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In this work, we obtain measurements of the Hubble constant in the context of modified gravity theories.
We set up our theoretical framework by considering viable cosmological fðRÞ and fðTÞ models, and we
analyzed them through the use of geometrical datasets obtained in a model-independent way, namely,
gravitationally lensed quasars with measured time delays, standard clocks from cosmic chronometers, and
standard candles from the Pantheon Supernovae Ia sample. We find H0 ¼ ð72.4� 1.4Þ km s−1 Mpc−1 and
H0 ¼ ð71.5� 1.3Þ km s−1 Mpc−1 for the fðRÞ and fðTÞ models, respectively. Our results represent 1.9%
and 1.8% measurements of the Hubble constant, which are fully consistent with the local estimate
of H0 by the Hubble Space Telescope. We do not find significant departures from general relativity,
as our study shows that the characteristic parameters of the extensions of gravity beyond general
relativity are compatible with the ΛCDM cosmology. Moreover, within the standard cosmological
framework, our full joint analysis suggests that it is possible to measure the dark energy equation of
state parameter at 1.2% accuracy, although we find no statistical evidence for deviations from the
cosmological constant case.

DOI: 10.1103/PhysRevD.101.103505

I. INTRODUCTION

Several astronomical observations predict that the
Universe is currently in an accelerated expansion phase
[1–3]. The theoretical modeling that explains such
evidence is certainly one of the biggest open problems
in contemporary physics and astronomy. Over the last
two decades, the Λ cold dark matter (ΛCDM) model has
been shown to explain with great precision the obser-
vations in the most different scales and cosmic dis-
tances. Due to this great success, such a scenario is
considered the standard cosmological model.
Nowadays, we have increasingly accurate measurements

of the cosmological parameters that challenge the con-
sensus on the ΛCDMmodel. Certainly, the most significant
tension with the standard model provision is the observed
value of the present cosmic expansion rate, quantified by
the Hubble constant, H0. Analyses of the cosmic micro-
wave background (CMB) observations by the Planck
collaboration, assuming the ΛCDM baseline as input
scenario, obtained H0 ¼ ð67.4� 0.5Þ km s−1Mpc−1 [4].
On the other hand, model-independent local measurements

by the Hubble Space Telescope (HST) showed that
H0 ¼ ð74.03� 1.42Þ km s−1Mpc−1 [5], which is in 4.4σ
tension with Planck’s estimate. Moreover, the H0LiCOW
Collaboration has revealed its measurement of H0 from its
blind (i.e., model-independent) analysis of gravitationally
lensed quasars with measured time delays, showing H0 ¼
ð73.3þ1.7

−1.8Þ km s−1Mpc−1 [6]. This value is in 3.1σ tension
with the Planck CMB data, increasing to 5.3σ when
combined with the HST result. Obviously, such a large
discrepancy in theH0 measurements has led to examine the
model dependency of the CMB data or possible under-
estimated systematic effects in the analysis of the H0

parameter. Therefore, it has been widely discussed in the
literature whether a new physics beyond the standard
cosmological model can solve the H0 tension (see
Refs. [7–19] for a short list).
Extensions of General Relativity (GR) have been pro-

posed (see Refs. [20–23] for a review) and exhaustively
investigated to explain the observational data at both
cosmological and astrophysical levels. The additional
gravitational degree(s) of freedom from the modified
gravity models quantify extensions of the ΛCDM cosmol-
ogy and can drive the accelerating expansion of the
Universe at late times. Several of these extensions have
shown to fit the data well, leading to a possible theoretical
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degeneracy.1 Among viable candidates for modified gravity
theories, two classes of theories have been well accepted
and investigated in literature, namely, the fðRÞ gravity and
fðTÞ gravity. The fðRÞ scenarios are gravitational mod-
ifications that add higher-order corrections to the Einstein-
Hilbert action, extending the Ricci scalar R to an arbitrary
function fðRÞ. We refer to Ref. [29] for a review on the
fðRÞ gravity. The fðRÞ gravity has been tested against
several different data, and some viable fðRÞ models
have been constrained at different cosmological scales
[30–39]. However, one can equally construct the gravita-
tional modifications starting from the torsion-based for-
mulation, and specifically from the Teleparallel Equivalent
of General Relativity (TEGR) [40]. In this theory, the
Lagrangian is the torsion scalar T, and its simplest
generalization is represented by the fðTÞ gravity (see
Ref. [41] for a review). Also, the fðTÞ theories have been
shown to be a strong and viable modified gravity candidate
alternative to GR [42–52].
The main aim of this work is to the use the gravitation-

ally lensed quasars with measured time delays compiled by
the H0LiCOW Collaboration to obtain new observational
constraints on both fðRÞ gravity and fðTÞ viable models. In
particular, these frameworks have proven to be important
for measuring H0 parameter with excellent accuracy, as we
shall discuss in the following. Hence, it is interesting to
check whether alternative gravitational models could pro-
vide an explanation to the standing H0 tension. To do that,
we will complement the time-delay distance data with other
geometrical probes such as standard candles from type Ia
Supernovae (SN Ia) and standard clocks from cosmic
chronometers, which are obtained without assuming a
cosmological model. Employing these data, we will be
able to obtain accurate estimates of the free parameters of
the theories, especially the H0 parameter, and check the
feasibility of the models. For the quantitative discussion,
we will also analyze theΛCDM and wCDMmodels in light
of the these data, and, through a statistical Bayesian
comparison, we will interpret the evidence for all the
models beyond the ΛCDM scenario under consideration.
The manuscript is organized as follows. In Sec. II, we

provide a brief description of the cosmological dynamics of
the fðRÞ and fðTÞ gravity theories. In Sec. III, we present
the datasets and our methodology to analyze them, whereas
in Sec. IV, we present our main results. In Sec. V, we
statistically compare the predictions of the different theo-
retical scenarios, and finally, in Sec. VI, we summarize our
conclusions and indicate the perspectives of our work.
Throughout the text, we use units such that c ¼ ℏ ¼ 1,

and the notation κ ≡ 8πG ¼ M−2
P , whereMP is the reduced

Planck mass and G is the gravitational constant. As usual,
the symbol dot indicates derivative with respect to the
cosmic time, and a subscript zero refers to any quantity
evaluated at the present time.

II. THEORETICAL FRAMEWORK

In what follows, we describe in a nutshell the theoretical
framework of our study.

A. f ðRÞ gravity
We start with a brief review of the fðRÞ cosmology.

The fðRÞ gravitational theories consist in extending the
Einstein-Hilbert action in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
P

2
fðRÞ þ Sm; ð1Þ

where g is the determinant of the metric tensor, fðRÞ is a
generic function of the Ricci scalar, and Sm is the action of
matter fields. For fðRÞ ¼ R, the GR case is recovered.
Let us now consider a spatially flat Friedmann–Lemaître–

Robertson–Walker (FLRW) Universe dominated by pres-
sureless matter (baryonic plus dark matter) and radiation
with energy densities ρm, ρr and pressures Pm, Pr, respec-
tively. The modified Friedmann equations in the metric
formalism are given by [29]

3FH2 ¼ 8πGðρm þ ρrÞ; ð2Þ

−2F _H ¼ 8πGðρm þ ρr þ PrÞ þ F̈ −H _F; ð3Þ

where F≡ ∂f
∂R. Moreover, one obtains the following useful

relation:

R ¼ 6ð2H2 þ _HÞ: ð4Þ

In order to move on, we need to specify some fðRÞ
function. Adopting the formalism presented in Refs. [53,54],
one can write

fðRÞ ¼ R − 2ΛyðR; bÞ; ð5Þ

where the function yðR; bÞ quantifies the deviation from
Einstein’s gravity, i.e., the effect of the fðRÞ modification,
through the parameter b.
We thus consider viable models that have up to two

parameters, where the fðRÞ function is given by Eq. (5).
This methodology has been used earlier to investigate the
observational constraints on fðRÞ gravity in Refs. [53,54].
In this respect, one of the most well-known scenarios in the
modified gravity theory literature is the Hu-Sawicki (HS)
model [55], which satisfies all the dynamics conditions
required for a given fðRÞ function. The function yðR; bÞ for
the HS model reads

1It has been argued and explored that information from
gravitational wave (GW) observations, in particular measures
on the propagation speed of GWs, can strongly discriminate
among possible extensions of GR. See Refs. [24–28] for
discussions in this regard.
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yðR; bÞ ¼ 1 −
1

1þ ð R
ΛbÞn

; ð6Þ

where b > 0 and we assume n ¼ 1. We refer to
Refs. [53,54] for more details.

B. f ðTÞ gravity
Inspired by the fðRÞ extensions of GR, we can general-

ize T to a function T þ fðTÞ, constructing the action of
fðTÞ gravity as [56]

S ¼ 1

16πG

Z
d4x e½T þ fðTÞ� þ Sm; ð7Þ

with e ¼ detðeAμ Þ ¼ ffiffiffiffiffiffi−gp 2 and where Sm is the action for
matter fields. We note that the TEGR is restored when
fðTÞ ¼ 0, whereas, for fðTÞ ¼ const, we recover GR with
a cosmological constant, i.e., the ΛCDM model. In the
action above, the torsion scalar T is constructed by
contractions of the torsion tensor Tρμν as [57]

T ≡ 1

4
TρμνTρμν þ

1

2
TρμνTνμρ − Tρμ

ρTνμ
ν: ð8Þ

Variation of the action (7) with respect to the vierbeins
provides the field equations,

e−1∂μðeeρASρμνÞ½1þ fT � þ eρASρ
μν∂μðTÞfTT

− ½1þ fT �eλATρ
μλSρνμ þ

1

4
eνA½T þ fðTÞ�

¼ 4πGeρA½T ðmÞ
ρ
ν þ T ðrÞ

ρ
ν�; ð9Þ

where fT ≡ ∂f=∂T, fTT ≡ ∂2f=∂T2, while T ðmÞ
ρ
ν and

T ðrÞ
ρ
ν are the matter and radiation energy-momentum

tensors, respectively.
We then focus on homogeneous and isotropic space-

time. Thus, the flat FLRW background metric corresponds
to the following choice for the vierbiens,

eAμ ¼ diagð1; a; a; aÞ; ð10Þ

where a is the cosmic scale factor. Inserting the vierbein
(10) into the field equations (9), we obtain the Friedmann
equations,

H2 ¼ 8πG
3

ðρm þ ρrÞ −
f
6
þ TfT

3
; ð11Þ

_H ¼ −
4πGðρm þ Pm þ ρr þ PrÞ

1þ fT þ 2TfTT
; ð12Þ

where H ≡ _a=a is the Hubble parameter. In the above
relations, we have used the relation

T ¼ −6H2; ð13Þ

which arises straightforwardly from the FLRW metric
through Eq. (8).
Defining the quantity E≡H=H0, one can thus rewrite

Eq. (11) as

E2ðz;rÞ¼Ωm0ð1þ zÞ3þΩr0ð1þ zÞ4þΩF0yðz;rÞ; ð14Þ

where we have introduced the redshift z≡ a−1 − 1 and

ΩF0 ¼ 1 −Ωm0 −Ωr0; ð15Þ

with Ωi0 ¼ 8πGρi0
3H2

0

being the corresponding density param-

eters at present. In this case, the effect of the fðTÞ
modification is encoded in the function yðz; rÞ (normalized
to unity at present time), which depends on Ωm0;Ωr0, and
the fðTÞ-form parameters r1; r2;…, namely [58,59],

yðz; rÞ ¼ 1

T0ΩF0
½f − 2TfT �: ð16Þ

We note that, due to (13), the additional term (16) is a
function of the Hubble parameter only.
In this work, we consider the parametric form given by

the power-law model [60]

fðTÞ ¼ αð−TÞb; ð17Þ

where α and b are the free parameters of the model.
Inserting this fðTÞ form into the Friedmann equation (11)
evaluated at present, we find

α ¼ ð6H2
0Þ1−b

ΩF0

2b − 1
; ð18Þ

while (16) yields

yðz; bÞ ¼ E2bðz; bÞ: ð19Þ

Clearly, for b ¼ 0, the present scenario reduces to the
ΛCDM cosmology. Finally, we mention that one needs
b < 1 in order to obtain an accelerating expansion. We refer
to Refs. [58,59] for more details.

III. DATASETS AND METHODOLOGY

Here, we briefly describe the observational datasets
and the statistical methods that we use to explore the
parameter space of the modified background dynamics
presented above.

2We use the vierbein fields eμA, which form an orthonormal
base on the tangent space at each manifold point xμ. The metric
then reads gμν ¼ ηABeAμeBν .
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A. H0LiCOW

A powerful geometric method to measure H0 is offered
by the gravitational lensing. The time delay between
multiple images, produced by a massive object (lens)
and the gravitational potential between a light-emitting
source and an observer, can be measured by looking for
flux variations that correspond to the same source event.
This time delay depends on the mass distribution along the
line of sight and in the lensing object, and it represents a
complementary and independent approach with respect to
the CMB and the distance ladder. Due to their variability
and brightness, lensed quasars have been widely used to
determine H0 through this method (see Refs. [61–63] and
references therein). One can calculate the time delay
between two images i and j as

Δtij ¼DΔt

�ðθi−βÞ2
2

−ψðθiÞ−
ðθj−βÞ2

2
þψðθjÞ

�
; ð20Þ

where θi;j are the angular positions of the images, β is the
angular position of the source, and ψðθi;jÞ is the lens
potentials at the image positions. Here, DΔt is the “time-
delay distance,” which is given by [64]

DΔt ¼ ð1þ zlÞ
DlDs

Dls
; ð21Þ

where zl is the redshift of the lens, whileDl,Ds, andDls are
the angular diameter distances to the lens, to the source, and
between the lens and the source, respectively. The quantity
DΔt is highly sensitive to H0, with a weak dependence on
other cosmological parameters.
In the present work, we use the six systems of strongly

lensed quasars analyzed by the H0LiCOW Collaboration
(we refer to Ref. [6] for the details). The likelihood
probability function for the DΔt data points reads

LH0LiCOW ∝ exp

�
−
1

2

X6
i¼1

�
Dobs

Δt;i −Dth
Δt;i

σDΔt;i

�2�
: ð22Þ

B. Pantheon

We also take into account the Pantheon sample [65] of
1048 SN Ia in the redshift region z ∈ ½0.01; 2.3�, whose
distance moduli are standardized through the SALT-2 light-
curve fitter (see Refs. [66,67] for details). As shown in
Ref. [68], under the only assumption of a flat Universe,
the full Pantheon catalog can be compressed into six
model-independent E−1ðzÞ measurements. Therefore, con-
sistently with our theoretical framework assumptions, we
use in our analysis these measurements correlated among
them according to the covariance matrix Cij given in
Ref. [68]. If, from the one hand, SN data by themselves
are not able to constrain the value of H0, as this results in

being degenerate with the SN absolute magnitude, on the
other hand, such a degeneration can be overcome in
combination with other cosmological probes, allowing us
to obtain tight constraints on the whole set of cosmological
parameters underlying a given theoretical scenario.
In the case of the EðzÞ−1 measurements, the likelihood

probability function can be written as

LPantheon ∝ exp

�
−
1

2
VTC−1

ij V

�
; ð23Þ

where V ¼ E−1
obs − E−1

th measures the differences between
the observed values and the theoretical expectations.

C. Cosmic chronometers

The late expansion history of the Universe can be studied
in a model-independent fashion by measuring the age
difference of cosmic chronometers (CC), such as old and
passively evolving galaxies that act as standard clocks
[69,70]. From the spectroscopic measurements of the
redshifts between pairs of these galaxies and their differ-
ential age, one can obtain an estimate of the Hubble
parameter through the relation

HðzÞ ¼ −
1

1þ z
dz
dt

: ð24Þ

In our analysis, we consider the 31 uncorrelated mea-
surements ofHðzÞ in the redshift range 0 < z < 2 tabulated
in Ref. [71]. Confronting these values with the correspond-
ing Hubble expansion rates predicted by the theoretical
scenarios, one can construct the likelihood function as

LCC ∝ exp

�
−
1

2

X31
i¼1

�
Hobs

i −Hth
i

σH;i

�
2
�
: ð25Þ

D. Monte Carlo method

We perform a statistical analysis of the datasets presented
above through a Markov chain Monte Carlo (MCMC)
method, based on the Metropolis-Hastings algorithm [72].
Specifically, we analyze the HS fðRÞ model and the fðTÞ
power-law model by assuming the following flat priors on
the cosmological parameters:H0 ∈ ½50; 90� km s−1 Mpc−1,
Ωm0 ∈ ½0; 1� and b ∈ ½0; 1�. In our study, we neglect the
late-time contribution of radiation ðΩr0 ≈ 0Þ. Moreover, for
comparison, we also consider the standard ΛCDM model
and its one-parameter extension, namely, the wCDM
model, characterized by a constant equation of state
parameter for the dark energy fluid (w). In this case, we
assume the flat prior w ∈ ½−2.0;−0.3�.
Our analysis consists in two steps. We first combine the

Pantheonþ CC data to constrain the cosmological param-
eters of the theoretical scenarios under consideration, and

ROCCO D’AGOSTINO and RAFAEL C. NUNES PHYS. REV. D 101, 103505 (2020)

103505-4



we then compare these results with the outcomes of the full
joint likelihood analysis3 (Pantheonþ CCþ H0LiCOW),
to check the effects of the time-delay quasars measurements
on the H0 value. Taken individually, the Pantheon and CC
data will weakly constrain the full parametric space of the
models, especially H0, making this parameter degenerate.
These data are not in tension with each other. Thus, we shall
consider CC in specific combinations with Pantheon and
H0LiCOW.
In this work, we choose not to use baryon acoustic

oscillations (BAO) data and CMB distance priors, as our
main focus lies on late-time cosmology, and to avoid any
possible physical bias (some input fiducial cosmology)
toward the standard model. It is worth reminding the reader
that the most common BAO measurements considered in
the literature are obtained adopting a fiducial cosmology,
usually fixed to GRþ Λ, although efforts have being made
to analyze BAO data in some model-independent way [73–
75]. The BAO data are usually used in joint analyses to
break a given degeneracy in the parametric space. We note
that the minimal combination CCþ Pantheon and CCþ
H0LiCOW are enough to obtain reasonably accurate
constraints on our parameters baseline. With regard to
distance priors from the CMB compressed likelihood,
these data are as well model dependent, as the CMB shift
parameter, around some fiducial model, usually the ΛCDM
cosmology.4 On the other hand, as also argued in Ref. [78],
the CMB distance priors data should not be used for models
with low sound speed or modifications of gravity.
We present our main results in what follows.

IV. RESULTS

In this section, we present our main results on the
cosmological scenarios previously introduced, using differ-
ent data combinations. We note that, in principle, one could

choose other parametric fðRÞ and fðTÞ functions, but
significant differences among parametric models should
only have impact when analyzed at the perturbation level.
Since the data analyzed here are all from geometrical
origin, different functions should in fact not change the
main results on the modified gravity scenarios. Therefore,
without loss of generality, we focus on the most viable and
studied models in the literature, which have been described
in the previous sections, taking into account only geomet-
rical datasets obtained in a model-independent way at low
z. As we shall see, the new constraints obtained here are
competitive in precision on the full parametric baseline of
the models under consideration. Also, to our knowledge,
this is the first study in which the H0LiCOW data
compilation is used to analyze the modified gravity
scenarios described above.
In Table I, we summarize the main results from

the statistical analyses of the fðRÞ gravity and fðTÞ
gravity models. For comparison, in Table II, we also
show the results concerning the ΛCDM and wCDM
models. For the fðRÞ gravity, we find H0¼ð69.5�
2.0Þkms−1Mpc−1, H0 ¼ ð75.2þ2.4

−3.7Þ km s−1 Mpc−1, and
H0 ¼ ð72.4 � 1.4Þ km s−1 Mpc−1 at the 68% confidence
level (C.L.) from CCþPantheon, CCþH0LiCOW, and
PantheonþCCþH0LiCOW data, respectively. These
estimates represent ∼2.8% (CCþ Pantheon), ∼4% (CCþ
H0LiCOW), and ∼1.9% (CCþ Pantheonþ H0LiCOW)
precisionmeasurements. Although all theH0 measurements
are compatiblewith each other, we can see how the Pantheon
data influence the results. Combining Pantheon together
with CC data tends to generate lower H0 values (compared
to CCþ H0LiCOW estimates). Since it is expected that the
constraints fromH0LiCOWprovide high bounds onH0, the
inclusion of Pantheon data will reduce the upper boundary
onH0 as well as provide strong restrictions onΩm0.

5 As the
parametric space ðΩm0 −H0Þ is anticorrelated, the joint
analysis without Pantheon data, i.e., CCþ H0LiCOW, will

TABLE I. 68% (95%) C.L. constraints on the Hu-Sawicki fðRÞ model and the fðTÞ power-law model from different combinations of
data. H0 is measured in units of km s−1 Mpc−1.

Model Data H0 Ωm0 b

fðRÞ
CCþ Pantheon 69.5� 2.0ð3.9Þ 0.289þ0.025ð0.053Þ

−0.028ð0.048Þ 0.32þ0.17ð0.45Þ
−0.25ð0.32Þ

CCþ H0LiCOW 75.2þ2.4ð7.2Þ
−3.7ð5.8Þ 0.218þ0.045ð0.086Þ

−0.046ð0.090Þ 0.37þ0.22ð0.54Þ
−0.32ð0.37Þ

CCþ Pantheonþ H0LiCOW 72.4þ1.4ð2.8Þ
−1.4ð2.7Þ 0.267þ0.023ð0.045Þ

−0.023ð0.042Þ 0.19þ0.10ð0.29Þ
−0.16ð0.19Þ

fðTÞ
CCþ Pantheon 69.1þ1.9ð3.8Þ

−1.9ð3.7Þ 0.251þ0.050ð0.084Þ
−0.040ð0.094Þ 0.30þ0.16ð0.49Þ

−0.27ð0.30Þ
CCþ H0LiCOW 71.8� 1.5ð3.0Þ 0.228þ0.039ð0.077Þ

−0.039ð0.074Þ 0.34þ0.21ð0.56Þ
−0.34ð0.34Þ

CCþ Pantheonþ H0LiCOW 71.5þ1.3ð2.6Þ
−1.3ð2.5Þ 0.233þ0.044ð0.072Þ

−0.033ð0.083Þ 0.27þ0.16ð0.49Þ
−0.27ð0.27Þ

3The full joint likelihood is obtained as the product of the
individual likelihoods: Ljoint ¼ LPantheon × LCC × LH0LiCOW.

4See Ref. [76] for a recent release from the Planck Collabo-
ration and also Ref. [77] for a discussion on model dependence in
CMB distance priors.

5Constraints from Pantheon data tends to keep the total matter
density around Ωm0 ∼ 0.30 [68].
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generate a lower Ωm value, while H0 tends to have a higher
value. Therefore, the influence of the Pantheon data in our
joint analysis reflects in bounding Ωm0 toward ∼0.30 and
improving the upper limits in H0 toward lower value with
respect to the predictions ofH0LiCOWdata. The parametric
space ðΩm0 −H0Þ in the left panel of Fig. 1 summarizes this
information.
The local measurement obtained by Riess et al. [5]

from observations of long-period Cepheids in the
Large Magellanic Cloud (LMC) is H0 ¼ ð74.03�
1.42Þ km s−1Mpc−1. Thus, the result of our full joint
analysis is in full agreement with the local measurement
of H0, and in tension at 3.4σ with the most recent CMB
estimate from Planck [4]. Regarding possible deviations
from the standard cosmological model, we find the
upper limits b < 0.77; < 0.90, and < 0.48 at the 95% C.L.

from CCþ Pantheon, CCþ H0LiCOW, and CCþ
Pantheonþ H0LiCOW, respectively. Therefore, our full
joint analysis produces a significant improvement in the
constraints of the additional parameter of the theory that
quantifies deviations from theΛCDMcosmology. In the left
panel of Fig. 1, we show the parameter space of the fðRÞ
model at the 68%and95%C.L. In particular, focusing on the
ðb −H0Þ plane, we can see that these parameters are not
strongly correlated. Similar considerations apply also to the
ðb − Ωm0Þ plane.
As far as the fðTÞ gravity is concerned, at the 68% C.L.,

we find H0 ¼ ð69.1� 1.9Þ km s−1 Mpc−1, H0 ¼ ð71.8�
1.5Þ km s−1Mpc−1, and H0 ¼ ð71.5� 1.3Þ km s−1Mpc−1
from CCþ Pantheon, CCþ H0LiCOW, and CCþ
Pantheonþ H0LiCOW, which represent ∼2.7%, ∼2%,
and ∼1.8% precision estimates, respectively. The result

TABLE II. 68% (95%) C.L. constraints on the ΛCDM and wCDM models from different combinations of data. H0 is measured in
units of km s−1 Mpc−1.

Model Data H0 Ωm0 w

ΛCDM

CCþ Pantheon 69.2� 1.9ð3.7Þ 0.296þ0.026ð0.056Þ
−0.029ð0.051Þ

−1

CCþ H0LiCOW 72.3þ1.5ð2.9Þ
−1.5ð2.8Þ 0.256þ0.031ð0.067Þ

−0.034ð0.061Þ
−1

CCþ Pantheonþ H0LiCOW 71.8� 1.3ð2.5Þ 0.272þ0.021ð0.046Þ
−0.023ð0.043Þ

−1

wCDM

CCþ Pantheon 69.2þ2.0ð3.9Þ
−2.0ð3.8Þ 0.329þ0.045ð0.087Þ

−0.045ð0.094Þ −1.15þ0.18ð0.33Þ
−0.16ð0.35Þ

CCþ H0LiCOW 78.8þ3.5ð6.0Þ
−3.2ð6.7Þ 0.269þ0.028ð0.060Þ

−0.031ð0.054Þ −1.63þ0.20ð0.53Þ
−0.29ð0.45Þ

CCþ Pantheonþ H0LiCOW 72.2þ1.5ð2.9Þ
−1.5ð2.8Þ 0.289þ0.040ð0.073Þ

−0.035ð0.077Þ −1.09þ0.13ð0.26Þ
−0.13ð0.27Þ

FIG. 1. Two-dimensional parameter regions and one-dimensional posterior distributions for the Hu-Sawicki fðRÞ model (left panel)
and fðTÞ power-law model (right panel) as results of the MCMC analysis of different combinations of data.
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of our full joint analysis is almost 3σ away from the CMB
estimate. As also observed in fðRÞ gravity, within the fðTÞ
gravity framework, we note that b is fully compatible with
GR at a larger statistical significance. On the other hand, in
light of the joint analysis, the constraints on b and H0 are
not improved in the same efficient way as in fðRÞ gravity.
The right panel of Fig. 1 shows the parameter space of the
fðTÞ model at the 68% and 95% C.L. In this case, we can
see an anticorrelation in the plane ðb −Ωm0Þ and no
correlation in the plane ðH0 −Ωm0Þ. We also note less
(dark) matter density at late times with respect to the
amount predicted by the ΛCDM cosmology (cf. Table II).
This is due the fact that the effective dark energy induced
via fðTÞ gravity starts dominating the expansion of the
Universe earlier than what predicted by the cosmological
constant.6 More specifically, within the ΛCDM model, if
we assume a spatially flat Universe, i.e., the normalization
condition Ωm þΩΛ ¼ 1 at late times, we can write the
transition from deceleration to acceleration phases at a

transition redshift zt as zt ¼ ½2ð1−Ωm0Þ
Ωm0

�1=3 − 1. Assuming the
standard value Ωm0 ≈ 0.30, we have zt ≈ 0.67. For reason-
able values of the parameter b, this transition must happen
at zt ∼ 0.8 in fðTÞ gravity. Since, in fðTÞ gravity, more
effective dark energy density compared to Λ is predicted,
inducing a greater zt via the relationship Ωdark matter þ
Ωdark energy ¼ 1, we have less Ωm at late times. Also, we
note that the parametric space ðΩm0 −H0Þ is anticorrelated.
As the Universe expands faster in fðTÞ gravity, compared
to ΛCDM, this will generate a greater Hðz ¼ 0Þ value in
fðTÞ gravity, and due the anticorrelation with Ωm0, con-
sequently we will have less dark matter density at z ¼ 0.
Contrary to what happens in the case of fðRÞ gravity,
adding Pantheon to CCþ H0LiCOW data does not influ-
ence significantly the bounds of the full baseline param-
eters in fðTÞ gravity (see the right panel of Fig. 1).
We note that, in both modified gravity theories, there is a

shift in the value ofH0 when lensing is used with respect to
the case of only Pantheonþ CC. As argued in Ref. [6], the
time-delay distance is primarily sensitive to H0, although
there is a weak dependence on other parameters, and this
cosmographic test can improve the precision of the other
probes, demonstrating the strong complementarity. Since
analyzing all lenses in a flat ΛCDM cosmology leads
to H0 living in the range ð71.5–75.0Þ km s−1Mpc−1 at the
68% C.L., it is expected that, when combining H0LiCOW
with other cosmological probes not in tension with
H0LiCOW data, like Pantheonþ CC, the final joint analy-
sis will have natural shift in direction to highH0 values also
for models beyond the standard scenario, similarly to what
happens within the ΛCDM cosmology.
The H0LiCOW Collaboration [6] reported H0 ¼

73.6þ1.6
−1.8 km s−1Mpc−1 and H0 ¼ 74.9þ2.2

−2.4 km s−1Mpc−1

using Pantheonþ H0LiCOW data for the ΛCDM and
wCDM models, respectively. For a direct comparison,
we added the CC data in our analysis, and we note that
these constraints can be improved (see Table II). With
regard to the dark energy equation of state, we do not find
any significant deviations from w ¼ −1 from the CCþ
Pantheonþ H0LiCOW analysis, within which w is mea-
sured at 1.2% accuracy andH0 is measured at 2% accuracy.
In the CCþ H0LiCOW analysis, we note a predominance
for a phantom behavior at the 95% C.L. (see Fig. 2). This is
due to the characteristic of H0LiCOW data to prefer higher
H0 values and to the significant anticorrelation of the
parametric space w −H0. Including Pantheon data makes
Ωm0 constrained around 0.30 and also improves the bounds
on H0. We finally note that all the H0 measurements from
our full joint analysis, in all scenarios, are fully compatible
with each other.

V. BAYESIAN EVIDENCE

Here, we perform a statistical comparison of the different
cosmological models using the Bayesian evidence (see
Ref. [79] for a comprehensive review). The posterior
probability for a model M described by a set of parameters
θ, given the data D, is expressed as

PðθjD;MÞ ¼ PðDjθ;MÞPðθjMÞ
PðDjMÞ ; ð26Þ

where PðDjθ;MÞ corresponds to the likelihood distribution
and PðθjMÞ is the prior probability for θ, assuming the

FIG. 2. Two-dimensional parameter regions and one-dimen-
sional posterior distributions for the wCDM model as results of
the MCMC analysis of different combinations of data.

6See, for example, Fig. 1 in Ref. [59].
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model to hold true. The Bayesian evidence, i.e., the
probability of the data given the model, is obtained by
integrating Eq. (26) over θ:

PðDjMÞ ¼
Z

dθPðDjθ;MÞPðθjMÞ: ð27Þ

The comparison between twomodelsMi andMj is obtained
through the ratio of their evidences, Bij ≡ PðDjMiÞ=
PðDjMjÞ, known as the Bayes factor. This quantity can
be thought as the mathematical implementation of Occam’s
razor, as the average likelihood (predictability) of complex
models is lower compared to that of simpler models with a
fewer number of parameters. For our purposes, we can write
the Bayes factor as

Bij ≡ LðMiÞ
LðMjÞ

; ð28Þ

whereLðMiÞ is the probabilityPðDjMiÞ to obtain the dataD
if the model Mi is assumed to be true,

LðMiÞ ¼
Z

dθLiðθÞpðθjMiÞ; ð29Þ

whereLiðθÞ ¼ e−χ
2ðθÞ=2 is the likelihood for the parameter θ

and pðθjMiÞ is the prior probability for θ within the
model Mi.
Let us focus on the case of flat priors, as the ones

assumed in our MCMC analysis. Specifically, we consider
a cosmological model M, described by a set of parameters
θ≡ ðθ1;…; θNÞ, each of them assumed to lie in some range
½θn; θn þ Δθn�n¼1;…;N , with no further prior information.

Thus, pðθnjMiÞ ¼ 1=Δθn, and Eq. (29) can be simply
written as7

LðMÞ ¼
�YN

n¼1

1

Δθn

�Z
θnþΔθn

θn

YN
n¼1

dθne−χ
2ðθÞ=2: ð30Þ

Hence, using the above expression in Eq. (28), one can
calculate the Bayesian evidence for the model Mi against
the model Mj. In general, such a calculation may be
computationally demanding and time consuming in the
case of complex likelihoods, and this often requires the use
of semianalytical approximations (see, e.g., Ref. [80]). In
our case, however, the use of only geometrical data and the
few number of free parameters of the models simplify this
procedure, so that we were able to smoothly compute the
integral in Eq. (30) through the numerical routines in
Mathematica.

The interpretation of the Bayes factor is provided by
Jeffreys’s scale [81], which can be summarized as follows:
if 1 < Bij < 3, there is evidence in favor of the model Mi
over the model Mj, but it is worth only a bare mention;
when 3 < Bij < 20, the evidence against Mj is definite
although not strong; if 20 < Bij < 150, this evidence
becomes strong, and for Bij > 150, it is very strong. In
our notation, Mj refers to ΛCDM model, and Mi refers to
the extended scenarios.
However, very often, it is useful and convenient to

employ alternative methods based on information theory,
which represent fair approximations of the Bayesian
evidence under specific assumptions aimed at replacing
the different prior volumes with a penalty term taking into
account the model complexity.
In this respect, the most widely adopted approaches are

the Akaike information criterion (AIC) [82] and Bayesian
information criterion (BIC) [83]. The AIC is defined
through the relation

AIC≡ −2 lnLmax þ 2N ¼ χ2min þ 2N; ð31Þ

where Lmax is the maximum likelihood value and N is
the total number of free parameters in the model. The AIC
is derived from an approximate minimization of the
Kullback-Leibler divergence between the distribution fitted
to the data and true model distribution. For the statistical
comparison, the AIC difference between the model under
study and the reference model is calculated. This difference
in AIC values can be interpreted as the evidence in favor of
the model under study over the reference model. It has been
argued in Ref. [84] that one model can be preferred with
respect to another if the AIC difference between the two
models is greater than a threshold value Δthreshold. As a rule
of thumb, Δthreshold ¼ 5 can be considered the minimum
value to assert a strong support in favor of the model with a
smaller AIC value, regardless of the properties of the
models under comparison [85].
The BIC is defined as

BIC≡ −2 lnLmax þ N lnðkÞ ¼ χ2min þ N lnðkÞ; ð32Þ

which provides a more severe penalization against the
model with a larger number of free parameters, due to the
presence of the logarithm of the total number of data points
(k). The BIC is obtained from a Gaussian approximation of
the Bayesian evidence for a large sample size. The strength
of the evidence against the model with higher BIC value
can be summarized as follows: for 0 ≤ ΔBIC < 2, there is
not enough evidence; for 2 ≤ ΔBIC ≤ 6, there exists a
moderate evidence; for ΔBIC > 6, there is a strong
evidence.
Thus, we compare the fðRÞ model, the fðTÞ model, and

the wCDMmodel to the ΛCDM scenario, which we choose
to be the reference model, since it represents statistically

7We refer the reader to Ref. [80] for further details regarding
Gaussian and flat priors.
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the simplest cosmological model with the least number of
parameters. Table III summarizes our results for the Bayes
factor, as well as for the AIC and BIC, for different
cosmological models from our full joint analysis. Due to
a minimal number of free parameters, the ΛCDM cosmol-
ogy is the statistically preferred scenario to best fit the data,
whereas there is weak-to-moderate evidence against the
alternative scenarios. Thus, we found no significant support
for deviations from GR.

VI. CONCLUSIONS

Using geometric model-independent low and intermedi-
ate redshift data, we obtained measurements of the Hubble
constant in the context of modified background dynamics
beyond GR. At the same time, we found new constraints on
the free parameters of such theories. Particular attention
was given to cosmologically viable fðRÞ and fðTÞ gravity
models, for which we showed that H0 can be measured
with an accuracy of 1.9% and 1.8%, respectively. Including
the time-delays observations from strong gravitationally
lensed quasars in our Monte Carlo statistical analysis, our
results appear consistent with the local (direct) measure-
ment of H0 from the LMC Cepheid standards, while they

are ≳3σ in tension with the CMB estimate based on the
ΛCDM cosmology.
For comparison with previous results found in the

literature, when (quasi) model-independent data were used
in the context of modified gravity scenarios, H0 was
measured at ∼5.2% accuracy in fðRÞ gravity [54], and
at ∼2.4% and ∼2.6% accuracies in fðTÞ gravity in
Refs. [59] and [51], respectively. Furthermore, analyses
containing the full CMB likelihood (temperature, polari-
zation, and lensing) in the fðTÞ gravity context led to a
∼2.8% accuracy estimate of H0 [10]. It has also been
discussed that, in future analyses with information from
gravitational waves, it will be possible to measure H0 at
∼1% accuracy in fðRÞ gravity [37].
Although the free parameters of the theories analyzed

here are constrained in a precise and robust way, we found
no significant deviations from GR, and the dynamics of the
Universe is compatible with that of the ΛCDMmodel at the
background level.
Finally, it would be interesting to implement a cosmo-

graphic analysis of the time-delay quasars measurements
and obtain model-independent constraints on kinematic
parameters, using machine learning methods in order to
verify their compatibility with the predictions of a given
theoretical scenario.
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