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Abstract: Sun-Induced chlorophyll Fluorescence (SIF) relates directly to photosynthesis yield and
stress but there are still uncertainties in its interpretation. Most of these uncertainties concern the
influences of the emitting vegetation’s structure (e.g., leaf angles, leaf clumping) and biochemistry (e.g.,
chlorophyll content, other pigments) on the radiative transfer of fluorescent photons. The Caatinga
is a large region in northeast Brazil of semiarid climate and heterogeneous vegetation, where such
biochemical and structural characteristics can vary greatly even within a single hectare. With this study
we aimed to characterize eleven years of SIF seasonal variation from Caatinga vegetation (2007 to 2017)
and to study its responses to a major drought in 2012. Orbital SIF data from the instrument GOME-2
was used along with MODIS MAIAC EVI and NDVI. Environmental data included precipitation rate
(TRMM), surface temperature (MODIS) and soil moisture (ESA CCI). To support the interpretation of
SIF responses we used red and far-red SIF adjusted by the Sun’s zenith angle (SIF-SZA) and by daily
Photosynthetically Active Radiation (dSIF). Furthermore, we also adjusted SIF through two contrasting
formulations using NDVI data as proxy for structure and biochemistry, based on previous leaf-level
and landscape level studies: SIE-Yield and SIF-Prod. Data was tested with time-series decomposition,
rank correlation, spatial correlation and Linear Mixed Models (LMM). Results show that GOME-2
SIF and adjusted SIF formulations responded consistently to the observed environmental variation
and showed a marked decrease in SIF emissions in response to a 2012 drought that was generally
larger than the corresponding NDVI and EVI decreases. Drought sensitivity of SIF, as inferred from
LMM slopes, was correlated to land cover at different regions of the Caatinga. This is the first study to
show correlation between landscape-level SIF and an emergent property of ecosystems (i.e., resilience),
showcasing the value of remotely sensed fluorescence for ecological studies.

Keywords: chlorophyll fluorescence; SIF; drought; spectral vegetation indices; Caatinga; GOME-2;
abiotic stress

1. Introduction

Monitoring and measuring vegetation responses to climate has long been an area of interest for
biologists and ecologists and it merits attention considering the ongoing global climate change and
the closely related interplay between carbon flux, climate and the biosphere [1]. Among the plethora
of methods that can be used to assess vegetation responses to climate, remote sensing offers great
advantage over field techniques in regard to the size of the population that can be sampled in a given
time interval since it allows the sampling of large areas, including remote places and also allows for
frequent revisits that would be impractical for field campaigns considering logistics and costs.
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Since photosynthesis is the main biological process powering the global carbon cycle, the study of
vegetation photosynthesis and productivity is paramount for the understanding of carbon fluxes [1].
The remote estimation of chlorophyll a fluorescence shows promise as a key parameter for sampling
global photosynthesis [2,3]. Chlorophyll fluorescence is an electromagnetic emission that results from
the conversion of Sun light energy into electrochemical energy by the plant’s chlorophyll molecules.
This conversion however is not complete and, while part of the received solar energy is channeled
into plant metabolism, part is lost as heat and another part is re-emitted as photons of lower energy
and, consequently, longer wavelength [4]. That emission is chlorophyll fluorescence. The energy
yielded from that conversion process must be dissipated or used in the plant’s metabolism or else
it results in the formation of damaging super-oxide compounds within plant cells [5]. Therefore,
plant biochemistry imposes negative feedbacks on the energy conversion process that acts at different
temporal scales to allow it to adapt to the changing environmental conditions of the daily and seasonal
cycles of plant life. In this manner, energy conversion rate for photosynthesis is kept proportional
to the viable photosynthetic rate within the given environmental conditions and plant biochemical
limitations [6]. Consequently, chlorophyll fluorescence emission is closely related to photosynthetic
yield and productivity [2,7,8].

Fluorescence has been successfully used to study photosynthesis responses to: environmental stress,
herbicides, diseases and pollution [7,8]. For about nine decades since Kautsky and Hirsch published
their seminal work describing the phenomena, chlorophyll fluorescence has been studied in laboratories
and on the field, at the leaf level, plant level and canopy level with a variety of instruments [9-11].
With the advancement of remote sensing technology, it has recently become possible to measure this
fluorescent emission remotely, from instruments that can be installed in towers, mounted on aircrafts
and on satellites [2]. In fact, many satellite-mounted instruments not originally designed for measuring
chlorophyll fluorescence are now being used for this end with varying degrees of success, including:
GOME, GOME-2, GOSAT, OCO-2, SCIAMACHY, TanSat (CarbonSat) and TROPOMI. Furthermore,
the European Space Agency is currently developing the first orbital mission exclusively dedicated to
measuring chlorophyll fluorescence from space: FLEX, the FLuorescence EXplorer mission.

While leaf-level fluorescence is reasonably well understood [8], the interpretation of remotely
sensed emissions presents new challenges and limitations [11,12]. Firstly, while plant biologists can
control energy input to leaves being measured (i.e., PAR level) with lab or field-grade fluorometers [8],
the remote sensing of chlorophyll fluorescence depends on Sun light and its natural variability.
Therefore, the so-called Sun-Induced Fluorescence (SIF)—equivalent to fluorometer-measured
steady-state fluorescence—is what can be remotely estimated by satellite- and aircraft-mounted
instruments [2]. Secondly, the geometry between light-source, leaf and sensor is stable when using
hand-held or bench-mounted fluorometers [8] but, it varies greatly when using satellites or aircrafts for
estimating SIF [12]. This means that, for the adequate interpretation of remotely sensed fluorescence,
the Sun’s angle in relation to the measured plants and sensor should be taken into consideration
(e.g., hot spot, latitude, date and time of day) as well as the atmospheric conditions at the time of
measurement (e.g., aerosol and clouds), the chemical composition and the structure of the measured
plant community (e.g., photosynthetic pigments, leaf clumping, leaf albedo) [3,10,12].

Furthermore, the fluorescence emission has two peaks: one around the 685 nm wavelength,
corresponding to the red region of the visible spectra and called red SIF (SIF) in this study; and another
peak around 735 nm, corresponding to the far-red region of the visible spectra, called far-red SIF (SIFrR).
While SIFy, is at a wavelength that is easily re-absorbed by leaves, SIFrg photons are generally scattered
by emitting vegetation according to chemical composition, thickness and shape of leaves, canopy
structure, leaf angles and leaf-area density [13-15]. Previous studies on red and far-red SIF have found
differences on the relationships between these two fluorescence emissions and climate, that depended
greatly on vegetation structure and composition [14,16-18]. The authors of these studies suggested
that more investigation of SIF responses at both wavelengths, and from heterogeneous vegetation, was
necessary to improve our understanding on the relationships between SIF, Gross Primary Productivity
(GPP), phenology and vegetation responses to environmental stress.
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Spectral vegetation indices (SVIs) such as NDVI, the Normalized Difference Vegetation Index [19]
and EVI, the Enhanced Vegetation Index [20,21] are capable of providing information about abiotic
stress effects by observation of leaf pigment composition and structural changes to vegetation and,
consequently, about the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) [22].
However, chlorophyll fluorescence is more sensitive to environmental changes and can show the
presence of stress before it has caused alterations to the plants that would be detectable by other
remotely sensed vegetation indices [23,24].

Nevertheless, recent works have shown that over 70% of SIF variability can be attributed
to phenology-related structural (e.g., leaf shedding, leaf aging) and biochemical (e.g., chlorophyll
synthesis and degradation) changes that can be sampled through reflectance and SVIs [11,25]. This is
understandable considering the above-mentioned influences of leaf and plant community structure
and biochemistry on the radiative transfer of SIF but, the overall effect of such influences is uncertain,
particularly when interpreting results from heterogeneous vegetation [15,16,25]. Therefore, we have
chosen to test photosynthetic responses of vegetation using SIF data and also through adjustments made
to SIF based on work investigating the effects of vegetation structure and biochemistry on chlorophyll
fluorescence [14,15,26] as well as on previous observations concerning SIF data characteristics and
radiative transfer [27-29].

Droughts are a major source of stress for vegetation and agriculture alike and can have devastating
consequences for ecosystems and for society. While the potential of SIF for monitoring the onset of
drought and its effects on plant populations has already been tested by previous works [30-33],
some including in their methods comparisons of SIF with proxies of structure and biochemistry
like fAPAR [30] and SVIs [31,32], none has attempted the combination of these data, as we propose,
or has included in their analysis measures of SIFg and the ratio between red and far-red SIF (SIFg /rR).
The Caatinga region located in northeast Brazil (Figure 1) is a suitable biogeographical area to test the
usability of SIF as a proxy for photosynthesis seasonality and abiotic stress due to its heterogeneous
vegetation, its pronounced water-dependent seasonality, and a recent extreme drought reported there
in the year 2012 [34].

Accordingly, our specific objectives were to:

e  Describe seasonal and spatial patterns of chlorophyll fluorescence dynamics as estimated by the
GOME-2 orbital instrument in a eleven-year period from February 2007 until December 2017;

e  Model Sun-induced fluorescence (SIF) and spectrally adjusted SIF, as functions of environmental
parameters, testing their responses to climate in the period;

o  Compare the responses of vegetation from the different ecoregions of the Caatinga, as defined by
Velloso et al. [35], to the observed environmental variation in the period.

Our main hypothesis was that SIF is a good proxy to photosynthesis seasonality and drought-
responses, even when measured from heterogeneous vegetation and, especially when combined with
different spectral data like vegetation indices.

2. Materials and Methods

2.1. Study Area

The Caatinga is a semiarid region of northeast Brazil with 862,640 km? (larger than the sum of
the areas of continental France and Italy) harbouring over 28 million inhabitants [36]. The region is
bounded by the humid Atlantic forests to the east and by the Cerrado savannas to the west and south.
In this extensive region the vegetation is frequently armed with thorns and also commonly deciduous,
it includes a range of woody and succulent species and a few ephemeral herbs and grasses distributed
in a complex mosaic of physiognomies [36-39]. Most of its area is not subject to frequent fires, common
to savanna vegetation and, the local physiognomies include mostly sparse and dense shrublands
(scrublands), savannas, Seasonally Dry Tropical Forests (STDF), some areas suffering desertification and
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also enclaves of humid tropical forests usually isolated in landscape features favoured by orographic
precipitation [36,40]. The region has been scantly studied [40,41] and its relatively high levels of
endemism [36,39] point to an urgent need for further study and protection.

Figure 1. Caatinga and its ecoregions according to Velloso et al. [35]: (a) Campo Maior; (b) Northern
Sertaneja Depression; (c) Araripe-Ibiapaba Complex; (d) Borborema Plateau; (e) Major Southern
Sertaneja Depression; (f) Sao Francisco Dunes; (g) Raso da Catarina; (h) Minor Southern Sertaneja
Depression; (i) Chapada Diamantina. Regions e and h are represented with the same color because
they are parts of the same ecoregion.

The Caatinga has also been identified as a region of extreme fluctuations in its productivity
dynamics and as an area of uncertainty for GPP observations and modeling efforts [42,43]. Despite its
diversity and considerable levels of endemism, this region has often been neglected by scientific
research [40,41].

In this study, we subset the region into smaller ecoregions, as defined by [35], and use these as
our experimental units (Figure 1). These ecoregions were defined on the basis of geomorphologic,
climatologic and ecologic characteristics [35] which will likely influence local seasonality and abiotic
stress occurrence [38,44]. Apart from translating the names of these ecoregions from the Portuguese
originals, we have subdivided the large Southern Sertaneja Depression into Major and Minor since we
have observed marked differences on climate between these sub-regions a posteriori. The region we
call the Minor Southern Sertaneja Depression (Figure 1h), is situated near the coast and locked from
the rest of the Sertaneja Depression (a geomorphological feature) by a relatively drier ecoregion called
Raso da Catarina (Figure 1g) and an elevated ecoregion called the Borborema Plateau (Figure 1d).

2.2. Land Cover Classification Data

To characterize Caatinga vegetation, we used ESA GlobCover 2009 [45], which has a gridded
resolution of approximately 0.0028° by 0.0028°. While the year 2009 is within the studied period,
we assume that the changes in land cover that have taken place in the remainder of the period
are negligible for our limited use of this dataset. The classification system used in GlobCover 2009
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include different vegetation types within the same classes with relative dominance ranges (50-70%
or 20-50%), phenological characteristics (evergreen and semi-deciduous or deciduous) and flooding
regime, when applicable (permanently flooded or temporarily flooded). Correspondence to FAO Land
Cover Classification System (LCCS) is supplied by authors at the data distribution website [45] but is
not necessary for the interpretation of our results.

2.3. Environmental Indicators

To cover the basic temperature and water-availability aspects of environmental characterization
we used surface temperature, precipitation rate and soil moisture data. While the relative influence
of the different environmental variables involved is species-specific and because the effects of
micro-climate can not be adequately incorporated in our experimental design, we assumed that
surface temperature, precipitation and soil moisture together are the main drivers of the observed
plant responses to environmental conditions.

Daytime land surface temperature from the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument (MOD11C3, version 6), at the monthly temporal resolution was used to represent
temperature at the observed communities level. This data was used in a 0.05° by 0.05° grid and at
monthly temporal resolution [46].

Monthly precipitation rate from the Tropical Rainfall Monitoring Mission (TRMM—TMPA 3B43,
version 7), which combines active and passive measurements [47], was employed as a measure of
precipitation at the observed communities’ level. This data is originally gridded at 0.25° by 0.25° and
monthly temporal resolution. We regridded TMPA data to a 0.05° by 0.05° grid using the Nearest
Neighbor method. This method, also known as Pixel Replication, does not effectively interpolates data
but only regrids it into a finer or coarser grid by repeating the original information into corresponding
pixels without changing its values or location and thus, maintaining the statistical structure of the
original gridded data [48,49].

Since precipitation and water availability can be uncorrelated due to various edaphic and
ecological factors, we have chosen to also include a measure of soil moisture in the analysis. For that
end we used ESA’s Soil Moisture CCI product [50], which combines both active and passive soil
moisture measurements at daily frequency and in a 0.05° by 0.05° grid. We, therefore, resampled daily
soil moisture data to monthly means for compatibility with other data sources used in this study.

All environment-related data were obtained for the period from February 2007 to December 2017.

2.4. MODIS-MAIAC Reflectance and Spectral Vegetation Indices

Surface reflectance and spectral vegetation indices used here were obtained from MODIS
MCD19A1-C6 product at 1 km spatial resolution [51], atmospherically corrected by the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) algorithm [52], normalized for Sun-sensor
geometry effects using the bidirectional reflectance distribution function (BRDF) and the Ross-Thick
Li-Sparse (RTLS) model parameters provided by Lyapustin et al. [52], and aggregated into monthly
composites (for detailed information on this implementation please see Dalagnol et al. [53]).
Spectral vegetation indices were regridded to 0.05° by 0.05° from their original resolution through the
Nearest Neighbor method. The SVIs we have employed in this study were EVI [20,21] and NDVI [19].
All MODIS-MAIAC data were obtained for the period from February 2007 to December 2017.

2.5. Sun-Induced Fluorescence

Among the available data sources, we have chosen to use SIF derived from GOME-2 instruments
data due to the combination of several advantageous characteristics, namely: adequate spatial and
temporal continuity, favorable measurement time (more in this same paragraph) and, availability of
SIFR data [27,28]. All other SIF data sources have had shorter sampling extent: OCO-2 has data for
the period starting on December 2014 until the present [54], TROPOMI's data starts on November
2017 [55] and TanSat on February 2017 [56]. The instruments OCO-2, TROPOMI and TanSat sample SIF
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at 13:30 local solar-time [54-56] and GOSAT samples at 13:00 solar-time [57] and therefore, their data is
likely biased by mid-day peaks on Vapor Pressure Deficit (VPD), further confounding its interpretation.
SCIAMACHY’s SIF data is also not ideal for our aims because of its circular footprint and spatial
discontinuity [57]. For a more thorough comparison between the different instruments currently
capable of measuring SIF from orbit, see Mohammed et al. [3].

The GOME-2 SIF data we used were downloaded from NASA’s AVDC (Aurora Data Validation
Center) at version 2.8. This data was produced with methods described in Joiner et al. [27] and
Joiner et al. [28]. The period we chose to study comprises most of GOME-2 SIF available data and it
spans nearly eleven years, from February 2007 to December 2017. This data was converted from in its
original gridded spatial resolution of 0.5° by 0.5° to a finer 0.05° by 0.05° to match the used MODIS
products using the Nearest Neighbor method.

There are two GOME-2 instruments in orbit on board satellites MetOP-A and MetOP-B from
Eumetsat. Both are in Sun-synchronous orbits, with overpass time at approximately 9:30 solar-time but,
although MetOP-A’s GOME-2 data is available since January 2007 until now, MetOP-B data covers a
shorter period, starting from March 2013. Unfortunately, the GOME-2 sensor on MetOP-A has suffered
a continuous degradation since launch and an artificial negative trend of approximately —1.1% per
year has been consequently introduced into MetOP-A SIF data [28,58]. While the degradation effects
on source data were corrected [58], Joiner et al. [28] argue that this correction is likely imperfect due
to the specifics of SIF signal disentangling. Accordingly, we have chosen to use MetOP-A data from
February 2007 until February 2013, switching to MetOP-B’s data for the rest of the period used in
this work (i.e., from March 2013 until December 2017) since the GOME-2 instrument in MetOP-B
has not presented a degradation problem [28]. Additionally, to remove this degradation-related
negative trend, data analysis in this study was performed using data detrended through time-series
decomposition with Locally Estimated Scatterplot Smoothing (LOESS) when adequate.

Considering the previously mentioned dependence of SIF on the emitting vegetation’s biochemistry
and structure [15,25] we have chosen to include alternative formulations of SIF aiming to adjust the
sampled signal to better account for these effects.

Firstly, beyond standard red and far-red GOME-2 SIF, we also included in our comparison SIF
adjusted to account for variations in the Sun’s zenith angle (5ZA), already supplied with GOME-2
level 3 dataset. This SZA normalization (SIF-SZA) is obtained by calculating the quotient of the
measured absolute SIF by the cosine of the Sun’s zenith angle [27,28], which has been proven to have a
normalizing effect proportional to the seasonal variation in PAR incidence [29].

Secondly, we have also employed SIF-Yield. This term has been used in slightly different ways in
the literature (e.g., Miao et al. [59], Ryu et al. [11] and Verma et al. [60]) but here, we have calculated it
in a similar way as to the “real fluorescence” of Gitelson et al. [26]. While in that study chlorophyll
fluorescence was divided by reflectance and transmitance at fluorescence’s wavelengths (representing
the structural and biochemical influences on its signal) we will define SIF-Yield as the quotient of SIF
by corresponding NDVI, since NDVI is a known proxy of chlorophyll content and fAPAR [61].

Thirdly, we have defined a tentative productivity-related modification to SIF (SIF-Prod) following
from the well-known scheme of Gross Primary Productivity (GPP) from Monteith [62], Monteith and
Moss [63] described in the following formula:

GPP = fAPAR * PAR * LUE 1)

where fAPAR is the fraction of absorbed photosynthetically active radiation (PAR), PAR is the incident
PAR and LUE (Light Use Efficiency) is a term relating to photosynthesis physiology that has been
defined in different ways in scientific literature [64]. This classic equation has been frequently used
to estimate GPP through the LUE-paradigm [65] and SIF has been proposed as a suitable proxy
for LUE [2,10], although studies testing this proposition have reached confounding results [11,59].
However, preliminary results from another study testing different biochemistry- and structure-related
adjustments to SIF has found that the product of SIF by a proxy of f APAR showed the highest observed
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correlation to FLUXNET GPP data in comparison to various tested formulations [66]. The findings of
that study suggest that SIF is not proportional to LUE by itself but rather to the instantaneous light-use
efficiency under a given light incidence level (i.e., PAR * LUE). Thus, we decided to used it here in the
same formulation as defined by Monteith’s seminal work, assuming that SIF encapsulates the product
of LUE by PAR, and using NDVI as a proxy to fAPAR.

Beyond SIFrr and the above described SIF-SZA, SIF-Yield and SIF-Prod formulations we also
included SIF at the red wavelength peak, SIFr (supplied with GOME-2 data), the ratio between
SIF at both wavelengths, SIFg /rr (calculated from extracted GOME-2 data) and finally, SIF daily
average based on a clear-sky proxy of PAR, dSIFrr (supplied with GOME-2 data). All tested SIF-related
response variables are listed in Table 1. Due to the lower spatial resolution of its data and the lower
signal-to-noise ratio of its data, SIFg was not used for testing the spectral adjustments discussed above
(i.e., SIF-SZA, SIF-Yield and SIF-Prod) beyond preliminary tests that produced similar effects as those
observed with SIFpg (results not shown).

Table 1. List of SIF response variables used in this study. For detailed description of these variables, their
source and calculation, please refer to the Introduction section and to the Sun-Induced Fluorescence
sub-section of Materials and Methods.

Variable Label  Description Data Source

SIFrR Sun-induced chlorophyll fluorescence at the far-red wavelength peak. = GOME-2 MetOP-A + MetOP-B

SIFR Sun-induced chlorophyll fluorescence at the red wavelength peak. GOME-2 MetOP-A

SIFR,FR The ratio between SIF at both wavelength peaks. GOME-2 MetOP-A

dSIFpR Daily average of SIFrg based on a clear sky PAR proxy. GOME-2 MetOP-A + MetOP-B

SIFpr-SZA The quotient of SIFrg by the cosine of the Sun’s zenith angle (SZA). GOME-2 MetOP-A + MetOP-B and MODIS
SIFrg-Yield The quotient of SIFrg by NDVI—analog to “real fluorescence”. GOME-2 MetOP-A + MetOP-B and MODIS
SIFpRr-Prod The product of SIFrg by NDVI—well correlated to GPP. GOME-2 MetOP-A + MetOP-B and MODIS

2.6. Statistics and Software

All available data discussed above were used in tests for the period from February 2007 to
December 2017, with the exception of GOME-2 SIFg. While red SIF was available for the period from
February 2007 until December 2015, only the period from February 2007 to December 2013 was analyzed.
Considering that SIFy, is also produced from MetOP-A data and therefore, it also subject to the above
mentioned degradation problem, we decided to include a period similar to that of MetOP-A SIFrg data
to maintain correspondence of SIF at both wavelengths. Specific tested periods will also be declared at
the Results section to aid interpretation. The overall study design and data application is illustrated in
Figure 2.

To evaluate the seasonality and the long-term tendencies of all data we carried out time-series
decomposition with Locally Estimated Scatterplot Smoothing (LOESS) [67,68]. This statistical technique
also known as STL decomposition, separates the data into three components: a seasonal component,
a trend component and the remainder which can be generally interpreted as random variation or white
noise [68].

To test the coherence between SIF and SVIs, we carried out several ecoregion-specific
correlation analysis. These were made using data detrended and deseasonalized through time-series
decomposition [67,68]. Hence, all correlation tests have been applied to the remainders of time-series.
Furthermore, we chose to use Kendall’s rank correlation test since it doesn’t assume parametric
data distribution and is more conservative than the popular Pearson’s Product Moment Correlation
Coefficient [69].

To study the effects of environmental variables over SIF and other predictors we employed Linear
Mixed Models (LMM), fitting one holistic model to all ecoregions (per response variable) and a series of
simpler ecoregion-specific models, parameterized according to our data and to model quality limitations
inferred from model diagnostics. The various response variables used in model selection are presented
in previous sections and listed in Table 1. The selected holistic model was defined with each given

VZat

response variable as a Gaussian function of “Surface Temperature”, “Soil Moisture” (and interaction
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between these continuous variables) and “Ecoregion”. Random factors were “Month” individually and
“Month” nested into “Year” to ensure adequate error structure [70,71]. Ecoregion-specific models were
parameterized differently due to limitations imposed by a smaller number of observations than were
available for holistic models. After model selection, the best model applicable to each ecoregion was
coded with the response variable as a Gaussian function of “Surface Temperature”, “Soil Moisture” (and
their interaction), with “Month” and “Year” as independent random factors. All data used in LMMs
were rescalled for compatibility and precipitation was not included in our models after initial data
exploration showed Variance Inflation Factor (VIF) and correlation favouring Soil Moisture [72]. Model
diagnostics was performed according to Zuur and Ieno [71] and Harrison et al. [73], and model selection
carried out by examining diagnostic plots and Bayesian Information Criterion (BIC) analysis [71].
Holm-Bonferroni post-hoc tests were also applied to adjust LMM outputs. Root Mean Square Error
(RMSE) and R? (marginal and conditional) were calculated for all LMMs [74].

Surface Reflectance
MODIS/MAIAC

. 'Spectral Vegetation
dSIFpg | /SIFgg -sZA SIFg SIFFR ?dl“s‘fdASIF Indices
ormulations (EVI and NDVI)
SIF, TRMM
RIFR SIFpg-Yield/  /SIFpp-Prod MODIS LST Precipitation ESA CCl
(ratio) Rate Soil Moisture

A y v Y 4

GOME-2
Sun-Induced
Fluoresence (SIF)

Environmental

Vegetation Response Variables Indicators

v 4 A4 A A 4

. . . Ecoregion Land
Seasonality and Drought Response Linear Mixed Cover Analysis Land Cover
Trend Analysis Analysis Models(LMMs) over Analysis (ESA GlobCover)

v

Correlation
Analysis

Figure 2. Flowchart of the general study design. All data is represented within shaded parallelograms,
while data groups, major procedures and tests are in rectangles. Please see Materials and Methods
section for details.

Aiming to aid the visualization of our results in general, but particularly those concerning
the previously identified 2012 drought, we conducted diverse spatial analysis of SIF, SVIs and
environmental indicators, calculating spatial averages and spatial correlation between the variables of
interest. For this analysis we subset our data into three periods identified in preliminary time-series
analysis: 2007 to 2011, 2012 and 2013 to 2017. Beyond the spatial analysis, we also used this subset
scheme to present and discuss other results relating to the 2012 drought.

Some data processing including format conversions, raster re-sampling and re-projection, were
done using Qgis [75]. Remaining data exploration and analysis was done using R 3.6.1 [76] and the
following R packages updated to the latest contemporary versions: stlplus [77], Ime4 [78], car [79],
ggplot2 [80], merTools [81], multcomp [82], MuMIn [83], raster [84], rasterVis [85] and rgdal [86].
All produced scripts are available at Zenodo [87].
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3. Results

3.1. Caatinga Ecoregion Land Cover Analysis

Data from the ESA GlobCover 2009 product shows that the following land cover classes are the
most representative among all ecoregions of the Caatinga: shrubland (averaging 27.66% relative cover
among all ecoregions), mosaic of vegetation and cropland (averaging 23.93%), mosaic of cropland and
vegetation (averaging 20.4%) and rainfed crops (averaging 14%). Human influence on the region can
be seen in the high proportion of the crop mosaic classes (either with crop or vegetation dominance)
and Rain-fed Crops observed, constituting the majority at all ecoregions but Campo Maior and
Araripe-Ibiapaba Complex (Figure 3). Barren and Urban areas were relatively rare and covered less
than 0.5% of any ecoregion.

Tables of relative cover and complete nomenclature of observed classes are included in the
appendices for precise reference (Tables A1 and A2).

Relative Cover per Ecoregion - ESA GlobCover 2009
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75

25

Relative Cover (%)
@
3
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Figure 3. Relative cover percentage by ecoregion from ESA GlobCover 2009 product: The acronyms
within parenthesis indicate cover density within that class (“CO” for Closed to Open or cover density
above 15%, “C” for Closed or cover density above 40% and, “O” for Open or cover density below
15%), Flooding regime (“RF” for Regularly Flooded) and phenology (“EvSd” for Evergreen and
Semi-deciduous mix and, “De” for Deciduous). For Mosaic classes, the first class named is dominant
occupying 50-70% proportion and the second class named occupies a relative proportion between
20-50% of the land thus classified. “For/Shr” stands for the mixed class Forest and Shrubland,
denoting vegetation with height below 5 m. Letters on the horizontal axis are in reference to Figure 1
and the name of each ecoregion is written to the right of its respective bar.

3.2. SIF and Climate: Seasonality and Trends

The mean seasonal components of the sampled time-series (2007 to 2017) show differences on
vegetation responses between Caatinga ecoregions but these differences seem proportional to each
ecoregion’s particular climate’s seasonality (Figure 4). The variation on timing and intensity of the
rainy season shows that most northwestern areas have their dry season from July to December, while at
the eastern areas they go from October to March. A clear association between SIF, temperature and
precipitation is also visible (Figure 4) but, it is interesting to notice that SIFrg and SIFg respond
differently to the seasonal variation in precipitation and temperature. Precipitation and soil moisture
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presented almost synchronous behaviour with a lag between them that varies among the different
areas (results not shown) and, therefore, we did not include soil moisture in our graphs to avoid visual
clutter although it was used in subsequent analysis.

Mean seasonal cycle of SIF, Temperature and Precipitation
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Figure 4. Seasonal components of SIFrg, SIFg, Temperature and Precipitation, from February 2007 to
December 2017. Seasonal components obtained from time-series decomposition with Locally Estimated
Scatterplot Smoothing (LOESS). SIFrg and SIFg are Sun-Induced Fluorescence from GOME-2 at the
far-red and red peaks, respectively. Temperature is daytime Land Surface Temperature. Precipitation is
Precipitation rate. All graphs have the same axis ranges for all variables.

Results of our correlation tests and time series decomposition analysis demonstrate the
synchronicity between fluorescence measured by the GOME-2 instrument and the structural and
biochemical phenological processes captured by MODIS MAIAC EVI and NDVI (Appendix A Table A4
and Appendix A Figure Al). Far-red SIF was more correlated to the tested SVIs in the period than
red SIF at all ecoregions of the Caatinga (SIFrg to SVIs mean T = 0.57 and SIFg to SVIs mean
T = 0.42). Monthly values of NDVI and EVI were similarly correlated to SIF from both red and far-red
wavelengths (Appendix A Table A4). Observed correlations between SIFs and SVIs were generally high
but varied among ecoregions and results from Campo Maior, Minor Southern Sertaneja Depression
and Chapada Diamantina were considerably lower than those from other ecoregions (Appendix A
Table A4 regions a, h and i).

The trend components show the long-term variability of climate and its effects on SIFrr and SIFg.
The majority of Caatinga ecoregions presented a considerable trend shift in the year 2012 when
precipitation decreased and temperature increased at most areas (Figure 5). SIF at both wavelength
peaks show a correspondent decrease that is proportional to the climate variables change, particularly in
SIFrr. Red SIF is only available until December 2013 but, it seems to show a relatively weaker response
to climate variation than SIFrg throughout the sampled period (Figure 5, gray dot-dashed lines).
Furthermore, most sites show a period of decreased SIFrr emission that continues after 2012, with the
exception of Campo Maior—the northwesternmost area, bordering the savannic Cerrado (Figure 1a).
Eastern regions like the Minor Southern Sertaneja Depression (Figures 1h and 5h), Borborema Plateau
(Figures 1d and 5d) and Raso da Catarina (Figures 1g and 5g) show another noticeable drop in SIFrg
output on late 2016. SIF trend responses at all areas is visually proportional to concurrent environmental
variation in temperature (simultaneously) and precipitation (with apparent lags).
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Trendiines from LOESS time-series decomposition of Fluorescence, Temperature and Precipitation

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

1.0

08

SIFpe (1)

06

04f -7 £ 7%

Precipitation (mm h™")

“SiF.

02 25

| 08
0.6

ooadt o i = 75

175

125

SIFpe (1iU)

75

SiFa

25

Precipitation (mm h™")

125

75

175

125

SIFge (.U}

75

Precipitation (mm h™")

ey

25

125

75

125

SIFpe (.U

75

Precipitation (mm h™")

“SiFa

25

125

75

Precipitation (mm h™")

Figure 5. Data trends of SIFrg, SIFr, Temperature and Precipitation, from February 2007 to December
2017. Trends obtained from time-series decomposition with Locally Estimated Scatterplot Smoothing
(LOESS). SIFpgr and SIFg are Sun-Induced Fluorescence from GOME-2 at the far-red and red peaks,
respectively. Temperature is MODIS daytime Land Surface Temperature. Precipitation is TRMM
Precipitation rate. All graphs have the same axis ranges for all variables.

3.3. SIF and Climate: Linear Mixed Model Analysis

The largest fixed continuous effect at all Linear Mixed Models (LMMs) was that of “Soil
Moisture” (Table 2, Estimate and Chisquare values). The categorical factor “Ecoregion” was the most
significant variable for all unmodified SIF variables as well as for the “Prod” and “SZA” modifications
but, the “Yield” modification reduced its relative importance and increased that of “Soil Moisture’
(as encapsulated in Chisquare values). While SIFrgr and SIFg models responded in a similar manner,

7

concerning the proportional effects of each factor, SIFg ,rg was not significantly affected by any factor
(Table 2).
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Table 2. Linear Mixed Models’ Fixed Effects—*“SE” is the Standard Error of each fixed effect estimate,
“Chisq” is the chisquare value from each Wald type Il test, “df” is the degree of freedom of each effect in
its Wald type II test, “p” is the probability value of each Wald test. SIFfp is Sun-Induced Fluorescence
at the far-red peak; dSIFry is the daily average of SIF based on a clear sky PAR proxy; SIFrgr-Prod is the
product of SIFpg by NDVI; SIFpr-SZA is the quotient of SIFrg by the cosine of the Sun’s Zenith Angle
(SZA); SIFrr-Yield is the quotient of SIFrg by NDVI; For all models above: n = 1179; Month = 12;
Month:Year = 131. SIFg is Sun-Induced Fluorescence at the red peak; SIFg /ry is the ratio between SIFg
and SIFgR. For the last two models: n = 747; Month:Year = 83. Significance levels are marked according
to the following legend: *** for p < 0.001 and * for p < 0.05.

Model Fixed Effect Estimate  SE Chisq  df p
SIFrr Temperature (T) —0.306  0.039 76.887 1 <0.001 **
Soil Moisture (SM) 0.614 0.032 395087 1 <0.001 ***
T:SM 0.035 0.016 5.057 1 0.025 *
Ecoregion 670376 8 <0.001 ***
dSIFrR Temperature (T) —0.340 0.040  90.180 1 <0.001 ***
Soil Moisture (SM) 0.571 0.033 325760 1 <0.001 ***
T:SM —0.069 0.015 5.070 1 0.0243 *
Ecoregion 645,610 8 <0.001 ***
SIFrr-Prod  Temperature (T) —0.386 0.034 110.730 1 <0.001 **
Soil Moisture (SM) 0.556 0.028 541.120 1 <0.001 ***
T:SM —0.054 0.013 16.290 1 <0.001 ***
Ecoregion 1149.750 8 <0.001  ***
SIFrr-SZA  Temperature (T) —0.165 0.017 101.921 1 <0.001 ***
Soil Moisture (SM) 0.239 0.014 325.115 1 <0.001 ***
T:SM 0.005 0.007 0.481 1 0.488
Ecoregion 599.259 8 <0.001 ***
SIFrgr-Yield Temperature (T) —0.071  0.049 11.330 1 0.148
Soil Moisture (SM) 0.678 0.041 21948 1 <0.001 ***
T:SM 0.150 0.021  51.682 1  <0.001 ***
Ecoregion 199573 8 <0.001 ***
SIFR Temperature (T) —0.210 0.057  21.645 1  <0.001 ***
Soil Moisture (SM) 0.542 0.048 126.721 1  <0.001 ***
T:SM 0.065 0.024 7.180 1 0.007 *
Ecoregion 344070 8 <0.001 ***
SIFR/FR Temperature (T) 0.003 0.068 0.000 1 0.985
Soil Moisture (SM)  —0.089  0.068 2.088 1 0.148
T:SM 0.004 0.045 0.009 1 0.925
Ecoregion 2.467 8  0.963

The random factor Month explained a similar amount of variance as was ascribed to residuals in all
models except those involving SIFg, capturing the seasonality effect as expected (Appendix A Table A3).
The nested Month:Year random factor was not so significant to the models but was maintained to
constrain the error structure as it was shown to improve model quality during model selection (results
not shown).

Model analysis showed that SIFpr-Prod had the best fit among the tested variables (Table 3,
R? values) however, SIFfr-SZA, dSIFrr and SIFrg were very close by comparison. Nevertheless,
SIFrr-SZA was the tested model of highest quality as can be observed by its low RMSE, RMEL and BIC
results (Table 3). The model using SIFrr-Yield as its response variable performed worst than unmodified
variables, including SIFgr. The model using SIFr had worse fit than most other models and SIFg /g was
not significantly affected by any fixed or random variable and the model employing it as the response
variable had the worst results in all model quality and goodness-of-fit metrics (Tables 2 and 3).
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Table 3. Linear Mixed Models’ Goodness of Fit—R? is the coefficient of determination; RMSE is
Root Mean Square Error, REML is Restricted Maximum Likelihood and BIC is Bayesian Information
Criterion. SIFpg is Sun-Induced Fluorescence at the far-red peak; dSIFy is the daily average of SIF
based on a clear sky PAR proxy; SIFpr-Prod is the product of SIFpg by NDVI; SIFFrSZA is the quotient
of SIFrR by the cosine of the Sun’s Zenith Angle (SZA); SIFrrYield is the quotient of SIFrg by NDVI;
SIFg is Sun-Induced Fluorescence at the red peak; SIFg /rr is the ratio between SIFr and SIFrg. For all
models: df = 15. For all SIFrg models: n = 1179. For the two models involving SIFg: n = 747.

Metric SIFFR dSIFI:R SIFFR-PI'Od SIFFR-SZA SIFI:R-Yield SIFR SIFR/FR
R? (marginal) 0.678  0.648 0.745 0.705 0.478 0539  0.012
R? (conditional)  0.867 0.867 0.905 0.862 0.735 0.783 0.035
RMSE 0.364 0.365 0.306 0.158 0.504 0.443 0.978
REML 1340 1366 982 —588 2035 1165 2145
BIC 1446 1472 1088 —482 2141 1265 2244

Since the complete results of all these models would be too extensive to show here (6 models for
each of the 9 ecoregions, totaling 54 models). Moreover, since many of the tested response variables
show similar results as to what can be observed for the holistic models presented above, we chose
to show only the slopes of tested fixed effects in graphical format for the models using SIFrg and
SIFpr-Yield (Figures 6).

For SIFpR ecoregion-specific LMMs, soil moisture was the most significant fixed effect. Results
suggest that vegetation at the Northern Sertaneja Depression (Figure 6a) and eastern ecoregions
Borborema Plateau (Figure 6a), Minor Southern Sertaneja Depression (Figure 6h) and Raso da Catarina
(Figure 6g) were the most sensitive to environmental influences. Temperature had significant negative
effects on SIFrgr measured from the vegetation of most ecoregions.

Ecoregion-specific models using SIFpr-Yield as their response variable showed a decrease in the
significance of temperature and, an increase in temperature and soil moisture interaction (“T : SM”)
fixed effect slopes (Figure 6), in relation to models using SIFrg.

Comparing the land cover classification results (Figure 3) and the correspondent ecoregion’s LMM
slopes (Figure 6) we noticed that sensitivity to environmental variables increased in areas where land
cover had smaller percentages of forest formations. To test this, we added relative cover percentage
values of the different forest physiognomies (closed, open, deciduous and evergreen) and performed
Kendall rank correlation tests between total forest cover percentage and the correspondent fixed effect
slopes of ecoregion-specific SIFrg and SIFpg-Yield models. These tests showed that drought sensitivity
(fixed effect slope declivity) was negatively correlated to forest physiognomies cover percentages (Table 4).

Table 4. Kendall rank correlation tests between the GlobCover 2009 forest physiognomies cover and
Linear Mixed Model fixed effect slopes, per ecoregion. T (tau) is the correlation rank and p is the
probability value of Kendall’s test. SIFrg is Sun-induced Fluorescence at the far-red wavelength peak
and SIFrr-Yield is the quotient of Sun-induced Fluorescence at the far-red wavelength peak by NDVI;
n = 9 per fixed effect. Significance levels are marked according to the following legend: ** for p < 0.01,
*for p < 0.05and ’ for p < 0.1.

Response Var.  Fixed Effect T p

SIFrR Soil Moisture (SM) —0.56 0.045 *
Temperature (T) —-0.61 0025 *
SM:T —-0.67 0.013 *

SIFpR-Yield Soil Moisture (SM) —0.50  0.075 !
Temperature (T) —0.44 0119

SM:T -0.72  0.006 **
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Figure 6. Linear Mixed Models’ (LMM) Fixed Effect Slopes. All variables were rescalled to improve
model quality and, therefore, slopes are in relative units. Panel “a” represents SIFrr LMM slopes, and
panel “b” represents SIFrr-Yield LMM slopes. Ecoregions are represented by letters, corresponding
to Figure 1: (a) Campo Maior; (b) Northern Sertaneja Depression; (c) Araripe-Ibiapaba Complex; (d)
Borborema Plateau; (e) Major Southern Sertaneja Depression; (f) Sao Francisco Dunes; (g) Raso da
Catarina; (h) Minor Southern Sertaneja Depression; (i) Chapada Diamantina. Significance levels are
marked in bars according to the following legend: *** for p < 0.001, ** for p < 0.01, * for p < 0.05 and ’
for p < 0.1. n = 131 for each ecoregion.

3.4. SIF and Climate: The 2012 Drought

The results of our trend analysis, showing a major drought at the year of 2012 (Figure 5), can be
better understood in a spatial analysis subsetting our data into three periods: a more favorable period
from 2007 to 2011, a drought period in the year of 2012 and an intermittent-droughts period from 2013
to 2017. The map of average precipitation shows a clear difference among these three periods and
give a spatial perspective of the 2012 drought in the studied area (Figure 7). Spatial averages maps of
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SIFrr, NDVI and their correlation, illustrate the effects of that environmental variation on vegetation
biochemistry, structure and photosynthesis (Figures 8-10).
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Figure 7. Map of period averages of Precipitation Rate for the three periods: from 2007/02 to 2011/12
(a), 2012 (b) and, from 2013/01 to 2017/12 (c).
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Figure 8. Map of period averages of Sun-Induced Fluorescence (SIFg) for the three periods: from
2007/02 to 2011/12 (a), 2012 (b) and, from 2013/01 to 2017/12 (c).
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Figure 9. Map of period averages of NDVI for the three periods: from 2007/02 to 2011/12 (a), 2012 (b)
and, from 2013/01 to 2017/12 (c).
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Figure 10. Map of period averages of the correlation between Sun-Induced Fluorescence (SIFrg) and
NDVI, for the three periods: from 2007/02 to 2011/12 (a), 2012 (b) and, from 2013/01 to 2017 /12 (c).

Precipitation maps show that the initial period from 2007 to 2011 had more favourable conditions
(Figure 7a), while averages for the year of 2012 show a widespread drought in the region (Figure 7b). The
subsequent interval from 2013 until 2017 comprised a mix of dry and wet years that was less-favourable
than what we observed from 2007 to 2011, if better than 2012 conditions. While the 2012 drought is
shown to affect the majority of the Caatinga, dry conditions persisted from 2013 to 2017 particularly at
the region’s central area (Figure 7c).

The changes in studied variables observed in the year of 2012, in relation to the period from 2007
to 2011, were large and SIFrr dropped by over 40% throughout most sites (Figure 11) while NDVI
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and EVI averages dropped by over 22%. Even SIFg and SIFrgYield decreased by over 25% while
Temperature increased by nearly 10% and Precipitation Rate and Soil Moisture decreased by 54% and
20% respectively in 2012, in relation to the previous year’s average. The ratio between red and far-red
SIF increased by over 16% in the year of 2012, with large variation between the different ecoregions of
the Caatinga (Figure 11 SIFg /rR).
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Figure 11. Relative Change of mean 2012 values in relation to mean 2007-2011 values for all variables.
Thick lines within boxes are medians. Precip is Precipitation Rate; SM is Soil Moisture.; dLST is daytime
Land Surface Temperature; EVIis MODIS-MAIAC Enhanced Vegetation Index; NDVI is MODIS-MAIAC
Normalized Difference Vegetation Index; SIFrr-Prod is the product of SIFrg by NDVI; dSIFry is the daily
average of SIF based on a clear sky PAR proxy; SIFFr-SZA is the quotient of SIFrg by the cosine of the
Sun’s Zenith Angle (SZA); SIFrg is Sun-Induced Fluorescence at the far-red peak; SIFg is Sun-Induced
Fluorescence at the red peak; SIFpg-Yield is the quotient of SIFpgr by NDVI; SIFg /R is the ratio between
SIFg and SIFrg. Colors separate the variable types: environmental, spectral vegetation indices and
SIF-related. 2012 period n = 12 while 2007-2011 period n = 59, per variable.

The particular response of each ecoregion’s vegetation to the sampled environmental influences
can be better observed by comparing the relative change in NDVI (photosynthesis-related structure and
biochemistry), SIFggr-Yield (photosynthesis) and their combined response as sampled through SIFrg.
Results from 2012 show a marked drop in variables’ means, with vegetation at the Sao Francisco Dunes
ecoregion displaying the greatest change in that year among all ecoregions (Figure 12a).

The milder drought period of 2013 to 2017 (as characterized by Figures 5 and 7c) seems to have had
a small impact on the Campo Maior ecoregion. Results show that the Northern Sertaneja Depression
and the Borborema Plateau were the most affected ecoregions from 2013 to 2017 in relation to what
can be observed from 2007 to 2011 (Figure 12b).

4. Discussion

4.1. SIF Responses to Environmental Variation

Fluorescence sampled from Caatinga vegetation seems to vary in similar amplitude as the
environmental indicators at the different ecoregions (Figures 4 and 5). The sensitivity of GOME-2
SIF to environmental variation can also be established by observing the results of our Linear Mixed
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Models (Table 2) and by comparing the relative change observed at the 2012 drought among the
various variables (Figure 11) and between NDVI, SIFrr and SIFrg-Yield at each ecoregion (Figure 12).
The variables SIFrr-Prod, dSIFrR, SIFFr-SZA and standard SIFrgr presented a median drop of more
than 40% during the year of 2012 in relation to the period from 2007 to 2011 (Figure 11). While these
variables include the phenological influences of biochemistry and structure on SIF radiative transfer,
SIFrgr-Yield has had most of these influences removed but it also dropped by a median value of over
25% in 2012. Considering that both MODIS EVI and NDVI corrected through the MAIAC algorithm
have a finer spatial resolution than GOME-2 SIF, it is interesting to see that SIFrr-Yield mean value
still dropped by a higher margin than that of the sampled SVIs (Figure 11).
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Figure 12. Ecoregion-specific relative change on NDVI, SIFrr-Yield and SIFrg observed on the year
2012 (panel a), and on the period from 2013 to 2017 (panel b), in relation to the period from 2007 to
2011. Ecoregions are represented by letters, corresponding to Figure 1: (a) Campo Maior; (b) Northern
Sertaneja Depression; (c) Araripe-Ibiapaba Complex; (d) Borborema Plateau; (e) Major Southern
Sertaneja Depression; (f) Sao Francisco Dunes; (g) Raso da Catarina; (h) Minor Southern Sertaneja
Depression; (i) Chapada Diamantina. n = 12 for each variable at each ecoregion.
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Results from our study show that the interpretation of chlorophyll fluorescence emissions is
complex but very informative. As this study demonstrates and as it has been argued in recent
reviews [3,11], the main factors to consider for the interpretation of SIF seem to be the resolution and
temporal aspect of measurements and the characteristics of the vegetation being measured. Due to the
nature of our study and our choice of GOME-2 SIF data, temporal influences in our results could not be
controlled and thus, could not be directly tested. Phenology however, consisting of temporal variation
on biochemical and structural characteristics of vegetation, has an apparently strong influence on SIF
measured at the Caatinga as we will now discuss.

4.2. SIF Seasonality and Phenological Processes

In much of the Caatinga, SIF yearly minimum values were often about a quarter of the yearly
maximum values (results not shown), characterizing a large seasonal variation in SIF (Figure 4).
For most plants, physiological responses to heat and drought stress generally consist in adaptive
measures like: limiting water loss through the closing of stomata and the consequent lowering of the
photochemical quenching (qP) and fluorescence emissions [44]; Moreover, dissipating excess-energy
through the Non-Photochemical Quenching (NPQ) pathways, which lowers fluorescence emissions,
since these processes “compete” for the same energy [4,7,8]. Therefore, the more energy is dissipated
through NPQ the less will be left for qP and its associated fluorescence emission. Nonetheless, since we
are observing seasonal phenomena, not all variation can be attributed to physiology.

A study testing the effects of the exposure of plants to the combined stresses of drought and
high-temperature at the leaf-level reported a five-fold decrease in fluorescence emissions that couldn’t
be attributed only to photoadaptive processes such as qP and NPQ but, was instead found to be
largely the result of chlorophyll degradation [88]. Similarly, the marked decrease in SIF emissions
observed concomitantly with the ecoregion-specific dry seasons (Figure 4) suggests a combined effect of
seasonal photosynthesis adaptation (e.g., non-transient lowering of qP and the increasing of NPQ) and
phenological processes like chlorophyll degradation and leaf-shedding. These phenological processes
are known to play a major role in the Caatinga’s vegetation dynamics [39] and it is reasonable to expect
that they must account for much of the observed SIF seasonal variation. This is further supported
by the sampled SVI seasonality which adheres closely to SIF seasonality (results not shown) and
correlates well to SIF data at most ecoregions (Figure 10 and Appendix A Table A4). Nevertheless,
even at the tested monthly scale, these processes are not the exclusive source of SIF output variation
as is proven by SIFrg-Yield LMM results (Table 2). While the influences of phenological processes
(e.g., leaf flushing, leaf maturation, chlorophyll degradation and leaf shedding) must be considered
carefully, our results show that they do not invalidate the interpretation of chlorophyll fluorescence
seasonality and stress responses.

Furthermore, the reversal in SIFrg and SIFr emission levels observed at the onset of the dry
season (Figure 4) is consistent with the expected effects of leaf shedding and chlorophyll degradation
on the reabsoption of SIFg [14,15] but, this effect is shown here with fluorescence emitted by a large
sample of plants instead of that emitted by a single leaf as described by Buschmann [13]. To our
knowledge, this is the only study showing the relationship between the SIFg ;g ratio and chlorophyll
content at the community level in the seasonal scale, as it is demonstrated by the seasonality of SIFrgr
and SIFr emission levels (Figure 4), and also demonstrated at an anomalous drought by our trend
analysis (Figure 5, year 2012). However, LMM results show that SIFy ;g variation is mostly driven
by the phenological cycle as the effect of seasonality was constrained in our models though random
factors and SIFg,rr was not significantly affected by any fixed factor (Table 2).

4.3. Apparent Influence of Vegetation Differences in SIF Responses

Land cover analysis through ESA’s GlobCover 2009 product agrees with the previously described
dominance of shrublands and open forest physiognomies at the Caatinga area, as described by major
biogeographic studies [37,89]. The prevalence of crop-related classes (mosaic classes, Figure 3 and
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Appendix A Tables Al and A2) is supported by the previously reported presence of subsistence
agriculture with little or no irrigation at the Caatinga [36,40]. This simple land cover analysis supports
our assumptions that Caatinga vegetation is a mosaic of diverse physiognomies, including widespread
human occupation and land cover by subsistence agriculture, and shows that the ecoregions identified
within the Caatinga [35] are different concerning not only geomorphology, climate and soil but also in
their vegetation (Figure 3 and Appendix A Tables A1 and A2).

Our results suggest that vegetation types and their particular characteristics significantly influence
the observed seasonality of SIF and its apparent responses to abiotic stress (Table 4). We suggest that
such influences might help to explain why some of our results seem counter-intuitive, or discrepant.
For example, the seasonality of SIFrr and SIFy at the Ibiapaba-Araripe Complex ecoregion shows
a discrepant pattern with a very small seasonal variation in SIFg that doesn’t seem comparable
to that of SIFrg at that same region (Figure 4c). While we could speculate on differences in local
vegetation composition (e.g., more presence of cacti, differences in deciduousness between vegetation
strata) between the local types and those at other regions, we do not know the reasons for this
particular discrepancy.

Furthermore, we have also observed considerable differences in the correlation of SIF and SVIs
between different areas of the Caatinga (Figure 10 and Appendix A Table A4). Considering the nature of
these data we suggest that temporal differences in responses to environmental variation must influence
the observed correlation discrepancies since, while SIF can respond near instantly to environmental
constraints SVIs will depend on slower biosynthesis and conversion of pigments and on similarly slow
structural changes (Figure 11). Daily cycles of environmental variation and seasonal change in the
ranges of such daily environmental variation have been already been shown to influence chlorophyll
fluorescence output in temperate vegetation [90] as well as in the tropical semiarid vegetation of
Caatinga [91]. Therefore, the time of day when measurements are made is greatly significant for the
interpretation of SIF but not for the interpretation of vegetation indices like EVI and NDVI. Thus, we
suggest that daily maxima of SIF should be more directly comparable to vegetation indices in the
context of seasonal studies. Nevertheless, considering the spatial pattern observed in the correlation
between SIF and NDVI (Figure 10) and how that matches the long term ecoregion-specific correlation
discrepancies (Appendix A Table A4), we believe it is likely that vegetation structure and composition
are also influencing these results.

Despite such uncertainties, the reliability of satellite measurements of SIF is further illustrated
by the coherence of LMM slopes and land cover classification data. As our results have shown,
the higher the percentage of the ecoregion’s vegetation was classified as forest, the weaker was that
ecoregion’s response to tested environmental variables (Table 4). This is reasonable considering that
the environmental factors modelled in LMMs were soil moisture and surface temperature (related to
variations in water availability and vapour pressure deficit effects on vegetation) and that root depths
in forest physiognomies are greater and also that moisture is conserved in the system due its structural
characteristics [44]. Thus, denser and taller vegetation has greater resistance to drought effects
(i.e., weaker response to changes in soil moisture at the measured depth) if compared to shorter
physiognomies such as shrublands and savannas: this is an emergent property of forest ecosystems
and it is closely related to the concept of ecosystem resilience [92,93]. Furthermore, the observed
correlations between GlobCover physiognomies and response to environmental variables were greater
with SIFpgr than with SIFpg-Yield, in agreement with our assumptions regarding the expected effects of
normalizing SIF by a structure and biochemistry vegetation proxy like NDVI. This is, to our knowledge,
the first study to show results substantiating an emergent ecosystem property through remotely sensed
measurements of chlorophyll fluorescence.

Considering the consistency of SIF responses with observed climate, we believe that our study did
not suffer from the limitation of using land cover data from a single year in reference to SIF and other
reflectance data from an eleven year period. However, this limitation and the mixed representativeness
of GOME-2’s large pixels, preclude a more detailed discussion of SIF results in relation to the emitting
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vegetation. More studies using higher-definition SIF data (i.e., with other instruments like OCO-2,
TanSat, TROPOMI, OCO-3 or the upcoming FLEX) accompanied by more precise land cover data,
should be employed to advance knowledge of vegetation ecophysiological responses.

4.4. Linear Mixed Models and Our Adjustments to SIF

The LMM model using SIFrr-SZA, the normalization of SIFrg values by the cosine of the Solar
Zenith Angle (SZA), effectively improved SIF’s relationship to environmental data (Table 3, slightly
higher marginal R? and considerably lower RMSE, REML and BIC). These results contrast with
conclusions from previous studies suggesting that SZA normalization could amplify noise if applied
to measurements taken from lower intensity emissions (as observed at the Caatinga) and influence
perceived sun/shade effects [29]. Furthermore, it is interesting to notice that our study region is under
direct influence from the South Atlantic Anomaly (SAA) and it is, therefore, inherently noisy and
perhaps a “worst-case scenario” for SZA normalization (see PAR normalization in Joiner et al. [28]).

The SIFpg-Prod adjustment, based on the classic productivity equation of Monteith and Moss [62,63],
already shown in a preliminary study to increase the correlation between GOME-2 SIF and FLUXNET
GPP across diverse vegetation types [66], yielded significant improvements on LMM goodness-of-fit
in relation to standard SIF (Table 3). However, due to the substantial increase it caused in the effect
size of the Ecoregion factor on tested LMMs (Table 2) and, considering that this effect encapsulates
part of the structural variability between the different ecoregions, we conjecture that SIFrr-Prod may
be “double-counting” the influence of emitting vegetation as it is calculated by multiplying SIF by
NDVI and both variables are strongly influenced by vegetation structure and biochemistry. This is also
suggested by the fact that although the SIFrr-Prod LMM had the highest coefficients of determination,
it had relatively worse quality than what was observed with the SIFpg-SZA LMM (Table 3, RMSE,
REML and BIC are higher for SIFrr-Prod than for the SIFrr-SZA LMM).

The spectral adjustment here called SIFrg-Yield, consisting on dividing the observed GOME-2 SIF
by corresponding NDVI, had the largest effect on SIF among the tested modifications (Tables 2 and 3).
The observed decrease in goodness-of-fit of the SIFrr-Yield LMM in relation to models using SIFrg,
dSIFrg, SIFpr-SZA and SIFpg-Prod is in agreement with the hypothesis that SIFrg-Yield normalizes
SIF data according to biochemistry and structure as sampled by NDVI, removing much of these
influences from SIF data in the proportion to which NDVI is able to capture them. Because in our
LMMs the Ecoregion factor encapsulates all unmodelled differences between the sampled vegetation
at the different ecoregions, the drop in relative effect of that factor in relation to environmental
factors Temperature and Soil Moisture in Yield-normalized models (Table 2) shows that much of these
unmodelled differences concern biochemical and structural influences on GOME-2 SIF data. Certainly
NDVI would not be an adequate proxy to biochemistry- and structure-related effects on SIF emissions
for all types of vegetation but, it is worth noting that NDVTI at the Caatinga is not subject to strong
saturation effects and it seldom rises above 0.7 in the majority of the region (Figure 9). We suggest
that Yield-normalization is necessary for interpreting fluorescence measurements as our results show
that SIF-Yield adds another perspective on SIF measurements (Figure 12), separating the long-term
effects of phenology, biochemistry and structure (related to photosynthetic capacity) from the transient
photosynthetic rate-related effects (related to photosynthetic performance).

Therefore, our findings support previous suggestions that SIF has potential to improve our
understanding of plant responses to drought [30-32] and exemplify in a case study the premise that
SIF can be more informative when combined with vegetation indices.

5. Conclusions

In this study of the semiarid Caatinga vegetation of northeast Brazil, we attempted to characterize
eleven years of Sun-induced chlorophyll fluorescence (SIF) seasonality (from 2007 to 2017) and SIF
responses to a major drought in 2012. To achieve these objectives we adjusted SIF through combination
with NDVI and also used angular adjustments to SIF provided with original GOME-2 data. Original
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and modified SIF measures were tested against environmental data using time-series decomposition,
rank correlation tests and linear mixed models (LMMs).

Results demonstrated that seasonal variation and drought responses of adjusted SIF emissions at
the community/landscape level correspond to previously reported leaf-level physiological responses.
These observations are more relevant since they include both red and far-red SIF, as well as their
ratio, and they were made in the complex and heterogeneously structured plant communities of
the semiarid Caatinga of northeast Brazil. Our results with angular and spectral adjustments to SIF,
although partially implemented with geometrically and radiometrically incompatible data (GOME-2
SIF and MODIS MAIAC SVIs), suggest that many of the assumptions behind the tested adjustments
are likely correct. Our findings are relevant considering GOME-2 SIF’s low spatial resolution and the
noise inherent to measurements taken from this area due to the South Atlantic Anomaly. Here we
show for the first time that environmental responses measured through adjusted GOME-2 SIF correlate
with a known emergent ecosystem property (resilience), illustrating its value for ecological studies
of vegetation.

We suggest that more studies testing angular and spectral adjustments to SIF using higher definition
SIF data in combination with other reflectance data are necessary to improve our understanding of
landscape-level vegetation responses. Furthermore, continuous chlorophyll fluorescence measurements
from tower-based instruments and coordinated field campaigns are recommended to increase our
understanding of vegetation ecophysiological responses at different scales, to validate our findings and
to allow predictions of possible ecological shifts resulting from the ongoing global climate change.
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Appendix A

Trendlines from LOESS time-series decomposition of Fluorescence and Vegetation Indices
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Figure Al. Data trends of SIFpg, NDVIand EVI, from February 2007 to December 2017. Trends obtained
from time-series decomposition with Locally Estimated Scatterplot Smoothing (LOESS). SIFrr is
Sun-Induced Fluorescence from GOME-2 at the far-red peak. NDVI is MODIS MAIAC NDVI and EVI
is MODIS MAIAC EVI. All graphs have the same axis ranges for all variables.
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Table A1. GlobCover 2009 land cover classification system codes and names correspondence table for
the Caatinga of northeast Brazil.

Class Number Class Name

14 Rainfed croplands

20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland /forest) (20-50%)

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)

40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5 m)

50 Closed (>40%) broadleaved deciduous forest (> 5m)

60 Open (15-40%) broadleaved deciduous forest/woodland (>5 m)

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%)

120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)

130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5 m)
140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses)

150 Sparse (<15%) vegetation

160 Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily)
170 Closed (>40%) broadleaved forest or shrubland permanently flooded

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil
190 Artificial surfaces and associated areas (Urban areas >50%)

200 Bare areas

210 Water bodies

Table A2. Relative cover per Ecoregion from ESA’s GlobCover 2009—values represent percentages per
ecoregion. Codes represent land cover types listed in Table A1l. Ecoregions are represented by letter
according to the following list: (a) Campo Maior; (b) Northern Sertaneja Depression; (c) Araripe-Ibiapaba
Complex; (d) Borborema Plateau; (e) Major Southern Sertaneja Depression; (f) Sao Francisco Dunes; (g)
Raso da Catarina; (h) Minor Southern Sertaneja Depression; (i) Chapada Diamantina. Numbers have
been rounded to facilitate reading.

Class Number Ecoregion
a b c d e f g h i

14 070 17.65  3.58 21.15 1276 299 2484 2870 7.13
20 852 1654 19.92 12.76 2996 3799 1473 2145 21.74
30 20.67 29.36  14.66 28.73 2297 1124 2949 3151 2672
40 9.19 2.03 4.35 0.83 5.02 5.02 0.92 0.60 8.91
50 043 096 088 0.83 308 18 173 032 658
60 0.35 2.51 3.64 0.26 4.50 5.48 0.32 0.02 5.45
110 062 933 090 10.72 290 072 38 579 391
120 0.01 0.28 0.02 0.15 0.27 0.37 0.37 0.30 0.69
130 59.25 1999 51.96 24.01 1758 2743 2132 9.61 17.80
140 0.01
150 001 020 0.1 0.07 007 058 008 008 030
160 0.01  0.01
170 0.01
180 010 001 0.01 0.01 0.30
190 0.09 0.01 0.12 0.02 0.01 0.05
200 001 030 0.04 0.21 047 072 058 055 026
210 0.13 0.75 0.03 0.16 0.38 5.59 1.76 1.03 0.20

Table A3. Linear Mixed Models’ Random Effect Variances—SIFrg is Sun-Induced Fluorescence at
the far-red peak; dSIFpp is the daily average of SIF based on a clear sky PAR proxy; SIFpg-Prod is
the product of SIFrg by NDVI; SIFFrSZA is the quotient of SIFrg by the cosine of the Sun’s Zenith
Angle (SZA); SIFprYield is the quotient of SIFrgr by NDVI; For all SIFFg models: n = 1179; Month = 12;
Month:Year = 131. SIFg is Sun-Induced Fluorescence at the red peak; SIFg /rr is the ratio between SIFg
and SIFrg. For the two models involving SIFg: n = 747; Month = 12; Month:Year = 83.

SIFFR dSIFFR SIFFR-PI‘Od SIFFR-SZA SIFFR-Yield SIFR SIFR/FR

Effect Variance  Variance Variance Variance Variance Variance  Variance
Month:Year 0.046 0.053 0.048 0.011 0.049 0.073 0.006
Month 0.161 0.192 0.129 0.021 0.218 0.172 0.017

residual 0.146 0.148 0.104 0.028 0.277 0.218 0.985
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Table A4. T (tau) correlation rank from Kendall’s Correlation tests between SIF and SVIs by Ecoregion
and for the whole Caatinga. SIFR is Sun-Induced Fluorescence at the far-red peak, EVI is the Enhanced
Vegetation Index and NDVI is the Normalized Difference Vegetation Index. For SIFpg tests: n = 131
pairs for each ecoregion and n = 1179 pairs for Caatinga; SIFy is Sun-Induced Fluorescence at the red
peak; For SIFy tests: n = 59 pairs for each ecoregion and n = 531 pairs for Caatinga; Region letters are
the ecoregions as in Figure 1: (a) Campo Maior; (b) Northern Sertaneja Depression; (c) Araripe-Ibiapaba
Complex; (d) Borborema Plateau; (e) Major Southern Sertaneja Depression; (f) Sao Francisco Dunes; (g)
Raso da Catarina; (h) Minor Southern Sertaneja Depression; (i) Chapada Diamantina. Asterisks denote
significance levels: *** represents p value < 0.001.

Region SIFrg and EVI  SIFpg and NDVI  SIFR and EVI  SIFg and NDVI

a 0.42 *** 0.47 *** 0.25 *** 0.26 ***
b 0.72 *** 0.73 *** 0.65 *** 0.68 ***
c 0.54 *** 0.57 *** 0.50 *** 0.59 ***
d 0.70 *** 0.71 *** 0.54 *** 0.54 ***
e 0.65 *** 0.65 *** 0.54 *** 0.56 ***
f 0.58 *** 0.59 *** 0.37 *** 0.42 ***
g 0.64 *** 0.64 *** 0.28 *** 0.30 ***
h 0.46 *** 0.47 *** 0.31 *** 0.34 ***
i 0.42 *** 0.44 *** 0.25 *** 0.25 ***
Caatinga 0.57 *** 0.58 *** 0.41 *** 0.43 ***
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