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All-digital AFSK modem with Viterbi
detection for TT&C CubeSat transceiver

Rubem Vasconcelos Pacelli, Antonio Macilio Pereira de Lucena, João Cesar Moura Mota

Abstract— Audio-Frequency Shift Keying (AFSK) with contin-
uous phase modulation and non-coherent demodulation is widely
used on the telecommand channel of the most TT&C transceivers
for CubeSat. However, this solution has low efficiency in terms
of power. In this paper, a new all-digital AFSK modem is
proposed. The demodulator uses the Viterbi algorithm to perform
the maximum likelihood sequence detection (MLSD) and gives
an expressive gain when compared to non-coherent detection.
Original mathematical analyzes are presented to explain the
proposed system. Some performance results, determined via
computational simulation, are presented and discussed.

Keywords— AFSK, CubeSat, coherent demodulation, Viterbi
algorithm.

I. INTRODUCTION

The CubeSat standard made possible to launch several
miniaturized satellites in the past two decade for different
applications in science and engineering [1]. The rapid growth
of launches has prompted studies of new spectrally efficient
modulation techniques to mitigate the overcrowding band-
width allocated for satellite communication [2]. However, it
can be seen that one of the most used modulation schemes on
telecommand channel for CubeSat TT&C (Telemetry, Track-
ing and Command) transceiver is still the classical AFSK
(Audio-Frequency Shifting Keying) modulation [3], [4]. Its
choice is mainly due to the advantage of being used in con-
junction with the amateur radio protocol AX.25. This solution
allows amateur radio operators around the world to collect
information from the satellites and, in some cases, improve
the system’s communication ability [5], [6]. Furthermore,
AFSK modem can be easily implemented on inexpensive
programmable devices, facilitating its utilization [7].

The AFSK modulation reported in literature is implemented
as a CPFSK (Continuous-Phase Frequency Shifting Keying)
signal [8], [9]. This signaling has an advantage over the non-
memory FSK scheme because the phase continuity decreases
the spectral side-lobe, making the modulation spectrally more
efficient. Another attractive factor is its constant envelope that
permits the utilization of non-linear amplifier without spectrum
regrowth [10].

For applications in CubeSat TT&C transceiver, the AFSK
demodulator is commonly implemented as a non-coherent
detector [8], [9]. The main reason for that is the simplicity,
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considering the AFSK demodulator is on-board of the satellite
where there is a strong limitation of resources. This choice
has a direct impact in the speed of data transmission for
the telecommand link. For the most product available in the
market, the speed is limited to 1200 bps.

In this paper, a new all-digital coherent AFSK modem is
presented. The proposed demodulator performs the optimum
detection of the received signal using the Viterbi algorithm.
Such a strategy improves the performance of the system in
terms of bit error rate (BER). This gain can have some impact
in the design of antennas (on-board or ground) or in the power
of the earth station transmitter.

It is worthy to emphasize that the AFSK demodulator shall
be embedded in reprogrammable logical device, such as FPGA
(Field-Programmable Gate array), giving much more flexibility
to the the TT&C module. The bit rate of the link or even all
the architecture of demodulator can be modified by software
even after the satellite launching.

The main contributions of this article are:
1) Presentation of new completely digital architectures for

the AFSK modulator with continuous phase modulation.
2) Description and analysis of the new architecture, also

completely digital, for the optimum detection of the
AFSK signal with continuous phase via Viterbi detec-
tion.

3) Derivation of an upper-bound of the error probability for
the new all-digital AFSK demodulator.

4) Discussion of the results of computer simulation to
evaluate and compare the performance of the proposed
systems with the non-coherent demodulation.

This paper is organized in the following way: In section
II, the architecture of modulator and the signal model is
introduced. In section III, the demodulator for coherent Viterbi
detection is derived. In section IV, an upper-bound for the error
probability is derived. In sections V and VI, the results and
conclusions are exposed, respectively.

II. AFSK MODULATOR

The AFSK modulation is a Binary Frequency Shifting
Keying (BFSK) scheme that uses tones f0 and f1 to represent
the bits “1” and “0”, respectively, where ∆f = f1 − f0 = 1
kHz. When used a bit rate of 1200 bit/s, this scheme is referred
as AFSK1200 [8]. The BFSK signal can be implemented either
by switching the f0 and f1 frequencies or by changing the
phase of the carrier. In the last case, the signal generated
belongs to CPFSK class because its phase does not have
discontinuities.

Let us define III = [I0, I1, ...] as a vector of symbols
independent and identically distributed, where Ik ∈ {−1, 1}
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is the kth symbol obtained from the mapping of a stream of
bits and k ∈ N. This sequence passes through a upsampling
expander block that introduces N−1 zeros among the symbols
[11]. Therefore, after this point, the duration of each symbol
corresponds to N samples. The output signal is

Ie [n] =

∞∑
k=0

Ikδ [n− kN ] , (1)

where δ [n] is the Kronecker delta function. The time-varying
phase of the carrier is defined as

Φ [n,III] = 4πTfd (Ie [n] ∗ q [n]) , (2)

where T is the bit period, fd = ∆f/2 is the peak frequency
deviation, q [n] is the phase pulse, given by

q [n] =


0 if n < 0,

n+ 1

2N
if 0 ≤ n ≤ N − 1,

1

2
if n > N − 1.

, (3)

and ∗ denotes the operation of convolution.
Let us analyze Φ [n,III] for the interval iN ≤ n ≤

(i+ 1)N−1, that corresponds to the duration of one symbol.
Substituting Eq. (1) in Eq. (2), we have

Φ [n,III] = 4πTfd

i∑
k=0

Ikq [n− kN ]

= 2πh

i−1∑
k=0

Ikq [n− kN ] + 2πhIiq [n− iN ]

= πh

i−1∑
k=0

Ik + 2πhIiq [n− iN ]

= θi + θ [n, Ii] , (4)

where h = 2Tfd is the modulation index,

θi = πh

i−1∑
k=0

Ik (5)

is the phase memory until the instant iN − 1 and θ [n, Ii] =
2πhIiq [n− iN ] is the linear phase transition during the
interval from iN up to (i+ 1)N − 1.

The modulated carrier signal, s [n,III], can be generated in
the quadrature form, that is,

s [n,III] =

√
2E

T
cos (Φ [n,III]) cos (2πfcnTs)

−
√

2E

T
sin (Φ [n,III]) sin (2πfcnTs)

= I [n,III] cos (2πfcnTs)−Q [n,III] sin (2πfcnTs) , (6)

where I [n,III] and Q [n,III] are the phase and quadrature
components of s [n,III], respectively, E is the bit energy, fc
is the carrier frequency and Ts = T/N = 1/fs is sampling
period, being fs the sampling frequency.

The Fig. 1 shows a block diagram that summarizes the
process of modulation. The symbol • denotes the input signal
of the block.

2πh q[n]

cos(∙)

Φ[n, I]I
s[n, I]I

Ik
↑ N

[n]Ie
∙ mod 2π

×

OSC

sin(∙)

−π/2

×

−

+

Fig. 1. Block diagram of modulator.

In this figure, x mod 2π indicates the remainder of the
division of x by 2π. This operation converts Φ [n,III] to the
interval of phase between 0 and 2π, avoiding we have numeric
overflow in the processing. The block denominated “OSC”
indicates a local oscillator that produces a discrete-time cosine
centred at fc. The last step of the modulator, a D/A (Digital-
to-Analog) converter is used to obtain the analog signal,
s(t, III), which is passed to RF (Radio Frequency) stage to be
transmitted.

For CPM modulation, all possible values of θi can be
described by a finite set φφφ. For an index modulation h = m/p,
where m and p are integers, prime to each other and p being
even, the set φφφ is given by [12]

φφφ =

{
0,
πm

p
,

2πm

p
, . . . ,

(2p− 1)πm

p

}
. (7)

For 1200AFSK, the symbol period is T = 1/1200 =
833.33 µs, the peak frequency deviation is fd = ∆f/2 = 500
Hz and the modulation index is h = 2Tfd = 5/6. Therefore,
the terminal phase states for AFSK signal is

φφφ = {φ0, φ1, . . . , φ11}

=

{
0,

5π

6
,

10π

6
, . . . ,

55π

6

}
. (8)

Note that, by Eq. (8), there are 12 possible values of phase
distributed in the interval from 0 up to 10π. The Fig. 2 shows
the phase tree of AFSK signal which the initial phase is θ0 =
φ0 = 0.

0 9NN 2N 3N 4N 5N 6N 7N 8N
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Fig. 2. Phase tree of AFSK signal.

The phase of AFSK signal is added to 5π/6 or to −5π/6
depending on the transmitted symbol be +1 or −1, respec-
tively. In the case when the resulting phase is out of limits
defined by φ0 and φ11, the phase is wrapped to remain inside
the limits. The behaviour of phase tree depicted in Fig. 2 is our
start point to development of the Viterbi detection explained
hereafter.
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III. AFSK DEMODULATOR

The channel is considered AWGN (Additive White Gaussian
Noise). After to pass through the RF front-end of the receiver,
the signal is delivered to demodulator, that performs the A/D
(Analog-to-Digital) conversion. The obtained signal is

r [n] = s [n,III] + w [n] , (9)

where s [n,III] is given by Eq. (6) and w [n] is AWGN (Additive
White Gaussian Noise) with zero mean and spectral power
density equal to No/2Ts. Before the sampling, the spectral
power density of the correspondent AWGN analog noise is
No/2.

We assume that demodulator has synchronization circuits
that recover the symbol time, carrier phase and frequency.

Let us express w [n] in the band-pass form

w [n] = wI [n] cos (2πfcnTs)− wQ [n] sin (2πfcnTs) , (10)

where wI [n] and wQ [n] are the baseband quadrature compo-
nents of the stochastic process w [n] [13]. Substituting Eq. (6)
and Eq. (10) into Eq. (9), we have

r [n] = (I [n,III] + wI [n]) cos (2πfcn)

− (Q [n,III] + wQ[n]) sin (2πfcn)

= Î [n] cos (2πfcn)− Q̂ [n]sin (2πfcn) . (11)

When the signal depends on its past states, a sequence of
symbols must be considered for detection in order to explore
the memory inherent in the modulation process. Let us define
a finite vector of transmitted symbols, IIIi = [I0, I1, ..., Ii−1],
the optimum receiver shall find a path through the phase tree
that maximizes the likelihood function, given by pvvv (VVV |IIIi ),
the joint conditional probability density function of vvv =
[v0, v1, ..., vi−1], where vk is the kth output of the correlator
and VVV is the observation of vvv [12].

Thus the optimum receiver is a correlator followed by a
maximum likelihood sequence detector (MLSD) that search
for the sequence through the phase tree (described in Fig. 2)
whose correlation is maximum. The correlation computation
is used as metric for the search by the MLSD. However,
this structure is not feasible in practice because the number
of possibles paths grows exponentially for large values of i.
The Viterbi algorithm is a efficient method that performs this
search recursively for each state. Let us define the correlation
metric for IIIi during the interval 0 ≤ n ≤ Ni− 1 as

J (IIIi) =

Ni−1∑
n=0

r [n] s [n,IIIi] . (12)

The metric for the new sequence IIIi+1 = [IIIi, Ii] can be
calculated as [14], [15]

J (IIIi+1) = J (IIIi) + v (Ii, θi) , (13)

where vi , v (Ii, θi) is the transition metric for the initial
state θi ∈ φφφ and the received symbol Ii during the interval
iN ≤ n ≤ (i+ 1)N − 1. This value is given by

v (Ii, θi) =

N−1∑
n=0

r [n+Ni]

· cos (2πfcnTs + θ (n, Ii) + θi) . (14)

Substituting Eq. (11) into Eq. (14) and ignoring the second
harmonics components, we have

v (Ii, θi) =

N−1∑
n=0

Î [n+Ni] cos (θ [n, In] + θi)

+

N−1∑
n=0

Q̂ [n+Ni] sin (θ [n, In] + θi) . (15)

The Fig. 3 shows a block diagram for computation of this
transition metric used by the Viterbi algorithm (VA). In this
diagram, “LPF” indicates a low-pass filter that removes the
second harmonic.

×

×

r [n] cos(2π nTs)fc

−sin(2π nTs)fc

LPF

LPF

×

×

[n]Î

[n]Q̂

cos (θ [n, ] + )Ii θi

sin (θ [n, ] + )Ii θi
+

To Viterbi
algorithm

∑
N

∑
N

v ( , )Ii θi

Fig. 3. Coherent Viterbi demodulator.

For a binary transition, there are two metric for each state.
The Viterbi algorithm compares these two metrics and discards
the path having the lower metric. The another path with
the greater metric is saved and is called the survivor [12].
However, the Fig. 2 reveals that just half of all state can be
reached in a give instant iN . In (i+1)N , just the another half
can be reached. This behavior continues alternately. Therefore,
for a efficient computation, just half of states must be taken
in consideration.

Note that, in the instant iN , each state has its own survivors,
IIIi, and its own metric, J (IIIi). An important issue about this
algorithm is the convergence of all survivors to an unique
vector. If we have advanced this process, it can be noted
that from the fifth most recent symbol onwards it has a high
probability of being identical [12].

IV. UPPER-BOUND FOR BIT ERROR PROBABILITY

In this section, an upper-bound for the bit error probability
is derived for the proposed digital AFSK demodulator. For
continuous-time CPFSK, there is a large amount of paper
which the theoretical bit error probability is analyzed. These
articles have reported that is not possible to derive an exact
mathematical expression for the bit error probability. [16],
[17]. However, one can derive an upper-bound that gives a tight
approximation for the actual BER. The bit error probability
can be determined asymptotically by the term corresponding
to the minimum Euclidean distance, dmin, between two signals
associated with different symbol vectors, III(r) and III(s), over a
given time interval iT [16], [18]. Pelchat has shown that there
is a maximum value that dmin can reach for a time arbitrarily
large [19]. This limit allows a derivation of an upper-bound
for the bit error probability in the continuous-time CPFSK
system.

We derive a bit error probability upper-bound for the present
discrete-time CPFSK signal using the same approach. Suppose



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

that we have two signals, s[n,III(0)] and s[n,III(1)], corre-
sponding to two sequences, III(0) and III(1). These sequences
must be different in their first symbol. The squared Euclidean
distance between this two discrete signals over the interval
0 ≤ n ≤ iN − 1 is

∆2
0,1 (i) =

iN−1∑
n=0

(
s
[
n,III(0)

]
− s

[
n,III(1)

])2
=

iN−1∑
n=0

s2
[
n,III(0)

]
+

iN−1∑
n=0

s2
[
n,III(1)

]
− 2

iN−1∑
n=0

s
[
n,III(0)

]
s
[
n,III(1)

]
. (16)

The first and the second term in the right side of Eq. (16)
can be rewritten as

2E

T

iN−1∑
n=0

cos2
(

2πfcnTs + Φ
[
n,III(l)

])
=

EiN

T
+
E

T

iN−1∑
n=0

cos
(

4πfcn T s + 2 Φ
[
n,III(l)

])
, (17)

where l = 0 or 1. Suppose that fs is an integer multiple of fc.
Hence, Nc = fs/fc is the number of samples per carrier cycle.
For N � Nc, the value of phase Φ

[
n,III(l)

]
is approximately

constant for each carrier period and the result of the summation
on the right side of Eq. (17) is practically zero. Substituting
Eq. (17) into Eq. (16) and recalling that T = NTs, we have

∆2
0,1 (i) =

2Ei

Ts
− 2

2E

NTs

iN−1∑
n=0

cos
(

2πfcn T s + Φ
[
n,III(0)

])
·cos

(
2πfcn T s + Φ

[
n,III(1)

])
=

2Ei

Ts
− 2E

NTs

iN−1∑
n=0

cos
(

Φ
[
n,III(1)

]
− Φ

[
n,III(0)

])
=

2E

Ts

(
i− 1

N

iN−1∑
n=0

cos (Φ [n,ξξξ])

)
=

2E

Ts
δ20,1 (i) , (18)

where ξξξ = III(1) − III(0) and

δ20,1 (i) = i− 1

N

iN−1∑
n=0

cos (Φ [n,ξξξ]) (19)

is the squared Euclidean distance normalized by the bit energy
of the discrete baseband signal, that is 2E/Ts.

For this modulation scheme, the difference sequence ξξξo =
{±2,∓2, 0, 0, . . . } provides the maximum value for the min-
imum normalized squared Euclidean distance, δ2min [18]. The
upper-bound of the minimum normalized squared Euclidean
distance, δ2B (h), can be calculated evaluating δ0,1 (i)

2 for

ξξξ = ξξξo, that is:

δ2B (h) = 2− 1

N

2N−1∑
i=0

cos (Φ [n,ξξξo])

= 2− 1

N

(
N−1∑
i=0

cos

(
2πhn

N

)

+

N−1∑
n=0

cos

(
2πh− 2πhn

N

))
. (20)

The equation Eq. (20) is numerically calculated for h =
5/6 and the result is δ2B (h) = 2.33. For N > 4, the value
of δ2B (h) always converge to 2.33. Since this inequation is
always attended for practical purpose, we have the same value
of δ2B (h) for any feasible value of N .

Note that the upper-bound of the minimum normalized
squared Euclidean distance for the equivalent continuous-time
system, given by [12], [16]

d2B (h) = 2

(
1− sin 2πh

2πh

)
, (21)

has the same value found by Eq. (20) when h = 5/6.
Finally, following the same arguments found in [12] and

[19] for the case of the continuous and binary CPFSK, we
have determined the upper-bound of the bit error probability
for the present discrete architecture that is given by

Pe ≤ KQ

(√
δ2min

E

No

)
, (22)

where K = 2 is the number of paths having the minimum
distance. For an observation interval greater than 2 symbols
time, δ2min = δ2B (h).

V. NUMERICAL RESULTS

In this section, we present some performance results of the
proposed AFSK modem, which were obtained from computer
simulation. The power spectrum of the transmitted AFSK
signal and the bit error rate of the system are determined.

The model has the following parameters:
• Bit period, T = 833.33 µs;
• Carrier frequency, fc = 120 kHz;
• Sampling frequency, fs = 1/Ts = 480 kHz;
• Samples per symbol, N = T/Ts = 400;
• Index modulation, h = 5/6;
• Energy per bit to noise power density, E/No = From 0

dB up to 11 dB;
In order to evaluate the performance of the proposed mod-

ulator, the Fig. 4 shows the spectrum of the present all-digital
AFSK modulator, generated by computer simulation, along
with the theoretical power spectral density of the AFSK signal,
which was determined by Eq. (3.4-61) from [12]. It is possible
to notice that the power density of the proposed all-digital
AFSK modulator has both good symmetry around fc and
perfectly matches with the theoretical power spectral density.
Moreover, is important to note that such symmetry is hard to
be accomplish in analog modulator.
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Fig. 4. Spectrum of digital AFSK modulator.

The Fig. 5 shows the BER of the coherent AFSK demod-
ulator and its upper-bound, given by Eq. (22), for different
values of E/No. It is possible to note that the upper-bound of
the bit error probability provides a tight approximation for the
estimated BER. We also plot the theoretical bit error probabil-
ity for the non-coherent AFSK demodulation that is the usual
technique used in most of CubeSat TT&C transceivers avail-
able on the market. This curve was determined by Eq. (4.5-54)
from [12]. For a BER equals to 10−5, the Viterbi demodulator
achieves an improvement of 5 dB, when compared with the
non-coherent technique.

Fig. 5. Bit-error performance.

VI. CONCLUSIONS

In this paper, we presented an all-digital AFSK modem for
application in CubeSat TT&C transceiver. The architectures
of the modulator and demodulator as well as its mathematical
analysis for description and evaluation of the conceived system
were presented.

For the detection of the symbols, a new maximum likelihood
detector, based on the Viterbi detection and operating under
the discrete signal, was developed and analyzed. The upper-
bound for the bit error probability of this new architecture
was determined and it was found that its value is equal to the
upper-bound of the equivalent continuous CPFSK [16].

As the results, the spectrum of the AFSK modulator exhib-
ited a perfect matching with the theoretical shape of the equiv-
alent CPFSK signal. The upper-bound derived in this paper
provides a tight approximation for the bit error performance
of the simulated system. When compared to the non-coherent

demodulation, the Viterbi detection achieved a improvement
of 5 dB, approximately, at a BER of 10−5.

As a future perspective for this work, one can cite the design
of the symbol and carrier synchronization modules for the
AFSK demodulator.
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