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Disorder-induced superconductor to insulator transition and finite phase stiffness
in two-dimensional phase-glass models
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We study numerically the superconductor to insulator transition in two-dimensional phase-glass (or chiral-
glass) models with varying degree of disorder. These models describe the effects of gauge disorder in
superconductors due to random negative Josephson-junction couplings, or π junctions. Two different models
are considered, with binary and Gaussian distribution of quenched disorder, having nonzero mean. Monte Carlo
simulations in the path-integral representation are used to determine the phase diagram and critical exponents.
In addition to the usual superconducting and insulating phases, a chiral-glass phase occurs for sufficiently large
disorder, with random local circulating currents of different chiralities. A transition from superconductor to
insulator can take place via the intermediate chiral-glass phase. We find, however, that the chiral-glass state has
a finite phase stiffness, being still a superconductor, instead of the Bose metal, which has been suggested by
mean-field theory.

DOI: 10.1103/PhysRevB.102.184503

I. INTRODUCTION

Random gauge models of disordered superconductors,
such as the gauge-glass model, have been widely used to
study the vortex glass transition of disordered type II super-
conductors [1,2]. Gauge disorder in this case arises from the
combined effect of geometrical disorder and the applied mag-
netic field, leading to random phase shifts in the Josephson
junctions coupling local superconducting regions. However,
phase shifts can also arise from the presence of negative
Josephson couplings or π junctions [3–5], even in the absence
of an applied magnetic field, and they can lead to different
phase transitions and changes in the transport and magnetic
properties [6–9]. The phase glass considered in this work
is a random gauge model, which has been introduced by
Dalidovich and Phillips [10–12] in an attempt to explain a
metallic phase intervening between the superconductor and
insulator phases in the zero-temperature limit, observed exper-
imentally in many disordered superconducting films [13,14],
even without an external magnetic field [15,16]. It incorpo-
rates the effects of quantum fluctuations due to the charging
energy Ec of local superconducting regions and disorder in
the Josephson-junction coupling EJ between them, allowing
for negative EJ . The metallic phase, called a Bose metal [17],
would be a physical realization of the glassy state in such
a model for a sufficiently larger degree of disorder. Alter-
natively, the phase-glass model could also be regarded as
a quantum version of the chiral glass model [7,8,18,19], or
XY spin glass [20], with varying degree of disorder, studied
in the context of spin glasses and high-Tc superconductors
containing π junctions. The chiral order parameter arises
from the directions of the local circulating currents (Joseph-
son vortices) introduced by the frustration effects of negative
junctions. A chiral-glass phase occurs in the ground state of

such models for sufficiently large disorder. Although such a
glass phase is unstable against thermal fluctuations in two
dimensions [18,21,22], it remains stable to quantum fluctu-
ations at zero temperature [23], below a critical value of the
ratio Ec/EJ .

Phase-glass models should also be relevant for recent
experiments on superconducting thin films, nanostructured
with a periodic pattern of nanoholes and doped with mag-
netic impurities [24]. A simple model for phase coherence in
these systems consists of a Josephson-junction array, with the
nanoholes corresponding to the dual lattice [25,26]. Since the
magnetic impurities can introduce π junctions [3] distributed
randomly, the transition to the insulating phase as a function of
doping can be described by a chiral-glass model with varying
degree of disorder.

The phase-glass model with a Gaussian distribution of
disorder with nonzero mean has been studied in detail analyt-
ically, and the glass state found for larger disorder was shown
to correspond to a Bose metal, within a mean-field theory ap-
proach [10–12]. This result and its extension to the magnetic
field-tuned transition [27] provide a compelling description
of experiments showing metallic behavior in superconducting
thin films [13–15,28], in terms of a minimum model with
glassy behavior [29]. However, although results from mean-
field theory tend to agree with those for models with infinite
range interactions or in high dimensions, they are usually not
reliable for low-dimensional systems with short-range inter-
actions. Thus, for the phase-glass model in two dimensions,
further investigation by numerical simulation is required to
verify the phase diagram, determine the critical behavior, and
test the prediction of a Bose metal phase.

In this work, we study numerically the phase diagram and
critical behavior of two-dimensional phase-glass models with
varying degree of disorder, at zero temperature. Two different
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FIG. 1. Phase diagrams as a function of g = (Ec/EJ )1/2 and dis-
order strengths x or �, showing the superconducting (S), insulating
(I), and chiral-glass (CG) phases. Ec and EJ are the charging and
Josephson-coupling energies, respectively. (a) Binary phase-glass
model, where x is the fraction of negative random Josephson cou-
plings ±EJ . (b) Gaussian phase-glass model, where � is the width of
the Gaussian distribution of Josephson couplings with average value
EJ . The dotted lines 1 and 2 indicate two different possible paths for
the superconductor to insulator transition.

models are considered, with a binary and a Gaussian distri-
bution of quenched disorder, both with nonzero mean. Monte
Carlo simulations in the path-integral representation are used
to determine the phase diagram and the critical behavior
from the finite-size scaling behavior of correlation lengths and
phase stiffness. In addition to the usual superconducting and
insulating phases, a chiral-glass phase (phase glass) occurs
for sufficiently large disorder (Fig. 1). The transitions to the
insulating phase across the lines AB and BD are in differ-
ent universality classes, with significantly different critical
exponents and universal conductivity at the transitions. As
sketched in Fig. 1(b), the transition from superconductor to
insulator can take place as a single phase transition (path 1)
or via the intermediate chiral-glass phase (path 2). We find,
however, that the chiral-glass phase has a finite phase stiff-
ness, being still a superconductor, instead of the Bose metal,
which has been predicted by mean-field theory [10–12]. This
indicates that the simplest two-dimensional phase-glass model
with short-range interactions does not provide a consistent
theoretical framework for the Bose metal state in the zero-
temperature limit, as observed in recent experiments.

II. PHASE-GLASS MODELS

We consider disordered superconductors described as a
two-dimensional (2D) array of Josephson junctions, allowing
for charging effects and gauge disorder, defined by the Hamil-
tonian [12,23,30,31]

H = EC

2

∑
i

n2
i −

∑
〈i j〉

Ei j cos(θi − θ j ). (1)

The first term in Eq. (1) describes quantum fluctuations
induced by the charging energy, ECn2

i /2, of a non-neutral
superconducting “grain,” or “island,” located at site i of a
reference square lattice, where EC = 4e2/C, e is the electronic
charge, and ni = −i∂/∂θi is the operator, canonically conju-
gate to the phase operator θi, representing the deviation of the
number of Cooper pairs from a constant integer value. The
effective capacitance to the ground of each grain C is assumed
to be spatially uniform for simplicity. The second term in (1)
is the Josephson-junction coupling between nearest-neighbor

grains described by phase variables θi. For a spatially uni-
form Josephson coupling, Ei j = EJ > 0. Equation (1) is also
known as the quantum rotor model [32,33], with additional
effects of disorder in Ei j .

The phase-glass model, as introduced by Dalidovich and
Phillips [10–12] to explain the Bose metal phase of super-
conducting films, incorporates the effects of disorder of Ei j

in Eq. (1) due to the random location of negative Joseph-
son coupling (Ei j < 0). Assuming an asymmetric Gaussian
distribution of Ei j with nonzero zero mean, this model has
been studied in detail analytically within a mean-field theory
approach.

The phase-glass model can also be regarded as a quantum
version of the 2D chiral-glass model [8,18,21], or XY spin
glass [20], with varying degree of disorder, studied in the con-
text of spin glasses and high-Tc superconductors containing
π junctions. In the classical limit Ec → 0, the chiral order
parameter arises from the directions of the local circulating
currents (Josephson vortices) introduced by the frustration
effects of negative junctions. The chiral variable can be
defined as

χp = 1

χ0

′∑
〈i j〉

Ei j sin(θi − θ j ), (2)

where the summation
∑′

〈i j〉 is a direct sum around the pla-
quette p of the lattice, and χ0 is a normalization factor. For
sufficiently large disorder, a chiral-glass phase occurs with
random local circulating currents of different chiralities χ .
Although such a glass phase is unstable against thermal fluc-
tuations in two dimensions [18,21,22], it remains stable to
quantum fluctuations at zero temperature [23], below some
critical value of Ec.

Since Ei j < 0 is equivalent to a positive Josephson cou-
pling |Ei j | with a phase shift Ai j = π to the phase difference
θi − θ j in Eq. (1), the phase-glass model is a particular case
of random gauge models [23], with a binary distribution of
phase shifts Ai j = 0 or π , in contrast to the gauge-glass
model [34,35], where Ai j has a continuous distribution.

We consider two different phase-glass models, given by
asymmetric probability distributions of Ei j :

(i) P(Ei j ) = xδ(Ei j + EJ ) + (1 − x)δ(Ei j − EJ ) (binary).
(ii) P(Ei j ) = e−(Ei j−EJ )2/2�2

/�
√

2π (Gaussian).
The above binary and Gaussian disorder distributions are

parametrized by x and �, respectively, with an average value
of the Josephson coupling 〈Ei j〉 �= 0, except in the limit x =
0.5 for the binary model, where x corresponds to the fraction
of negative Josephson junctions. Only the Gaussian phase-
glass model has been studied in detail analytically, using a
mean-field theory approach [10–12].

III. PATH-INTEGRAL REPRESENTATION AND MONTE
CARLO SIMULATION

The quantum phase transition at zero temperature can be
conveniently studied in the framework of the imaginary-time
path-integral formulation of the model [33,36]. In this rep-
resentation, the 2D quantum model of Eq. (1) maps into
a (2 + 1)D classical statistical mechanics problem. The ex-
tra dimension corresponds to the imaginary-time direction.
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Dividing the time axis τ into slices �τ , the ground-state en-
ergy corresponds to the reduced free energy F of the classical
model per time slice. The reduced classical Hamiltonian can
be written as [30,36,37]

H =−1

g

[∑
τ,i

cos(θτ,i − θτ+1,i )+
∑
〈i j〉,τ

ei j cos(θτ,i−θτ, j )

]
,

(3)

where ei j = Ei j/EJ , and τ labels the sites in the discrete time
direction. The ratio g = (EC/EJ )1/2, which drives the quantum
phase transition for the model of Eq. (1), corresponds to an
effective “temperature” in the (2 + 1)D classical model of
Eq. (3). The coupling of the phases θτ, j in the time direction
results from a Villain approximation, used to obtain the phase
representation of the first term in Eq. (1), but it should pre-
serve the universal aspects of the critical behavior [36]. The
classical Hamiltonian of Eq. (3) can be viewed as a 3D layered
XY model, where frustration effects exist only in the 2D
layers. Randomness in ei j corresponds to disorder completely
correlated in the time direction.

Equilibrium Monte Carlo (MC) simulations are carried out
using the 3D classical Hamiltonian in Eq. (3) regarding g
as a “temperature”-like parameter for different values of the
disorder strength x or �. The parallel tempering method [38]
is used in the simulations with periodic boundary conditions,
as in previous works [23,25,26]. Since the correlation lengths
in the spatial and imaginary-time directions are related by
dynamical scaling as ξτ ∝ ξ z, the finite-size scaling analysis
is performed for different linear sizes L of the square lattice
with the constraint Lτ = aLz, where a is a constant aspect
ratio. This choice simplifies the scaling analysis, otherwise
an additional scaling variable Lτ /Lz would be required to
describe the scaling functions. The value of a is chosen to
minimize the deviations of aLz from integer numbers. We
used typically 104 MC passes for equilibration and for cal-
culations of average quantities. Averages over disorder used
100–1000 samples for system sizes ranging from L = 16 to
30. Equilibration was checked with the methods described
in Refs. [38,39].

The MC simulations described above employing periodic
boundary conditions do not allow a direct determination of the
phase stiffness of the system in the spatial direction, γx, for
large disorder. The dominant effect of the gauge disorder in-
troduces additional phase shifts, which lead to negative values
of phase stiffness depending on the disorder configurations.
To probe the phase stiffness in this regime, we have also
employed a driven MC method with fluctuating boundary
conditions [40]. For that, the layered classical model of Eq. (3)
is viewed as a 3D superconductor. In the presence of an ex-
ternal driving perturbation Jx (“current density”) that couples
to the phase difference θτ,i+x̂ − θτ,i along the x̂ direction, the
classical Hamiltonian of Eq. (3) is modified to

HJ = H −
∑
i,τ

Jx

g
(θτ,i+x̂ − θτ,i ). (4)

MC simulations are carried out using the Metropolis algo-
rithm, and the time dependence is obtained from the MC
time tmc. When Jx �= 0, the system is out of equilibrium

TABLE I. Critical couplings (xc, gc ) or (�c, gc ), exponents z, ν,
and conductivity σ ∗ at the transition of the S-I, CG-I, and S-CG tran-
sitions in the phase diagrams of Fig. 1, for the binary and Gaussian
phase-glass models. At the S-CG transition σ remains infinity.

Binary model

S-I CG-I S-CG

xc, gc 0.05, 2.049(1) 0.2, 1.64(4) 0.10(2), 1.6
z 1.10(5) 1.2(1) 1.1(1)
ν 0.85(2) 1.5(2) 1.5(3)
σ ∗/σQ 0.32(3) 0.55(3)

Gaussian model

S-I CG-I S-CG

�c, gc 0.5, 2.178(1) 1.6, 2.10(5) 1.00(2), 1.68
z 1.10(5) 1.2(1) 1.1(1)
ν 0.85(2) 1.4(2) 1.4(3)
σ ∗/σQ 0.31(3) 0.59(3)

since the total energy is unbounded. The lower-energy min-
ima occur at phase differences θτ,i+x̂ − θτ,i, which increase
with time tmc, leading to a net phase slippage rate propor-
tional to Vx = 〈d (θτ,i+x̂ − θτ,i )/dtmc〉, corresponding to the
average “voltage” per unit length. The measurable quantity
of interest is the phase slippage response (“nonlinear resis-
tivity”) defined as Rx = Vx/Jx. Similarly, we define Rτ as
the phase slippage response to the applied perturbation Jτ

in the layered (imaginary-time) direction. One then expects
that Rx should approach a nonzero value when Jx → 0 above
the phase-coherence transition, while below the transition it
should approach zero if the phase stiffness is finite. From
the nonlinear “current-voltage” scaling near the transition,
one can extract the critical coupling gc and the critical expo-
nents [23,26,40–42].

IV. NUMERICAL RESULTS AND DISCUSSION

The phase diagrams in Fig. 1 were obtained by locating the
S-I and CG-I transitions from the behavior of the correlation
length and phase stiffness as a function of g for various fixed
values of disorder strength, x or �. The S-CG transition was
studied from the behavior of the correlation length as a func-
tion of disorder x or � at fixed values of g. In the following
subsections, we described the results for the critical behavior
across the transition lines AB, BC, and BD at particular values
of x or �, obtained by scaling analysis of extensive MC simu-
lations. These results are summarized in Table I. The errorbars
for the critical exponents are estimated from deviations of the
results obtained from different quantities.

A. Superconductor to insulator transition

To locate the phase-coherence transition for a small degree
of disorder, we first consider the behavior of the finite-size
correlation length ξ , which can be defined as [43]

ξ (L, g) = 1

2 sin(k0/2)
[S(0)/S(k0) − 1]1/2. (5)

Here S(k) is the Fourier transform of the correlation function
C(r), and k0 is the smallest nonzero wave vector. For g > gc,
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FIG. 2. (a) Correlation length in the imaginary-time direction ξτ of the binary phase-glass model near the S-I transition at x = 0.05 for
different system sizes L, and (b) corresponding scaling plot of the data near the transition with gc = 2.048, ν = 0.85. (c) Correlation length in
the spatial direction ξ , and (d) corresponding scaling plot with gc = 2.05, ν = 0.89. Lτ = aLz, with aspect ratio a = 0.641 and z = 1.1.

this definition corresponds to a finite-difference approxi-
mation to the infinite system correlation length ξ (g)2 =
− 1

S(k)
∂S(k)
∂k2 |k=0, taking into account the lattice periodicity. The

correlation function in the spatial direction is obtained as

C(r) = 1

L2Lτ

∑
τ, j

〈ψτ, jψτ, j+r〉, (6)

FIG. 3. (a) Same as Fig. 2(a) but for the Gaussian phase-glass model at � = 0.5, and (b) corresponding scaling plot with gc = 2.177,
ν = 0.86. (c) Correlation length in the spatial direction ξ , and (d) corresponding scaling plot with gc = 2.18, ν = 0.86.
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FIG. 4. (a) Phase stiffness in the imaginary-time direction γτ of the binary phase-glass model near the S-I transition at x = 0.05 for different
system sizes L, and (b) corresponding scaling plot with gc = 2.05 and ν = 0.82.

where ψτ, j = exp(iθτ, j ) is the order parameter. Analogous
expressions are used for the correlation function Cτ (r) and
correlation length ξτ (L, g) in the time direction. For a contin-
uous transition, ξ (L, g) should satisfy the scaling form

ξ/L = F (L1/νδg), (7)

where F (x) is a scaling function, δg = g − gc, and ν is the
correlation-length critical exponent. This scaling form implies
that data for the ratio ξ (L, g)/L as a function of g, for different
system sizes L, should cross at the critical coupling gc. More-
over, a scaling plot in the form ξ/L × L1/νδg sufficiently close
to gc should collapse the data onto the same curve.

Figure 2(a) shows the behavior of the correlation lengths ξτ

and ξ in the time and spatial directions for the binary phase-
glass model with the dynamic exponent set to z = 1.1. The
curves for ξτ /L as a function of g at a fixed value of disorder
x = 0.05 for different system sizes cross approximately at the
same point, providing evidence of a continuous transition. In
Fig. 2(b), a scaling plot according to Eq. (7) is shown, ob-
tained by adjusting the parameters gc and ν to obtain the best
data collapse. Figures 2(c) and 2(d) show the corresponding
behavior for the correlation length in the spatial direction. The
estimate z = 1.1 was obtained by repeating the calculations
for different values of z larger than z = 1 and choosing the one
that gives the best data collapse. Similar results are obtained
for the Gaussian phase-glass model as shown in Fig. 3.

The phase-coherence transition described above can be
identified as a superconductor-insulator transition from the
behavior of the phase stiffness γ , which measures the free-

energy cost to impose an infinitesimal phase twist along a
certain direction. In the imaginary-time direction, γτ , which
corresponds to the compressibility of the bosonic system, is
given by [37,44]

γτ = 1

L2Lτ g2

[
g〈ετ 〉 − 〈

I2
τ

〉 + 〈Iτ 〉2
]

d
, (8)

where ετ = ∑
τ,i cos(θτ,i − θτ+1,i ) and Iτ = ∑

τ,i sin(θτ,i −
θτ+1,i ). In Eq. (8), 〈· · · 〉 represents a MC average for a fixed
disorder configuration, and [· · · ]d represents an average over
different disorder configurations. Similarly, the phase stiff-
ness in the spatial direction, γx, which corresponds to the
superfluid density, is given by the analogous expression in
the x̂-direction. In the superconducting phase, γ should be
finite, reflecting the existence of phase coherence, while in
the insulating phase it should vanish in the thermodynamic
limit. For a continuous phase transition, γτ should satisfy the
finite-size scaling form [37]

γτ L2−z = F (L1/νδg), (9)

where F (x) is a scaling function and δg = g − gc. This scaling
form implies that data for γτ L2−z as a function of g, for
different system sizes L, should cross at the critical coupling
gc. Figure 4(a) shows this crossing behavior, and Fig. 4(b)
shows the corresponding scaling plot of the data according
to the scaling form of Eq. (9). The same behavior is found for
the Gaussian phase-glass model as shown in Fig. 5.

Another quantity characterizing the superconductor to in-
sulator transition is the electrical conductivity at the transition.

FIG. 5. (a) Same as Fig. 4(a) but for the Gaussian phase-glass model at � = 0.5, and (b) corresponding scaling plot with gc = 2.178 and
ν = 0.84.
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FIG. 6. Scaling plot of conductivity σ (iwn) at the critical coupling gc for (a) the binary phase-glass model at x = 0.05, gc = 2.058 with
α = 0.5, and (b) the Gaussian phase-glass model at � = 0.5, gc = 2.187 with α = 0.2. The universal conductivity is given by the intercept
with the xo = 0 dashed line, leading to the corresponding estimates (a) σ∗

σQ
= 0.32(3) and (b) σ∗

σQ
= 0.31(3).

Its value should be universal, it does not depend on the param-
eters of the model, but it can depend on the universality class
of the transition [45]. Following the scaling method described
by Cha et al. [32,44], the universal conductivity can be deter-
mined from the frequency and finite-size dependence of the
phase stiffness γ (w) in the spatial direction. The conductivity
is given by the Kubo formula

σ = 2πσQ lim
wn→0

γ (iwn)

wn
, (10)

where σQ = (2e)2/h is the quantum of conductance and
γ (iwn) is a frequency-dependent phase stiffness evaluated at
the finite frequency wn = 2πn/Lτ , with n an integer. The
frequency-dependent phase stiffness in the x̂ direction is
given by

γ (iωn) = 1

L2Lτ g2
[g〈εx〉 − 〈|I (iwn)|2〉 + 〈|I (iwn)|〉2]d , (11)

where

εx =
∑
τ, j

e j, j+x̂ cos(�xθτ, j ),

(12)
I (iwn) =

∑
τ, j

e j, j+x̂ sin(�xθτ, j )e
iwnτ ,

and �xθτ, j = θτ, j − θτ, j+x̂. At the transition, γ (iwn) vanishes
linearly with frequency and σ assumes a universal value σ ∗,
which can be extracted from its frequency and finite-size

dependence as [44]

σ (iwn)

σQ
= σ ∗

σQ
− c

(
wn

2π
− α

2π

wnLτ

)
· · · . (13)

The parameter α is determined from the best data collapse
of the frequency-dependent curves for different systems sizes
in a plot of σ (iwn )

σQ
versus xo = ( wn

2π
− α 2π

wnLτ
). The universal

conductivity is obtained from the intercept of these curves
with the line xo = 0. From this scaling behavior, shown in
Fig. 6(a) for the binary phase-glass model and Fig. 6(b) for
the Gaussian phase-glass model, we obtain at the S-I transition
σ ∗/σQ = 0.32(3) and σ ∗/σQ = 0.31(3), respectively.

B. Superconductor to chiral-glass transition

Above a disorder-strength threshold xB, the finite-size cor-
relation length ξ (L, g) defined in Eq. (5) no longer displays a
crossing behavior at some critical gc, indicating the absence
of long-range or quasi-long-range order in terms of the order
parameter ψτ, j = exp(iθτ, j ). From this change of behavior, we
estimate the location of the multicritical point B at (gB, xB) for
the binary phase-glass model in the phase diagram of Fig. 1(a)
and, similarly, for the Gaussian phase-glass model at (gB,�B)
in Fig. 1(b).

The superconductor to chiral glass transition can be deter-
mined from the behavior of the correlation length as a function
of disorder at a fixed value of g < gB. Figure 7(a) shows
the behavior of the correlation length ξ (x, L) for increasing
disorder x at g = 1.6 for the binary phase-glass model. The

FIG. 7. (a) Correlation length in the spatial direction ξ of the binary phase-glass model near the S-CG transition at fixed g = 1.6 for
different system sizes L, and (b) corresponding scaling plot of the data near the transition with xc = 0.1, ν = 1.4.
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FIG. 8. (a) Same as Fig. 7(a) but for the Gaussian phase-glass model near the S-CG transition at fixed g = 1.68 for different system sizes
L, and (b) corresponding scaling plot of the data near the transition with �c = 1.0, ν = 1.4.

curves of ξ (x, L)/L for different system sizes cross ap-
proximately at the same point xc, providing evidence of a
continuous S-CG transition. In Fig. 7(b), a scaling plot accord-
ing to Eq. (7) is shown, obtained by adjusting the parameters
xc and ν to obtain the best data collapse. The dynamic expo-
nent z = 1.1 was obtained by repeating the calculations for
different values larger than z = 1 and choosing the one that
gives the best data collapse. Similar results are obtained for
the Gaussian phase-glass model as shown in Fig. 8.

Point C in the phase diagrams of Fig. 1 corresponds to the
superconductor to chiral-glass threshold in the limit g → 0. It
can be estimated from the finite-size behavior of the domain-
wall energy [46,47] in the ground state of the 3D classical
model of Eq. (3). A domain wall in the finite system can be in-
troduced by imposing antiperiodic boundary conditions in one
of the spatial directions. The domain-wall energy EW (L) is a
measure of phase coherence, and is related to the renormalized
stiffness constant γx(L) = EW (L)/(2π2Lτ ). Although EW (L)
fluctuates between samples with different disorder configu-
rations, stability of the ground state with long-range order
in ψτ, j = exp(iθτ, j ) requires that the disorder average [EW ]d

increases with L or remains constant. We have determined
numerically the change EW (L) in the ground-state energy of
small systems by MC simulated annealing for a large number
of samples. Figure 9 shows the behavior of the [EW ]d for
different system sizes and increasing disorder, for both phase-
glass models. For small disorder strength, it increases with
L, indicating the existence of long-range phase coherence.

For sufficiently large disorder it clearly decreases for increas-
ing L, indicating a disordered glass phase. The change in
the behavior yields the estimates of the chiral-glass disorder
thresholds xC = 0.11(2) and �C = 1.1(2) for the binary and
Gaussian phase-glass models, respectively.

C. Chiral glass to insulator transition

In the chiral-glass phase for x > xB or � > �B in Fig. 1,
there is no long-range order in terms of the order parameter
ψτ, j = exp(iθτ, j ). It is then convenient to define a glass corre-
lation function in terms of the overlap order parameter [39,48]
of phase variables qτ, j = exp (i(θ1

τ, j − θ2
τ, j )), where 1 and 2

label two different copies of the system with the same cou-
pling parameters. The glass correlation function in the spatial
direction is then obtained as

C(r) = 1

L2Lτ

∑
τ, j

〈qτ, jqτ, j+r〉, (14)

with the corresponding phase correlation length ξG defined as
in Eq. (5). Analogous expressions are used for the correlation
length in the time direction ξG,τ . Similarly, we can also define
a chiral correlation length ξ c

G in terms of the overlap of the
chiral variables of Eq. (2), qc

τ,p = χ1
τ,p χ2

τ,p.
Figure 10 shows the behavior of the correlation length

ξG,τ and ξG in the time and spatial directions, for the bi-
nary phase-glass model at x = 0.2. The dynamic exponent is
set to z = 1.2, the same value estimated for the symmetric

FIG. 9. Domain-wall energy [EW ]d for the (a) binary and (b) Gaussian phase-glass models in the limit g → 0 for increasing disorder (x or
�) and different systems sizes L. The common crossing point of the curves gives an estimate of the chiral-glass disorder threshold xC and �C

in the phase diagrams of Fig. 1.
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FIG. 10. (a) Correlation length in the imaginary-time direction ξG,τ of the binary phase-glass model near the CG-I transition at x = 0.2 for
different system sizes L, and (b) corresponding scaling plot of the data near the transition with gc = 1.655, ν = 1.6. (c) Correlation length in
the spatial direction ξG, and (d) corresponding scaling plot with gc = 1.59, ν = 1.6. Lτ = aLz, with aspect ratio a = 0.642 and z = 1.2.

FIG. 11. (a) Chiral correlation length in the imaginary-time direction ξ c
G,τ of the binary phase-glass model near the CG-I transition at

x = 0.2 for different system sizes L, and (b) corresponding scaling plot of the data near the transition with gc = 1.54, ν = 1.3. (c) Correlation
length in the spatial direction ξ c

G, and (d) corresponding scaling plot with gc = 1.53, ν = 1.3. Lτ = aLz, with aspect ratio a = 0.642 and
z = 1.2.
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FIG. 12. (a) Same as Fig. 10 but for the Gaussian phase-glass model at � = 1.6, and (b) corresponding scaling plot of the data near
the transition with gc = 2.123, ν = 1.36. (c) Correlation length in the spatial direction ξG, and (d) corresponding scaling plot with gc = 2.0,
ν = 1.7.

FIG. 13. (a) Same as Fig. 11 but for the Gaussian phase-glass model at � = 1.6, and (b) corresponding scaling plot of the data near the
transition with gc = 1.978, ν = 1.3. (c) Correlation length in the spatial direction ξ c

G and (d) corresponding scaling plot with gc = 1.963,
ν = 1.03.
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FIG. 14. (a) Phase stiffness in the imaginary-time direction γτ for the binary phase-glass model near the CG-I transition at x = 0.2 for
different system sizes L, and (b) corresponding scaling plot with gc = 1.675 and ν = 1.2.

models [23]. We find that this value gives consistent results
for the scaling behavior and also agrees with independent
estimates of z using large systems, as will be described further
ahead. As shown in Fig. 10(a), the curves for ξG,τ /L as a func-
tion of g for different system sizes cross approximately at the
same point gc, providing evidence of a continuous CG-I tran-
sition. Figure 10(b) shows the scaling plot according to Eq. (7)
providing estimates for gc and ν. Figures 10(c) and 10(d) show
the corresponding behavior for the correlation length in the
spatial direction. The results for the chiral correlation length
ξ c

G are shown in Fig. 11. The behavior is essentially the same,
but the data are much noisier. Similar results are obtained
for the Gaussian phase-glass model, as shown in Figs. 12
and 13.

In Fig. 14, we show the behavior of the phase stiffness
in the time direction. Curves for different system sizes cross
approximately at the same critical coupling gc, and the cor-
responding scaling plot of the data according to the scaling
form of Eq. (9) provides alternative estimates of gc and ν. The
same behavior is found for the Gaussian phase-glass model as
shown in Fig. 15.

It should be noted that there are significant discrepancies
in the critical couplings obtained from the scaling behavior of
the correlations lengths ξG, ξ c

G and phase stiffness γτ for both
models. They are likely to result from different corrections
to finite-size scaling, and we thus assume they represent esti-
mates of the same CG-I transition, where the phase-coherence
transition is accompanied by a chiral transition and described
by a single divergent length scale.

The scaling behavior described above for the correlation
ξG and phase stiffness γτ already indicates phase coherence
below the CG-I transition, and therefore the chiral-glass phase
is expected to be superconducting. To further investigate the
superconducting properties of this phase, we need to look at
the phase stiffness in the spatial direction. Unfortunately, the
dominant effect of the gauge disorder leads to negative values
for the phase stiffness [2,22] when obtained directly, as in
Eq. (8), depending on the disorder configurations. It turns out,
however, that the frequency-dependent phase stiffness γ (iω)
defined in Eq. (11) is well behaved for nonzero frequencies ω.
Its scaling behavior at small frequencies determines the elec-
trical conductivity from the Kubo formula [Eq. (10)]. If γ (iω)
is finite when ω → 0 in the chiral-glass phase, then σ diverges
and this phase is superconducting. Near the CG-I transition, it
should therefore satisfy the scaling relation [32,37]

γ (iωn)/ωn = F±(ωnξ
z ), (15)

in the absence of finite-size effects. The + and − signs cor-
respond to g > gc and g < gc. Indeed, as shown in Fig. 16
for the binary and in Fig. 17 for the Gaussian phase-glass
models, the phase stiffness γ (iωn) at low frequencies and dif-
ferent couplings g for a large system where finite-size effects
are small satisfy the above scaling form, providing evidence
for a phase transition from a superconducting chiral glass to
insulator transition.

To further verify the finite phase stiffness of the chiral-glass
phase and obtain an independent estimate of z, we have also
studied the scaling behavior of the phase slippage response

FIG. 15. (a) Same as Fig. 14 but for the Gaussian phase-glass at � = 1.6 and (b) corresponding scaling plot with gc = 2.176 and ν = 1.21.
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FIG. 16. (a) Phase stiffness γ (iω) for the binary phase-glass model near the CG-I transition at x = 0.2, for different couplings g with
L = 30. From top to bottom: g = 1.50, 1.55, 1.58, 1.61, 1.63, 1.67, 1.71, 1.73, 1.76, and 1.80. (b) Scaling plot with ξ = |g/gc − 1|−ν for
gc = 1.672 and zν = 1.75.

(“nonlinear resistivity”) Rx = Vx/Jx, obtained by driven MC
dynamics [23,40] as described in Sec. III. As shown in the
Appendix, the scaling analysis is consistent with the above
results obtained from ξG and γ (iω) scaling and therefore
provides further support for the finite phase stiffness and a
superconducting chiral-glass phase.

Since we have found that the chiral-glass phase is su-
perconducting, it is interesting to obtain an estimate of the
conductivity σ ∗ at the CG-I transition. Following the scaling
method of Cha et al. [32,44] described in Sec. IV A, σ ∗
can be determined from a scaling plot according to Eq. (13).
Figure 18(a) shows this scaling plot for the binary phase-glass
model and Fig. 18(b) for the Gaussian phase-glass model,
from which we estimate at the CG-I transition σ ∗/σQ =
0.55(3) and σ ∗/σQ = 0.59(3), respectively.

V. SUMMARY AND CONCLUSIONS

We have studied the superconductor to insulator transition
in two-dimensional phase-glass (or chiral-glass) models with
varying degree of disorder by path-integral MC simulations
and finite-size scaling. Two different models were considered,
with binary and Gaussian distribution of quenched disorder,
having nonzero mean. Both models display the same topol-
ogy of the phase diagram (Fig. 1) with critical exponents
that agree within the estimated errorbars (Table I). In addi-
tion to the usual superconducting and insulating phases, a

chiral-glass phase occurs for sufficiently large disorder. The
chiral-glass to insulator transition is in a different universal-
ity class, with critical exponents and universal conductivity
at the transition significantly different from those of the
superconductor-insulator transition for small disorder.

The transition from superconductor to insulator can take
place via the intermediate chiral-glass phase, depending on
the parameters of the models. We find, however, that the
chiral-glass phase has a finite phase stiffness, being still a
superconductor, instead of the Bose metal, which has been
suggested by the mean-field theory approach [10–12]. This
indicates that the 2D phase-glass model does not provide
a theoretical framework for the Bose metal state in the
zero-temperature limit observed experimentally [13–16,28],
at least in its simplest form with on-site charging energy,
short-range Josephson interactions, and an absence of mag-
netic screening effects.

Our results are also relevant for superconducting thin films
nanostructured with a periodic pattern of nanoholes and doped
with magnetic impurities [24]. Assuming that these magnetic
impurities introduce π junctions [3] distributed randomly, the
transition to the insulating phase for sufficient large impurity
doping should be in the universality class of the chiral-glass
to insulator transition studied here. The disappearance of
magnetic frustration effects for the activation energy in the
insulating phase at large doping [24] is in fact consistent with
such a chiral-glass regime.

FIG. 17. (a) Same as Fig. 16 but for the Gaussian phase-glass model at � = 1.6. From top to bottom: g = 1.84, 1.92, 1.97, 2.02, 2.06,
2.11, 2.19, 2.23, 2.29, and 2.35. (b) Scaling plot with ξ = |g/gc − 1|−ν for gc = 2.15 and zν = 1.8.
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FIG. 18. Scaling plot of conductivity σ (iwn) at the critical coupling gc for (a) the binary phase-glass model at x = 0.2, gc = 1.672 and
(b) the Gaussian phase-glass model at � = 1.6, gc = 2.15 with α = 0.06. The universal conductivity is given by the intercept with the xo = 0
dashed line, leading to the corresponding estimates (a) σ∗

σQ
= 0.55(3) and (b) σ∗

σQ
= 0.59(3).
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APPENDIX

Here we consider the scaling behavior of the phase slip-
page response (“nonlinear resistivity”) Rx = Vx/Jx near the
CG-I transition, obtained by driven MC dynamics [23,40] as
described in Sec. III. If the phase stiffness is finite in the
chiral-glass phase, we then expect that Rx should approach
a nonzero value when Jx → 0 above the transition, g > gc,
while below the transition it should approach zero. From
the nonlinear scaling behavior near the transition [23,42] of
a sufficiently large system, one can also extract the critical
coupling gc and the critical exponents ν and z. Figure 19
shows the behavior of the nonlinear phase slippage response
Rx and Rτ for the binary phase-glass model as a function of
the applied perturbation Jx and Jτ , respectively. The behavior
for different values of g is consistent with a phase-coherence
transition at an apparent critical coupling in the range gc ∼
1.68–1.66. For g > gc, both Rx and Rτ tend to a finite value,
while for g < gc, they extrapolate to low values. Assuming
the transition is continuous, the nonlinear response behavior
sufficiently close to the transition should satisfy a scaling form
in terms of Jx, Jτ , and g. The critical coupling gc and critical
exponents ν and z can then be obtained from the best data
collapse satisfying the scaling behavior close to the transition.
Rx and Rτ should satisfy the scaling forms [42]

gRxξ
z0−z = F±(Jxξ

z+1/g),

gRτ ξ
z+z0z−2 = H±(Jτ ξ

2/g), (A1)

where zo is an additional critical exponent describing the
MC relaxation times, t r

mc,x ∼ ξ zo and t r
mc,τ ∼ ξ zo

τ in the spatial
and imaginary-time directions, respectively, and ξ = |g/gc −
1|−ν . The + and − signs correspond to g > gc and g < gc.
The joint scaling plots according to Eqs. (A1) are shown in
Figs. 19(b) and 19(d), obtained by adjusting the unknown
parameters. This scaling analysis gives the estimates gc =
1.670(5), ν = 1.10(5), and z = 1.25(5), which are consistent
with the results from the correlation-length scaling described
in Sec. IV C and therefore provide further support for the finite
phase stiffness of the chiral glass phase.

FIG. 19. Scaling behavior of the phase slippage response for the
binary phase-glass model near the CG-I transition at x = 0.2 for L =
60 in (a) the imaginary-time direction Rτ and (c) the spatial direction
Rx near the CG-I transition. From the top down, the couplings are g =
1.80, 1.78, 1.76, 1.74, 1.72, 1.70, 1.68, 1.66, 1.64, and 1.62. (b) and
(d) Scaling plots corresponding to (a) and (c), respectively, for data
near the transition with ξ = |g/gc − 1|−ν using the same parameters
gc = 1.67, zo = 2.3, z = 1.25, and ν = 1.2.
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