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ABSTRACT
Asteroid families are groups of asteroids that are the product of collisions or of the rotational
fission of a parent object. These groups are mainly identified in proper elements or frequencies
domains. Because of robotic telescope surveys, the number of known asteroids has increased
from �10 000 in the early 1990s to more than 750 000 nowadays. Traditional approaches
for identifying new members of asteroid families, like the hierarchical clustering method
(HCM), may struggle to keep up with the growing rate of new discoveries. Here we used
machine learning classification algorithms to identify new family members based on the orbital
distribution in proper (a, e, sin (i)) of previously known family constituents. We compared the
outcome of nine classification algorithms from stand-alone and ensemble approaches. The
extremely randomized trees (ExtraTree) method had the highest precision, enabling to retrieve
up to 97 per cent of family members identified with standard HCM.

Key words: software: data analysis – celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

Asteroid families are groups of asteroids that form because of
collisions or the rotational failure of a parent body. The most
widely used method for identifying these groups is the hierarchical
clustering method (HCM) in the (a, e, sin (i)) proper element
domain, where a is the proper semimajor axis, e is the proper
eccentricity, and i the proper inclination. In this method, asteroids
are linked to a parent body if their distance in proper element
domains, defined through a metric, is less than a critical value,
called cutoff. If an asteroid is closer to the parent body than this
distance, it is added to the family list. The procedure is then repeated
with this asteroid as a new parent body, until no new family members
are identified.

This approach was introduced in the early 1990s of the last
century when the number of asteroids with proper elements was of
the order of �10 000 (Zappalá et al. 1990, 1995). Thanks to robotic
surveys such as Spacewatch and LINEAR, the number of asteroids
for which reliable proper elements are available is nowadays of the
order of 750 000, and this number is continually increasing (see
DeMeo et al. 2015 for an in-depth discussion of the recent rates of
asteroid discoveries). In high-number-density regions of the main
belt, standard application of HCM may not be directly applicable:
Asteroid families close in proper element spaces may overlap and
no longer be recognizable as an individual entity. While alternative
implementations of HCM have been proposed to solve this problem
(Milani et al. 2014), these approaches may be computationally
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expensive and require to obtain solutions for all families in the
orbital region where the group resides.

In the last years, several machine learning algorithms have been
introduced in the PYTHON programming language and are freely
available for solving classification problems. Given a preexisting
population, these methods may use the known data to predict if
new data belongs, or not, to a given group. In this work, we will
investigate if these algorithms can be applied for the purpose of
automatically identifying new possible members of a given asteroid
family, without the need of obtaining a solution for all the other
families in the region. We will then verify how the newly identified
asteroids compare to those identified by traditional HCM, and we
will introduce parameters to quantify the efficiency of the machine
learning algorithms. By studying several algorithms that apply
stand-alone or ensemble methods, we aim to identify the method
that could perform best for the problem at hand. We will start our
work by selecting the asteroid families that are most suited for our
analysis, in the next section.

2 MAC HI NE LEARNI NG CLASSI FI CATI O N O F
NEW A STEROI D FAMI LI ES MEMBERS

In this section, we are going to discuss the implementation of
machine learning algorithms for the purpose of classifying new
family members. First, we need a consistent way to identify
asteroid family members for the training of the algorithms. For
this purpose, we turn our attention to the data base of as-
teroid families available at the Asteroid Families Portal (AFP,
http://asteroids.matf.bg.ac.rs/fam/properelements.php: accessed on
2019 December 5; Radović et al. 2017). The web-page-based
algorithms allow to automatically obtain asteroid families in a
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data set of 631 226 asteroids with synthetic proper elements using
standard HCM procedures. New asteroids proper elements, not
included in the data base used for the family identification purposes,
are also available in this site. For each family available in that data
base, with the exception of the very large Flora and Vesta families,
and the complicated cases of the Nysa, Polana, and new Polana
families, we divided the family sample into two parts, one for objects
with absolute magnitude H < 14, the training sample, and one for
the rest, which we call the test sample. The choice of this absolute
magnitude value as a cutoff is motivated by the work of Milani et al.
(2014), which showed that families computed for asteroids with H
< 14 are not affected by the chaining issue of dynamical families
obtained with hierarchical clustering methods. These groups should
present minimal or no overlap with other nearby dynamical families.

We required the chosen families to be represented in the Radović
et al. (2017) catalogue, to be located in the inner, central, and outer
main belt at low inclinations (see Carruba et al. 2013, for a definition
of these zones), since in these regions, we found the most numerous
families, and also to have at least 10 members with H < 14 (we
include just one case with a lower sample, that of the Massalia
family, so as to have a larger number of families located in the inner
main belt. This family is most likely the outcome of a cratering
event, which explains the lack of bright members; Milani et al.
2019). Twenty-one asteroid families satisfy our selection criteria
and will be used for this study. Machine learning methods are
applied to the proper (a, e, sin(i)) distribution of the training sample,
and used to predict the membership of the test sample population. To
check how effective the algorithms are in retrieving asteroid families
members, we defined three coefficients. f1, or ‘Completeness’, is
the fraction of family members that were retrieved by the machine
learning algorithm with respect to the total original population. If,
following the notation of Carruba, Aljbaae & Lucchini (2019), we
define as true positive (TPos) asteroids identified as family members
by both methods, false positive (FPos) as asteroids identified as
family members by the machine learning algorithm alone, and false
negative (FNeg) as asteroids not identified as family members only
by the machine learning algorithms, it then follows that

f1 = Completeness = T Pos

T Pos + FNeg
= T Pos

NOr
, (1)

where NOr = TPos + FNeg is the number of asteroids in the original
family. We can also define a Precision coefficient that yields the
ability of the model to avoid predicting false data. This is given by
(see equation 3 in Carruba et al. 2019)

Precision = T Pos

T Pos + FPos
= T P

NRetr
, (2)

where NRetr = TPos + FPos is the number of asteroids in the
retrieved family. A high value of f1 alone indicates that the algorithm
may have been successful at retrieving a large part of the original
population. But this, alone, is not an indication of a good fit. For
instance, imagine having an original small family of � 100 members
and a retrieved family of �10 000 objects, which includes all 100
original members. The Completeness f1 coefficient would be 1 in this
case. But, clearly, the retrieved family is not a good approximation
of the original one, in this case. Conversely, a high value of Precision
alone may be associated with a family that is too small. An example
of this could be an original family of � 100 members and a retrieved
family of �10 objects, all true positives. The Precision coefficient
would be 100 per cent, but, again, the retrieved family would not
be a good representation of the original group. Both coefficients
yield useful information, but neither is sufficient alone to identify
good retrieved families. As a compromise, and also to use a single

parameter instead of two, we introduce the ‘final parameter’ (FP) as

FP = 1√
2

√
(Completeness)2 + (Precision)2. (3)

In this work, we will apply three classes of machine learning
algorithms: stand-alone, bagging, and boosting methods. Stand-
alone methods, as their name suggests, are approaches that
use a single algorithm for the classification process. Bagging
and boosting methods are ensemble methods that use several
stand-alone algorithms. Bootstrap aggregating, often abbreviated
as bagging, has each classifier in the ensemble accounted for with
an equal weight. An example of bagging methods is the random
forest (RF) algorithm, where the outcomes of several random
decision trees are combined to achieve very high classification
accuracy. Boosting does not account for each classifier with a equal
weight, but emphasizes the training cases that previous classifiers
misclassified, and the stand-alone classifiers that performed better.
Boosting may provide better accuracy than bagging, but it may
also be more likely to overfit the training data. More details on the
theory behind these methods can be found in Swamynathan (2017).

Each algorithm may depend on one or more free parameters,
which need to be optimized. For instance, in the k-Nearest Neigh-
bours (kNN), a free parameter is the number of neighbours to each
point. In an ensemble method such as the RF, the number of single
stand-alone estimators, or, number of estimators, is another free
variable. These parameters, also called hyperparameters, need to
be studied on a case by case basis for each given family. In this
work, we will use the GridSearchCV approach of the SCIKIT-LEARN

package (Pedregosa et al. 2011), which applies the algorithm of
interest for a full grid of values of the hyperparameter. We will
then apply the best-fitting value found by this approach to each
studied family. Mean values of the hyperparameters and of the FP
coefficients for the 21 studied asteroid families, with their errors,
will be provided for each of the studied algorithms. For families not
included in our test sample, a given algorithm can then be applied
using the mean value of the hyperparameter found with the analysis
of the 21 studied cases. The mean value of the FP coefficient can
be used to compare the outcome of different algorithms: the higher
its value, the better the algorithm at retrieving family members.

In the next subsection, we will investigate how the selected
methods perform the task of classifying new possible members,
starting with stand-alone algorithms. All tables referring to results
obtained in the next subsections are available in the Appendix.

2.1 Stand-alone methods

Here we will investigate the effectiveness of three stand-alone
machine learning algorithms for the identification of new family
members: linear regression, kNN, and decision tree. We start our
analysis with the linear regression method.

2.1.1 Linear regression algorithm

Linear regression searches for a linear relationship between an
independent variable, x or input, and a dependent one, y or
output. For our application, the linear regression algorithm uses
the proper element data from the family to train, and then computes
a probability for asteroids in the extended data base that they may
belong to the family. The asteroid is assumed to be a family member
if its computed probability is higher than a threshold value. Since the
relationship between the (a, e, sin (i)) proper elements and family
membership may be non-linear, we do not expect this algorithm to
perform well. Nevertheless, for historical reasons, and since this is
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Figure 1. The distribution of probability levels for asteroids in the low-
inclination central main belt to belong to the 729 Watsonia family, as
obtained by the linear regression algorithm. The vertical dashed line displays
a probability value that is higher of those of 85 per cent of the tested
population.

one of the most commonly used machine learning algorithms, we
will begin our analysis by using linear regression.

Fig. 1 displays a plot of the probability levels of a body to belong
to the (729) Watsonia family, for asteroids in the central main belt.
On the y-axis, we report the number of asteroids in the region that
have a given probability of belonging to this family. The value of
probabilities changes, but we can define them as a percentage of
the maximum probability level. The vertical dashed line in Fig. 1
shows the 85 per cent probability level, which is a probability value
that is higher than those computed by the algorithm for 85 per cent
of the tested population. Other choices of the probability cutoff are,
of course, possible. One has, therefore, to choose the probability
level that is most appropriate for a given family. Here we choose
the probability level that maximizes values of FP, as computed
by equation (3). For each family, we tested various values of
the probability cutoff, compute the corresponding Completeness,
Precision, and FP coefficients, and selected the probability cutoff
associated with the highest FP. Our results for 21 asteroid families
are shown in Table A1. The last column displays the values of
the hyperparameter probability cutoff coefficient that satisfy our
selection criteria.

For illustrative purposes, we show, for the case of the linear
regression algorithm, histograms of hyperparameter value (the left-
hand panel of Fig. 2 displays a histogram of the ‘probability cutoff’
hyperparameter), and of the FP coefficient (right-hand panel of
Fig. 2). Similar histograms were generated for the other algorithms
studied in this paper, but will not be shown for the sake of brevity.
The mean value of the hyperparameter was 50.5 ± 11.17, while
for FP, we obtained FP = 0.71 ± 0.02. Since results of this
approach, even at the optimal value of the hyperparameter, all tend
to overestimate the family and yield low values of the Precision
coefficient, the applications of this method may be limited.

2.1.2 KNN algorithm

The basic idea is to predict the status of a data point, which, in
our context, means if a given asteroid is a member of the family
or not, by looking at the k closest neighbours, and then decide by
taking a majority vote. For instance, imagine that an asteroid has five
neighbours, three of which are members of the family of interest. In
this case, since the majority of the neighbours are family members,
the asteroid would also be labelled as such. A hyperparameter of

this method is the optimal ‘number of neighbours’ to be considered.
The mean value of this parameter for the 21 studied families was
2.35 ± 1.88, while for FP, we obtained FP = 0.84 ± 0.08. Please
see Table A2 for a summary of our results.

2.1.3 Decision tree algorithm

Decision tree classifications algorithms were first introduced by
Quinlan (1986). The concept behind this method is relatively
simple: decisions are taken in forms of a tree. Imagine that you
want to know the weather of a day in the past. At the top level, we
may ask whether the day was sunny or rainy. At a second level,
we could ask if the temperature was hot, defined as higher than a
threshold, or cold. We could then ask the data if the day was dry or
humid, etc. At the final level, the leaf node, the last leaf will classify
the data into various categories, like a sunny, warm, dry day, etc. The
number of decision nodes to be used in the evaluation of the data, or
‘max depth’, in the implementation of the decision tree algorithm by
SCIKIT-LEARN, is a hyperparameter of this method. For the studied
families, the mean value of this parameter was 7.25 ± 2.91, while
for FP, we obtained FP = 0.84 ± 0.07. Table A3 reports our results.

2.2 Bagging classifiers

In this subsection, we will investigate three cases of bootstrap
aggregations: the bagging classifier, the RF, and the extremely
randomized trees (ExtraTree).

2.2.1 Bagging classifier

This method, also known as bootstrap aggregation, was first intro-
duced by Leo Breiman in 1994. In this approach, the training data is
first used to create multiple samples, called the bootstrap samples.
Typically, the bootstrap sample size is the same as the original
training sample size. However, it contains 3/4 of the original values
and randomly chosen replacements for the remaining 1/4, which
may lead to repetition of data. Each of the bootstrap samples is used
to train an independent classifier, which can be a linear regression
or a decision tree algorithm. For regression problems, where the
predicted variable is a continuous one, the final model is built based
on the average of the predictions of all stand-alone classifiers. For
classification problems, like the one at hand in this work, where
two outcomes are possible (the asteroid is a member of a family, or
it is not), the criterion used for determining the final outcome is a
majority vote among the stand-alone classifiers.

Here we use the bagging classifier method using decision trees as
stand-alone models. The ‘number of neighbours’ hyperparameter
for the decision trees algorithms is the optimal value found in
section (2.1.3). A hyperparameter of this approach is the ‘number
of estimators’, which is the number of stand-alone algorithms used
by the bagging classifier. Here we investigate the values of these
hyperparameter in the range from 1 to 150. The mean value of the
‘number of estimators’ was 15.55+18.16

−15.55, while for FP, we obtained
FP = 0.81 ± 0.09. Results for the 21 studied families are displayed
in Table A4.

2.2.2 RF algorithms

RF algorithms are an application of bagging classifier methods,
with improvements for what concerns the procedure by which
the stand-alone method, which is the decision tree, selects the
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Figure 2. Histograms of the hyperparameter probability cutoff (left-hand panel) and FP coefficient (right-hand panel) for the 21 families studied with the
linear regression algorithm.

optimal split point for the various nodes. In normal applications
of bagging classifiers, the decision tree algorithms are allowed to
look at all variable values in order to produce the optimal split
point for the tree structure. As a consequence, the decision trees
can have a lot of similarities among them, and their predictions may
be somewhat correlated. In RF algorithms, the learning algorithm
will only test random samples of variable values. Classification
problems are handled by RF algorithms in the same way as bagging
classifiers, i.e. by a majority vote of the predictions of each stand-
alone method. A hyperparameter of this method is also the ‘number
of estimators’, which is the number of single decision trees used
by the ensemble approach. As in previous sections, we used the
GridSearchCV approach to find the best values of this parameter
in a range from 1 to 150. Our results are shown in Table A5.
The mean value of the ‘number of estimators’ hyperparameter was
40.7 ± 9.56, while for FP, we obtained FP = 0.77 ± 0.08.

2.2.3 Extremely randomized trees (ExtraTree)

As with the two previous algorithms, this is also a bagging method in
which several predictions from different decision trees are combined
to obtain a better final result. With respect to the two previous
methods, however, the ExtraTree does not use bootstraps, which
means that it samples data without replacements. The procedure
for creating the tree structure is similar to that of the RF algorithm
(see discussion in Section 2.2.2). As for other bagging ensemble
methods, a hyperparameter of this algorithm is the ‘number of
estimators’. Again, we used the GridSearchCV approach to find the
best value of this parameter in a range from 1 to 150. Our results are
provided in Table A6. The mean value of the ‘number of estimators’
hyperparameter was 40.95 ± 29.21, while for FP, we obtained FP =
0.84 ± 0.10.

2.3 Boosting

Three of the most commonly used boosting algorithms, adaptive
boosting (AdaBoost), gradient boosting (Gboost), and the eXtreme
gradient boosting (XGboost) will be used in the following
subsections.

2.3.1 AdaBoost algorithm

Boosting methods are, like bagging ones, ensemble methods where
the predictions of several stand-alone approaches are combined to

offer a better outcome. With respect to bagging methods, boosting
algorithms track the classifiers that provided the least accurate
prediction and assign to them lower weights. The final outcome
is reached as a weighted average of the outcomes of each stand-
alone classifier. The method used for AdaBoost follows these steps;
interested readers can found further details in Swamynathan (2017,
chapter 4). At first, all data points and model receive equal weights.
The classifiers are trained over the data points, and the data points
that were wrongly classified receive a higher weight, so that in
the next iteration, they will influence the outcome of the model
more than before. Classifiers that had a higher accuracy receive
higher weights. The process is iterated until the training data
are fitted without significant errors, or the maximum number of
estimators is reached. As discussed, the final outcome is achieved
by means of weighted averages. An important hyperparameter of
this method is the ‘number of estimators’, which has been tuned
with GridSearchCV to find the optimal value in a range from 1 to
150. The mean value of this hyperparameter was 41.25+45.41

−41.25, while
for FP, we obtained FP = 0.85 ± 0.06. Results of the applications
of this method are shown in Table A7.

2.3.2 Gboost algorithm

While the AdaBoost algorithm used weights to identify weak
stand-alone algorithms, Gboost uses gradients. This works in the
following way: imagine that one of the stand-alone classifiers used
underperforms when compared to others and needs to be corrected
by adding a new estimator. At the next iteration of the process, the
new estimator will try to fit the residual difference between the data
and the predictions of the former weak learner. The process is then
repeated until no further improvements are possible. More detailed
information on this approach can be found in Swamynathan (2017,
chapter 4). As in Section 2.3.1, we use GridSearchCV to find the
optimal value of the hyperparameter ‘number of estimators’, which
is 91.45 ± 52.67. The mean value of FP was FP = 0.76 ± 19.
Results are displayed in Table A8.

2.3.3 XGboost algorithm

Both the XGboost and the Gboost methods follow the principle
of Gboost. XGboost, however, uses a more regularized model, and
has performance enhancements, like better support for multicore
processing, which permits for faster training times. An in-depth
discussion of the theory behind this method would require much

MNRAS 496, 540–549 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/496/1/540/5848208 by Instituto N
acional de Pesquisas Espaciais user on 04 August 2020



544 V. Carruba et al.

Table 1. Summary of the best results of the studied machine learning algorithms.

Family Members with f1 Prec Best Best
ID H < 14 FP estimator

20 Massalia 4 0.35 0.83 0.64 ExtraTree
163 Erigone 16 0.61 0.92 0.78 AdaBoost
15 Eunomia 1072 0.93 0.86 0.89 ExtraTree
170 Maria 392 0.83 0.87 0.85 Bagging classifier
668 Dora 128 0.94 0.98 0.96 ExtraTree
847 Agnia 98 0.76 0.95 0.86 ExtraTree
363 Padua 39 0.81 0.68 0.74 KNN
1726 Hoffmeister 42 0.86 0.94 0.89 KNN
410 Chloris 45 0.80 0.66 0.87 XGBoost
808 Merxia 28 0.85 0.95 0.90 Decision tree
128 Nemesis 19 0.70 0.92 0.81 XGBoost
569 Misa 11 0.60 0.98 0.81 AdaBoost
221 Eos 2043 0.88 0.90 0.89 ExtraTree
24 Themis 1029 0.95 0.94 0.95 ExtraTree
158 Koronis 790 0.97 0.95 0.96 ExtraTree
10 Hygiea 453 0.90 0.95 0.93 XGBoost
375 Ursula 285 0.80 0.89 0.85 ExtraTree
1040 Klumpkea 195 0.89 0.94 0.91 ExtraTree
283 Emma 37 0.89 0.89 0.89 KNN
845 Naema 18 0.92 0.95 0.94 ExtraTree
490 Veritas 133 0.96 0.91 0.94 KNN

Note. We report the family identification, the number of members with H < 14, the values of the ‘Completeness’ (or
f1), and ‘Precision’ coefficients associated to the best value of the FP coefficient obtained in our study (displayed in the
fifth column), and the name of the estimator that outperformed the other algorithms.

more space, and it is beyond the purposes of this paper. More
information can be found in Swamynathan (2017, chapter 4),
and references therein. XGBoost depends on a series of hyper-
parameters. Among them, here we will work with the following
parameters, whose definitions are direct quotes from Swamynathan
(2017):

(i) eta: the learning rate; default value is 0.3.
(ii) max depth: maximum depth of trees; default is 6.
(iii) colsample bytree: the fraction of columns to be randomly

sampled for each tree; default value is 1.
(iv) Subsample: the fraction of observations to be randomly

sampled for each tree algorithm; default is 1.
(v) alpha: L1 regularization term on weight; default is 1.
(vi) lambda: L2 regularization term on weights; default value

of 1.

To optimize the values of these parameters, we used the Grid-
SearchCV approach of the SCIKIT-LEARN package. For each given
value of a hyperparameter, the method fits the data and search for
the most optimal values amongst the studied ones. Here we use the
following ranges for our hyperparameters: eta: [0.001, 0.01, 0.1],
max depth: [2, 5, 10, 20], colsample bytree: [0.1, 0.5, 0.8, 1], Sub-
sample: [0.1,0.5,1], alpha: [0.1,0.5,1], and lambda: [0.1,0.5,1]. As
for other ensemble methods, we also tuned the ‘number of estima-
tors’ hyperparameter, and we tested values in a range from 1 to 150.

Results are shown in Table A9. Values of the eta and Subsample
parameters were equal to 0.1 for all cases. The mean values of
the other four parameters and of their errors, estimated to be equal
to the standard deviations of the distributions, were max depth =
5 ± 5, colsample bytree = 1.0 ± 0.1, alpha = 0.1 ± 0.1, and
lambda =0.5 ± 0.4, respectively. The mean value of the ‘number
of estimators’ hyperparameter was 88.15 ± 46.71, while for FP, we
obtained FP = 0.83 ± 0.09.

3 TH E B I G P I C T U R E

Each asteroid family is unique in terms of its population, of the
effects of the local dynamical environment, its age, its possible
interaction with massive asteroids or dwarf planets, etc. It is, there-
fore, not surprising that the outcome of the studied classification
algorithms is different for each of the 21 studied cases. Overall, an
important parameter to consider is the size of the sample used to train
the classification algorithm. The larger the sample, the better we
would expect the outcome of the prediction to be. For each studied
family, we verified which algorithm provided the best performance,
measured by the FP parameter. Our results are shown in Table 1.

Overall, ExtraTree had the best performance for 10 out of the
21 studied families, followed by KNN with four cases, XGBoost
(3 families), AdaBoost (2 families), and the bagging classifier and
decision tree algorithms, both with one case. ExtraTree performed
better with families with a large N(H < 14) population, and comes
as second best in many other cases (4). KNN appears to perform
well for small- or medium-sized families, with less than � 150
members. XGBoost is a third possible good choice among the
studied algorithms.

Fig. 3 displays an (a, sin(i)) projection of the best results for
family membership of the ExtraTree algorithm (Koronis family,
panel a), and KNN method (Veritas family, panel b). Black dots
display the members of the family, as obtained by the AFP, while red
circles show the orbital locations of the family members predicted
by the machine learning algorithm. Values of FP are higher than
94 per cent for both families, with an excellent performance of the
two methods.

To check if the two algorithms that produced the best results
also perform well with other families, we studied the case of five
asteroid families in the Cybele and highly inclined main belt, which
have a statistically significant population of objects with H < 14:
the families of (480) Hansa, (945) Barcelona, (31) Euphrosyne,
(702) Alauda, and (87) Sylvia. We use the optimal values of the
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Figure 3. An (a, sin (i)) projection of members of the sampled (black dots) and predicted (red circles) Koronis (panel a) and Veritas (panel (b) asteroid families.
Members of the Koronis family were predicted using the ExtraTree algorithm, while members of the Veritas family were determined with the KNN method.
Vertical lines display the location of local two- and three-body mean-motion resonances.

Table 2. Results of KNN and ExtraTree for five highly inclined (sin (i) >

0.3) asteroid families.

Family Members with KNN ExtraTree
ID H < 14 FP FP

480 Hansa 347 0.89 0.90
945 Barcelona 88 0.84 0.88
31 Euphrosyne 163 0.91 0.95
702 Alauda 459 0.81 0.86
87 Sylvia 32 0.72 0.74

hyperparameters found in our previous analysis, which is 2 for the
number of neighbours in KNN and 41 for the number of estimators
in the ExtraTree algorithm. Our results are shown in Table 2.

ExtraTree had the best performance in all cases, with values of
FP consistently higher than 74 per cent. Based on this analysis, we
believe that this algorithm may generally be the best tool to use
amongst the studied methods.

4 U PDATIN G THE MEMBERSHIP OF
ASTEROID FA MILIES

The main goal of a classification algorithm should be to find new
family members. Having established what is the optimal tool, we
now try to use it to update the list of family members. We modify the
approach and divide the sample of proper elements in a given region
into two parts. The first part will go up to the highest numbered
member in a given asteroid family. Asteroids in this set of proper
elements will be labelled with 1 if they belong to a given family, and
0 otherwise. Machine learning algorithms will then use this set of
elements to train so as to predict which asteroids in the remaining
set of asteroids with identifications larger than that of the highest
numbered object in the family are most likely to be classified as
new family members.

We applied this new approach to four asteroid families: (694)
Ekard (105 members), (480) Hansa (1484 members), (15) Eunomia
(6076 members), and (832) Karin (480 members). These are a small,
medium, and large groups in terms of numbers of members. Karin
is a subfamily of the larger Koronis group and was included to test
how the algorithm performs for subfamilies located in high-number
density regions. Contrary to the tests that we run before, we quantify
the quality of the fit by checking how the retrieved family compares
with respect to the known family in terms of the dispersions of
proper elements, since, in principle, we have no information on
the family obtainable by standard HCM in the extended sample. In

particular, we define an index dstd:

dstd = 1√
3

√(
σ (aretrieved)

σ (aknown)

)2

+
(

σ (eretrieved)

σ (eknown)

)2

+
(

σ (sin (i)retrieved)

σ (sin (i)known)

)2

, (4)

where σ is associated with the standard deviation of the distribution
of (a, e, sin (i)) proper elements, and the retrieved and known
subscripts refer to the extended family obtained with the algorithm
and the known family used for the fitting process. A dstd close to 1
implies that the distribution in proper elements of members of the
extended family is compatible with the distribution of the retrieved
family, and that results of the machine learning algorithm may be
reasonable.

The first three panels of Fig. 4 display (a, sin (i)) projections of
three studied families, while the fourth shows a (a, e) section of the
fourth, the Karin subfamily of the Koronis group. Black dots identify
the original population, while red circles show the new possible
family members identified by the ExtraTree algorithm. The scatter
in the third dimension for these groups is similar to that observed
in the two-dimensional orbital sections. While the distribution of
proper elements is tighter in the proper (a, sin (i)) plane for the
Ekard, Hansa, Eunomia, and, generally speaking, for most asteroid
families, for the very young Karin family, the distribution in proper
(a, e) still mostly reflects the dispersion caused by the initial ejection
velocity field, which is why, for this family, we decided to plot proper
elements in this domain.

We identify 37 new members for the Ekard family, 694 for
Hansa, 1550 for Eunomia, and 324 for the Karin group. In
all cases, the orbital distribution of the new members is quite
compatible with that of the old ones: overall, the mean value of
dstd was of 0.97 ± 0.04, where the error is defined as the standard
deviation of dstd. Results are similar for other asteroid families,
and the algorithm is able to accurately identify even members of
subfamilies located in dense regions of the main belt, such as Karin.
Overall, ExtraTree appears to be a reliable tool for automatically
detecting new possible family members.

5 C O N C L U S I O N S

In this work, we investigated the possibility of using machine
learning classification algorithms for identifying new asteroid
families members. We selected 21 asteroid families that, with
the exception of the family of (20) Massalia, have a statistically
significant population of objects with H < 14, which is less likely to
be affected by the chaining issues that affect standard HCM. We then
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Figure 4. Proper (a, sin (i)) projections of known members (black dots) and retrieved members (red circles) of the Ekard, Hansa, and Eunomia asteroid
families. The fourth panel displays an (a, e) projection of members of the known and retrieved Karin subfamily.

applied nine different machine learning algorithms and used three
parameters to characterize the efficiency with which the algorithms
identify new family members when compared to the results of
traditional HCM. We used stand-alone, bagging classifiers, and
boosting methods for this purpose. Among the studied algorithms,
the ExtraTree had the best performance, followed by the KNN stand-
alone approach and by the XGBoost method. An application to
highly inclined asteroid families confirmed that ExtraTree appears
to be the most efficient method for this particular classification task.

We adapted the codes for the purpose of automatically updat-
ing family memberships, and we tested them with the cases of
small, medium-sized, and large asteroid families. In all tested
cases, the orbital distribution of the newly found members is
highly consistent with the distribution of previously known objects.
The PYTHON codes used for this task are publicly available at
the GitHub repository (https://github.com/valeriocarruba/Machine-
learning-classification-of-new-asteroid-families-members; infor-
mation on how to download and use the codes is available in
the local read-me files). We welcome inputs from the scientific
community on how to further improve the performance of these
algorithms.
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APPEN D IX A :

In this appendix, we report the results of the application of nine
machine learning algorithms to 21 asteroid families. See Section 2
for the descriptions of the algorithms and of the listed parameters.

Table A1. The table reports the asteroid families from the Asteroid Families Portal, the number of their members, the
number of members with H < 14, the optimal values of ‘Completeness’ (f1), ‘Precision’ (Prec), and ‘final parameter’
FP coefficients, and the corresponding value of the hyperparameter probability cutoff, for the families studied with the
linear regression algorithm.

Family Number of Number of f1 Prec FP Cutoff
ID members members H < 14

20 Massalia 6400 4 1.00 0.14 0.71 50.0
163 Erigone 2979 16 0.96 0.09 0.68 30.0
15 Eunomia 6076 1072 1.00 0.10 0.72 40.0
170 Maria 4183 392 1.00 0.12 0.71 40.0
668 Dora 1677 128 1.00 0.04 0.71 50.0
847 Agnia 4432 98 1.00 0.12 0.71 60.0
363 Padua 807 39 1.00 0.02 0.71 60.0
1726 Hoffmeister 2396 42 0.99 0.09 0.70 60.0
410 Chloris 449 45 1.00 0.01 0.71 30.0
808 Merxia 1624 28 1.00 0.03 0.71 50.0
128 Nemesis 1449 19 1.00 0.02 0.71 50.0
569 Misa 723 11 1.00 0.03 0.71 60.0
221 Eos 14661 2043 1.00 0.19 0.72 40.0
24 Themis 5946 1029 1.00 0.29 0.74 50.0
158 Koronis 7294 790 0.93 0.47 0.73 60.0
10 Hygiea 6224 453 1.00 0.12 0.71 40.0
375 Ursula 2214 285 0.99 0.21 0.72 70.0
1040 Klumpkea 2840 195 0.99 0.25 0.73 50.0
283 Emma 610 37 1.00 0.01 0.71 50.0
845 Naema 418 18 1.00 0.08 0.71 70.0
490 Veritas 1805 133 0.99 0.11 0.71 50.0

Table A2. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘number of neighbours’ hyperparameter
used for each of the studied families, and the values of the f1, Prec, and FP
coefficients for families identified with the KNN algorithm.

Family Number of f1 Prec FP
ID neighbours

20 Massalia 1 0.39 0.80 0.63
163 Erigone 1 0.70 0.76 0.73
15 Eunomia 4 0.89 0.85 0.87
170 Maria 4 0.81 0.85 0.83
668 Dora 2 0.93 0.96 0.95
847 Agnia 1 0.87 0.82 0.85
363 Padua 1 0.81 0.68 0.74
1726 Hoffmeister 1 0.86 0.94 0.89
410 Chloris 2 0.77 0.67 0.72
808 Merxia 4 0.56 0.91 0.75
128 Nemesis 2 0.57 0.92 0.76
569 Misa 1 0.68 0.74 0.71
221 Eos 1 0.89 0.85 0.87
24 Themis 1 0.94 0.91 0.93
158 Koronis 1 0.96 0.92 0.94
10 Hygiea 2 0.80 0.95 0.88
375 Ursula 1 0.84 0.80 0.82
1040 Klumpkea 8 0.91 0.90 0.90
283 Emma 6 0.89 0.89 0.89
845 Naema 2 0.99 0.81 0.91
490 Veritas 2 0.96 0.91 0.94

Table A3. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘Max Depth’ hyperparameter used for each
of the studied families, and the values of the f1, Prec, and FP coefficients
for families identified with the decision tree algorithm.

Family Maximum f1 Prec FP
ID depth

20 Massalia 3 0.22 0.81 0.60
163 Erigone 7 0.63 0.89 0.77
15 Eunomia 12 0.90 0.81 0.86
170 Maria 6 0.85 0.81 0.83
668 Dora 6 0.78 0.92 0.85
847 Agnia 6 0.86 0.80 0.83
363 Padua 4 0.78 0.68 0.73
1726 Hoffmeister 5 0.66 0.98 0.83
410 Chloris 6 0.77 0.65 0.71
808 Merxia 5 0.85 0.95 0.90
128 Nemesis 5 0.73 0.89 0.81
569 Misa 4 0.73 0.62 0.68
221 Eos 14 0.87 0.84 0.85
24 Themis 7 0.94 0.91 0.93
158 Koronis 9 0.96 0.96 0.96
10 Hygiea 9 0.89 0.92 0.91
375 Ursula 14 0.74 0.79 0.76
1040 Klumpkea 7 0.85 0.90 0.88
283 Emma 8 0.79 0.92 0.85
845 Naema 5 0.80 0.97 0.89
490 Veritas 6 0.87 0.94 0.91
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Table A4. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘number of estimators’ hyperparameter used
for each of the studied families, and the values of the f1, Prec, and FP
coefficients for families identified with the ‘Bagging classifier’ algorithm.

Family Number of f1 Prec FP
ID estimators

20 Massalia 1 0.01 0.67 0.47
163 Erigone 4 0.31 0.92 0.69
15 Eunomia 32 0.90 0.74 0.82
170 Maria 19 0.83 0.87 0.85
668 Dora 19 0.72 0.94 0.84
847 Agnia 14 0.84 0.89 0.86
363 Padua 2 0.51 0.80 0.67
1726 Hoffmeister 5 0.53 0.94 0.76
410 Chloris 4 0.73 0.89 0.81
808 Merxia 6 0.70 0.87 0.79
128 Nemesis 5 0.46 0.63 0.55
569 Misa 3 0.77 0.64 0.71
221 Eos 4 0.90 0.74 0.83
24 Themis 80 0.87 0.84 0.86
158 Koronis 17 0.96 0.95 0.96
10 Hygiea 2 0.89 0.93 0.91
375 Ursula 42 0.88 0.76 0.82
1040 Klumpkea 3 0.88 0.92 0.90
283 Emma 14 0.70 0.95 0.84
845 Naema 14 0.57 0.96 0.79
490 Veritas 22 0.75 0.96 0.86

Table A5. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘Number of estimators’ hyperparameter used
for each of the studied families, and the values of the f1, Prec, and FP
coefficients for families identified with the RF method.

Family Number of f1 Prec FP
ID neighbours

20 Massalia 46 0.00 0.00 0.00
163 Erigone 37 0.07 0.97 0.69
15 Eunomia 48 0.68 0.95 0.83
170 Maria 48 0.60 0.96 0.80
668 Dora 29 0.55 1.00 0.81
847 Agnia 47 0.56 0.99 0.81
363 Padua 46 0.22 0.85 0.62
1726 Hoffmeister 49 0.36 0.99 0.75
410 Chloris 46 0.43 0.94 0.73
808 Merxia 28 0.60 1.00 0.82
128 Nemesis 35 0.23 0.94 0.69
569 Misa 45 0.10 0.92 0.66
221 Eos 40 0.61 0.97 0.81
24 Themis 46 0.82 0.98 0.90
158 Koronis 47 0.91 0.98 0.94
10 Hygiea 49 0.67 0.99 0.85
375 Ursula 49 0.36 0.96 0.72
1040 Klumpkea 16 0.63 0.99 0.83
283 Emma 41 0.22 0.96 0.71
845 Naema 22 0.24 1.00 0.73
490 Veritas 46 0.58 0.98 0.81

Table A6. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘Number of estimators’ hyperparameter used
for each of the studied families, and the values of the f1, Prec, and FP
coefficients for families identified with the ExtraTree method.

Family Number of f1 Prec FP
ID estimators

20 Massalia 1 0.35 0.83 0.64
163 Erigone 21 0.22 0.90 0.66
15 Eunomia 80 0.93 0.86 0.89
170 Maria 9 0.80 0.86 0.83
668 Dora 85 0.94 0.98 0.96
847 Agnia 67 0.76 0.95 0.86
363 Padua 9 0.52 0.86 0.71
1726 Hoffmeister 25 0.62 0.99 0.83
410 Chloris 43 0.74 0.86 0.80
808 Merxia 62 0.33 0.94 0.70
128 Nemesis 9 0.28 0.85 0.63
569 Misa 5 0.63 0.83 0.73
221 Eos 97 0.88 0.90 0.89
24 Themis 73 0.95 0.94 0.95
158 Koronis 38 0.97 0.95 0.96
10 Hygiea 45 0.85 0.95 0.90
375 Ursula 135 0.80 0.89 0.85
1040 Klumpkea 104 0.89 0.94 0.91
283 Emma 65 0.75 0.96 0.86
845 Naema 5 0.92 0.95 0.94
490 Veritas 42 0.92 0.94 0.93

Table A7. The table reports the asteroid families from the Asteroid Families
Portal, the optimal value of the ‘Number of estimators’ hyperparameter used
for each of the studied families, and the values of the f1, Prec, and FP
coefficients for families identified with the AdaBoost method.

Family Number of f1 Prec FP
ID estimators

20 Massalia 2 0.22 0.81 0.60
163 Erigone 147 0.61 0.92 0.78
15 Eunomia 42 0.93 0.81 0.87
170 Maria 62 0.77 0.90 0.84
668 Dora 66 0.84 0.98 0.92
847 Agnia 20 0.73 0.97 0.86
363 Padua 11 0.36 0.93 0.70
1726 Hoffmeister 3 0.57 0.99 0.81
410 Chloris 3 0.82 0.87 0.85
808 Merxia 3 0.61 0.96 0.80
128 Nemesis 4 0.71 0.91 0.81
569 Misa 4 0.60 0.98 0.81
221 Eos 144 0.88 0.87 0.88
24 Themis 92 0.92 0.95 0.94
158 Koronis 8 0.96 0.96 0.96
10 Hygiea 7 0.89 0.93 0.91
375 Ursula 50 0.72 0.84 0.78
1040 Klumpkea 78 0.82 0.93 0.88
283 Emma 72 0.67 0.92 0.81
845 Naema 5 0.64 0.97 0.82
490 Veritas 4 0.87 0.94 0.91
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Table A8. The table reports the asteroid families from the Asteroid Families Portal, the optimal value of the ‘Number
of estimators’ hyperparameter used for each of the studied families, and the values of the f1, Prec, and FP coefficients
for families identified with the gradient boosting method.

Family Number of f1 Prec FP
ID estimators

20 Massalia 2 0.30 0.80 0.60
163 Erigone 83 0.59 0.89 0.75
15 Eunomia 127 0.90 0.83 0.87
170 Maria 107 0.78 0.86 0.82
668 Dora 133 0.80 0.99 0.90
847 Agnia 68 0.79 0.86 0.82
363 Padua 9 0.70 0.50 0.61
1726 Hoffmeister 7 0.51 0.69 0.60
410 Chloris 47 0.80 0.55 0.69
808 Merxia 42 0.70 0.74 0.72
128 Nemesis 78 0.14 0.12 0.13
569 Misa 12 0.36 0.57 0.48
221 Eos 131 0.85 0.84 0.85
24 Themis 141 0.96 0.95 0.96
158 Koronis 133 0.96 0.95 0.96
10 Hygiea 140 0.88 0.95 0.92
375 Ursula 135 0.79 0.83 0.81
1040 Klumpkea 147 0.88 0.91 0.90
283 Emma 143 0.56 0.93 0.81
845 Naema 1 0.81 0.75 0.78
490 Veritas 145 0.80 0.95 0.88

Table A9. The table reports the asteroid families from the Asteroid Families Portal, the optimal value of the ‘number of estimators’, eta, max depth,
colsample bytree, Subsample, alpha, and lambda hyperparameters used for each of the studied families, and the values of the f1, precision (Prec), and FP
coefficients for families identified with the eXtreme gradient boosting (XGBoost) method.

Family Number of eta max depth colsample bytree Subsample alpha lambda f1 Prec FP
ID estimators

20 Massalia 46 0.1 2 1.0 0.1 0.1 0.5 0.18 0.80 0.58
163 Erigone 136 0.1 5 0.8 0.1 0.1 0.1 0.48 0.97 0.77
15 Eunomia 136 0.1 20 1.0 0.1 1.0 0.1 0.90 0.89 0.89
170 Maria 125 0.1 20 1.0 0.1 0.1 1.0 0.80 0.90 0.85
668 Dora 87 0.1 2 0.8 0.1 0.1 0.1 0.82 0.99 0.91
847 Agnia 141 0.1 5 1.0 0.1 0.5 1.0 0.82 0.92 0.87
363 Padua 45 0.1 5 1.0 0.1 0.5 1.0 0.58 0.70 0.64
1726 Hoffmeister 13 0.1 5 1.0 0.1 0.1 0.5 0.52 0.98 0.78
410 Chloris 24 0.1 5 1.0 0.1 0.1 0.1 0.80 0.66 0.73
808 Merxia 61 0.1 5 0.8 0.1 1.0 0.5 0.57 0.96 0.79
128 Nemesis 66 0.1 5 0.8 0.1 0.1 1.0 0.70 0.92 0.82
569 Misa 17 0.1 5 1.0 0.1 0.1 1.0 0.05 0.92 0.65
221 Eos 145 0.1 20 1.0 0.1 0.1 0.1 0.90 0.85 0.87
24 Themis 146 0.1 20 1.0 0.1 0.1 0.5 0.94 0.94 0.94
158 Koronis 91 0.1 5 1.0 0.1 0.1 0.1 0.96 0.97 0.96
10 Hygiea 105 0.1 10 1.0 0.1 0.1 0.1 0.90 0.95 0.93
375 Ursula 123 0.1 10 1.0 0.1 1.0 1.0 0.79 0.87 0.83
1040 Klumpkea 68 0.1 5 1.0 0.1 0.1 0.1 0.76 0.95 0.86
283 Emma 143 0.1 10 0.8 0.1 0.1 0.1 0.65 0.96 0.82
845 Naema 15 0.1 5 1.0 0.1 1.0 1.0 0.81 0.87 0.84
490 Veritas 76 0.1 10 1.0 0.1 0.1 0.5 0.86 0.95 0.91
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