use. 

The Sentinel-2 MSI and Landsat-8 OLI images were accessed at level 1C 

reflectance at the top of the atmosphere, and Landsat-7 ETM+ images were 

accessed at level 2 surface reflectance. All images were downloaded from the 

United States Geological Survey earth explorer website 

(<https://earthexplorer.usgs.gov/>). The Landsat-7 ETM+ images were 

atmospherically corrected using the  Landsat Ecosystem Disturbance Adaptive 

Processing System (MASEK et al., 2006), which is based on the 6S (Second 

Simulation of Satellite Signal in the Solar Spectrum) radiative transfer code 

(VERMOTE et al., 1997) . For the Landsat-8 OLI and Sentinel-2 MSI images, the 
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atmospheric correction was performed using the software AtmosPy (CARLOS et 

al., 2019), which is based on the 6S vector version (6SV) and takes into account 

the radiation polarization (KOTCHENOVA et al., 2006; KOTEHENOVA; 

VERMOTE, 2007). The AtmosPy was not used in the Landsat-7 ETM+ images 

because the current version only works with Landsat-8 OLI, Sentinel-2 MSI, and 

Sentinel-3 OLCI. 

 

Table 5.1 - Technical specifications summary of Sentinel-2 MSI, Landsat-8 OLI, and 
Landsat-7 ETM+. 

Sensor Band 

Bandwidth 

(nm) 

Spatial 

resolution (m) 

Radiometric 

resolution (bits) 

Revisit 

time (days) 

Temporal 

coverage 

(years) 

Sentinel-2 

MSI 

B2 458 – 523 10 

12 2 - 5 2015 - ongoing 

B3 543 – 578 10 

B4 650 – 680 10 

B5 698 – 713 20 

B6 733 – 748 20 

Landsat-8 

OLI 

B2 452 – 512 

30 12 16 2013 - ongoing 
B3 533 – 590 

B4 636 – 673 

B5 851 – 879 

Landsat-7 

ETM+ 

B1 450 – 520 

30 8 16 1999 – 2020 
B2 520 – 600 

B3 630 – 690 

B4 770 – 900 

Source: The author. 

 

Furthermore, surface reflectance of all images was converted to Rrs by dividing 

each pixel value by π. For glint removal, short wave infrared (SWIR) Rrs was 

subtracted from visible and NIR bands of each sensor. This simple correction has 

shown satisfactory performance in a wide range of environments (CAIRO et al., 

2020; LOBO et al., 2015; MACIEL et al., 2019). For Sentinel-2 MSI, Landsat-8 

OLI, and Landsat7- ETM+, the SWIR bands used for glint removal were B12 

(2130 nm), B7 (2200 nm), and B7 (2220 nm), respectively. Each image utilized 

was visually inspected for residual glint or artifacts. Last, the Sentinel-2 MSI 

bands with 10 m spatial resolution were resampled to 20 m using the mean values 

of a 2x2 window. 
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5.2.3 Classification algorithms 

The dataset was split into a training (70%) and a test (30%) datasets a thousand 

times weighted by class, where the dataset samples of each split were not 

repeated (Figure 5.1). The training dataset was used for training the classification 

algorithms, while the test dataset was used for assessing the performance. At 

each interaction, the balanced accuracy was computed, and the classification 

algorithm of each sensor that showed the median balanced accuracy was chosen 

for further applying in the remote sensing images. 

 

Figure 5.1 - Study design flowchart. 

 

Source: The author. 

 

OWT classification for each sensor was carried out using Support Vector Machine 

(SVM) Classifier (SVC) and Random Forest (RF) algorithms. The SVC is a binary 

classification algorithm that creates a margin hyperplane in an n-dimensional 
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space (number of bands) that separates two classes (OWTs) and maximizes this 

margin to the nearest support vectors (samples) of both OWTs. The hyperplane 

is defined by a kernel function, which can be linear, polynomial, radial basis 

function (RBF), and sigmoid. For multiclass classifications, such as the required 

here, the one-vs-one approach can be used. In this approach, the algorithm 

defines hyperplanes for all possible combinations of OWTs; then, the OWT 

receiving the majority of votes in all combinations is classified (TAN et al., 2008). 

RF algorithm generates several decision trees by using bootstrap subsamples of 

the training dataset. Each decision tree is a series of nodes (Boolean rules using 

the input bands) that best split the OWTs. Then, the OWT with the majority votes 

of all decision trees is classified. (TAN et al., 2008). 

There are infinite possible inputs (bands used) and adjusted parameters for SVC 

and RF algorithms. For example, the SVC algorithm requires penalty and kernel, 

while the RF algorithm requires the number of decision trees. The inputs and 

parameters of each algorithm were tuned using exploratory data analysis, where 

n-possible combinations were tested and evaluated using accuracy estimates. 

The chosen parameters and bands for each sensor (Table 5.2) were those with 

the best accuracy. 

SVC and RF algorithms have not the capacity of novelty detection and will classify 

any target (sample or pixel in the image) as an OWT. Consequently, both 

algorithms could classify unknown OWTs as a known OWT and wrongly estimate 

OWTs in further applications. This issue requires pos processing using novelty 

detection, which statistically measures the probability of a sample belonging to 

the given OWT. For the SVC algorithm, the Platt (1999) method was used for 

probability estimates. In this method, the probability is estimated using a sigmoid 

function: 

 

P (y = 1|f) =   
1 

1 + exp(Af + B)
                                           (5. 2) 
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Where P (y = 1|f) is the probability, f is SVM output that corresponds to an 

uncalibrated value (which varies from -1 to 1 between the support vectors), A and 

B are the parameters fitted using the maximum likelihood of a training set. In 

multi-class classification, the probability estimates are pairwise among OWTs. 

Then, the pairwise probability was further converted to unique values using the 

Wu et al. (2004) method. 

 

Table 5.2 - Parameters specifications of SVC and RF training algorithms and inputs for 
classification. 

Training 

Algorithm 

Algorithm 

Specifications Sensor 

The input of shape 

classification (OWTs 1, 2, 

4, 5, 6, 789) 

The input of intensity 

classification (OWTs 7, 8, 

and 9) 

SVC 

Penalty: 120, 

Kernel: RBF, 

multiclass approach: 

one-vs-one, class 

weight: balanced, 

probability 

estimates: (PLATT, 

1999) 

MSI 
Standardized B2, B3, B4, 

B5, and B6 bands 
B3 

OLI 
Standardized B2, B3, B4, 

and B5 bands 
B3 

ETM+ 
Standardized B1, B2, B3, 

and B4 bands 
B2 

RF 

Number of decision 

trees: 100, 

class weight: 

balanced, probability 

estimates: number of 

decision trees that 

classified the same 

class 

MSI 
Standardized B2, B3, B4, 

B5, and B6 bands 
B3 

OLI 
Standardized B2, B3, B4, 

and B5 bands 
B3 

ETM+ 
Standardized B1, B2, B3, 

and B4 bands 
B2 

Source: The Author. 

 

Regarding novelty detection using the RF algorithm, the rate of decision trees 

that estimated an OWT over the total of decision trees was used for computing 

probability. In other words, a rate of 70 decision trees of 100 trees represents a 

probability of 70%. The SVC and RF training algorithms and novelty detection 

utilized are implemented in Python programming language on the Scikit-learn 

v0.21 (PEDREGOSA et al., 2011). 

Probability thresholds must be set for each classification algorithm and OWT, in 

such a way that targets having probability higher than the threshold are classified, 

while targets having probability lower than the threshold are considered as a 



72 

 

novel and are not classified. For the SVC algorithm, the threshold was set where 

accuracy was 1 per OWT with a maximum of samples classified in the training 

dataset. Concerning the RF algorithm, the threshold was set to the minimum 

value of each OWT in the training dataset. More details are in appendix A. 

Simulated bands of each sensor were used for training the classification 

algorithms, which were computed by the equation: 

 

Rrs(Bnsensor) =  
∫  Rrs(λ)RFBn

(λ)
ΔBn

dλ 

ΔBn
                                           (5. 3) 

 

Where Rrs(Bnsensor) is the Rrs of band Bn, ΔBn is the bandwidth, and RFBn (λ) is 

the response function for each sensor band. The response function for each band 

was accessed at the Goddard Space Flight Center (https://landsat.gsfc.nasa.gov) 

and the European Space Agency (https://earth.esa.int) websites. 

Since most OWTs are based on the spectral shape, the brightness influence was 

removed, and the Rrs(Bnsensor) were standardized as follows: 

 

Rrs(Bnsensor) (standardized) =  
Rrs(Bnsensor)

∑ bn
                             (5. 4) 

 

Where Rrs(Bnsensor) (standardized) is the Rrs of bands Bn standardized by the sum 

of all bands bn. The bands utilized in bn of Sentinel-2 MSI were Rrs(B2msi), 

Rrs(B3msi), Rrs(B4msi), Rrs(B5msi), and Rrs(B6msi). The bands utilized in bn of 

Landsat-8 OLI were Rrs(B2oli), Rrs(B3oli), Rrs(B4oli), and Rrs(B5oli). The bands 

utilized in bn of Landsat-7 ETM+ were Rrs(B1etm+), Rrs(B2etm+), Rrs(B3etm+), and 

Rrs(B4etm+). 

The classification algorithms were trained in two steps. First, a classification 

algorithm was trained to classify the OWTs by their shape rather than their 

intensity. In this step, the Rrs(Bnsensor) (standardized) was used as input, and 
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OWTs 7, 8, and 9 were included in a unique class since their shapes are similar. 

Second, an additional classification algorithm using the same algorithm 

specifications was trained to classify OWTs 7, 8, and 9. In this step, the 

Rrs(Bnsensor) was used for training the classification algorithm. The probability 

estimates for class OWT 7, 8, and 9 were computed as the mean probability of 

the two classification steps. 

 

5.2.4 Accuracy assessment 

The atmospheric correction was assessed by comparing the in situ Rrs(Bnsensor) 

to the satellite Rrs(Bnsensor) computed as the median of a 3x3 window, for image 

acquisition concurrent with in situ measurements. The coefficient of 

determination (R²), the mean absolute percentage error (MAPE), and the mean 

and standard deviation (SD) bias were utilized for evaluating the atmospheric 

correction performance according to equations: 

 

R2 =  1 −  
SSres 

SStotal
                                                            (5. 5) 

 

MAPE (%) =  
100

n
 ∑ |

 Rrs(Bnsensor)(sat) −  Rrs(Bnsensor)(𝑖𝑛 𝑠𝑖𝑡𝑢)

 Rrs(Bnsensor)(𝑖𝑛 𝑠𝑖𝑡𝑢)
|       

n

i=1

(5. 6) 

 

bias (%) =
 Rrs(Bnsensor)(sat) −   Rrs(Bnsensor)(𝑖𝑛 𝑠𝑖𝑡𝑢)

 Rrs(Bnsensor)(𝑖𝑛 𝑠𝑖𝑡𝑢)
× 100          (5. 7) 

 

Where SSres is the sum square of residuals, SStotal is the total sum of squares, n 

is the number of samples, Rrs(Bnsensor)(sat) is the Rrs of band Bn in the satellite 

image, and Rrs(Bnsensor)(in situ) is the Rrs of band Bn simulated in situ. 
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The performance of classification algorithms was assessed with in situ and 

satellite data. Three metrics were used: balanced accuracy, Precision, Recall, 

and detection rate. Those metrics are defined as: 

 

Precisionj =
TPj

TPj + FPj
                                                      (5. 8) 

 

Recallj =
TPj

TPj + FNj
                                                      (5. 9) 

 

Balanced Accuracy =
1

nOWTs
 ∑ Recallj

nOWTs

j=OWT 1

                         (5. 10) 

 

detection ratej =
classified Targets j

classified Targets j +  unlassified Targets j
              (5. 11) 

 

Where j denotes an OWT, TP is the true positives, FP is the false positives, FN 

is the false negatives, and nOWTs is the total number of OWTs, classified targets 

are number of reference samples that were correctly or wrongly classified, and 

unclassified targets are the reference samples that were not detected due to low 

probability. Balanced accuracy was used instead of accuracy for the assessment 

to avoid bias since there are different sample sizes among OWTs. Thus, accuracy 

would be biased to the OWT that had more samples. 

For evaluating the performance of the algorithms on the satellite image, in situ 

OWTs were compared to classified images with acquired  within one day of in 

situ acquisition. A 3x3 window of OWTs was extracted at each match-up, and the 

OWT mode was computed. However, the main issue of evaluating the 

classification in satellite using in situ match-ups is that not all OWTs were 

detected, and consequently, the classification assessment for all OWTs is limited. 
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So as to guarantee a better understanding of the classification performance, it is 

necessary to fill this gap. Thus, the uncertainty satellite was simulated in the in 

situ test dataset, based on the following assumptions made: (1) the mean and 

SD  Rrs(Bnsensor) match-up bias have a Gaussian distribution; and (2) the 

computed uncertainties are equivalent in all OWTs. Then, a random uncertainty 

for each sample and Rrs(Bnsensor) was generated using a Gaussian random 

function, which was further added to the test dataset. This process was repeated 

a thousand times, and the mean was computed. 

 

5.3 Results and discussion 

5.3.1 Classification using in situ data 

The degradation of spectral resolution from hyperspectral to multispectral 

preserved significant differences of Rrs (standardized) and Rrs among most of 

OWTs (Figure 5.2). All simulated sensors could well discern OWTs 7, 8, and 9 

using Rrs, with the highest differences occurring in the range from 500 to 700 nm. 

Considering the remaining OWTs, MSI bands exhibited distinctive Rrs 

(standardized) for each OWT, while Landsat sensors (OLI and ETM+) bands 

exhibited a moderate overlap between OWT 2 and 4. Furthermore, it is also worth 

noticing that MSI bands cover a narrow wavelength range, which was used for 

defining the OWTs (400 – 800 nm), whereas OLI and ETM+ bands cover a wider 

wavelength range and have their NIR bands above 800 nm. The effect of those 

differences among MSI bands, OLI bands, and ETM+ bands in the classification 

are presented and discussed then. 

MSI, OLI, and ETM+ simulated sensors showed satisfactory performance for 

classifying the OWTs (Table 5.3), with accuracy ranging from 0.9 to 1 and 

detection rate varying from 81% to 97%. MSI was more accurate and showed a 

higher detection rate than ETM+ and OLI, except for the detection rate of OLI RF. 

One reason why MSI was more accurate than Landsat sensors is that MSI bands 

are located from 400 to 800 nm, which is the same OWTs range used for their 

definition, while OLI and ETM+ have the NIR band exceeding 800 nm. A second 

reason is that the MSI NIR bands are located at the red edges, key spectral 
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regions for characterizing algae bloom dominated water types, as OWTs 4, 5, 

and 6. Thus, the accuracy of each algorithm should have different performance 

depending on the OWT. 

 

Figure 5.2 - Spectral Rrs of Brazilian OWTs. 

 

The left column (a, c, e, and g) are the mean Rrs (shape) for hyperspectral data and mean 
Rrs (standardized) for multiband data for the OWTs that differ in shape, while the right 
column (b, d, f, and h) is the mean Rrs (sr-1) for OWTs that differs in Rrs. The a) and b) 
are hyperspectral, c) and d) are MSI simulated bands, e) and f) are OLI simulated bands, 
and g) and h) are ETM+ simulated bands. 

Source: The author. 

 

Considering the classification performances at each OWT, the minimum values 

of Precision and Recall (0.67) occurred in the Landsat ETM+ and OLI 

classifications (Table 5.4). MSI showed the best results, where RF correctly 
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classified all samples, and the SVC algorithm only misclassified one OWT 7 

sample as OWT 4. OLI classification misclassified samples among OWT 2 and 4 

due to its overlap in OLI bands, causing their low Precision and Recall. Likewise, 

only ETM+ RF confused OWTs 2 and 4 due to its overlap bands. Regarding the 

remaining OWTs misclassifications, there was no pattern found as between OWT 

2 and 4. Notice that those results were not computed using unclassified samples, 

which were evaluated using the detection rate presented next. 

 

Table 5.3 - The accuracy and detection rate of all classification algorithms. 

     Accuracy Detection rate (%) 

MSI 
 SVC   0.97 93 

 RF   1 91 

OLI 
 SVC   0.9 80 

 RF   0.95 97 

ETM+ 
 SVC   0.95 81 

 RF   0.98 88 

Source: The author. 

 

The lowest detection rates occurred to water types related to algae blooms (OWT 

4, 5, and 6), what was similar for all sensors ( MSI, OLI, and ETM+).  The 

detection rates of OWT 4, 5, and 6 ranged from 33% to 89%, 25% to 100%, and 

50% to 100%, respectively. Those OWTs have the largest Rrs (standardized) 

variation combined with a low number of samples. Consequently, the chance of 

a sample in the test dataset shows a lower probability than that set as the 

threshold for novelty detection should be higher. For this reason, the detection 

rate for those OWTs needs to be further evaluated using a larger dataset. More 

discussion about the detection rate in those OWTs will also be shown in the 

image analysis of OWTs (section 5.3.2.3), where the influence of those low 

detection rates can be elucidated. 

Thus far, the spectral capability of MSI, OLI, and ETM+ in detecting OWTs based 

on hyperspectral was assessed. All sensors showed satisfactory performance, 

but MSI outperformed OLI and ETM+. Nevertheless, those accuracy estimates 

are limited to the in situ data where there are no uncertainties from atmospheric 

correction, SNR, the difference of spatial resolution, and adjacent effects. As 
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stated by Lobo et al., (2012) and Uudeberg et al., (2019), SNR and atmospheric 

correction plays a vital role in classification and may have more impact than 

spectral resolution. The next section assesses the issues regarding classification 

in satellite images. 

 

Table 5.4 - Performance of the classifications algorithms for each OWT using the in situ 
simulated sensors. 

   
OWTs 

Sensor 

Classification 

Model 

  

1  2  4  5  6  7  8  9 

MSI 

SVC 

Precision  1  1  0.88  1  1  1  1  1 

Recall  1  1  1  1  1  0.75  1  1 

Detection 

rate (%) 
 100  96  78  50  50  80  100  100 

                  

RF 

Precision  1  1  1  1  1  1  1  1 

Recall  1  1  1  1  1  1  1  1 

Detection 

rate (%) 
 95  96  56  75  100  80  97  100 

                   

OLI 

SVC 

Precision  1  0.88  1  1  1  1  0.97  1 

Recall  1  1  0.67  1  1  0.8  1  0.75 

Detection 

rate (%) 
 84  65  33  100  100  100  94  100 

                  

RF 

Precision  1  0.88  1  1  1  1  1  1 

Recall  1  1  0.63  1  1  1  1  1 

Detection 

rate (%) 
 100  96  89  100  50  100  100  100 

                   

ETM+ 

SVC 

Precision  1  1  1  0.67  1  0.83  0.96  1 

Recall  0.8  1  1  1  1  1  0.96  0.75 

Detection 

rate (%) 
 90  65  44  100  100  100  74  100 

                  

RF 

Precision  1  0.96  1  1  1  1  1  1 

Recall  1  1  0.8  1  1  1  1  
1 

 

Detection 

rate (%) 
 100  96  56  25  100  80  90  100 

n  19  23  9  4  2  5  31  4 

Source: The author. 
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5.3.2 Classification using satellite images 

5.3.2.1 Atmospheric correction assessment 

Sentinel-2 MSI showed good agreement between in situ and satellite Rrs(B3msi), 

Rrs(B4msi), and Rrs(B5msi), with a reliable R², MAPE, and bias (Table 5.5, Figure 

5.3). On the other hand, in situ and satellite Rrs(B2msi) and Rrs(B6msi) exhibited the 

most unsatisfactory results. The Rrs(B2msi)(sat) moderately overestimated 

Rrs(B2msi)(in situ), with a MAPE and mean bias of 27%, while Rrs(B6msi)(sat) also 

overestimated Rrs(B6msi)(in situ) with MAPE and mean bias of 37%. 

 

Table 5.5 - Statistical results of the match-up between each sensor image and in situ 
data. The match-ups correspond to Rrs samples measured concurrent to 
satellite overpass. 

Sensor Band  R²  MAPE (%)  Mean bias (%)  Std bias (%)  N 

MSI 

B2  0.93  27  27  15  

8 

B3  0.94  12  9  13  

B4  0.99  8  2  10  

B5  0.99  14  9  17  

B6  0.98  37  37  31  

OLI 

Blue  0.61  22  -3  27  

27 
Green  0.74  14  0  18  

Red  0.85  13  -4  17  

NIR  0.3  74  65  88  

ETM+ 

Blue  0.81  18  -4  23  

12 
Green  0.88  14  -9  17  

Red  0.95  20  -7  27  

NIR  0.75  221  215  255  

Source: The author. 

 

Regarding Landsat-8 OLI match-ups, the satellite Rrs(B2oli), Rrs(B3oli), and 

Rrs(B4oli) retrieved Rrs with satisfactory performance (Figure 5.4), where R² varied 

from 0.61 to 0.85, MAPE ranged from 13% to 22%, with a mean bias nearby 0. 

On the other hand, the Rrs(B5oli)(sat) overestimated Rrs(B5oli)(in situ) with a mean bias 

of 65%, an SD bias of 88%, and a MAPE of 74%. 

The match-ups of Landsat-7 ETM+ exhibited consistent agreement between 

satellite and in situ Rrs(B1etm+), Rrs(B2etm+), and Rrs(B3etm+)  (Figure 5.5), with an 
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R² ranging from 0.81 to 0.95, a MAPE ranging from 18%  to 20%, and a mean 

bias nearby 0. In contrast, the Rrs(B4etm+)(sat) strongly overestimated Rrs(B4etm+)(in 

situ), showing a mean bias of 215%, an SD bias of 255%, and a MAPE of 221%. 

 

Figure 5.3 - Satellite and in situ match-ups of Sentinel-2 MSI bands, corresponding to 
data measured on the same day. 

 

Source: The author. 

 

The use of 6S and 6SV transfer radiative code for atmospheric correction 

provided satisfactory Rrs retrieval in the visible bands of all sensors. In the NIR 

range, the Rrs(Bnsensor)(sat) of all sensors tended to overestimate Rrs(Bnsensor)(in situ). 

The higher error in the NIR bands was also found in different studies using 6SV 

in aquatic environments (CAIRO et al., 2020; MACIEL et al., 2019; MARTINS et 
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al., 2017). A possible explanation for this overestimation might be adjacency 

effects, which have a significant influence in inland waters (WARREN et al., 2019) 

and is pronounced in the NIR (VANHELLEMONT, 2019). In such cases, Martins 

et al. (2017) substantially improved the Sentinel-2 MSI NIR estimations using 

adjacency corrections in small lakes of Amazon floodplain. Furthermore, the 

possible influence of low signal and SNR of NIR bands, and radiometric resolution 

(regarding ETM+), should also be considered. Since high errors in the NIR bands 

have also been reported in many different atmospheric corrections such as 

Acolite, Sen2Cor, C2RCC, Icor, l2gen, and Polymer (MARTINS et al., 2017; 

WARREN et al., 2019), approaches to enhance the estimations of Rrs in the NIR 

range might involve adjacency corrections. Up until such corrections make 

available, the next section evaluates how those uncertainties assessed from 

satellite estimation of Rrs influence the classification. 

 

Figure 5.4. Satellite and in situ match-ups of Landsat-8 OLI bands corresponding to data 
measured on the same day. 

 

Source: The author. 
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Figure 5.5 - Satellite and in situ match-ups of Landsat-7 ETM+ bands, corresponding to 
data measured on the same day. 

 

Source: The author. 

 

5.3.2.2 In situ and satellite classification match-ups 

The 24 match-ups of  Sentinel-2 MSI were composed of OWTs 1, 4, 5, 8, and 9, 

where each algorithm classified 12 match-ups, and the remaining match-ups 

were considered as a novel (Table 5.6). MSI SVC and RF algorithms presented 

a satisfactory agreement with in situ OWTs and correctly classified 10 of 12 

match-ups. The two misclassifications of both algorithms occurred where one 

OWT 9 match-up was classified as OWT 8, and one OWT 8 match-up was 

classified as OWT 4. Those misclassifications resulted in minimum Precision and 

Recall of 0.75 and 0.83, respectively. 

The 75 match-ups of Landsat-8 OLI covered almost all OWTs, where the SVC 

algorithm classified 26 match-ups, and the RF algorithm classified 41 match-ups. 

OLI RF algorithm classified more match-ups than the SVC algorithm because of 

its higher detection rate. For example, the OWT 4 detection rate of the SVC 

algorithm (33%) resulted in a reduction from 26 to 4 classified match-ups. On the 
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other hand, the OWT 4 detection rate of the RF algorithm (89%) resulted in a 

reduction from 26 to 8 match-ups classified. Indeed, the detection rate in the 

satellite images was significantly lower than that observed in situ. This significant 

reduction shows that the uncertainty in Rrs estimate from satellite data is a crucial 

factor for classifying the OWTs.  

 

Table 5.6 - Performance of the classifications models for each OWT in the satellite and 
in situ match-ups. 

   
OWTs 

Sensor 

Classification 

Model 

  

1  2  4  5  6  7  8  9 

MSI 

SVC 

Precision  -  -  0.8  1  -  -  0.8  0 

Recall  -  -  1  1  -  -  0.8  0 

Targets 

classified 
 0  -  4  2  -  -  5  1 

                  

RF 

Precision  -  -  0.75  1  -  -  0.83  0 

Recall  -  -  1  1  -  -  0.83  0 

Targets 

classified 
 0  -  3  2  -  -  6  1 

  n  2  -  8  6  -  -  7  1 

                   

OLI 

SVC 

Precision  1  1  1  1  0.44  -  1  - 

Recall  1  1  0.75  0.43  1  -  1  - 

Targets 

classified 
 1  1  4  7  4  -  9  - 

                  

RF 

Precision  1  0.33  1  0.8  0.33  -  1  - 

Recall  0.33  0.5  0.5  0.4  1  -  1  - 

Targets 

classified 
 3  2  8  10  5  -  13  - 

  n  4  4  26  12  7  -  22  - 

                   

ETM+ 

SVC 

Precision  1  0  0  -  0  -  0.86  1 

Recall  1  0  0  -  -  -  0.86  1 

Targets 

classified 
 1  1  3  -  -  -  7  1 

                  

RF 

Precision  -  0  0  -  0  -  0.89  1 

Recall  -  0  0  -  -  -  0.89  1 

Targets 

classified 
 0  1  3  -  -  -  9  1 

  n  7  2  4  -  -  -  15  1 

Source: The author. 
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Regarding OLI match-ups classified, SVC and RF algorithms had a poor 

performance for classifying OWTs 4, 5, and 6. The poor performance resulted 

from a large number of  OWTs 4 and 5 match-ups that were classified as OWT 

6. The reason why OWTs 4 and 5 were estimated as OWT 6 is the Rrs(B5oli) 

overestimation in the satellite images. The Rrs(B5oli) is one of the bands with the 

highest difference in OWTs 4 and 5 to 6, with OWT 6 having the highest values. 

With Rrs(B5oli) overestimated in the satellite images, the Rrs magnitude increased 

and modified the classification to OWT 6. Thus, the Rrs(B5oli) overestimation has 

been an essential factor in the lower OWT 6 Precision and Lower OWT 4 and 5 

Recall. 

The 29 match-ups of Landsat-7 ETM+ comprised the OWTs 1, 2, 4, 8, and 9, 

where SVC and RF algorithms classified 13 and 14, respectively. Considering the 

number of match-ups that were classified, the ETM+ SVC and RF algorithms 

showed unsatisfactory performance. The SVC and RF algorithms correctly 

classified 8 and 9 match-ups, respectively. However, most correct classifications 

were biased by OWT 8, which corresponds to the majority of samples, while other 

OWTs showed Precision and Recall equal 0. 

As mentioned in section 5.2.4, the main issue of the satellite and in situ match-

ups is that it does not represent all OWTs. For this reason, the satellite uncertainty 

was simulated in the in situ data for all OWTs, and the classification performance 

in satellite images could be simulated (see section 5.2.4). 

Using the in situ data with simulated uncertainties (Table 5.7), the MSI SVC 

algorithm exhibited a Recall ranging from 0.61 to 0.99 and Precision ranging from 

0.44 to 0.98, while the MSI RF algorithms showed a Recall varying from 0.4 to 1 

and a Precision varying from 0.41 to 1. The detection rates of MSI SVC ranged 

from 52% to 96%, while the detection rate of MSI RF varied from 35 to 88%. The 

OWT 4 exhibited the lowest Precision for SVC and RF algorithm, while the lowest 

Recall was in the OWT 7 and OWT 4 for SVC and RF, respectively. Similar to the 

in situ results, the lower detection rate occurred in OWTs 4, 5, and 6. Compared 

to the MSI RF, MSI SVC exhibited a higher detection with similar accuracy.  
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Table 5.7 - Performance of the classifications models for each OWT using the in situ 
simulated sensors with uncertainty estimated from the satellite and in situ 
match-ups. 

   
OWTs 

Sensor 

Classification 

Model 

  

1  2  4  5  6  7  8  9 

MSI 

SVC 

Precision  0.98  0.81  0.44  0.87  0.92  0.79  0.96  0.84 

Recall  0.99  0.89  0.77  0.76  0.97  0.61  0.73  0.9 

Detection 

rate (%) 
 96  83  67  52  87  80  81  84 

                  

RF 

Precision  0.99  0.86  0.42  0.93  1  0.91  0.87  0.86 

Recall  1  0.84  0.4  0.91  1  0.94  0.87  0.98 

Detection 

rate (%) 
 88  35  35  35  77  40  63  92 

                   

OLI 

SVC 

Precision  0.93  0.53  0.17  0.32  0.2  0.28  0.84  0.72 

Recall  0.8  0.26  0.25  0.51  0.91  0.6  0.68  0.36 

Detection 

rate (%) 
 77  65  64  70  96  74  77  74 

                  

RF 

Precision  0.89  0.54  0.17  0.28  0.28  0.32  0.78  0.87 

Recall  0.92  0.19  0.18  0.33  0.88  0.68  0.81  0.64 

Detection 

rate (%) 
 82  60  63  57  86  57  75  84 

                   

ETM+ 

SVC 

Precision  0.65  0.39  0.08  0.06  0.04  0.13  0.79  0.15 

Recall  0.46  0.13  0.02  0.1  0.92  0.23  0.27  0.04 

Detection 

rate (%) 
 93  88  92  95  98  95  88  92 

                  

RF 

Precision  0.82  0.39  0.12  0.05  0.08  0.14  0.75  0.58 

Recall  0.75  0.13  0.04  0.02  0.93  0.15  0.6  0.25 

Detection 

rate (%) 
 36  41  56  60  83  41  65  80 

n  19  23  9  4  2  5  31  4 

Source: The author. 

 

Regarding the OLI sensor performance with simulated uncertainties, the SVC 

and RF algorithms presented the same misclassifications observed in the satellite 

classification, where OWTs 4 and 5 were classified as OWT 6. Furthermore, the 

poor accuracy of OWTs 2 and 4 was also related to the overlap between them in 

the OLI bands. Regarding the OWTs 7 and 9 that had no match-ups, the results 

were unsatisfactory, with Precision varying from 0.28 to 0.87, and Recall from 

0.36 to 0.68. 
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The performance of ETM+ algorithms was generally poor, where ETM+ SVC 

Precision and Recall varied from 0.04 to 0.65 and from 0.02 to 0.92, respectively, 

while the ETM+ RF Precision and Recall varied from 0.05 to 0.82 and from 0.02 

to 0.93, respectively. Analogous to the OLI algorithms, the ETM+ classifications 

wrongly classified the OWTs 4 and 5 as OWT 6 due to the Rrs(B4etm+) 

overestimation. The unsatisfactory performance of ETM+ classifications may be 

due to the high Rrs(B4etm+) overestimation with a mean bias of 215%. 

Compared to Lobo et al., (2012) and Uudeberg et al., (2019), we also found that 

uncertainties of Rrs estimation in satellite images have a more significant role in 

the OWT classification accuracy. A notable example is a misclassification in 

classifying OWTs 4 and 5 as OWT 6 using the OLI sensor due to the Rrs(B5oli) 

overestimation. Moreover, even for MSI classification which has the lowest bias 

between in situ and satellite Rrs(Bmsi), there is a significant drop in the 

classification accuracy. For example, the in situ MSI RF Precision of all OWTs 

was 1; further, with the satellite uncertainty added to in situ data, the Precision 

reduced to 0.42 in OWT 4 and 0.86 in OWT 9. This is an essential issue since 

OWTs has been used for detecting abrupt changes or boosting bio-optical 

algorithms. However, many of those studies relying on OWTs have no dealt with 

OWT classification accuracy in satellite images (D’ALIMONTE et al., 2003; 

ELEVELD et al., 2017; MOORE et al., 2014; SUN et al., 2014; VANTREPOTTE 

et al., 2012). 

 

5.3.2.3 Image analyses of OWTs 

The Sentinel-2 MSI and Landsat- OLI algorithms were evaluated in simultaneous 

images of the Funil reservoir (Figure 5.6), Curuai lake (Figure 5.7), and in the 

lower Amazon basin (Figure 5.8). Landsat-7 ETM+ was excluded from this 

analysis due to its poor performance exposed in the previous section; thus, the 

focus was to compare daily match-ups of Sentinel-2 MSI and Landsat-8 OLI 

images. 

The OWTs detected in the Funil reservoir were OWT 1, 2, 5, and 6. All algorithms 

of MSI and OLI detected the OWT 1 in the south and east and the OWT 2 in the 
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farther west. Otherwise, the sensors and algorithms disagreed in estimating the 

OWTs 5 and 6. In the northwest region, the MSI SVC algorithms retrieved OWTs 

5 and 6; the MSI RF only retrieved OWT 6 and a considerable unclassified area; 

the OLI SVC and RF algorithms only retrieved OWT 6. 

 

Figure 5.6 - OWT classification in the Funil reservoir in 2019-08-10 

 

The a), b), and c) are the RGB (B4, B3, B2) image, SVC, and RF classifications of the 
MSI sensor, respectively. The d), e), and f) are the RGB (Red, Green, NIR) image, SVC, 
and RF classifications of OLI sensor, respectively. 

Source: The author. 

 

As previously shown in section 5.3.2.2, the detection rate of MSI SVC is 52% for 

OWT 5, while that of MSI RF is 33%. Since MSI RF has lower detection than that 

of the MSI SVC, MSI RF misclassify most of the areas (Table 5.8), which were 

classified as OWT 5 by the SVC. MSI SVC retrieved 3.68 km² of OWT 5 and 6.47 

km² of unclassified area, while MSI RF algorithm retrieved 0.45 km² of OWT 5 

and 11.83 km² of unclassified area. The low detection rate of MSI RF would 

undoubtedly lead to underestimation of OWT 5 in eutrophic reservoirs, where 

OWT 5 is likely to occur. Therefore, due to the low detection rate, MSI RF should 

not be employed in those environments. 

Using MSI SVC as a reference of OWT 5 and OWT 6 classification, the impact of 

Rrs(B5oli) overestimation in the OLI classification can be demonstrated. The 

classifications using the OLI sensor retrieved OWT 6 the double in areas where 
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MSI SVC identified OWT 5. OLI classification estimated an area that 

approximately doubled the area of OWT6 predicted by  MSI SVC classification. 

Furthermore, MSI SVC estimated an OWT 5  area 600% to 2500% larger than 

that of OLI classification. This comparison exhibits how a low Precision of an 

OWT causes area overestimation, while lower Recall causes area 

underestimation. 

 

Figure 5.7 - OWT classification in the Curuai lake in 2018-08-01. 

 

The a), b), and c) are the RGB (B4, B3, B2) image, SVC, and RF classifications of the 
MSI sensor, respectively. The d), e), and f) are the RGB (Red, Green, NIR) image, SVC, 
and RF classifications of OLI sensor, respectively. 

Source: The author. 

 

The optical variability of Curuai lake contained OWTs 2, 4, 7, and 8. All algorithms 

classified the OWT 8 from west to east with similar coverage areas. In contrast, 

the remaining OWTs areas estimated were different depending on the algorithms 

or sensors. The MSI SVC and OLI RF algorithms classified OWT 2 in the south 

region, MSI RF unclassified it, and OLI SVC classified as OWT 4. MSI and OLI 

SVC algorithms classified OWT 7 northern area while the MSI and OLI RF 

algorithms assigned the pixels as unclassified. 

The higher detection rate of MSI SVC than MSI RF caused SVC to estimate more 

areas of OWTs 2, 4, and 7 in Curuai lake. The satellite detection rates of MSI 

SVC are 83%, 67%, and 80% for OWTs 2, 4, and 7, respectively, while the RF 
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detection rates are 35%,  35%, and 40%, respectively. Consequently, for OWTs 

2, 4, and 7, MSI SVC classification retrieved approximately 3100%, 500%, and 

700% more areas than those of MSI RF classification, respectively. This example 

also shows that a low detection rate reduces the estimated area of its respective 

OWT. 

 

Figure 5.8. OWT classification in the lower Amazon basin in 2017-09-04. 

 

The a), b), and c) are the RGB (B4, B3, B2) image, SVC, and RF classifications of the 
MSI sensor, respectively. The d), e), and f) are the RGB (Red, Green, NIR) image, SVC, 
and RF classifications of OLI sensor, respectively. 

Source: The author. 

 

The overlap between OWTs 2 and 4 in OLI bands led to a confusion between 

those OWTs in the south region of maps in the OLI classification, where OLI SVC 

estimated OWT 4 in the south while OLI RF estimated OWT 2. Regarding OWT 

7 estimation, its detection rate using OLI SVC was 77%, while that of the OLI RF 

was 57%., which resulted in the OLI SVC algorithm classifying OWT 7 in the 

northern area while the RF algorithm unclassified it. Consequently, OLI SVC 

estimated 41.11 km² of OWT 7 while OLI RF retrieved 1.01 km². 
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Table 5.8 - Total OWTs areas estimated in Funil Reservoir, Curuai Lake, and the Lower 
Amazon Basin. 

 OWTs Area (km²) 

Region Senso

r 

Algorith

m 

1 2 4 5 6 7 8 9 Unclassifie

d 

Funil 

Reservoi

r 

MSI 

SVC 9.38 2.17 - 3.6

8 

3.37 - - - 6.47 

RF 9.16 1.7 - 0.4

7 

2.06 - - - 11.83 

OLI 

SVC 8.37 1.57 - 0.5

1 

7.41 - - - 7.49 

RF 10.8

7 

1.85 - 0.1

4 

6.29 - - - 5.98 

Curuai 

Lake 

MSI 

SVC - 18.79 235.0

7 

- 33.8

6 

24.2

7 

489.97 - 459.68 

RF - 0.57 41.96 - 19.9

3 

1.44 555.04 - 642.67 

OLI 

SVC - 0.22 248.9

6 

- 67.1

8 

41.1

1 

517.36  400.84 

RF - 37.32 124.0

5 

- 48.7

1 

1.01 759.16 - 305.42 

Lower 

Amazon 

Basin 

MSI 

SVC - 200.8

2 

62.1 - 13.0

7 

0.49 887.17 305.4

2 

236.4 

RF - - 0.3 - 5.74 - 1024.2

9 

189.1

4 

486 

OLI 

SVC - 0.37 0.71 - 72.4

2 

0.6 1120.2

8 

2.37 516.53 

RF - 0.3 - - 26.7 - 1231.2

5 

82.74 372.26 

Source: The author. 

 

The OWTs detected in the lower Amazon basin were 2, 4, 6, 8, and 9. All 

algorithms of MSI and OLI detected OWT 8 in the Amazon river, Aramanaí lake, 

Pacoval lake, and Monte Alegre lake. The MSI SVC was the only algorithm that 

classified OWT 2 in the Tapajós River and OWT 4 in the northern part of Monte 

Alegre lake. The OWT 2 classification by MSI SVC algorithm reflected its higher 

detection rate (83%), while the MSI RF, OLI SVC, and OLI RF are 35%, 65%, 

and 60%, respectively. Regarding OWT 4, the MSI SVC detection rate is higher 

than that of RF, and it explains why MSI SVC classified 62.1 km² of OWT 4, while 

MSI RF classified as 0.3 km². Controversially, the OWT 4 detection rate of OLI 

algorithms was similar to the MSI SVC algorithm, but only the MSI SVC detected 

OWT 4. 

Regarding the remaining OWTs, the MSI SVC, MSI RF, and OLI RF algorithms 

classified OWT 9 in the Aramanaí, Pacoval, and Monte Alegre lakes. The 

computed areas of OWT 9 slightly differed in each algorithm by mixing with OWT 
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8. Since the MSI RF algorithm exhibited the best Precision and Recall for OWTs 

8 and 9, its OWT 8 and 9 areas were used as a reference. Thus, MSI SVC 

estimated 1.62 of OWT 9 area and  0.87 of OWT 8 area when compared to that 

retrieved from MSI RF classification, while OLI RF estimated 0.44 of OWT 9 area 

and  1.1 of OWT 8 area. 

Considering all study sites analyzed, MSI SVC provided the best estimates and 

is the most suitable algorithm for future monitoring of the OWTs. MSI SVC has 

satisfactory accuracy in satellite images (Table 5.6 and Table 5.7), allowing the 

detection of OWTs 1, 5, and 6 in eutrophic reservoirs, and OWTs 2, 4, 7, 8, and 

9 in the Amazon floodplain lakes. MSI RF fails to detect OWTs due to its low 

detection rate obtained in novelty detection. Moreover, the classification based 

on the OLI sensor failed to estimate OWTs related to algae bloom due to its R-

rs(B5oli) overestimation. 

 

5.4 Conclusion 

This study assessed the feasibility of detecting the Brazilian OWTs using remote 

sensing through Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+ sensors. 

The Sentinel-2 MSI is the best sensor for detecting the OWTs, while further 

employment of Landsat-8 OLI and Landsat-7 ETM+ for classifying the OWTs will 

require a better estimation of the of Rrs in the NIR. Thus, for further monitoring 

the OWTs, we recommend using the Sentinel-2 MSI sensor throughout the SVC 

classification algorithm. 

The method of classifying OWTs using remote sensing proposed here can 

support a series of applications: i) provide a preliminary study of a new 

environment, which can further support sampling designs for survey campaigns; 

ii) afford an anomaly detection method for abrupt changes caused by sediment 

loading or algae blooms; iii) support the development of bio-optical algorithms for 

specific OWTs; iv) create a census of the Brazilian inland waters and provide 

reliable data of the water status in a macroscale level. Thus, it could fill the spatial-

temporal gap of data in the Brazilian inland waters. 
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6 FINAL CONSIDERATIONS 

Monitoring OWTs of Brazilian water can be a reliable tool for monitoring water 

quality with broad spatial-temporal coverage. In this study, we have provided 

detailed information about: (1) if Kutser’s and Mobley’s deglint methods can be 

used in the same database for computing OWTs, (2) the Brazilian OWTs, and (3) 

how to detect those OWTs in satellite images. Thus, we could answer the 

following questions: 

• Can the Kutser’s and Mobley’s glint removal be used in the same dataset for 

computing OWT? 

No, the spectra samples can be assigned to different OWTs depending on the 

glint removal method instead of being a response from the OACs. For this reason, 

the OWTs was only based on Mobley’s method. 

 

• What are the Brazilian OWTs? 

There are eight OWTs identified in Brazilian waters used in this study: OWT 1 is 

transparent waters, OWT 2 is transparent waters with moderate CDOM and TSM; 

OWT 4, 5, and 6 are waters with algae blooms; OWT 7 is waters with the highest 

CDOM concentration; OWT 8 and 9 is turbid waters with high TSM concentration. 

However, this number of OWT may increase since the samples available are 

limited and do not cover the transition areas. In this case, the classification of 

Sentinel images using the OWTs may identify unclassified areas as key regions 

for sampling acquisition. 

 

• How to detect the Brazilian OWTs in satellite images? 

Our findings show that using Sentinel-2 MSI with the SVC algorithm is the best 

method for monitoring the OWTs in satellite images. Landsat-8 OLI and Landsat-

7 ETM+ are not capable of monitoring the OWTs due to the overestimation of 

NIR bands. 
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Considering all the answers showed above, we can confirm our hypothesis that 

OWTs can be used for satellite monitoring of Brazilian inland waters. 
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APPENDIX A - HOW THE ACCURACY CLASSIFICATION IMPROVES USING 

PROBABILITY ESTIMATES AND THE PROBABILITY THRESHOLDS FOR 

ALL CLASSIFICATION MODELS AND OWTS 

 

A.1 Probability thresholds 

Table A.1 – SVC and RF probability thresholds for the MSI, OLI, and ETM+ sensors. 
   OWTs 

Sensor 

Classification 

Model 

  

1  2  4  5  6  7  8  9 

MSI 

SVC 

Prob. 

Threshold 

(%) 

 59  53  59  57  37  33  60  5 

RF 

Prob. 

Threshold 

(%) 

 73  77  63  85  71  79  75  57 

OLI 

SVC 

Prob. 

Threshold 

(%) 

 57  79  65  57  21  11  60  60 

RF 

Prob. 

Threshold 

(%) 

 63  63  65  73  63  75  63  59 

ETM+ 

SVC 

Prob. 

Threshold 

(%) 

 43  73  67  23  13  23  79  51 

RF 

Prob. 

Threshold 

(%) 

 75  71  67  77  73  93  73  57 

Source: The author. 

 

A.2 Increasing accuracy using probability 

This section demonstrates how the accuracy of each class increases and the 

number of targets classified (n) reduces as the probability thresholds increase. 

Those estimates were done in the training dataset. 
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Figure A.1 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the MSI SVC algorithm. 

 

Source: The author. 
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Figure A.2 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the MSI RF algorithm. 

 

Source: The author. 
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Figure A.3 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the OLI SVC algorithm. 

 

Source: The author. 
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Figure A.4 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the OLI RF algorithm. 

 

Source: The author. 
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Figure A.5 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the ETM+ SVC algorithm. 

 

Source: The author. 
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Figure A.6 - How accuracy and number of targets detected (n) change as the probability 
threshold increases, for each OWT in the ETM+ RF algorithm. 

 

Source: The author. 

 

 


	COVER

	VERSUS

	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	CONTENTS
	1INTRODUCTION
	1.1 Hypothesis
	1.2 Objective

	2 THEORY
	2.1 Optically active constituents
	2.2 Optical properties of inland waters
	2.2.1 Inherent and apparent optical properties
	2.2.2 Optical properties of the OACs

	2.3 Optical classification of natural waters
	2.4 Classification algorithms
	2.4.1 Clustering algorithms
	2.4.2 Supervised algorithms


	3 INCONSISTENCIES BETWEEN KUTSER’S AND MOBLEY’S GLINT REMOVAL METHODS AND HOW THEY AFFECT ALGORITHM CALIBRATION AND SPECTRAL CLUSTERING: ASSESSMENT FOR INLAND WATERS1
	3.1 Introduction
	3.2 Methods
	3.2.1 Study area and sampling stations
	3.2.2 Radiometric measurements and deglint
	3.2.3 Limnological classification
	3.2.4 Estimation of Kutser and Mobley inconsistencies
	3.2.5 Algorithms calibration
	3.2.6 Spectral clustering

	3.3 Results and discussion
	3.3.1 The limnological and radiometric characteristics of limnological classes
	3.3.2 Inconsistencies between Kutser’s and Mobley’s deglint methods

	3.3.3 The effect of merging Kutser’s and Mobley’s methods in the algorithms 
calibration
	3.3.4 The effect of merging Kutser’s and Mobley’s methods in the spectral clustering

	3.4 Conclusion

	4 BRAZILIAN OPTICAL WATER TYPES2
	4.1 Introduction
	4.2 Material and methods
	4.2.1 Study area and survey campaigns
	4.2.2 AOPs, IOPs, and limnological measurements
	4.2.3 Establishment of the optical water types

	4.3 Results and discussion
	4.3.1 Clusters and adjustments to OWTs
	4.3.2 The OWTs
	4.3.3 The sources of OWTs
	4.3.4 The Brazilian OWTs from a global perspective

	4.4 Conclusion

	5 SATELLITE DETECTION OF BRAZILIAN OPTICAL WATER TYPES3
	5.1 Introduction
	5.2 Material and methods
	5.2.1 In situ radiometric data
	5.2.2 Satellite images
	5.2.3 Classification algorithms
	5.2.4 Accuracy assessment

	5.3 Results and discussion
	5.3.1 Classification using in situ data
	5.3.2 Classification using satellite images
	5.3.2.1 Atmospheric correction assessment
	5.3.2.2 In situ and satellite classification match-ups
	5.3.2.3 Image analyses of OWTs


	5.4 Conclusion

	6 FINAL CONSIDERATIONS
	REFERENCES
	APPENDIX A - HOW THE ACCURACY CLASSIFICATION IMPROVES USING 
PROBABILITY ESTIMATES AND THE PROBABILITY THRESHOLDS FORALL CLASSIFICATION MODELS AND OWTS



