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“Nobody exists on purpose. Nobody belongs anywhere. Everybody’s gonna die.
Come watch TV.”

Morty Smith
from “Rick and Morty”
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ABSTRACT

Clustering problems arise from several areas of science. Approaches and algorithms
are as varied as the applications. The goal of clustering is to partition a set of ele-
ments into disjoint subsets, also known as clusters, according to a similarity metric’s
values. In many real-world applications, however, vertices can belong to more than
one cluster, i.e., clusters may overlap. Identifying such overlapping clusters is usu-
ally a less studied problem and a more challenging task than finding non-overlapping
ones. Thus, in this work, overlapping clustering problems from four different con-
texts are explored. First, it is introduced the overlapping cluster editing, a new
relaxation of the cluster editing problem. Three hybrid heuristics were developed to
generate solutions for this problem, which are composed of coupling metaheuristics
and mixed-integer linear programs. The second work introduces a hybrid heuristic
for the overlapping community detection problem, where the objective is to identify
overlapping clusters from an input network. This is achieved by solving a mixed-
integer linear program using, as input, a heterogeneous set of clusters generated by
two state-of-the-art overlapping community detection algorithms. In the third work,
the p-median problem with overlap control is introduced. This problem is a variation
of the well-known p-median problem, where the objective is to select p facilities ver-
tices whereas the sum of the distances from each client vertex to its nearest facility
is minimized. In the p-median problem with overlap control, the number of vertices
shared between facilities can be managed from a user-defined parameter. A parallel
branch-and-price method was developed to solve this problem. In the fourth work,
a parallel adaptive large neighborhood search metaheuristic was proposed to solve
some facility location problems with multiple assignments. Several tests results in
all problems show that all proposed methods can generate good-quality overlapping
clustering solutions.

Keywords: Overlapping clustering. Overlap control. Community detection. Multiple
assignment. Hybrid heuristic. Branch-and-price
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MÉTODOS PARA PROBLEMAS DE OTIMIZAÇÃO DE
AGRUPAMENTOS COM SOBREPOSIÇÃO

RESUMO

Problemas de agrupamento são encontrados em várias áreas da ciência e abordagens
e algoritmos são tão variados quanto as aplicações. O objetivo em um problema de
agrupamento é particionar um conjunto de elementos em subconjuntos disjuntos,
também conhecidos como clusters. Entretanto, em muitas aplicações de problemas
reais, elementos podem pertencer a mais de um cluster, isto é, os clusters podem
se sobrepor. Identificar tais clusters sobrepostos é, em geral, um problema menos
estudado e mais difícil que o problema original. Então, neste trabalho, problemas de
agrupamento com sobreposição, de quatro contextos diferentes, são explorados. No
primeiro contexto, é introduzido o problema de edição de clusters com sobreposição,
uma nova relaxação do problema de edição de clusters. Três heurísticas híbridas
foram desenvolvidas para gerar soluçoes para o problema proposto, as quais são
combinações de meta-heurísticas e problemas lineares inteiros mistos. Introduz-se,
no segundo trabalho, uma heurística híbrida para o problema de detecção de comu-
nidades com sobreposição. Essa heurística híbrida é composta de um problema linear
inteiro misto que recebe, como entrada, um conjunto de clusters gerado por duas
heurísticas no estado da arte de detecção de comunidades. No terceiro contexto, o
problema de p-medianas com controle de sobreposição é introduzido. Esse problema
é uma variação do problema de p-medianas. No problema de p-medianas, o número
de vértices compartilhados entre as facilidades pode ser controlado por um parâme-
tro de entrada. Um algoritmo paralelo de branch-and-price foi implementado para
resolver esse problema. No quarto contexto, uma meta-heurística Adaptive Large
Neighborhood Search paralela foi aplicada a três problemas de localização de fa-
cilidades com multi-designação. Vários testes foram realizados em todos os quatro
contextos e os métodos propostos puderam gerar boas soluções de agrupamento com
sobreposição.

Palavras-chave: Agrupamento com sobreposição. Controle de sobreposição. Detecção
de comunidades. Multi-designação. Heurística híbrida. Branch-and-price.
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1 INTRODUCTION

Clustering is one of the best-known problems in data mining and has applications
in several science areas such as bioinformatics, computer vision, multimedia data
analysis, facility location problems, data compression, marketing, pattern recogni-
tion, community detection and machine learning (BEN-DOR et al., 1999; BANSAL
et al., 2004; SHAMIR et al., 2004; DEMAINE et al., 2006; BÖCKER et al., 2009;
AGGARWAL, 2013). The goal of clustering is to partition a set of elements into
subsets, also known as clusters, according to the values of a given metric. Thus,
elements in the same subset are more similar to each other than elements belonging
to different subsets (SHAMIR et al., 2004; CHAGAS et al., 2019).

Due to the variety of applications of clustering problems, a vast number of cluster-
ing algorithms have been proposed over the years, and there is no single method or
technique suitable to all contexts (XU; WUNSCH II, 2005; LI et al., 2017). How-
ever, graph theory is a widespread approach used to model these problems and to
obtain reasonable good quality solutions (SHAMIR et al., 2004; GUO et al., 2009).
Schaeffer (2007) presented a survey of graph clustering and cited several areas, from
bioinformatics to stock market, in which graph theory is used for data clustering.
Given an unweighted graph, a clustering problem can be modeled by considering el-
ements as vertices and the edges between them are based on a measure of similarity.
If the similarity value between two elements is larger (or smaller) than a threshold,
then the vertices that represent these two elements are adjacent (CHAGAS et al.,
2019).

However, many real-world clustering problems are characterized by overlapping clus-
ters, that is, clusters that are non-disjoint. For instance, in online social networks
users are naturally assigned to multiple cluster memberships (XIE et al., 2013). In a
biological context, proteins may belong to several protein complexes (PALLA et al.,
2005a). In information retrieval and text mining, documents, articles and web pages
are classified to one or more categories (BONCHI et al., 2011; BONCHI et al., 2013).
Applications of overlapping clustering can also be found in distributed computing
(ANDERSEN et al., 2012) and distributed model transformations (BENELALLAM
et al., 2016). Maiza et al. (2016) and Pérez-Suárez et al. (2013) cite other areas
where the overlapping clustering is important, such as image and video processing
(CHAGAS et al., 2019).

In general, overlapping clustering problems are not as explored as the non-
overlapping ones and there are some unexplored topics in literature (XIE et al.,
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2013; KHANMOHAMMADI et al., 2017; CHAGAS et al., 2019). This work studies
some of these subjects which are organized as follows. In Chapter 2, it is proposed
the overlapping cluster editing problem, a variation of the cluster editing where the
goal is to partition a graph, by editing edges, into maximal cliques that are not
necessarily disjoint. In addition, we also present three slightly different versions of
a hybrid heuristic to solve this problem. Each hybrid heuristic is based on cou-
pling two metaheuristics that, together, generate a set of clusters; and one of three
mixed-integer linear programming models, also introduced in this work, that uses
these clusters as input. Tests results show that the all proposed hybrid heuristic
versions are able to generate good-quality overlapping cluster editing solutions. In
particular, one version of the hybrid heuristic achieved, at a low computational cost,
the best results in 51 of 112 randomly-generated graphs. Although the other two
hybrid heuristic versions have harder to solve models, they obtained reasonable re-
sults in medium-sized randomly-generated graphs. In addition, the hybrid heuristic
achieved good results identifying labeled overlapping clusters in a supervised data
set experiment. Furthermore, we also show that, with our new problem definition,
clustering a vertex in more than one cluster can reduce the edges editing cost.

In Chapter 3, it is introduced a hybrid heuristic for detecting overlapping clusters
in networks. An overlapping clustering is generated through the solving of a mixed-
integer linear program using, as input, a heterogeneous set of good-quality clusters.
This set is produced by two state-of-the-art overlapping community detection algo-
rithms. In addition, some local search methods for conductance minimization are
used to improve the quality of the clustering generate by our hybrid heuristic. Test
results in artificial and real-world graphs show that our approach is able to detect
overlapping clusters with better overall conductance than methods in the state-of-
the-art.

Chapter 4 introduces the p-median problem with overlap control, which, from a
user-defined parameter, can manage the number of vertices shared between facili-
ties. Furthermore, a parallel branch-and-price algorithm is developed to solve this
problem. Through a series of computational experiments, we shown that our ap-
proach can generate good quality solutions at reasonable execution time.

In Chapter 5, it is presented the capacitated multiple p-median problem and the
multiple p-center problem, two extensions of two classical facility location problems
where every client must be served by at least mc facilities. We proposed an efficient
parallel adaptive large neighborhood search to solve both problems. We also applied
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our method in the multiple p-median problem. Several experimental tests show that
the metaheuristic performed consistently. Considering all problems, the proposed
method found the best known solutions in 76% of the instances.

Concluding remarks and considerations on future work are presented in Chapter 6.
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2 A HYBRID HEURISTIC FOR THE OVERLAPPING CLUSTER
EDITING PROBLEM1

This chapter is divided as follows. An introduction is presented in Section 2.1. Some
related work are described in Section 2.2. The mathematical background and the
definitions of the cluster editing problem and of the proposed overlapping cluster
editing problem are presented in Section 2.3. The proposed hybrid heuristic is de-
tailed in Section 2.4. Section 2.5 shows the tests results. Our concluding remarks
and considerations on future work are presented in Section 2.6.

2.1 Introduction

A cluster can be interpreted as vertices that are highly connected, that is, a dense
subgraph or even a complete subgraph (clique). A graph is complete if each pair of
vertices is adjacent. In this sense, partitioning the vertices of an input graph into a
disjoint union of cliques, by adding and deleting edges, can be considered as clus-
tering. Finding the minimum number of edges edition (addition and deletion) is
a well-known combinatorial optimization problem referred to as the cluster editing
problem (SHAMIR et al., 2004). In particular, this problem belongs to the class
of edge modification problems (NATANZON et al., 2001; SHAMIR et al., 2004). As
Fellows et al. (2009), Fellows et al. (2011) state, the cluster editing problem is, prob-
ably, the most studied edge modification problem and it has applications, mainly, in
bioinformatics, specially in gene expression (BEN-DOR et al., 1999; CHESLER et
al., 2005; JIANG; PEI, 2009). This problem has also application in clustering entity
names (BANSAL et al., 2004; CHIERICHETTI et al., 2014) and has been used as
inspiration for clustering algorithms (BÖCKER; BAUMBACH, 2013).

Modifying the edges set of an input graph so that it becomes a vertex-disjoint union
of cliques by the minimum number of edges edition is a NP-hard problem. The NP-
hardness of the cluster editing problem was proved, independently, by Delvaux and
Horsten (2004), Shamir et al. (2004) and Bansal et al. (2004). Then, several heuristics
(WITTKOP et al., 2007; BASTOS et al., 2016), exact methods (BÖCKER et al.,
2011; BÖCKER; BAUMBACH, 2013; LORENA et al., 2018) and theoretical studies
(KOMUSIEWICZ; UHLMANN, 2012; DAMASCHKE; MOGREN, 2014) regarding
this problem are found in the literature.

However, the definition of the cluster editing is unable to model these problems
where clusters may overlap and, for this reason, has been criticized in the literature

1This chapter is an adapted version of the paper: Chagas et al. (2019).
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(DEHNE et al., 2006; FELLOWS et al., 2011; MAIZA et al., 2016). Based on this,
it is necessary to relax the definition of the cluster editing in a manner which allows
clusters to share vertices. Thus, we introduce in this work the overlapping cluster
editing problem (OCEP), where the aim is to partition a graph, by the smallest
possible number of edges’ addition and deletion, into maximal cliques that are not
necessarily disjoint. A clique is maximal if it is not strictly contained in a larger
clique. In our problem definition, there is no limit either on the number of clusters
that each vertex is contained in or on the number of vertices that each cluster
intersects with other clusters.

Figure 2.1 shows an example of cluster editing and overlapping cluster editing so-
lutions of a same graph. In this figure, removed edges are represented by dotted
lines and added edges are represented by thick ones. The cost of the cluster editing
solution is five, since four edges were removed and one was added. Analogously, the
cost of the overlapping cluster editing solution is two.

Figure 2.1 - An example of cluster editing and overlapping clustering editing solutions of
a same input graph. In this figure, removed edges are represented by dotted
lines and added edges are represented by bold ones. The original graph is
represented by Figure 1a. A cluster editing solution, of cost five, is depicted
by Figure 1b. Figure 1c shows an overlapping cluster editing solution of cost
two.

(a) original graph

(b) cluster editing solution (c) overlapping cluster editing solution

SOURCE: Produced by the author.

As the cluster editing is a NP-hard problem, exact methods are only practical in
instances with few vertices. For instances with a large number of vertices, heuris-
tics are commonly used to generate solutions at a low computational execution
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time. However, the solution optimality is not guaranteed, hence, hybrid heuristics,
also known as matheuristics (MANIEZZO et al., 2009), are alternatives to pro-
duce good-quality solutions with reasonable computation cost. Hybrid heuristics
are composed by coupling exact methods and metaheuristics. Basically, in most of
matheuristics’ implementations, the metaheuristic acts by defining the boundaries
of the solution space and the exploration of this space itself is done by the exact
method (MANIEZZO et al., 2009). Matheuristics have been used successfully in cur-
rent combinatorial optimization research (see, e.g., (PEREIRA et al., 2015; WANG
et al., 2017)). To address the proposed overlapping cluster editing problem, we also
introduce a hybrid heuristic in this chapter.

Our hybrid heuristic is based on coupling two metaheuristics to one of three mixed-
integer linear program (MILP), which are also introduced in this work. These two
metaheuristics are simultaneously used to generate a set of clusters through the
resolution of the cluster editing problem. Thereafter, one of three MILP is solved
by using this cluster set as input. The objective with these metaheuristics is to
provide a size-limited but diversified set of good quality clusters in order to limit the
exploration of solution space while solving one of our mixed-integer linear programs.
An overlapping cluster editing solution is obtained as result.

2.2 Related work

In this section, some literature review and related works are presented. Overlapping
clustering problems approaches and cluster editing relaxations, where overlapping
is allowed, are described in Subsection 2.2.1. Subsection 2.2.2 presents a briefly
overview of metaheuristics applied to clustering problems.

2.2.1 Overlapping clustering

The literature regarding overlapping clustering approaches is ample (LEVIN, 2015;
BEN N’CIR et al., 2015; BAADEL et al., 2016). As Ben N’Cir et al. (2015) state,
the majority of these approaches are extensions of non-overlapping clustering ones.
Overlapping clustering methods are found in the context of the classical disjoint
clustering approaches such as hierarchical clustering, partitional clustering, genera-
tive clustering and graph-based clustering (BEN N’CIR et al., 2015). Some examples
of overlapping clustering methods based on each of these approaches are shown in
(BAADEL et al., 2015; BERTRAND; JANOWITZ, 2003; FU; BANERJEE, 2008;
PÉREZ-SUÁREZ et al., 2013), respectively.
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Graph-based clustering methods are also proposed for community detection (LEVIN,
2015; BEN N’CIR et al., 2015). Xie et al. (2013) categorized overlapping methods for
this task in five main classes: clique percolation, line graph/link partitioning, local
expansion/optimization, fuzzy detection and agent-based/dynamical algorithms.

As Xie et al. (2013) explain, clique percolation methods, e.g. (KUMPULA et al.,
2008), are characterized by the identification of complete connected subgraphs, where
a graph is connected if there is a finite sequence of edges connecting every pair of ver-
tices. In line graph methods, e.g. (AHN et al., 2010), clusters are formed considering
edges instead of vertices (XIE et al., 2013). Algorithms based on local expansion,
e.g. (LANCICHINETTI et al., 2009), starts by growing a cluster from a seed vertex
considering its neighborhood or some related metric (XIE et al., 2013). The neighbor-
hood of a vertex is composed by all its adjacent vertices. Xie et al. (2013) categorized
algorithms as fuzzy, e.g. (NEPUSZ et al., 2008), when the clustering performed by
these algorithms is not crisp, i.e., vertices have a degree of membership related to
each cluster. Agent-based and dynamical methods, e.g. (XIE; SZYMANSKI, 2012),
are characterized by dynamically associating a set of labels, which represents the
clusters, at each vertex considering some metric (XIE et al., 2013).

In spite of all these overlapping clustering approaches, only few studies regarding
the overlapping concept as a relaxed constraint of the cluster editing problem can be
found (FELLOWS et al., 2009; FELLOWS et al., 2011). Indeed, a small number of
relaxations of cluster editing are found in literature, some examples are refs. (GUO
et al., 2010; GUO et al., 2011; HEGGERNES et al., 2010; LIU et al., 2012). To
the best of our knowledge, the only studies that consider overlapping clustering
as a variation of cluster editing are the works of Barthélemy and Brucker (2001),
Damaschke (2010), Fellows et al. (2009), Fellows et al. (2011) and Bonchi et al.
(2011), Bonchi et al. (2013).

Barthélemy and Brucker (2001) proposed the w-Zahn clustering problem, which is
a generalized version of the Zahn problem (ZAHN, 1964). In the w-Zahn clustering
problem one must partition a graph, by editing edges, into maximal cliques so that
each pair of cliques share at most w − 1 vertices. Note that, when w = 1, we
have the cluster editing problem. The difference between the w-Zahn clustering and
the overlapping cluster editing, proposed in this work, is that in our definition the
number of vertices that each pair of cliques share is not limited.

The relaxed version of cluster editing presented by Damaschke (2010) was the o-
twin graph editing problem. In that problem the goal is to generate, by editing edges,
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an o-twin graph from an input graph. A twin graph, also known as critical clique
graph, is a graph where each vertex represent a critical clique from the original
graph (FELLOWS et al., 2009; FELLOWS et al., 2011). A clique is critical when all
vertices belonging to it have the same neighborhood. Two vertices in the twin graph
are adjacent if and only if edges exist between the corresponding critical cliques in
the input graph (DAMASCHKE, 2010). Thus, an o-twin graph is a twin graph with
at most o edges.

Fellows et al. (2011) introduced two cluster editing relaxations: the o-vertex-overlap
and the o-edge-overlap problems. In both one must partitioning the graph, by edges
edition, into maximal cliques. In addition, each vertex, in the o-vertex-overlap prob-
lem, or edge, in the o-edge-overlap problem, are contained in at most o maximal
cliques. Fellows et al. (2011) proved that these problems are NP-hard when o ≥ 1.
Note that, when o = 1, we have the cluster editing problem. As the variation of
cluster editing proposed by Barthélemy and Brucker (2001) the relaxation proposed
by Fellows et al. (2011) is also different from ours. This is because in the overlap-
ping cluster editing there is no limit in the number of clusters that each vertex can
belongs to.

Bonchi et al. (2013) presented the overlapping correlation clustering, a variation of
the correlation clustering problem (BANSAL et al., 2004) where overlapping clusters
are possible. In this variation every edge is associated with a weight in the real
interval [0, 1] instead of being weighted either positive or negative. Furthermore, the
authors utilized two measures to evaluate the similarity between the set of clusters
that each pair of vertices are contained, namely the Jaccard coefficient and a set-
intersection indicator function (BONCHI et al., 2011; BONCHI et al., 2013). Then,
the objective in the overlapping correlation clustering problem is to minimize, for
each pair of vertices, the absolute difference between the edge weight and the value
of the similarity measure of the set of clusters that each vertex belongs to. Bonchi
et al. (2013) showed that this is a NP-hard problem and presented a local-search
algorithm to solve it.

Bonchi et al. (2013) also proposed a local-search heuristic for the overlapping cor-
relation clustering. Canisius et al. (2016) used a modification of this algorithm to
detect sets of mutually exclusive cancer cells genes.
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2.2.2 Metaheuristics in clustering problems

Metaheuristics have been applied, with success, to several problems in the literature
(ALJARAH et al., 2018; FARRIS et al., 2018; FARRIS et al., 2019; HEIDARI et
al., 2017; HEIDARI; PAHLAVANI, 2017; MAFARJA et al., 2018; MAFARJA et al.,
2019). In the context of clustering problems, they also have been largely utilized
(DAS et al., 2009). Several review papers regarding the use of metaheuristics in
clustering problems can be found in the literature. For instance, José-García and
Gómez-Flores (2016) presented a survey of nature-inspired metaheuristics for au-
tomatic clustering. In this clustering problem, the number of clusters is not known
beforehand. Nanda and Panda (2014) also surveyed the use of nature-inspired meta-
heuristics but in the partitional clustering problem. In addition, a review of Particle
Swarm Optimization (PSO) metaheuristics applied to clustering problems was pre-
sented by Rana et al. (2011). A survey of evolutionary metaheuristics for overlapping
clustering and partitional clustering problems was realized by Hruschka et al. (2009).

One can also find metaheuristics applied in the community detection scope. For ex-
ample, Atay et al. (2017) proposed and compared six metaheuristics for this task.
Qu (2013) proposed a hybrid PSO with Extremal Optimization (EO) for finding
community in networks. Furthermore, considering the overlapping community de-
tection problem, Imane and Nadjet (2016) presented a Hybrid Bat algorithm with
Tabu search for this problem.

In the context of cluster editing problem, Bastos et al. (2016) proposed two heuris-
tics for this problem. The first one is a Iterated Local Seach (ILS) metaheuristic
and the second one is a Greedy Randomized Adaptive Search Procedure (GRASP)
metaheuristic. Both are coupled to an exact method based on Set Paritioning prob-
lem to generate cluster editing solutions (BASTOS et al., 2016). In addition, Filho
et al. (2012) presented a hybrid metaheuristic for the Bicluster Editing Problem.
This problem consists of editing edges of an input bipartite graph so that this graph
becomes a disjoint union of complete bipartite subgraphs (FILHO et al., 2012). The
proposed hybrid metaheuristic is formed by the hybridization of a GRASP and a
Variable Neighborhood Search metaheuristics.

As far as we know, the only study that applies a metaheuristic in the context of
an overlap relaxation of the cluster editing problem is the work of Andrade et al.
(2014). These authors presented an heuristic for the overlapping correlation clus-
tering based on Biased Random-Key Genetic Algorithm (BRKGA) metaheuristic
(GONÇALVES; RESENDE, 2011). The authors achieved good results in the com-
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parsion of their heuristic’s results with the Bonchi et al. (2013) algorithm.

2.3 Mathematical notation and problem definition

Let G = (V ,E) be a simple, undirected and unweighted graph, where V is the set
of vertices, E is the set of edges, n = |V | and m = |E|. Two vertices v,u ∈ V are
adjacent if and only if {v,u} ∈ E. A graph G is complete if and only if ∀v ∈ V and
∀u ∈ V , where v 6= u, {v,u} ∈ E. In complete a graph, m = n·(n−1)

2 . A subgraph of
G induced by a subset of vertices U ⊆ V is a graph GU = (U ,EU), where ∀v ∈ U
and ∀u ∈ U , {v,u} ∈ EU if and only if {v,u} ∈ E. A subset of vertices U ⊆ V is a
clique if the subgraph of G induced by U , GU , is complete. In addition, a clique is
maximal if it is not strictly contained in a larger clique.

Two sets A and B are disjoint sets if A ∩ B = ∅. The symmetric difference of two
sets A and B is given by A∆B = {(A − B) ∪ (B − A)}. The Jaccard coefficient,
between two sets A e B, is defined by J(A,B) = |A∩B|/|A∪B|. Then, two sets A
and B are equal when J(A,B) = 1. If J(A,B) = 0, then A and B have no elements
in common, i.e., A ∩B = ∅.

A graph G is a cluster graph if G is a disjoint union of cliques (SHAMIR et al., 2004).
In this work, however, a cluster C is a vertex subset of G, that is, C ⊆ V . Note that
a cluster is not necessarily a disjoint clique. A clustering is a vertex partitioning
C = {C1,C2, . . . ,Cl} such that, for 1 ≤ i ≤ l, Ci ⊆ V , Ci 6= ∅, and

⋃l
i=1 Ci = V .

A clustering C is disjoint if and only if ∀Ci ∈ C and ∀Cj ∈ C, with Ci 6= Cj,
Ci ∩ Cj = ∅. C is an overlapping clustering if ∃Ci ∈ C and ∃Cj ∈ C, with Ci 6= Cj,
such that Ci ∩ Cj 6= ∅. Given a vertex v ∈ V and a clustering C, the clusters set
containing the vertex v is defined by `C(v) = {Ci | v ∈ Ci,Ci ∈ C}. In addition,
∀v ∈ V , |`C(v)| = 1 if C is a disjoint clustering and C is an overlapping clustering if
∃v ∈ V such that |`C(v)| > 1.

Let EV be the set of all possible edges of a graph G = (V ,E). The cluster editing
problem aims at finding an edge subset F , such that F ⊆ EV , so that the graph
G′ = (V ,E∆F ) is a disjoint union of cliques. The subset F is denominated as edge
edition set. In the minimization version of the cluster editing problem, it is necessary
to find the smallest edge edition set. Given a graph G and a clustering C, the cost
of a cluster editing solution is computed as presented by Equation (2.1) (according
to Charikar et al. (2005)).
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Kce(G, C) =
∑

i<j, {i,j}∈E
xij +

∑
i<j, {i,j}/∈E

(1− xij), (2.1)

where

xij =

0, if `C(i) = `C(j),

1, if `C(i) 6= `C(j).

In other words, variables xij, for 1 ≤ i < j ≤ n, are equal to one when vertices i
and j belong to different clusters. The variables xij are equal to zero when i and j
belong to the same cluster.

In the overlapping cluster editing problem we have to find an edge edition set F such
that the vertices of the input graph G are partitioned into maximal cliques. Note
that, unlike the cluster editing problem, in the overlapping cluster editing problem
cliques are not necessarily disjoint. In other words, cliques can share vertices. Then,
to compute the overlapping cluster editing solution cost the value of the xij variables
of Equation (2.1) need to be modified as follows:

xij =

0, if `C(i) ∩ `C(j) 6= ∅,

1, if `C(i) ∩ `C(j) = ∅.

In other words, variables xij, for 1 ≤ i < j ≤ n, are equal to one when vertices i
and j have no clusters in common. The variables xij are equal to zero when i and j
belong to at least one same cluster.

2.4 Hybrid heuristic

The hybrid heuristic proposed in this work can be divided into three steps. First, the
metaheuristics Biased Random-Key Genetic Algorithm (BRKGA) (GONÇALVES;
RESENDE, 2011) and Simulated Annealing (SA) (KIRKPATRICK et al., 1983) are
used to generate, together, a set of diverse cluster editing solutions of the input
graph. Subsequently, all clusters belonging to the solutions set are used as input by
CPLEX (IBM Corporation, 2017) to solve one of three MILP, which are described
in Subsection 2.4.2. The main reason for using the clusters set from metaheuristics
is to provide a good-quality and diversified input to solve one of the three proposed
MILP. An overlapping cluster editing solution is obtained with the resolution of
these models.
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In our overlapping cluster editing problem definition, graph vertices are partitioned
into maximal cliques that are not necessarily disjoint. Since the cost of a solution
of this problem is computed by the overlapping version of Equation (2.1), costs of
cliques that are not maximal, i.e., cliques that are strictly contained in a larger
clique, are ignored. Based on this, only costs of maximal cliques are considered. For
example, consider a graph with vertices i, j and k, where (i, j) ∈ E and (j, k) ∈ E
and (i, k) /∈ E. Consider, also, a clustering C = {C1,C2,C3}, where C1 = {i, j},
C2 = {i} and C3 = {k}. As one can see, C2 ⊂ C1. The overlapping cluster editing
cost of this solution is one, as `(i)∩`(k) = ∅ and, therefore, the edge (i, k) should be
removed. Note that, although i ∈ C2 and j ∈ C1, the edge (i, j) does not need to be
removed, because i is also contained in C1. Furthermore, the removal of edge (i, k)
is performed only once, even though vertex i belongs to C1 and to C2. Thus, clusters
that are contained in larger clusters are ignored because of the problem definition.
Then, solutions produced by our hybrid heuristic naturally address this issue.

The cluster editing solutions are obtained through the BRKGA and SA metaheuris-
tics’ execution. For this, a number hsol of solutions is passed as parameter to the
hybrid heuristic. Then, hsol/2 solutions are selected from BRKGA execution and
hsol/2 solutions are selected from SA execution. This ratio between the number of
metaheuristics’ solutions were empirically defined considering the tests presented in
Subsection 2.5.1.

A pseudocode for the hybrid heuristic is shown in Algorithm 1 and figure 2.2 de-
picts the execution of the proposed method. The BRKGA and SA metaheuristics
are executed at lines 2 and 3. These metaheuristics generate a set of cluster edit-
ing solutions that is stored in variable “sol_set”. Then, at line 4, the clusters set
is formed from sol_set and stored in variable “clusters”. Subsequently, at line 5,
CPLEX solves one of the three proposed MILP using the set of clusters and the
graph as input. The resulting overlapping clustering solution of this resolution is
stored in variable “ovlp_sol". Finally, at line 6, the overlapping cluster editing so-
lution cost is computed by the overlapping version of Equation (2.1).

The remainder of this section is divided as follows. In the next subsection, details
about the BRKGA and SA implementations are shown. We present the three pro-
posed MILP in Subsection 2.4.2.
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Algoritmo 1: Hybrid heuristic.
input : graph G = (V ,E); MILP model; BRKGA number of generations

genmax; BRKGA population size p; BRKGA elite population size pe;
BRKGA mutant population size pm; BRKGA elite allele inheritance
probability ρe; SA initial temperature ti; SA final temperature tf ; SA
cooling rate α; SA Metropolis algorithm step size samax.

output: overlapping cluster editing solution ovlp_sol;
1 begin
2 sol_set← brkga(G, genmax, p, pe, pm, ρe);
3 sol_set← sol_set ∪ sa(G, ti, tf ,α, samax);
4 clusters← get_clusters(sol_set);
5 ovlp_sol← cplex_solve(G,model, clusters);

// computed by the overlapping version of Equation (2.1)
6 ovlp_sol.compute_ovlp_clstring_cost();
7 return ovlp_sol;
8 end

Figure 2.2 - Overall execution of the proposed hybrid heuristics.

BRKGA

Mixed integer 
linear program

Set of clusters

Input graph

Overlapping Cluster Editing solution

Solver

SA

SOURCE: Produced by the author.

2.4.1 Metaheuristics

The BRKGA (GONÇALVES; RESENDE, 2011) and SA (KIRKPATRICK et al.,
1983) metaheuristics were implemented to produce, together, a set of clusters that
is used as input to solve one of the three models presented in the Subsection 2.4.2.
Considering that solving a MILP is computational expensive, the main idea of using
these metaheuristics was to generate a size-limited but diversified set of good qual-
ity clusters. In order to guide these metaheuristics to produce such set, both were
designed to produce cluster editing solutions. Then, the objective function used in
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both metaheuristics is the non-overlapping version of Equation (2.1).

As Glover and Kochenberger (2003) explain, we can classify metaheuristics as
population-based and single-solution-based. Thus we decided to implement one
metaheuristic of each category to try to diversify the clusters set. In addition, the
BRKGA metaheuristic was implemented because it is relatively recent one and was
successfully used in a variation of the overlapping cluster editing problem (AN-
DRADE et al., 2014). The SA metaheuristic was used because it is a classic and
well-know metaheuristic. BRKGA and SA implementation details are described in
Subsections 2.4.1.1 and 2.4.1.2 respectively. Furthermore, in Subsetcion 2.5.1, tests
results are presented showing the advantages of using BRKGA and SA to produce
models’ input clusters.

2.4.1.1 Biased Random-Key Genetic Algorithm

A Genetic Algorithm (GA) (HOLLAND, 1975) mimics the process of natural selec-
tion by performing mating, mutation and selection over a population of individuals.
Each individual is represented by a chromosome which is a string of alleles that
represents a solution of the problem in concern (GONÇALVES; RESENDE, 2011).
The GA execution is divided into generations. At each generation, a distinct popu-
lation is created by the survival of the fittest individuals, by combining two or more
individuals for producing offspring and by mutation. The fitness of a individual is
the cost of the corresponding solution.

Proposed by Gonçalves and Resende (2011), the BRKGA metaheuristic is a GA
where the chromosomes are arrays of random values in the real interval [0, 1].
Adopting these random-key-based chromosomes allows almost all BRKGA’s steps
be problem-independent. The only exception is the decoding step, which translates
a chromosome to a valid problem solution. Another difference between the BRKGA
and a regular GA is the crossover procedure. In the BRKGA, an offspring will be
always generated by the crossover of a fittest chromosome and a non-fittest chromo-
some. This step is biased, i.e., an offspring is more likely to inherit a fittest parent
allele. In addition, another difference is that at each BRKGA generation, completely
new random individuals, called mutants, are created replacing the worst individuals.

In this work we used a label-based integer encoding scheme (HRUSCHKA et al.,
2009) for representing a clustering as a decoded chromosome. Each chromosome in
our BRKGA population has n+ 1 alleles, where n = |V |. The last position (n+ 1)
of each chromosome represents the maximum number of clusters that the decoded
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solution has. The n first chromosome positions represent the cluster in which each
vertex belongs. In other words, the i-th position, with 1 ≤ i ≤ n, represents the
cluster that vertex i belongs to in the decoded solution.

The chromosome decoding step starts at allele n + 1 to determine the maximum
number of clusters of the solution. For this, an upper bound, defined a priori, is
utilized for the maximum number of clusters (maxclst). Let A be an array with
n+ 1 positions which represents a BRKGA chromosome. The number of clusters in
a decoded solution is given by l = dmaxclst × A[n+ 1]e. In all tests carried out in
this chapter we used maxclst = 200. This value was empirically defined, since the
instances’ sizes used in this work are between 21 and 1000 vertices. Subsequently, the
first n alleles are decoded to determine which of l clusters each vertex will belong to.
This decoding is executed regarding l and is given by k = dl × A[i]e, with 1 ≤ i ≤ n

and 1 ≤ k ≤ l, where Ck is the cluster which has vertex i. The BRKGA decoding
step was parallelized.

An example of an array that represents a BRKGA chromosome is depicted by Fig-
ure 2.3. For the sake of the example, consider thatmaxclst = 20. Then, the maximum
number of clusters is computed by l = dmaxclst × A[n+ 1]e = d20× 0.5e = 10 and
the cluster that each vertex belongs to is given by dl × A[1]e = d10× 0.1e = 1,
dl × A[2]e = d10× 0.5e = 5, dl × A[3]e = d10× 0.8e = 8 and so on.

Figure 2.3 - An example of an array that represents a BRKGA chromosome.

A =

1 2 3 4 . . . n-2 n-1 n n+1

0.1 0.5 0.8 0.2 . . . 0.3 0.6 0.7 0.5

cluster which vertex i is contained to

n vertices

n + 1 allele related
to the maximum
number of clusters

SOURCE: Produced by the author.

As mentioned before, hsol

2 cluster editing solutions are selected from BRKGA execu-
tion. In order to obtain these hsol

2 , at every genmax
hsol/2 generations, where genmax is the

BRKGA maximum number of generations, a chromosome is randomly chosen from
population and decoded. This decoded solution is then stored in the cluster editing
solutions set.

16



The BRKGA parameters values used in this work are shown in Table 2.1. Specif-
ically, CALIBRA software (ADENSO-DÍAZ; LAGUNA, 2006) was used to obtain
these values. The CALIBRA tests were performed in 13 instances of Bastos et al.
(2016) with sizes ranging between 25 vertices and 100 vertices. In Table 2.1 are
presented the number of generations (gen), the size of population (p), the elite pop-
ulation proportion (pe), the mutant population proportion (pm) and the elite allele
inheritance probability (ρe).

Table 2.1 - BRKGA parameters values used in the experimental tests carried out in this
work. These values were obtained by CALIBRA software (ADENSO-DÍAZ;
LAGUNA, 2006).

Parameter gen p pe pm ρe

Value 696 820 0.19·p 0.23·p 60%

2.4.1.2 Simulated Annealing

Developed by Kirkpatrick et al. (1983), the SA metaheuristic tries to simulate the
process of physical annealing of a metal. In this process, a metal is heated to its
melting point and then it is slowly cooled until it reaches the solid state again. With
this technique the resulting metal structure will be crystalline and without imper-
fections (KIRKPATRICK et al., 1983). Kirkpatrick et al. (1983) then attempted to
apply this physical concept to solve optimization problems.

The SA starts from a random solution and with a high initial temperature. In this
context, high temperature means higher probability of moving to worse solutions as
the solution space is explored by the Metropolis et al. (1953) algorithm. At each SA
iteration a neighbor solution to the current one is generated and the temperature is
cooled by a constant rate. If a neighbor solution is better than the current one, SA
moves to this new solution. The execution stops when the minimum temperature is
met.

Following our BRKGA implementation, we also used a label-based integer encoding
(HRUSCHKA et al., 2009) for representing a clustering solution in the SA meta-
heuristic. However, since SA is a single-based solution metaheuristic, there is no
need to store the number of clusters in a SA solution encoding. We defined instead a
independent value l ∈ [1,maxclst] in which each vertex is assigned to a cluster label
in the range [1, l]. Then, a SA solution is represented by means of an array A with n
positions where each position i of A, with 1 ≤ i ≤ n, represents the cluster that the
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ith vertex belongs to. The SA initial solution is randomly generated by assigning to
each position of array A a random value in the integer interval [1, l].

An example of a SA clustering solution is depicted by Figure 2.4. In this example,
the clustering solution composed by clusters C1 = {v1, v2, v3}, C2 = {v4, v5}, C3 =
{v6, v7} and C4 = {v8} is represented by array A.

Figure 2.4 - An example of a SA clustering solution array.

v1

v2

v3

v4 v5

v6 v7

v8

C1
C2

C3

C4

A =

v1 v2 v3 v4 v5 v6 v7 v8

C1 C1 C1 C2 C2 C3 C3 C4
cluster that the i-th
vertex belongs to

SOURCE: Produced by the author.

In order to generate diversified neighbor solutions, four neighborhood functions with
different probabilities were utilized in the SA metaheuristic. The greater the pertur-
bation generated by a neighborhood function, the less likely it is to be used. These
functions are described below:

• Random clusters change: a random number of vertices, in the interval
[1, n

10 ], are selected to change their cluster index. The cluster that each
selected vertex belongs to is randomly changed by another one. This func-
tion has a 25% chance to be used;

• Clusters swap between two random vertices: two distinct vertices are ran-
domly selected to have their cluster index swapped. This function has a
probability of 70% to be utilized;

• Clusters rotation: two indices i ∈ N and j ∈ N, with 1 ≤ i ≤ n − 2,
and d0, 1 · ne ≤ j ≤ n, are randomly chosen. Then, the clusters indices of
vertices belonging to the range [i, j] are shifted one position. In other words,
for i ≤ k < j, A[k + 1] receives the cluster index of A[k] and, for k = j,
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A[i] receives the cluster index of A[k]. This function has a probability of
4% to be chosen;

• Random change of the clusters number : in this function a new maximum
number of clusters lnew is randomly chosen in the range [1,maxclst]. In
case of lnew < l, all vertices cluster indices that are greater than lnew are
fixed to the new range [1, lnew]. In case of lnew > l, then some random
vertices have their cluster indices changed to the new range [1, lnew] by
the random clusters change function. The random change of the clusters
number function has a probability of 1% to be used.

Similar to the BRKGA metaheuristic, hsol

2 cluster editing solutions are also selected
from SA execution. In order to obtain these solutions, a neighbor solution of the
current solution is selected at every saiter iterations of the Metropolis et al. (1953)
algorithm. The saiter values are calculated by Equation (2.2), where α is the SA
cooling rate, samax is the step size Metropolis algorithm and tinit and tfinal are,
respectively, the SA initial and final temperatures.

saiter = log
tfinal
tinit
α ·samax

hsol

2
. (2.2)

The SA parameters values used in this work are presented in Table 2.2. The CAL-
IBRA software (ADENSO-DÍAZ; LAGUNA, 2006) was used as in BRKGA meta-
heuristic to obtain these values. In Table 2.2 are presented the values of the initial
temperature (tinit), final temperature (tfinal), the step size of Metropolis algorithm
(samax) and the cooling rate (α).

Table 2.2 - SA parameters values used in the experimental tests carried out in this work.
These values were obtained by CALIBRA software (ADENSO-DÍAZ; LA-
GUNA, 2006).

Parameter tinit tfinal samax α
Value 750 10−6 750 0.98

2.4.2 Mixed-integer linear programming models

In this section the three proposed MILP for the overlapping cluster editing problem
are introduced. Our objective with these models was to produce overlapping clus-
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tering solutions through slightly different strategies. The first MILP (M1) selects a
fixed number of clusters considering its quality coefficient based on the overlapping
cluster editing problem. However, other coefficients can be used. Although the mod-
els were proposed for the overlapping cluster editing, they can also be applied in
others overlapping clustering problems. The second MILP (M2) finds an overlapping
clustering through the generation of up to q different set covers. The third MILP
(M3) is a variation of M2 one which an exactly number of covers are selected. In
M3 we associated a quality coefficient to each cluster as in M1.

Despite the fact that the three MILP are different, they were developed with some
common aspects. For instance, all models were designed considering the Jaccard
coefficient between each pair of clusters from the input set. The reason was to use
this coefficient to control, by an input model parameter, the overlapping between
clusters. This is because, depending on the instance context, it may be better to use
clusters with more overlap or less overlap. In addition, the objective functions of the
three MILP aremax-min functions, which the aim is to minimize the difference of the
Jaccard coefficient between clusters and the overlapping parameter. Furthermore,
another models’ key feature is to ensure that each graph vertex is covered by at
least one cluster. The M1, M2 and M3 models are presented in the Subsections
2.4.2.1, 2.4.2.2 and 2.4.2.3, respectively.

2.4.2.1 M1

The first MILP proposed in this work is shown in Equations (2.3a) to (2.3e). Given
a cluster set S = {C1,C2, . . . ,CN} of the vertices of an input graph G = (V ,E), in
the proposed model, the objective is to produce an overlapping clustering C ⊆ S,
where |C| = r and ⋃C∈C C = V . The C set is composed by r clusters with the best
costs and, depending on the established criteria, have more or less overlaps with
each other cluster belonging to C.

max
N∑
i=1

(di · yi − ui) (2.3a)

subject to
N∑
j=1

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (yi + yj − 1) ≤ ui, i = 1, 2, . . . ,N , (2.3b)

N∑
i=1

yi = r, (2.3c)
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N∑
i=1

aji · yi ≥ 1, j = 1, 2, . . . ,n, (2.3d)

yi ∈ {0, 1},ui ∈ R, i = 1, 2, . . . ,N . (2.3e)

In M1, with the binary variables yi, for 1 ≤ i ≤ N , it is defined which Ci clus-
ters belong, or not, to the solution. Also, there is a cost di associated with each
cluster Ci that represents how good this cluster is. The di values are given by the
Equation (2.4).

di =
Ein
Ci

Emax
Ci

−
Eout
Ci

|Ci| · (|V | − |Ci|)
. (2.4)

In Equation (2.4), Emax
Ci

is the maximum number of edges between Ci vertices, that
is, Emax

Ci
= |Ci|·(|Ci|−1)

2 . In addition, Ein
Ci

is the number of edges that connect vertices
belonging to Ci and Eout

Ci
is the number of edges connecting a vertex from Ci and a

vertex that does not belong to Ci. Moreover, the maximum number of edges between
vertices from Ci and vertices not belonging to it is given by |Ci| · (|V | − |Ci|). This
equation presents values in the real interval [−1, 1]. When cluster Ci is the best
possible, i.e., a clique with no out-edges, then di = 1. When cluster Ci has no in-
edges and its vertices are adjacent to all other vertices that does not belong to Ci,
then di = −1.

Since the objective function (2.3a) must be maximized, the lowest values of the real
variables ui are obtained. This is because the ui variables, in this function, have
negative coefficients. With these variables, clusters with the smallest differences
between the Jaccard coefficient, related to the other clusters, and the overlapping
control parameter z are selected. Constraint (2.3b) controls, with z ∈ [0, 1], the
overlaps between clusters. The closer z parameter value is to one, the greater the
overlaps between clusters. The closer z parameter value is to zero, the smaller the
overlaps between the clusters. The reason is that the overlap between a pair of
clusters Ci e Cj is quantified by means of the Jaccard coefficient. Therefore, if
clusters Ci e Cj have maximum overlap, that is, Ci = Cj, then J(Ci,Cj) = 1. If
clusters Ci and Cj have no overlap, that is, Ci ∩ Cj = ∅, then J(Ci,Cj) = 0. Thus,
if z = 1, variable ui will have the lowest value when J(Ci,Cj) = 1. On the other
hand, if z = 0, variable ui will have the lowest value when J(Ci,Cj) = 0.

In the constraint (2.3c) is ensured that exactly r clusters are selected. It is guaranteed

21



by constraint (2.3d) that each graph vertex belongs to at least one cluster. In this
constraint, for 1 ≤ i ≤ N and 1 ≤ j ≤ n, aji = 1 if vertex j belongs to cluster Ci
and aji = 0 otherwise. In addition, constraint (2.3e) defines variables yi as binaries
and ui as reals ones.

2.4.2.2 M2

The second proposed MILP is presented in Equations (2.5a) to (2.5h). In this model,
given a cluster set S = {C1,C2, . . . ,CN} of the n vertices of an input graph, the
objective is to produce an overlapping clustering through the generation of up to q
set covers, where the set is V . Each set cover is created by selecting a cluster subset
C ⊆ S, where ⋃C∈C C = V . The maximum number of covers (q) is defined a priori.
Note that, in this second model, the clusters’ costs are not considered, the purpose
is to generate overlapping clustering disregarding clusters costs.

max
q∑
j=1

yj −
N∑
i=1

ui (2.5a)

subject to

q∑
j=1

yj ≥ 1, (2.5b)

q∑
j=1

xij ≤ e, i = 1, 2, . . . ,N , (2.5c)

N∑
i=1

aik · xij ≥ yj, k = 1, 2, . . . ,n, j = 1, 2, . . . , q, (2.5d)

N∑
j=1

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (xik + xjk − 1) ≤ ui, i = 1, . . . ,N , k = 1, . . . , q, (2.5e)

N∑
i=1

(xij − xik) +N · lj ≥ yj, k = j + 1, . . . , q, j = 1, . . . , q, (2.5f)

N∑
i=1

(xik − xij) +N · lj ≤ N − yj, k = j + 1, . . . , q, j = 1, . . . , q, (2.5g)

lj,xij, yj ∈ {0, 1},ui ∈ R, i = 1, 2, . . . ,N , j = 1, 2, . . . , q. (2.5h)

In the objective function (2.5a) the binary variables yj, with 1 ≤ j ≤ q, controls
which of the q covers belongs to the final overlapping clustering solution. In addition,
by means of the binary variables xij, with 1 ≤ i ≤ N and 1 ≤ j ≤ q, the set covers
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are created, where xij = 1 if and only if the cluster Ci belongs to the cover j and
xij = 0 otherwise. The real variables ui are used in this model as in M1, presented
in Subsection 2.4.2.1. Since the objective function (2.5a) is a maximization, the
smallest values of the variables ui are obtained.

Constraint (2.5b) ensures that at least one cover is selected. With the constraint
(2.5c) it is established that clusters belongs up to e covers. When e = 1, then the
covers are disjoint. Constraint (2.5d) guarantees the vertex-set cover, that is, it is
guaranteed that in each selected cover Cj (clustering) each vertex k, with 1 ≤ k ≤ n,
belongs to at least one cluster Ci ∈ Cj. In this constraint, aik = 1 if and only if
the vertex k belongs to the cluster Ci and aik = 0 otherwise. The constraint (2.5e)
is similar to constraint (2.3b) of the first model. The only difference between these
constraints is that the constraint (2.5e) is considered for all N clusters of each q

covers and the constraint (2.3b) is considered only for the N clusters.

With the constraints (2.5f) and (2.5g) it is defined that the selected covers must be
different from each other. In this sense, two covers are different if exists at least one
cluster that belongs to one of these covers and it does not belongs to the another
cover. In other words, for each pair of covers Cj and Ck, with 1 ≤ j, k ≤ q and j 6= k,
Cj∆Ck 6= ∅. Constraints (2.5f) and (2.5g) are useful when e > 1. In particular,
these constraints are the linearization of the constraint ∑N

i=1 |xij − xik| ≥ yj, for all
1 ≤ j ≤ q and j < k ≤ q. Variables lj, xij and yj are set as binary and variables ui
are set as real in the constraint (2.5h).

2.4.2.3 M3

Model (2.6) presents the third mixed-integer linear program, introduced in this work,
for the overlapping cluster editing problem. This model is a modification of M2, pre-
sented in the Subsection 2.4.2.2. Given a cluster set S = {C1,C2, . . . ,CN} of the n
vertices of an input graph, the objective of the M3, defined by Equations (2.6a) to
(2.6h), is to produce an overlapping clustering by generating exactly c set covers,
where the set is V . These covers are created as in the second model but also consid-
ering the costs di, with 1 ≤ i ≤ N , of clusters Ci. The di cost represents how good
the cluster Ci is and it is calculated by Equation (2.4).

max
N∑
i=1

q∑
j=1

(di · yj − ui) (2.6a)
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subject to

q∑
j=1

yj = c, (2.6b)

q∑
j=1

xij ≤ e, i = 1, 2, . . . ,N , (2.6c)

N∑
i=1

aik · xij ≥ yj, k = 1, 2, . . . ,n, j = 1, 2, . . . , q, (2.6d)

N∑
j=1

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (xik + xjk − 1) ≤ ui, i = 1, . . . ,N , k = 1, . . . , q, (2.6e)

N∑
i=1

(xij − xik) +N · lj ≥ yj, k = j + 1, . . . , q, j = 1, . . . , q, (2.6f)

N∑
i=1

(xik − xij) +N · lj ≤ N − yj, k = j + 1, . . . , q, j = 1, . . . , q, (2.6g)

lj,xij, yj ∈ {0, 1},ui ∈ R, i = 1, 2, . . . ,N , j = 1, 2, . . . , q. (2.6h)

As mentioned, this third mixed-integer linear program is a modification of M2.
Then, the constraints (2.6c), (2.6d), (2.6e), (2.6f), (2.6g) and (2.6h) are the same
constraints as M2 constraints (2.5c), (2.5d), (2.5e), (2.5f), (2.5g) and (2.5h). These
models differ only in objective functions (2.5a) and (2.6a) and in the first constraints
(2.5b) and (2.6b).

The objective function (2.6a) is a maximization of the c set covers with clusters
that have the best costs and the lowest values of variables ui. Constraint (2.6b)
guarantees that exactly c set covers are selected in the final solution.

2.5 Experimental results and analysis

In this section results of the hybrid heuristic tests are presented. All implementations
were written in C++ language. For the resolution of models we used the IBM® ILOG®

CPLEX® 12.8 (IBM Corporation, 2018). All the computational tests were executed
on a computer with Intel® Xeon® E5-2687W v2 CPU 3.40GHz × 8 processor with
25MiB cache memory and 62GiB of RAM. The operating system installed on this
machine is Ubuntu 14.04.1 64 bits with kernel 3.19.0-32-generic. In addition, all
CPLEX (IBM Corporation, 2018) executions were limited to 3 hours.

Two sets of instances were used to evaluate the hybrid heuristic. These sets are
detailed below:
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• Random graphs. Proposed by Bastos et al. (2016), this set consists of 112
randomly generated graphs. These instances have sizes ranging between
21 vertices to 1000 vertices with different levels of difficult in the context
of the cluster editing problem. The difficulty of an instance is related to
its density and to number of edges edition necessary to partitioning the
graph into a disjoint union of cliques. Sparse and dense graphs are easier
to partition into disjoint cliques than graphs with density close to 0.6
(BASTOS et al., 2016). One can obtain all the 112 graphs at <http://
www2.ic.uff.br/~lbastos/>;

• LF benchmark graphs. Set of 30 graphs, with ground truth overlapping
clustering solutions, that were generated by Lancichinetti and Fortunato
(2009b) algorithm. Five graphs, ranging from sparse to dense, of each value
n = {25, 50, 100, 200, 500, 1000} of vertices were generated. These instances
can be obtained at <http://www.lac.inpe.br/~rafael.santos/OCI/>.

With the LF benchmark graphs the main objective is to verify if the hybrid heuristic
is able to reproduce the original overlapping clustering. For this reason, we used the
FBCubed (AMIGÓ et al., 2009) metric to evaluate the hybrid heuristic solutions in
relation to the ground truth solution. The FBCubed metric, with values ranging in
the real interval [0, 1], is a supervised measure for evaluating overlapping clusterings.
The closer to one is the FBCubed value, the better is the overlapping clustering
relative to the ground truth. The closer to zero, the worse the clustering relative to
the ground truth.

Three versions of the hybrid heuristic were evaluated on the tests performed in
this work. Each hybrid heuristic version is composed of the BRKGA and SA meta-
heuristics and one of the three proposed mixed-integer linear programming models.
For simplicity, in this chapter we use HHM1 to refer to the hybrid heuristic version
formed by the metaheuristics and M1, HHM2 to refer to the hybrid heuristic version
composed by the metaheuristics and M2 and HHM3 to refer to the hybrid heuristic
version formed by the metaheuristics and M3. The results presented in this section
were obtained from one execution of each hybrid heuristic variation.

Table 2.3 shows the models’ parameters values used in all tests carried out in this
chapter. In this table, cc_sol is the number of cluster editing solutions obtained
through the metaheuristics executions. Since the resolution of M2 and M3 have a
greater number of variables than M1, they are harder to solve. Then, a smaller
number of cluster editing solutions were used to solve M2 and M3 than M1. In
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addition, we utilized, for both HHM2 and HHM3, a small maximum number of
set covers. We utilized q = 5 in order to try to make these hybrid heuristic versions
generate competitive solutions. Large q values implies in a larger number of variables
that increases the models’ solving times. Another reason was that a large number of
covers can result in a larger number of clusters and then lead to a poor overlapping
cluster editing solution. We used e = 1 to avoid that a same cluster belongs to more
than one set cover. Furthermore, we utilized c = 1 in HHM3 to ensure that just one
set cover is selected among the q possibilities.

Table 2.3 - Parameters values, of the three proposed models, used in all tests performed
in this work.

HHM1 HHM2 HHM3
Parameter r* cc_sol e q cc_sol c e q cc_sol
Value - 100 1 5 10 1 1 5 10

* It was used, in each instance, the average number of clusters of the cluster editing solutions set as r values.

Furthermore, in tests performed in this work each hybrid heuristic variation (HHM1,
HHM2 and HHM3) were used with two overlapping control parameters values: z = 0
for minimum overlap and z = 1 for maximum overlap. The reason was to evaluate
how overlapping clusters affect solutions costs. Specifically, the metaheuristics’ so-
lutions costs were computed by the non-overlapping version of the Equation 2.1 and
the hybrid heuristics solutions costs were calculated by the overlapping version of
the Equation 2.1.

The following subsections are organized as follows. In Subsection 2.5.1, an evalua-
tion of the effect of using both metaheuristics in the quality of models’ solutions is
presented. A summary and an analysis of the results of the tests realized with the
random graphs instances and with the LF benchmark graphs are shown in Subsec-
tions 2.5.2 and 2.5.3, respectively. In addition, detailed results of each method in
each instance are presented in Appendix A.

2.5.1 Analysis of BRKGA and SA influence on models’ results

We present, in this subsection, the results of tests conducted aiming to show whether
the option of using both metaheuristics for generation of input clusters is more
suitable or not than using only one. Since the goal was to evaluate the metaheuristics’
influence on models’ solutions, we selected 12 random graphs, three of each value
n = {25, 50, 100, 200}, where our methods achieved the best solutions costs. These
instances were chosen because it could be possible to show whether the hybrid
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heuristics’ best costs could be improved or not by using just BRKGA or just SA.

In order to evaluate the metaheuristics’ influence, the creation of input clusters was
tested using only the BRKGA, only the SA and using both metaheuristics for each of
the three models. Then, in addition to the three standard hybrid heuristic variations
(HHM1, HHM2 and HHM3) which use BRKGA and SA, six more versions were
tested using only one of the two metaheuristics. A summary of the results, obtained
in tests with the 12 random graphs, is shown in Table 2.4.

In Table 2.4, each column presents the number of best overlapping cluster editing
costs obtained by a particular hybrid heuristic version in comparison with its two
related versions. For example, the second column shows the number of best solu-
tions obtained by the resolution of M1 using just BRKGA in comparison with M1
using just SA and the standard hybrid heuristic using both metaheuristics. Results
obtained from utilizing minimum and maximum overlapping control parameters for
each hybrid heuristic are also shown. The detailed results of each instance are pre-
sented in Table A.1.

Table 2.4 - Results summary of tests performed on 12 random graphs instances for evalu-
ate the metaheuristics’ influence on each models’ solutions.

M1 M2 M3
BRKGA SA both BRKGA SA both BRKGA SA both

# best costs (z = 0) 3 1 8 1 2 9 2 2 9
# best costs (z = 1) 0 1 11 1 1 10 1 2 9
total 3 2 19 2 3 19 3 4 18

From Table 2.4, it can be observed that, in all cases, the largest number of total best
results were obtained when the input clusters were generated by both metaheuristics.
This can also be noted with different overlapping control parameters. The HHM1,
HHM2 and HHM3 with BRKGA and SA achieved the largest number of best costs
either with z = 0 and with z = 1. This is because a largest number of clusters are
generate when using the two metaheuristics than when using only one. Therefore,
the clusters’ diversity is improved. With a clusters set more diverse, the resolution
of the models can produce better solutions.

We also investigate if there is a statistical significant difference between the results
of using both metaheuristics and using just BRKGA or just SA. It was considered
for comparison results between each of the three approaches of the three hybrid
heuristics. Then, results of the standard HHM1 were compared with M1 using only
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BRKGA and with M1 using only SA. The same comparison was realized between
M2 versions and between M3 versions.

Since we are comparing three algorithms at each time, traditional non-parametric
methods such as Wilcoxon signed-rank test could not be applied (GARCÍA et al.,
2010). Based on this, as Calvo and Santafé (2016) suggest, it is necessary to apply
an omnibus test to identify if at least one the methods presented statistical different
results in comparison with the others methods’ results. If a significant difference is
detected, a post-hoc test comparing with a control method is realized (GARCÍA et
al., 2010). The objective is to show whether the control method obtained statistical
significant different results regarding the others methods’ results or not. In order
to perform these statistical comparisons, we used the scmamp R package (CALVO;
SANTAFÉ, 2016).

As García et al. (2010) state, the Quade test (QUADE, 1979) is more suitable for
comparisons of up to five algorithms. In this way, we utilized this omnibus test in
each of the M1, M2 and M3 versions. Then, it was obtained the following p-values:

• M1 versions: p-value = 8.5 · 10−7;

• M2 versions: p-value = 1.9 · 10−4;

• M3 versions: p-value = 6.3 · 10−4.

All the obtained p-values are less than the significance level of 0.05. Thus, it suggests
that at least one version of each hybrid heuristic performed differently than the rest
(CALVO; SANTAFÉ, 2016). Then, we conducted a post-hoc test using the stardand
HHM1, HHM2 and HHM3 as control methods. For this test, we use the Quade
test with correction of p-values by the Finner’s method. This correction method is
the default method of the post-hoc test in the scmamp package and it is a robust
corrector (GARCÍA et al., 2010; CALVO; SANTAFÉ, 2016).

Table 2.5 shows the corrected p-values obtained from the post-hoc test. These p-
values are related to each corresponding standard hybrid heuristic version.

As one can see, all corrected p-values are smaller than 0.05. Therefore, this indicated
that all HHM1, HHM2 and HHM3 with both metaheuristics are statistically signifi-
cant different from the versions using only BRKGA or only SA. Indeed, these results
corroborate the results presented in Table 2.4, which the standard HHM1, HHM2
and HHM3 achieved better results. Then, it can be conclude that using BRKGA
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Table 2.5 - Corrected p-values from post-hoc test with control. The HHM1, HHM2 and
HHM3 with both metaheuristics were utilized as control methods. These p-
values were obtained using Quade test and Finner’s correction.

M1 M2 M3
BRKGA SA both BRKGA SA both BRKGA SA both

p-values 6.4 · 10−4 6.6 · 10−6 - 6.5 · 10−4 2.4 · 10−3 - 8.4 · 10−4 1.3 · 10−2 -

and SA for generating input clusters for all the three models is a better choice than
use just BRKGA or just SA.

2.5.2 Tests with random graphs

Table 2.6 shows a summary of the solutions costs obtained by each of hybrid heuristic
variation and of BRKGA and SA metaheuristics. The values presented in this table
are the number of best solutions costs obtained by each algorithm regarding the cor-
responding Equation 2.1 version. In this table, the 112 random graphs were divided
in five sets according to the number of vertices. These numbers of vertices and the
numbers of instances belonging to each instance set are presented, respectively, on
the first and the second columns of Table 2.6.

Table 2.6 - Results summary of tests performed on the 112 random graphs instances. The
number of best costs solutions is shown for each of the hybrid heuristic variation
(HHM1, HHM2 and HHM3) and for BRKGA and SA metaheuristics.

number of best solutions costs
HHM1 HHM2 HHM3

n # BRKGA SA z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
[21, 25] 25 10 17 0 10 1 3 1 2
[45, 50] 21 1 1 0 16 0 3 0 2
[98, 100] 21 0 2 0 11 3 1 1 1

200 20 1 2 0 10 2 5 1 5
500 20 2 4 0 4 1 7 0 2
1000 5 1 3 0 0 0 0 0 1
total 112 15 29 0 51 7 19 3 13

The average computational cost, in seconds, of each hybrid heuristic variation and of
BRKGA and SA metaheuristics are presented in Table 2.7. Analogously to Table 2.6,
the 112 random graphs were divided in five sets according to the number of vertices.
The average execution time of the hybrid heuristic variations showed in this table
were computed considering the sum of each metaheuristics’ execution time and the
CPLEX (IBM Corporation, 2017) execution time to solve the models. For individual
times, see Appendix A.
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Table 2.7 - Results summary of tests performed on the 112 random graphs. The average
computational time, in seconds, is shown for each of the hybrid heuristic varia-
tion (HHM1, HHM2 and HHM3) and for BRKGA and SA metaheuristics. The
hybrid heuristic variations’ execution time is composed by the metaheuristics
and the CPLEX times.

average time (s)
HHM1 HHM2 HHM3

n # BRKGA SA z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
[21, 25] 25 0.9 0.5 1.6 1.8 2.6 3.9 1.9 2.9
[45, 50] 21 1.2 1.4 2.9 3.8 7.9 10.0 4.7 8.4
[98, 100] 21 1.9 5.1 7.7 10.9 35.6 101.0 19.2 99.3

200 20 3.4 18.7 23.7 35.3 936.8 4018.5 1331.5 3804.9
500 20 10.4 109.8 692.8 169,3 10185.6 9869.0 9354.1 9497.8
1000 5 30.5 426.9 3164.8 541.4 9173.4 9204.6 9118.1 9134.4

Analyzing results presented in Table 2.9, it can observed that each hybrid heuristic
version achieved better overlapping cluster editing costs when z = 1 rather than
z = 0. In particular, HHM1, HHM2 and HHM3 obtained, respectively, 51, 19 and
13 better costs with z = 1 and 0, 7 and 3 better costs with z = 0. Using z = 1
ensures that the three MILP are solved by trying to select clusters that have more
overlap between each other. Based on this, the number of vertices belonging to more
than one cluster, in a solution generated with z = 1, is greater than those generated
with z = 0. Thus, the number of inter-clusters edges is smaller, resulting in a better
overlapping cluster editing cost. On the other hand, when z = 0, clusters with
less overlap between each other are selected. Therefore, the number of inter-clusters
edges is greater, resulting in a worse overlapping cluster editing cost.

It was observed that the HHM1 was the hybrid heuristic version that achieved
the better overlapping cluster editing costs. Indeed, considering all 112 random
graphs, the HHM1 obtained better results in 51 instances when compared with the
others hybrid heuristic versions and the metaheuristics. All these HHM1 better costs
were achieved with z = 1. One reason was that, in the first MILP, it is considered
exactly r clusters. Then, using z = 0, the solution is worsened, especially in this
model, because the r clusters with less overlap are selected. As M2 and M3 consider
coverings instead of a fixed number of clusters, the difference between results with
z = 0 and with z = 1 is more subtle.

In addition, one can see that the HHM1 presented a better performance in small and
medium-size instances. As the average number of clusters of metaheuristics’ solu-
tions was used as the value of the parameter r, this may have affected the solutions
quality generated by HHM1. This is because, in early metaheuristics’ executions,
the solution space is huge in larger instances. Then, poor solutions with too many
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clusters are generated while metaheuristics do not start converging. Thus, bad so-
lutions with many clusters influence the r parameter and, consequently, influence
overlapping clustering cost of HHM1 solutions.

It also can be noted that the HHM2 and the HHM3 generated comparable results.
Indeed, as can be observed in tables of Appendix A, these hybrid heuristic versions
obtained similar overlapping cluster editing costs and similar computing times. One
reason for this is the fact that M3 is a variation of M2. Futhermore, in order to
reduce the computation cost for solving the third model, we utilized, as shown in
Table 2.3, c = 1. Then, M2 and M3 differ only in the objective function.

Although HHM2 and HHM3 did not performed well as the HHM1 version, it can
be considered that they presented reasonable overlapping cluster editing results.
This is because, as both HMM2 and HHM3 models are harder to solve, they used
a significantly smaller number of input clusters than HHM1, as shown in Table 2.3.
Consequently, less cluster variety contributed negatively to the quality of solutions
generated by HHM2 and HHM3. However, even with a limited number of clusters,
HHM2 and HHM3 presented, considering the results with z = 0 and z = 1, best costs
in 26 and 16 instances, respectively. Indeed, the second hybrid heuristic variation
achieved the highest number of best costs in random graphs with 500 vertices.

Since the BRKGA and SA metaheuristics were only used to generate solutions that
clusters are used as input to solve the proposed models, it also can be considered that
these metaheuristics obtained good results regarding the costs of the cluster editing
problem and the computational time. As can be seen in Table 2.9, BRKGA and SA
achieved best results in 15 and 29 instances, respectively. In addition, as presented
in Table 2.8, from 40 known optimal costs, the BRKGA and SA metaheuristics pre-
sented 12 and 25 optimal costs, respectively. Table 2.8 shows the number of optimal
solutions costs obtained by each method. The cluster editing optimal values were
obtained by the resolution of the Charikar, Guruswami and Wirth (CHARIKAR et
al., 2005) linear integer programming model. Since we utilized 3h as time limit for
CPLEX (IBM Corporation, 2017) executions, we could only obtain optimal solutions
in 40 instances with up to 100 vertices.

Also, it can be seen from Table 2.8 that, in 18 of the 40 instances in which optimal
cluster editing costs are known, the hybrid heuristic versions achieved better costs
than the optimal ones. This is because, in an overlapping clustering, vertices can be-
long to more than one cluster. Hence, there are fewer inter-cluster edges. Therefore,
allowing clusters to overlap may be a less costly alternative to the cluster editing
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Table 2.8 - Number of optimal solutions costs of each algorithm in the 40 random graphs
where the optimal cluster editing cost is known. In some instances, hybrid
heuristics’ overlapping cluster editing solutions achieved better results than
the optimal ones.

number of optimal (or better) solutions costs
HHM1 HHM2 HHM3

n # opt BRKGA SA z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
[21, 100] 40 12 25 0 21* 1 3** 1 2***

* 15 overlapping cluster editing costs better than optimal cluster editing costs.
** 2 overlapping cluster editing costs better than optimal cluster editing costs.
*** 1 overlapping cluster editing cost better than optimal cluster editing cost.

problem. For instance, an optimal cluster editing solution and an overlapping cluster
editing solution, generated by HHM1, of the cmpr_101_5_25 graph are depicted,
respectively, by Figures 2.5 and 2.6. As presented in Table A.2 of Appendix A, the
optimal cluster editing cost of instance cmpr_101_5_25 is 44 and the cost of the
overlapping cluster editing solution generated by HHM1 is 42.

Figure 2.5 - An optimal cluster editing solution, with cost of 44, of the instance
cmpr_101_5_25. This solution was obtained from the resolution of the
Charikar, Guruswami and Wirth (CHARIKAR et al., 2005) model. This im-
age was generated using the Gephi software (<https://gephi.org/>).
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In the solution showed in Figure 2.6, vertices 18 and 21 are contained, each one,
in two clusters. Thus, edges that would be inter-clusters in a disjoint clustering are
intra-cluster, such as the edge (18, 21). In a non-overlapping cluster editing solution,
such as the solution presented in Figure 2.5, vertex 21 belongs only to the clique
composed by vertices 9 and 10 and it is not contained in a cluster alongside vertex 18.
Then, the edge (18, 21) is a inter-cluster edge and, therefore, this edge is computed

32

https://gephi.org/


as an edge that must be removed.

Figure 2.6 - An overlapping cluster editing solution, with cost of 42, of the instance
cmpr_101_5_25. Vertices 18 and 21 belong, each one, to two clusters. This
image was generated using the Gephi software (<https://gephi.org/>).
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Analyzing the execution time of the hybrid heuristics variations, one can see that
the HHM1 spent less computational cost to generate the solutions than the HHM2
and HHM3 in almost all random graphs instances. As mentioned previously, M1 is
easier to solve than M2 and M3 because the first model has a smaller number of
variables. Then, even though the HHM1 used a greater number of cluster editing
solutions from the metaheuristics than the HHM2 and HHM3, the CPLEX (IBM
Corporation, 2017) can solve M1 faster than M2 and M3.

2.5.3 Tests with LF benchmark graphs

Table 2.9 shows the number of best solutions costs obtained by the three hybrid
heuristic versions and the metaheuristics in the 30 LF benchmark graphs. The solu-
tions costs were computed considering the non-overlapping version of Equation 2.1
for metaheuristics and the overlapping version of Equation 2.1 for the hybrid heuris-
tic. The 30 graphs were divided into six sets according to their number of vertices.
Each instance set has five graphs with density ranging from sparse to dense.

The average computational time, in seconds, of the three hybrid heuristic variation
and the two metaheuristics is presented in Table 2.10. The average execution time
of the hybrid heuristic variations showed in this table were computed considering
the execution time spent by metaheuristics and CPLEX (IBM Corporation, 2017).
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Table 2.9 - Results summary of tests performed in the 30 LF benchmark graphs. The
number of best costs solutions is shown for each of the hybrid heuristic variation
and for BRKGA and SA metaheuristics.

number of best solutions costs
HHM1 HHM2 HHM3

n # BRKGA SA z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
25 5 2 5 0 4 1 1 1 1
50 5 1 4 1 2 1 1 1 1
100 5 1 1 1 5 1 1 1 1
200 5 2 1 3 4 2 2 2 2
500 5 1 0 1 3 1 2 1 2
1000 5 1 2 1 3 1 1 1 2
total 30 8 12 7 21 7 8 7 9

Table 2.10 - Results summary of tests performed on the 30 LF benchmark graphs. The
average computational is shown for each of the hybrid heuristic variation
(HHM1, HHM2 and HHM3) and for BRKGA and SA metaheuristics. The
hybrid heuristic variations’ execution time is composed by the metaheuristics
and the CPLEX times.

average time (s)
HHM1 HHM2 HHM3

n # BRKGA SA z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
25 5 0.7 0.5 1.4 1.4 1.9 2.0 1.7 1.8
50 5 1.1 1.5 2.8 3.3 5.1 7.1 3.9 5.6
100 5 2.1 5.2 7.8 8.5 16.7 32.8 11.2 19.2
200 5 3.5 19.6 23.6 33.2 185.2 384.1 779.8 241.7
500 5 10.5 114.1 130.1 174.6 8166.1 8780.2 8769.7 8806.4
1000 5 29.8 441.8 720,2 548,4 9136,0 9158,1 9126,5 9163,5

The results regarding the overlapping cluster editing cost and execution time pre-
sented in the above tables, were similar to the results with random graph. However,
we can observe, in Table 2.6, that the three hybrid heuristic versions were a slightly
better in terms of solution cost. The HHM1, with z = 1 obtained best costs in 21
instances. We also observe better costs, in relation to the tests in random graphs,
of the solutions generated by the hybrid heuristic variations with z = 0. This is be-
cause these 30 LF benchmark graphs originally have overlapping clusters. That is,
even though, with z = 0, the minimum overlapping is required, the hybrid heuristic’
solution may still has some clusters that overlap.

Table 2.11 presents the FBCubed metric values obtained by the three hybrid heuris-
tics versions. In particular, the number of best FBCubed values and the avegare
FBCubed values achieved by each hybrid heuristic are shown.

In relation to the results of the FBCubed metric, it is observed that the best results,
both in absolute number and the average metric values were obtained by the HHM1
with z = 1. In particular, the HHM1, with z = 1, obtained FBCubed values greater
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Table 2.11 - Summary of the hybrid heuristic FBCubed results of tests performed on
the 30 LF benckmark graphs. The number of best FBCubed values and the
average FBCubed value obtained by each hybrid heuristic variation (HHM1,
HHM2 and HHM3) are shown.

number of best FBCubed average FBCubed
HHM1 HHM2 HHM3 HHM1 HHM2 HHM3

n # z = 0 z = 1 z = 0 z = 1 z = 0 z = 1 z = 0 z = 1 z = 0 z = 1 z = 0 z = 1
25 5 0 4 0 0 0 1 0.46 0.67 0.51 0.54 0.51 0.60
50 5 0 5 0 0 0 0 0.38 0.53 0.34 0.38 0.34 0.38
100 5 0 5 0 1 0 1 0.31 0.54 0.33 0.35 0.33 0.35
200 5 0 5 0 0 0 0 0.28 0.59 0.29 0.28 0.29 0.28
500 5 1 3 0 1 0 0 0.22 0.27 0.18 0.23 0.22 0.22
1000 5 0 1 2 1 1 1 0.09 0.23 0.15 0.15 0.14 0.14
total 30 1 23 2 3 1 3 - - - - - -

than 0.5 in 16 instances. With these values of the FBCubed metric, the generated
solutions can be considered good-quality clusterings.

Analogously to results presented in random graphs instances, the performance of
HHM2 and HHM3 were also negatively affect by the limited number of input clusters.
These 30 instances generated by the Lancichinetti and Fortunato (2009b) algorithm
have clusters that overlap. Then, to produce a good overlapping cluster editing
solution, it is necessary a great variety of clusters. As M2 and M3 used a small
number of clusters, because they are harder to solve, this implied in overlapping
solutions with higher costs. This is corroborated by the values of the FBCubed
metric obtained by HHM2 and HHM3, which were only good in small graphs.

2.6 Conclusions and future directions

In this chapter we proposed a new relaxation of the cluster editing problem, the
overlapping cluster editing problem. In addition, three hybrid heuristics versions
for this problem were introduced. These hybrid heuristics are based on coupling
the BRKGA and SA metaheuristics, to generate solutions for the cluster editing
problem, and the CPLEX (IBM Corporation, 2017) that uses the clusters from
these solutions as input to solve one of three mixed integer linear program, also
proposed in this work.

Taking into account the results in all 112 random graphs instances it can be consid-
ered that the hybrid heuristics variations produced good quality solutions in overall.
The best hybrid heuristic variation was the HHM1, with z = 1, that obtained the
minimum overlapping cluster editing costs in 51 instances. In addition, this varia-
tion was the faster hybrid heuristic. Futhermore, the SA metaheuristic obtained the
best results in 28 instances, the HHM2, with z = 1, obtained the best results in
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18 instances, the BRKGA metaheuristic obtained the best results in 15 instances
and the HHM3, with z = 1, obtained the best results in 12 instances. Besides the
Bastos et al. (BASTOS et al., 2016) instances being randomly generated without
cluster formations, another reason that may have influenced the HHM2 and HHM3
results was the number of solutions in the cluster editing solutions set used as input.
Because the models of these hybrid heuristics are harder to solve, only 10 cluster
editing solutions were gathered from metaheuristics. Then, a small number of cluster
editing solutions implies in a small number of good-quality clusters. However, it can
be considered that, even with theses limitations, HHM2 and HHM3 achieved rea-
sonable results. As HHM2 and HHM3 generate overlapping clustering through the
generation of set-covers, they can be an alternative to HHM1 in others overlapping
clustering problems where the computational time is not a main concern.

In the tests with the LF benchmark graphs, the HHM1 obtained better costs in
21 of the 30 instances. This hybrid heuristic version also achieved good values of
the FBCubed, a supervised metric. Although improvements have yet to be made in
HHM2 and HHM3, specially in overlapping solutions, these hybrid heuristic varia-
tions have proved to be promising.

In addition, with our new problem definition we presented an alternative to the
original cluster editing problem. As shown in the tests realized in this work, in the
overlapping cluster editing problem one can reduce the number of inter-cluster edges
by overlapping two or more clusters. Then, it may be better insert a vertex in more
than one cluster than to remove edges from that vertex.

For future work, some points of the hybrid heuristic should be improved, mainly the
HHM2 and HHM3 versions. For example, the number of clusters to be used in an
overlapping clustering solution and increase the variety of cluster editing solution
set. To increase the variety of this set, other metaheuristics and other methods, such
as the column generation method (OLIVEIRA et al., 2017), can be implemented.
In addition, another direction is to apply our hybrid heuristic in the context of
overlapping community detection, since it performed well retrieving ground-truth
overlapping clustering. In order to achieve this, methods for community detection
should be implemented instead of BRKGA and SA metaheuristics for clusters gen-
eration.
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3 A HYBRID HEURISTIC FOR THE OVERLAPPING COMMUNITY
DETECTION PROBLEM

This chapter is divided as follows. An introduction is presented in Section 3.1. Some
related work are described in Section 3.2. In Section 3.3, we present the mathematical
notation and some definitions necessary to understand this chapter. The details
about our hybrid heuristic are given in Section 3.4. We show the experimental results
and an analysis of them in Section 3.5. Our concluding remarks and considerations
on future work are presented in Section 3.6.

3.1 Introduction

Community structures can be found in many real-world networks arising from several
different areas, such as computer science, economics, biology, sociology and engineer-
ing (GIRVAN; NEWMAN, 2002; FORTUNATO, 2010). The task of identification
of such structures is an interdisciplinary, widely known problem called community
detection (FORTUNATO, 2010). Although there is no universally accepted formal
definition of community, it is often assumed that a community is a set of elements
with more links among them and less, or none, links to the elements that do not
belong to the set (FORTUNATO, 2010; XIE et al., 2013). In graph theory context,
these elements are vertices and the relationship between them can be represented by
edges. So the objective in the community detection problem is to find disjoint sets,
i.e., sets of highly connected vertices that share no vertices with other sets. These
sets are also known as clusters and in this work this term is used interchangeably
with communities.

In many real-world applications, however, vertices can belong to more than one
cluster, that is, clusters may overlap (FORTUNATO; HRIC, 2016; CHAGAS et al.,
2019). In social networks, for example, individuals frequently have several relation-
ships with other individuals and they are usually associated to many groups (XIE
et al., 2013). Overlapping communities are also frequently observed in data mining-
related problems, since web pages, documents, users info and many other data can
be categorized to more than one class (BONCHI et al., 2013). In a biological con-
text, proteins often compose one or more protein complexes in protein interactions
graphs (WANG et al., 2018). Therefore, identifying overlapping clusters in these net-
works is a relevant task and it is known as overlapping community detection problem
(OCDP). In this problem, the objective is to partition vertices of a input graph into
sets that are not necessarily disjoint.
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There are some metrics in the literature used to evaluate the quality of a cluster
of an overlapping clustering solution. Among these metrics one of most used and
known is the conductance measure (ŠÍMA; SCHAEFFER, 2006). This metric eval-
uates the two main characteristics of a community: the number of edges inside of
a cluster and the number of edges between this cluster and the remaining other
vertices of the graph (FORTUNATO; HRIC, 2016). However, finding a cluster with
minimal conductance is a NP-hard problem (ŠÍMA; SCHAEFFER, 2006). Then,
exact methods, which can find clusters with optimal conductance, are only practical
on small graphs whereas heuristics can find clusters at a reasonable time but without
guarantee of optimality. An alternative is to combine heuristics with exact methods
in order to produce high-quality solutions at a reasonable computational time. Such
methods are known as hybrid heuristics or matheuristics (MANIEZZO et al., 2009),
which lately have been successfully applied to optimization and clustering problems
(OLIVEIRA et al., 2014; PEREIRA et al., 2015; OLIVEIRA et al., 2017; CHAGAS
et al., 2019; MOUSSAVI et al., 2019).

The main contribution of this work is the proposal of a hybrid heuristic for detecting
overlapping communities of a graph by the minimization of the conductance met-
ric. Based on the work of Chagas et al. (2019), our hybrid heuristic consists of two
algorithms that generate a set of clusters that is used to solve a MILP. We adapted
the MILP for overlapping cluster editing problem proposed by Chagas et al. (2019)
to the context of the overlapping community detection problem. An overlapping
clustering is generated through the resolution of this MILP. In the sequence, some
local search methods are used to improve the overall conductance of the clustering.
As far as we known, there were no previous hybrid heuristics proposed for commu-
nity detection problems. Furthermore, to the best of our knowledge, there are no
MILP models in the literature for detecting overlapping clustering. The only work
that we are aware of is the paper of Bennett et al. (2014). However, these authors
proposed a mixed integer non linear programming for modularity maximization in
the overlapping community detection.

3.2 Related work

Initial research in community detection was carried out considering only disjoint
clusters. The overlapping community detection problem has been receiving increas-
ingly attention recently mainly because of social networks analysis problems (AL-
GHAMDI; GREENE, 2019; GAO et al., 2019b). Indeed, several algorithms have
been proposed for this problem lately (WHANG et al., 2016; CHANG et al., 2019;
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GAO et al., 2019a; GAO et al., 2019b; SHENG et al., 2019). These methods can be
divided into five categories: clique percolation, link clustering, fuzzy detection, label
propagation and local expansion algorithms (XIE et al., 2013).

Algorithms that find a cluster by identifying overlapping fully connected subgraphs,
which are known as cliques, are classified as clique percolation methods (XIE et al.,
2013). An example of algorithm of this category is the Clique Percolation Method
(PALLA et al., 2005b). This method was the first algorithm proposed for overlapping
community detection and it is one of the most popular methods for this task. Link
clustering methods find clusters through the partitioning of the graph by splitting
edges rather than vertices (XIE et al., 2013; ALGHAMDI; GREENE, 2019). In fuzzy
algorithms, vertices have a degree of membership related to each cluster ranging
from 0 to 1, where the sum of all the memberships is equal to 1 (XIE et al., 2013;
CHAGAS et al., 2019). Label propagation algorithms generate a cluster by inserting
a vertex on it based on its adjacency affinities (ALGHAMDI; GREENE, 2019).

One of the most successful class of methods for overlapping community detection are
the local expansion methods, which use the “seed-and-grow” strategy, i.e., growing a
cluster from a given initial vertex (XIE et al., 2013; WHANG et al., 2016). Indeed,
as shown by Xie et al. (2013), local expansion methods achieved the overall best
results finding overlapping communities when comparing to other methods. There
are several methods based on local expansion for overlapping community detection in
the literature (LANCICHINETTI; FORTUNATO, 2009a; McDaid; HURLEY, 2010;
LANCICHINETTI et al., 2011; WHANG et al., 2016; GAO et al., 2019a; GAO et
al., 2019b).

The Local fitness maximization (LFM) (LANCICHINETTI; FORTUNATO, 2009a)
is one of the most known methods that uses the “seed-and-grow” strategy. This
algorithm starts finding a cluster from a random vertex and, at each iteration, a
vertex is added if the fitness function value is increased. The algorithm stops when
all vertices were assigned to at least one cluster. The Model-based overlapping seed
expansion (MOSES) (McDaid; HURLEY, 2010) generates clusters using a statisti-
cal model and heuristics to greedily expanding a cluster through the maximization
of its objective function (McDaid; HURLEY, 2010). Another algorithm that also
uses a statistical model is the Order statistics local optimization method (OSLOM)
(LANCICHINETTI et al., 2011). This method grows clusters optimizing a fitness
function that measures the statistical significance of clusters in comparison to ran-
dom variations (LANCICHINETTI et al., 2011).
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The Neighborhood-inflated seed expansion (NISE) (WHANG et al., 2016) is a state-
of-the-art algorithm for overlapping community detection. After identifying the most
important region of the input graph, this algorithm finds a set of seeds on it and finds
a cluster starting from each of these seeds by applying the PageRank-Nibble (AN-
DERSEN et al., 2006) algorithm. Another algorithm that uses a similar approach is
the Local expansion conductance minimization (LECM) (GAO et al., 2019b). This
method also applies the PageRank-Nibble algorithm in a set of seeds. However, in
the LECM a series of local search methods for conductance improvement are used
on every cluster found by the PageRank-Nibble algorithm. LECM is a state-of-
the-art algorithm for detecting overlapping communities based on the conductance
minimization (GAO et al., 2019b).

3.3 Mathematical notation and problem definition

Consider a simple, undirected and unweighted graph G = (V ,E), where V is a set
of vertices and E is the set of edges in which |V | = n and |E| = m. Two vertices
v ∈ V and u ∈ V are adjacent if and only if {v,u} ∈ E. In this case, vertices v and
u are endpoints of edge {v,u}. The degree of a vertex v, i.e., its number of adjacent
vertices is defined by deg(v) = |{{v,u} | {v,u} ∈ E}|. A graph is complete if each
vertex is adjacent to every other vertex. In a complete graph, ∀v ∈ V , deg(v) = n−1
and m = n(n−1)

2 .

A graph G′ = (V ′,E ′) is a subgraph of G = (V ,E) if V ′ ⊆ V and E ′ ⊆ E. A
subgraph of G induced by a subset of vertices V ′ ⊆ V is a graph GV ′ = (V ′,EV ′)
where EV ′ = {{v,u} | v ∈ V ′∧u ∈ V ′∧{v,u} ∈ E}. In other words, GV ′ is induced
by V ′ if it has all edges of G joining vertices of V ′. G is connected if for every pair
of vertices v ∈ V and u ∈ V there is a finite sequence of distinct edges connecting
them. A connected component is a maximal connected subgraph, i.e., it is not a
proper subset of any other connected component.

Although there is no standard formal definition of cluster in the literature (FORTU-
NATO; HRIC, 2016), in this work we consider that a cluster C is a set of vertices
such that C ⊆ V . Note that, in our definition, C is a set of vertices, therefore it
has no edges. Then, when we refer to “edges of C” we are considering edges of the
original edge set E in which at least one of its vertices belongs to C.

There are two types of edges of a cluster C: internal edges and external edges. The
set of internal edges of C, that is, edges in which both endpoints belong to C is
given by int-edges(C) = {(v,u) ∈ E | v,u ∈ C}. Note that, in our definition,
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the internal edges set is formed by ordered pairs of vertices, then every edge is
considered twice since (v,u) 6= (u, v). The set of external edges, also known as cut
set, is defined by ext-edges(C) = {{v,u} ∈ E | v ∈ C ∧ u /∈ C}, i.e., edges where
one of its vertices belongs to C and the other does not belongs to C. The number
of external edges of C is called cut and it is represented by cut(C). In addition,
adj(C) = {v | ∃u ∈ C, {v,u} ∈ ext-edges(C)} is the set of all vertices not contained
in C that have at least one adjacent vertex in C. The number of edges between
vertices belonging to C and a vertex v is l(C, v) = |{{v,u} ∈ E | u ∈ C}|. The set
comprehending all edges of C is given by the union of the internal edges and the
external edges and the number of edges of this set is the degree (or volume) deg(C)
of C. In other words, deg(C) = |int-edges(C) ∪ ext-edges(C)| = ∑

v∈V deg(v). Note
that deg(V ) = 2m.

With these definitions, we can define the conductance measure. The conductance of
a cluster is the ratio between its cut and the minimum value between the cluster’s
degree and the degree of the set composed by all remaining graph vertices. The
conductance is given by Equation (3.1).

Φ(C) = cut(C)
min(deg(C), 2m− deg(C)) . (3.1)

Two distinct clusters Ci and Cj are disjoint sets if Ci ∩Cj = ∅. If Ci ∩Cj 6= ∅, then
Ci is an overlapping cluster of Cj and vice versa. The Jaccard coefficient, between
two clusters Ci and Cj, is defined by J(Ci,Cj) = |Ci ∩ Cj|/|Ci ∪ Cj|. Then, two
clusters Ci and Cj are equal when J(Ci,Cj) = 1. If J(Ci,Cj) = 0, then Ci and Cj
have no elements in common, i.e., Ci ∩ Cj = ∅ (CHAGAS et al., 2019).

A traditional clustering is a vertex-disjoint partitioning C = {C1,C2, . . . , Cl} such
that, for 1 ≤ i, j ≤ l and i 6= j, Ci ⊆ V , Ci 6= ∅,

⋃l
i=1 Ci = V and every pairwise

intersection Ci ∩ Cj = ∅. In an overlapping clustering ∃Ci ∈ C and ∃Cj ∈ C,
with Ci 6= Cj, such that Ci ∩ Cj 6= ∅, i.e., the partition is not disjoint. In the
community detection context, an overlapping clustering is often referred as cover
(FORTUNATO, 2010).

3.4 Hybrid heuristic

Our hybrid heuristic is divided into three phases, namely clusters set generation,
model resolution and clusters improvement. In the first phase, an heterogeneous set
of good-quality clusters is generated through the execution of the LFM (LANCI-
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CHINETTI et al., 2009) algorithm and the NISE (WHANG et al., 2016) algorithm.
These two methods produce, each one, an overlapping clustering of the input graph
and the clusters from both clustering solutions compose the clusters set. Thereafter,
in the model resolution phase, this set is used as input to solve the MILP for over-
lapping clustering as proposed by (CHAGAS et al., 2018; CHAGAS et al., 2019).
For simplicity, in this work, we call this MILP as Overlapping Clustering Model
(OCM). The quality of the overlapping clustering generated by the OCM resolution
is highly dependent on the quality and the variety of the clusters set (CHAGAS et
al., 2019). In the third phase, we try to improve the conductance of each cluster of
the overlapping clustering generated by the resolution of the OCM using the three
methods for cluster refinement of the LECM (GAO et al., 2019b) algorithm.

Among a vast literature regarding local expansion methods (XIE et al., 2013;
PADROL-SUREDA et al., 2010; McDaid; HURLEY, 2010; LANCICHINETTI et
al., 2011; GAO et al., 2019b), we chose to implement the LFM (LANCICHINETTI
et al., 2009) and NISE (WHANG et al., 2016) algorithms, two efficient and well
known methods, to generate the OCM input clusters set. We utilized two local ex-
pansion methods because this class is one of the most successful class of methods
for overlapping community detection (XIE et al., 2013). Even though both are algo-
rithms of the same category, they have significant differences, which lead our hybrid
heuristic to generate a diverse set of good-quality clusters in the first phase.

Since the LFM is a simple, widely known and efficient overlapping community de-
tection algorithm, we utilized it to generate clusters due to two main reasons. First,
LFM starts finding a cluster from a random vertex. Although it may not always
generate good-quality clusters, expanding a cluster from a random vertex is impor-
tant to maintain the heterogeneity of the clusters set. Second, the clusters’ size of a
LFM clustering can be controlled by an input parameter. This also contributes to
the clusters set diversity, since we can run LFM using different values of the cluster
control size parameter. In addition, several recent papers of proposing new overlap-
ping community detection algorithms compares its results with LFM, e.g. (CHANG
et al., 2019; DENG et al., 2019; YAN et al., 2018; ZHENG et al., 2019).

We implemented the NISE algorithm for generating clusters because it is one of the
state-of-the-art overlapping community detection methods (WHANG et al., 2016;
XU et al., 2016; GAO et al., 2019b). In tests carried out by (WHANG et al., 2016), it
was shown that NISE achieved the bests results not only in the conductance measure,
but also in the modularity measure, average association measure and retrieving
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ground-truth clusters. Then, in our hybrid heuristic, while LFM contributes mainly
to the diversity of the clusters set, NISE contributes adding high quality clusters to
it. In addition, NISE has reasonable low computational cost since its time complexity
is roughly O(n+m) (WHANG et al., 2016).

The OCM (CHAGAS et al., 2019) was proposed for the overlapping cluster editing
problem. In this problem, the goal is to partition the vertices of a graph into maximal
cliques, that are not necessary disjoint, by adding and deleting edges (CHAGAS
et al., 2019). A maximal clique is a complete subgraph not strictly contained in
any other complete subgraph. Since the OCM presented good results, at a low
computational cost, in the overlapping cluster editing problem and since it can
be easily adapted to other overlapping clustering problems, we applied it in the
overlapping community detection problem.

As Gao et al. (2016), Gao et al. (2019a), Gao et al. (2019b) state, the LECM is a
state-of-the-art algorithm for conductance minimization in overlapping community
detection. Indeed, the LECM achieved better results than NISE regarding the av-
erage conductance metric. Then, we utilized the three methods of the last phase of
the LECM for conductance minimization seeking improve the conductance of the
overlapping clustering obtained through the OCM resolution.

A briefly pseudocode of our hybrid heuristic is depicted in Algorithm (2) and fig-
ure 3.1 depicts the execution of the proposed method. First, the clusters set is
generated by the execution of LFM and NISE. Repeated clusters are removed from
this set in the filtering step at line 4. Then, CPLEX (IBM Corporation, 2019) solves
the OCM using the clusters set as input. Thereafter, the conductance of each cluster
of the overlapping clustering found by the OCM resolution is refined by LECM local
search methods.

Each step of the Algorithm (2) is detailed in the remainder of this section and it is
divided as follows. A briefly description of LFM and NISE algorithms are presented
in Sections 3.4.1 and 3.4.2, respectively. The MILP utilized in this work is described
in Section 3.4.3. The LECM methods for improve the conductance of the clustering
generated by our hybrid heuristic are presented in Section 3.4.4.

3.4.1 Local Fitness Maximization algorithm

The LFM algorithm (LANCICHINETTI et al., 2009) is a simple but efficient greedy
method for detecting both overlapping and hierarchical clusters. Its main idea is to
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Algoritmo 2: Hybrid heuristic.
input : Graph G = (V ,E); OCM model; OCM number of clusters k; LFM

cluster size control parameter b; NISE number of seeds ns; NISE
teleport probability α; NISE acurracy ε; merging coefficient β;
combining function balance parameter θ; conductance control
parameter χ.

output: Clustering C.
1 begin

/* a set of clusters is generate by LFM and NISE */
2 clusters← lfm(G, b);
3 clusters← clusters ∪ nise(G,α, ε);

/* Repeated clusters are removed from the set */
4 clusters′ ← filtering_step(clusters) ;

/* The clusters′ set is used as input to solve OCM */
5 C ← cplex_solve(model, clusters′, k);

/* LECM methods are used to improve the clustering */
6 improve_clustering(C, β, θ,χ);
7 return C;
8 end

Figure 3.1 - Overall execution of the proposed hybrid heuristic.
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create a cluster by, starting from a random vertex, iteratively inserting adjacent
vertices seeking to maximize the cluster’s LFM fitness value. The fitness value of
a cluster is the ration between its number of internal edges and its degree to the
power of b, where b ∈ [0.5, 2.0] is a parameter to control the clusters size found by
LFM (LANCICHINETTI et al., 2009). The function to compute this value is defined
by Equation (3.2). In this equation, if b is close to 0.5, then LFM identifies large
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clusters since the number of internal edges will be more relevant in the ratio. If b
is close to 2, then LFM finds small clusters since the cluster’s degree will be more
relevant.

fit(C) = |int-edges(C)|
deg(C)b . (3.2)

After each vertex insertion, the algorithm checks if some vertex belonging to the
cluster has a negative fitness value. The fitness of a vertex v in regard to a cluster
C is the difference between the fitness of C with v and the fitness of C without
v (LANCICHINETTI et al., 2009). This value is given by Equation (3.3).

fit(C, v) = fit(C ∪ v)− fit(C \ v). (3.3)

When there is no adjacent vertex to the cluster or all vertices adjacent to it have
negative fitness value, then the insertion procedure stops and the cluster of the
starting vertex is found. These steps are repeated until all vertices are assigned to,
at least, one cluster.

A summarized pseudocode of LFM is shown in Algorithm 3. In the inner most while
loop of Algorithm 3, a cluster is generate starting from a vertex randomly selected,
at line 3, from vertices that were not assigned to any cluster. At each iteration, a
vertex adjacent to the current cluster that has the largest positive fitness is inserted.
If after this insertion the fitness of some of the cluster’s vertices becomes negative,
then it is removed at line 7. When there is no vertex adjacent to the cluster with
positive fitness, this cluster is attached to the final clustering at line 9. The algorithm
stops after all vertices were clusterized. For more details about the LFM algorithm,
please see the work of Lancichinetti et al. (2009).

3.4.2 Neighborhood-Inflated Seed Expansion algorithm

The NISE algorithm is divided in four phases: filtering, seeding, seed expansion and
propagation (WHANG et al., 2016). Firstly, the input graph is filtered in order to
identify the its main region where NISE must focus on. Then, seeds are selected
from this main region and, thereafter, they are expanded considering a personalized
PageRank for compose, each one, a cluster. Remaining vertices that does not belong
to the main region are inserted in one or more clusters in the propagation phase.
Each of these phases are briefly described in the following subsections. Please see
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Algoritmo 3: LFM (LANCICHINETTI et al., 2009).
input : Graph G = (V ,E); fitness cluster size control parameter b.
output: Clustering C.

1 begin
2 while there is a vertex not yet assigned to any cluster do
3 C ← ∅; C ← C ∪ pick_vertex_at_random(V \ C) ;
4 while there is some vertex u ∈ adj(C) with fit(C,u) ≥ 0 do
5 forall u ∈ adj(C) with fit(C,u) ≥ 0 do

/* finds vertex u with the largest fitness computed by
Eq. (3.3). Inserts it into C */

6 end forall
7 while fit(C, v) < 0 for some v ∈ C do C ← C \ v ;
8 end while
9 C ← C ∪ C ;

10 end while
11 return C;
12 end

the work of Whang et al. (2016) for a full description of NISE.

3.4.2.1 Filtering

In the filtering step, the input graph is divided between a region where the method
must be applied to and regions where it must not. For this purpose, NISE seek to
identify the biconnected core and the whiskers of the given graph. A biconnected
core of a graph is its largest connected component where all biconnected compo-
nents with one edge were removed (WHANG et al., 2016). G is a biconnected
graph if it continues connected after removing from it any single vertex and its
adjacency (WHANG et al., 2016). Then, a biconnected component is a maximal in-
duced subgraph that is biconnected, i.e., a biconnected induced subgraph that is not
contained in any other biconnected induced subgraph. Whiskers are maximal sub-
graphs that are connected to the biconnected core only by a bridge edge (WHANG
et al., 2016). Bridges are single-edge biconnected components that are attached to
the biconnected core (WHANG et al., 2016).

The seeding and the seed expansion phases are applied only to the biconnected core.
Then, clusters are detected only considering vertices belonging to this graph com-
ponent. Since whiskers are maximal subgraphs that are attached to the biconnected
core only by one edge, there is no overlap between any of the whiskers (WHANG et
al., 2016). In this way, vertices belonging to whiskers are only clustered in the last
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NISE step.

In order to detect the biconnected core, the recursive Hopcroft and Tarjan (1973)
algorithm is utilized to find all biconnected components of the input graph. Then,
all single-edge biconnected components are removed from it. The original graph
is now partitioned into detached subgraphs. Each of these subgraphs, which are
connected components, are identified by the breath-first-search algorithm and the
largest among them is selected as the biconnected core. The remaing connected
components are whiskers.

3.4.2.2 Seeding by Spread Hubs

Whang et al. (2016) proposed two methods for finding seeds for NISE: Graclus
centers and spread hubs. The former uses the Graclus algorithm (DHILLON et al.,
2007) to produce an initial clustering and then it selects a seed from each cluster.
The latter finds a set of seeds by selecting vertices in decreasing degree order in
which none is adjacent to a previous selected vertex. Since the spread hubs method
is faster than Graclus centers (WHANG et al., 2016), we utilized the version of NISE
with seeding by spread hubs.

The spread hubs method starts by sorting all vertices in decreasing degree order and
marking them as unvisited. Then, the method picks one unvisited vertex of highest
degree, sets it and its adjacency as a seed and marked them as visited. Note that a
seed is composed by an unvisited vertex of highest degree and its adjacency. This
procedure is repeated until ns seeds are selected. If there is a tie in the degree of
unvisited vertices, then an independent set are selected among them to compose,
each one, a seed. An independent set of vertices is a set where there is no adjacency
between any of them.

3.4.2.3 Seed expansion

In this phase, clusters are generated, from each seed selected in the previous step,
by the PageRank-Nibble algorithm (ANDERSEN et al., 2006). This algorithm com-
putes an approximate personalized PageRank (ANDERSEN et al., 2006) vector for
each seed and then performs a sweep over it for finding cluster with small conduc-
tance. A personalized PageRank vector is a stationary probability distribution of
a random walk, over the vertices of a graph, starting from a non-uniform initial
distribution (PAGE et al., 1999; ANDERSEN et al., 2006). In the PageRank-Nibble
algorithm, Andersen et al. (2006) use an approximation, by a factor of ε, of person-
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alized PageRank vectors which they called ε-approximate PageRank. The method
for compute such vectors is depicted by Algorithm 4.

Algorithm 4 starts by initializing the ε-approximate PageRank vector p as 0 for all
vertices of the graph and the residual vector r as 1

|S| for all vertices of the seed
S and 0 for remaining vertices. A vertex with non-zero initial r value is a restart
vertex (WHANG et al., 2016). Using the entire set S as restart vertices instead of
single vertex is called neighborhood inflation and it generates clusters with better
conductance (WHANG et al., 2016). Then, at each step, a vertex v such that r[v] ≥
ε · deg(v) is selected and a fraction of (1 − α) is transferred from its r value to its
p value. The remaining α fraction of r[v] is spread among vertex v adjacency. In
order to maintain for which vertices v ∈ V the inequality r[v] ≥ ε · deg(v) holds,
the method uses a queue that stores vertices without repetition (ANDERSEN et al.,
2006). In this way, whenever the r value of a vertex increases and becomes greater
than ε times its degree, it is then pushed in the queue if it was not previous inserted.
The algorithm stops when the queue is empty, that is, when there is no vertex v ∈ V
that satisfies the inequality r[v] ≥ ε · deg(v).

Algoritmo 4: ε-approximate PageRank (ANDERSEN et al., 2006).
input : biconnected core graph Gbc = (Vbc,Ebc); seed set S; teleport

probability α; accuracy ε.
output: approximate PageRank scores p.

1 begin
2 p← #»0 ;
3 r ← 1

|S| ; // for every v ∈ S, 0 otherwise
4 unique_queue.push(S); // queue without repeated vertices
5 while unique_queue is not empty do
6 v ← unique_queue.pop();
7 foreach v such that {v,u} ∈ Ebc do
8 r[u]← r[u] + α·r[v]

2·deg(v) ;
9 if r[u] ≥ ε · deg(u) then unique_queue.push(u) ;

10 end foreach
11 p[v]← p[v] + (1− α) · r[v]; r[v]← α·r[v]

2 ;
12 if r[v] ≥ ε · deg(v) then unique_queue.push(v) ;
13 end while
14 return p;
15 end

After computing the p vector, a degree-normalized sweep over it is realized to
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generate a cluster (WHANG et al., 2016). This sweep is realized by sorting the
vertices by the decreasing probability-per-degree order, i.e., an ordering such that
p[vi]
deg(vi) ≥

p[vi+1]
deg(vi+1) for i = 1, . . . , |V | (ANDERSEN et al., 2006). A cluster is find by

selecting the first vertices from this sequence that achieves the smaller conductance.

3.4.2.4 Propagation

In the last NISE phase, clusters are found for vertices belonging to the whiskers
identified in the filtering step. Each whisker is attached to the biconnected core by
a bridge edge. One of the vertices of a bridge belongs to the biconnected core and
the other one belongs to the whisker itself. In this way, all vertices of a whisker are
inserted in all clusters that the bridge’s vertex of the biconnected core is contained.
As proved by Whang et al. (2016), this step always decrease the number of external
edges of the clusters.

3.4.3 Mixed integer linear program for overlapping clustering

The MILP for overlapping community detection utilized in our hybrid heuristic is
shown in Equations (3.4a) to (3.4e) (CHAGAS et al., 2019). From an input cluster
set CS = {C1,C2, . . . ,CN}, by solving OCM, an overlapping clustering C ⊆ CS,
where |C| = k and ⋃C∈C C = V is generated. In order to achieve this, OCM considers
the Jaccard coefficient between each pair of clusters to regulate, by the overlapping
control parameter, the overlap between them. This control is necessary because,
depending on the graph context, it may be better to use clusters that share more
vertices or less vertices (CHAGAS et al., 2019). In addition, the OCM’s objective
function seeks to maximize the quality coefficient associated to each selected clus-
ter while minimizing the absolute difference of the Jaccard coefficient between the
selected clusters and the overlapping parameter (CHAGAS et al., 2019). In this
work we utilized the conductance metric as the quality coefficient associated to each
cluster. Furthermore, the cover of every graph vertex is guaranteed in this model.

max
N∑
i=1

(1− Φ(Ci)) · yi − ui (3.4a)

subject to
N∑
j=1

∣∣∣∣J(Ci,Cj)− zi
∣∣∣∣ · (yi + yj − 1) ≤ ui, i = 1, 2, . . . ,N , (3.4b)
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N∑
i=1

yi = k, (3.4c)

N∑
i=1

aji · yi ≥ 1, j = 1, 2, . . . ,n, (3.4d)

yi ∈ {0, 1},ui ∈ R, i = 1, 2, . . . ,N . (3.4e)

As defined by constraint (3.4e), there is two types of variables in OCM, the binary
variables yi and the real variables ui, where i = 1, 2, . . . ,N . Binary variables yi
control which clusters Ci belong, or not, to the final clustering (CHAGAS et al.,
2019). At the objective function (3.4a), a cluster quality coefficient is associated
with each of these variables. Since the objective function is a maximization and the
conductance value is better when it is close to 0, we utilized 1−Φ(Ci) as the quality
coefficient associated to variable yi.

The value of ui variables are defined by the constraint (3.4b). Considering that
a negative coefficient (-1) is attached to each of theses variables at the objective
function, which is a maximization, the values of ui variables must be as small as
possible. Therefore, the objective function is also a max-min function (CHAGAS et
al., 2019). In constraint (3.4b), if yi = 1, i.e., Ci is selected to compose the clustering,
then it must has the minimum absolute difference between its Jaccard coefficient,
related to every other selected cluster, and the overlapping control parameter zi ∈
[0, 1]. If yi = 0, that is, Ci is not selected to compose the clustering, then it must has
the maximum absolute difference between its Jaccard coefficient, related to every
other not selected cluster, and zi. Since the Jaccard coefficient between two clusters
Ci and Cj is close to 1 when both share most of their vertices and near to 0 when
they share almost none, it is necessary to adapt the zi value to each these scenarios.
In this work, we defined the values of each zi by Equation (3.5). The aim is to use
a large zi value if cluster Ci has a large number of external edges in comparison
to the total number of edges. This is because, if Ci has a big number of external
edges, then it is expected that it overlaps with other clusters. Therefore, it is better
to select clusters that shares vertices with Ci. On the other hand, if Ci has few
external edges, then it is expected that it shares less vertices with other clusters.

zi = cut(Ci)
|E|

. (3.5)

Constraint (3.4c) guarantees that the final clustering is composed by k clusters. At
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constraint (3.4d), it is ensured that each vertex j ∈ V is covered by at least one
cluster Ci by checking whether the sum of the elements of each row of the matrix of
belonging A = (aji) is greater than one. In the matrix A, if the vertex j belongs to
Ci, then aji = 1 and aji = 0 otherwise (CHAGAS et al., 2019).

3.4.4 Cluster refinement methods

Likewise NISE, LECM algorithm is based on the “seed-and-grow” strategy which is
divided into three steps. The first two steps are quite similar to the NISE seeding
and seed expansion phases. Indeed, LECM also uses the PageRank-Nibble algorithm
for generate a cluster from a seed. In the third step, LECM then tries to minimize
the conductance of the clusters found by this algorithm by applying three cluster
refinement methods. In the first cluster refinement method, it is verified if the con-
ductance of each cluster found in the previous step can be decreased by inserting
or removing vertices. Similar clusters are merged in the second method if the con-
ductance is improved. The third method tries to find clusters for vertices not yet
assigned to any cluster. Each of these methods is described in the following subsec-
tions. For more details about them, see the work of (GAO et al., 2016; GAO et al.,
2019a; GAO et al., 2019b).

3.4.4.1 Vertices movement

The vertices movement method was proposed by Gao et al. (2016) seeking improve
the conductance of all clusters of a clustering through the insertion and removal of
vertices. For each vertex contained in a cluster C it is verified whether the remotion
of it reduces the conductance of C. In addition, for each vertex adjacent to C it
is also verified whether the insertion of it reduces the conductance of C. When an
improve of the conductance is detected then the vertex is inserted/removed.

Instead of computing Φ(C) after each vertex v insertion/removal, which requires
an algorithm of O(deg(C)) time cost per operation, Gao et al. (2016) proposed
two functions that calculate the conductance decrease in O(deg(v)) time. These
two functions are presented in Equations (3.6) and (3.7), where the Equation (3.6)
computes the decrease of Φ(C) after insertion of v and Equation (3.7) computes the
decrease of Φ(C) after removal of v.

Φi(C, v) =
cut(C)

cut(C)+|int-edges(C)| · deg(v)− deg(v) + 2l(C, v)
cut(C) + deg(v) + |int-edges(C)| . (3.6)
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Φr(C, v) =
deg(v)− 2l(C, v)− cut(C)+2l(C,v)−deg(v)

cut(C)+|int-edges(C)|−deg(v) · deg(v)
cut(C) + |int-edges(C)| . (3.7)

Gao et al. (2016) proved that Φi(C, v) = Φ(C)− Φ(C ∪ v) and Φr(C, v) = Φ(C)−
Φ(C \ v). If the value of both Equations (3.6) and (3.7) are positive, then it denotes
that the insertion of v, in Equation (3.6), and the removal of v, in Equation (3.7),
decreased the conductance of the cluster.

A pseudocode of the vertex movement method is presented in Algorithm (5). The
algorithm looks for a conductance decrease in every cluster C ∈ C. In the first
foreach inner loop, it is verified whether the removal of each v ∈ C reduces Φ(C).
If a conductance decreased is found after removing v, then it is selected as a “move-
out” vertex. In the second foreach inner loop, it is verified whether the insertion
of each v ∈ adj(C), that is not a “move-out” vertex, reduces Φ(C). If a conduc-
tance decreased is found after inserting v, then it is selected as a “move-in” vertex.
Thereafter, all “move-out” vertices are removed from C and all “move-in” vertices
are inserted in C.

Algoritmo 5: Vertex movement method (GAO et al., 2016).
input : Graph G = (V ,E); Clustering C = {C1,C2, . . . ,CN}.
output: Improved clustering C ′.

1 begin
2 foreach Ci ∈ C do
3 foreach v ∈ Ci do
4 if Φr(Ci, v) > 0 then move_out.insert(v) ;
5 end foreach
6 foreach v ∈ adj(Ci) do
7 if Φi(Ci, v) > 0 then move_in.insert(v) ;
8 end foreach
9 foreach v ∈ move_out do Ci ← Ci \ v;

10 foreach v ∈ move_in do Ci ← Ci ∪ v;
11 end foreach
12 return C ′;
13 end
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3.4.4.2 Merging clusters

In this method, two similar clusters are combined if the conductance of the combined
cluster is better than the original ones. In order to identify if two clusters Ci and Cj
need to be merged, Gao et al. (2019b) utilized the combining function cf(Ci,Cj),
which is defined by Equation (3.8).

cf(Ci,Cj) = θ · J(Ci,Cj) + (1− θ) · Φ(Ci) + Φ(Cj)
2 · Φ(Ci ∪ Cj) + Φ(Ci) + Φ(Cj)

. (3.8)

The first part of the Equation (3.8) measures how similar the two clusters are by
using the Jaccard coefficient whereas the second part of it measures the conductance
improvement after the merging. Gao et al. (2019b) used a parameter θ to control
which part of Equation (3.8) should be more relevant.

A pseudocode of the merging clusters method is presented in Algorithm 6. This
algorithm iterates over all clusters Ci ∈ C looking for clusters to be combined. At
each iteration, it is checked if the combining function between Ci and one of its
overlapping clusters is greater than or equal to the merging coefficient β. Gao et
al. (2019b) proved that the conductance of a combined cluster usually decreases if
β > 0.75 and θ = 0.5. When two clusters Ci and Cj are merged, all vertices of Cj are
inserted into Ci and Cj is removed from C. Then, the foreach inner loop restarts
from the updated list of overlapping clusters of the new Ci.

Algoritmo 6: Merging clusters (GAO et al., 2019b).
input : Clustering C = {C1,C2, . . . ,CN}; merging coefficient β.
output: Improved clustering C ′.

1 begin
2 foreach Ci ∈ C do
3 foreach Cj ∈ C that overlaps with Ci do
4 if cf(Ci,Cj) ≥ β then
5 Ci ← Ci ∪ Cj; C ← C \ Cj;
6 end if
7 end foreach
8 end foreach
9 return C ′;

10 end
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3.4.4.3 Finding clusters for outliers

Although the cover of each vertex is guaranteed in OCM, some vertices may be
unclustered after the vertex movement method. Then, we also utilized the method
of Gao et al. (2019b) for find clusters for vertices not contained in any cluster. This
method, which is shown in Algorithm (7), uses a set of inequalities to assign an
unclustered vertex to a cluster seeking not increasing its conductance. If inequal-
ities of lines 4 or 8 holds, then the unclustered vertex v is inserted in a cluster
of adj-cluster(v), where adj-cluster(v) is the set of all clusters that the adjacent
vertices of v belong to. For more details about this method, please see Gao et al.
(2019b).

Algoritmo 7: Finding clusters for outliers (GAO et al., 2019b).
input : Vertices not assigned to any cluster; clustering C = {C1,C2, . . . ,CN};

conductance control paramenter χ.
output: Modified clustering C ′.

1 begin
2 foreach unclustered vertex v do
3 foreach Ci ∈ adj-cluster(v) do
4 if 1−

(
2 · l(Ci,v)

deg(v)

)
< deg(Ci)−|int-edges(Ci)|

deg(Ci) then Ci ← Ci ∪ v ;
5 end foreach
6 end foreach
7 foreach still unclustered vertex v do
8 if max

Ci⊂adj-cluster(v)
l(Ci,v)
deg(v) > χ then

9 Ci ← arg max
C|C⊂adj-cluster(v)

l(Ci,v)
deg(v) ;

10 Ci ← Ci ∪ v;
11 end if
12 end foreach
13 return C ′;
14 end

3.5 Experimental results and analysis

In this section results of the hybrid heuristic tests are presented and it is divided
as follows. The setup used for tests and implementation details are described in
Subsection 3.5.1. We detail the graph instances and metrics used to evaluate our
approach in Subsections 3.5.2 and 3.5.3, respectively. Results of our approach in arti-
ficial graphs instances and real-world graph instances are present in Subsection 3.5.4

54



and in Subsection 3.5.5, respectively.

3.5.1 Setup and implementation details

All implementations were written in C++ language and compiled with g++ compiler
version 7.4 using -O3 flag. For the resolution of models we used the IBM® ILOG®

CPLEX® 12.9 (IBM Corporation, 2019). All the computational tests were executed
on a computer with Intel® Xeon® E5-2687W v2 CPU 3.40GHz × 8 processor with
25MiB cache memory and 62GiB of RAM. The operating system installed on this
machine is Ubuntu 18.04.3 64 bits with kernel 5.0.0-23-generic. In addition, in all
CPLEX (IBM Corporation, 2019) executions were limited to 3 hours.

As suggested by Lancichinetti et al. (2009), several overlapping clustering can be
generated by running the LFM with different b values in parallel. We then ran the
LFM in parallel with 16 different b values ranging between 0.55 and 1.0 seeking to
increase the diversity of clusters set. We utilized 16 different values of b because
this was the number of cores in the computer that we used for the tests. The range
of [0.55, 1.0], for the b parameter values, was empirically defined following (LANCI-
CHINETTI et al., 2009). Then, in each instance, the LFM result presented is related
to the execution that achieved the best results. We utilized LFMbest to represent it.

Table 3.1 presents the parameters values of each method that we utilized for the
tests. The values of the NISE parameters and of the LECM methods parameters
were used following the values established by the authors’ of each method (WHANG
et al., 2016; GAO et al., 2019b). The number of seeds (ns) of the NISE algorithm
and the number of clusters (k) of OCM model were defined for each instance.

Table 3.1 - Parameters values of each method utilized in this work. For LECM and NISE
algorithms, we utilized the values established in their papers (WHANG et al.,
2016; GAO et al., 2019b).

LECM LFM NISE
Parameter α β ε θ χ b ns α ε
Value 0.99 0.8 10−4 0.5 0.5 [0.55, 1.0] - 0.99 10−4

In addition, seeking evaluate each step of our hybrid heuristic, we utilized three
versions of it in the tests performed in this work. The first hybrid heuristic version
(HH-CR) is the complete version, that is, the method compose by LFM and NISE
algorithms, the OCM and the clusters refinement local search (CR) methods. The
second hybrid heuristic version (HH) is the basic version, i.e, the hybrid heuristic
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without the clusters refinement local search methods (CR). We used the HH for
analyse the influence of the CR methods on the results of our hybrid heuristic. The
third version (HH-CRLFM) is the complete version but without the NISE algorithm.
The aim with this version was to analyse the difference on the hybrid heuristic results
of using only LFM for generate the clusters set. A version of our method using only
NISE was not possible, since the NISE algorithm do not always guarantees that
every vertex is cover and we need this property for the feasibility of the OCM.

3.5.2 Instances

We utilized two types of graphs instances for evaluating our hybrid heuristic: LF
benchmark graphs and real-world graphs. Following Gao et al. (2019b), we gener-
ated a set of 24 LF benchmark graphs of 10,000 vertices each and with ground
truth overlapping clustering solutions. These instances were generated by the Lan-
cichinetti and Fortunato (2009a) (LF) algorithm and were divided into four groups
of six graphs according to the theirs generation parameters. The values of each LF
parameter for generate each group of instances are shown in Table 3.2. These values
are the same utilized by Gao et al. (2019a).

Table 3.2 - Parameters values of the LF algorithm (LANCICHINETTI; FORTUNATO,
2009a) used to generate each set of LF benckmark graphs. Each set LF1, LF2,
LF3 and LF4 is composed by six graphs.

LF algorithm parameter
Set n kmax k Cmax Cmin On Om µ
LF1

10000 50 15 50 10 [0,5000]
2 0.1

LF2 0.3
LF3 4 0.1
LF4 0.3

In Table 3.2, kmax is the maximum degree value of a vertex and k is the average
degree of the vertices of the input graph. Parameters Cmax and Cmin are, respectively,
the upper and lower bound of the number of vertices in a cluster. On is the number
of vertices that belong to more than one cluster. Om is the maximum number of
clusters that a vertex can be contained in and µ is the LF mixing parameter. This
parameter controls the fraction of edges connecting vertices that do not belong to
the same cluster.

We utilized four real-world graphs in the tests carried out in this work, in which
three of these graphs are widely known instances from the Stanford Large Net-
work Dataset Collection (LESKOVEC; KREVL, 2014), namely AstroPh, HepPh
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and CondMat. These instances are from collaboration networks, i.e., from graphs
produced from networks of co-authored papers. In addition, we used an instance ex-
tracted from the Lattes Platform (<http://lattes.cnpq.br/>), a data base of Brazil-
ian researchers’ curricula, which can be found at <http://www.lac.inpe.br/~rafael.
santos/Data/lattes_collab_graph.txt>. This graph is also a collaboration network,
since it represents co-authored works between researchers. The number of vertices
and edges of each of theses instances and presented in Table 3.4.

3.5.3 Metrics

Following Whang et al. (2016), we evaluated the maximum conductance of the
clustering generated by each method by computing the area under the curve of the
maximum conductance-vs-coverage plot. Given an overlapping clustering, this metric
is computed by first sorting the clusters of the solution in increasing conductance
value order. In the sequence, clusters are selected from this order until a minimum
percentage of the vertices are covered (WHANG et al., 2016). A plot using x-axis as
the vertices coverage and y-axis as the maximum conductance value of the selected
clusters is generated. Then, the area under this plot is calculated. In this work, we
utilized all vertices of the graph as the minimum covering. We refer to this score as
auc-cond. In addition, we also computed the average conductance of each clustering,
which is represented by avg-cond.

In order to compare the solution of each method to ground-truth overlapping
clusterings, we utilized the Generalized Normalized Mutual Information (GNMI)
measure (LANCICHINETTI; FORTUNATO, 2009a). In particular, we adopted
the modified version of the GNMI proposed by Esquivel and Rosvall (2012),
which an implementation can be found in <https://github.com/eXascaleInfolab/
GenConvNMI>. In addition, we also utilized the average F1 metric for evaluate
clustering of instances with ground-truth solutions. Let S be a ground-truth over-
lapping clustering and C be an overlapping clustering generated by an algorithm.
The average F1 score is defined by Equation (3.9) (GAO et al., 2019b; YANG;
LESKOVEC, 2013).

F1avg(S, C) = 1
2 ·
( 1
|C|
·
∑
Si∈S

F1(Si,Cj∗) + 1
|C|

∑
Cj∈C

F1(Si∗ ,Cj),
)

(3.9)

where i∗ = arg maxi F1(Si,Cj) and j∗ = arg maxj F1(Si,Cj) (WHANG et al., 2016).
The F1 measure given by Equation (3.10).
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F1(Si,Cj) = 2 · precision(Si,Cj) · recall(Si,Cj)
precision(Si,Cj) + recall(Si,Cj)

. (3.10)

Equation (3.10) is the harmonic mean between precision and recall scores. These
metrics are defined by Equations (3.11) and (3.12), respectively.

precision(Si,Cj) = |Si ∩ Cj|
|Si|

. (3.11)

recall(Si,Cj) = |Si ∩ Cj|
|Cj|

. (3.12)

3.5.4 Tests in artificial graphs

In this subsection, we present results of tests carried out using the 24 LF benchmark
graphs. As described in Subsection 3.5.2, these instances were divided into four
sets LF1, LF2, LF3 and LF4 of six instances each. Since there is a ground-truth
overlapping clustering for each of these graphs, we presented the GNMI and the
F1avg results of each method in addition to the conductance metrics. Table 3.3 shows
the number of best metrics results in each set of LF benckmark graphs obtained by
each method. For the LFM algorithm, it is presented the LFM version that achieved
the best value of the GNMI (LFMbest) in each instance. The detailed results of each
method in each instance are presented in Appendix B. In this table, the average
size of the OCM’s input clusters set (Navg) utilized in each set of instances is also
presented. In addition, for all tests realized with LF benchmark graphs utilized
OCM’s number of clusters k = 600 and NISE’s number of seeds ns = 600.

As presented in Table 3.3, the HH-CR achieved the overall absolute number of best
results considering all metrics. Considering all versions of our hybrid heuristic, they
obtained 13 of 24 bests results of auc-cond metric; 23 of 24 bests results of avg-cond
metric; 9 of 24 bests results of GNMI metric; and 15 of 24 bests results of F1avg
metric. From these results, only on GNMI metric the largest number of best values
were not obtained by one of our methods. The LFM algorithm, which results are
the best among its 16 executions, obtained the best value of the GNMI in 17 of 24
instances. Considering the auc-cond measure, the greatest number of best values was
achieved by LECM. However, when considering just the results of HH-CR among the
hybrid heuristic versions, as one can see in Appendix B, it obtained best auc-cond
results in 13 instances against 12 bests results of LECM. Furthermore, the HH-CR
obtained the best average conductance in 22 of the 24 graphs. The greatest number
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Table 3.3 - Summary results of each algorithm in each set of LF benchmark graphs. The
number of best metrics’ values is presented for each set.

Number of best metric values
Set Navg Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

LF1 2500

auc-cond 5 0 0 0 1 0
avg-cond 0 0 0 0 6 0
GNMI 0 5 0 0 0 1
F1avg 0 0 0 0 0 6

LF2 4629

auc-cond 2 0 0 0 2 3
avg-cond 0 0 0 0 6 0
GNMI 0 4 0 0 1 2
F1avg 0 3 0 0 1 4

LF3 5532

auc-cond 1 0 0 1 3 3
avg-cond 1 0 0 0 4 1
GNMI 0 4 0 0 0 2
F1avg 0 5 0 0 0 1

LF4 7468

auc-cond 4 1 1 1 3 2
avg-cond 0 0 0 0 6 0
GNMI 0 4 0 0 1 2
F1avg 0 3 0 1 1 2

All 5032

auc-cond 12 1 1 2 9 8
avg-cond 1 0 0 0 22 1
GNMI 0 17 0 0 2 7
F1avg 0 11 0 1 2 13

Total - - 13 29 1 3 35 29

of best F1avg score was achieved by HH-CRLFM .

From results shown in Table 3.3, it can be noted that is better to use the cluster re-
finement local search methods, since the HH-CR achieved better results than HH. In
addition, considering conductance metrics, the HH-CR also obtained a greater num-
ber of bests results in comparison with HH-CRLFM results, even tough HH-CRLFM

achieved better results in the GNMI and F1avg measures. This hybrid heuristic
version achieved better results in supervised metrics because it uses only LFM al-
gorithm to produce the input clusters set for the OCM and LFM obtained better
results retrieving ground-truth solutions. Then, a clusters set with clusters more
similar to the ground-truth is produced. However, as the focus of this work is the
conductance minimization, the hybrid heuristic version with NISE and LFM is more
suitable since it achieved the bests results related to conductance and reasonable
GNMI and F1avg results.

3.5.5 Tests in real-world graphs

In this subsection, results of the tests performed in four real-world instances are
presented. Since these instances do not have ground-truth overlapping clustering,
only the results regarding the conductance measure is shown. We used the following
values for the OCM’s number of clusters and NISE’s number of seeds: k = 200 and
ns = 200 (HepPh), k = 300 and ns = 250 (LattesCollab), k = 300 and ns = 250
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(AstroPh) and k = 300 and ns = 250 (CondMat). For instances of the Staford
Collection (LESKOVEC; KREVL, 2014), the number of seeds of NISE that we used
was the same utilized by its authors. All the OCM’s number of clusters and the
NISE’s number of seeds in the LattesCollab instance were empirically defined.

Table 3.4 presents the values of auc-cond and avg-cond obtained by each method
in each instance. The value of both metrics are better when is close to one. For the
LFM algorithm, it is presented the LFM version that achieved the best value of the
auc-cond (LFMbest) in each instance. In addition, the number of vertices (n) and
edges (m) of each graph and the size of the OCM’s clusters set (N) are also shown
in Table 3.4.

Table 3.4 - Metrics results of each method in real-world graphs.

Metrics values
Instance n m N Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

HepPh 11,204 117,619 5392 auc-cond 0.180 0.063 0.105 0.065 0.060 0.059
avg-cond 0.319 0.136 0.329 0.109 0.107 0.121

LattesCollab 13,121 23866 13069 auc-cond 0.088 0.069 0.066 0.054 0.050 0.056
avg-cond 0.153 0.885 0.143 0.072 0.074 0.074

AstroPh 17,903 196,972 6505 auc-cond 0.349 0.102 0.168 0.100 0.080 0.081
avg-cond 0.439 0.218 0.379 0.150 0.143 0.154

CondMat 21,363 91,286 12417 auc-cond 0.232 0.120 0.112 0.118 0.093 0.094
avg-cond 0.307 0.177 0.296 0.119 0.118 0.120

Best values - - - - 0 0 0 1 6 1

It can be observed, in Table 3.4, that the greatest number of best results, in terms
of low auc-cond and low avg-cond, were obtained by HH-CR. Indeed, all best results
were achieved by our hybrid heuristic versions. Only the best value of auc-cond, in
the instance HepPh, and the best value of avg-cond, in the instance LattesCollab,
were not obtained by HH-CR. These results corroborate the results presented in
Subsection 3.5.4.

The computational time, in seconds, of each method related to the HH-CR in the
four real world instances are shown in Table 3.5. Since we executed 16 versions of the
LFM in parallel, the LFM time shown in Table 3.5 is related to the LFM execution
that taken longer to finish (LFMmax). This is because the execution of the NISE
only starts after all LFM executions finish. In addition, in this table it is presented
the computational cost of each HH-CR step and the total execution time, which is
the sum of each HH-CR phase.

As one can see, the high computational time of the HH-CR, in three of the four
instances, is due to the LFM execution, since the others HH-CR phases presented
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Table 3.5 - Computational time, in seconds, of our hybrid heuristic. It is shown the exe-
cution time for each step of the HH-CR and its total computational time it is
presented at column “total".

Computational time (s)
HH_CR

Instance LFM_max NISE LFM_max + NISE OCM CR Total
HepPh 283.57 7.12 290.69 5.44 0.91 297.04
LattesCollab 12.41 1.53 13.94 40.17 0.09 54.20
AstroPh 931.97 11.56 943.53 9.57 3.16 956.26
CondMat 494.63 8.55 503.18 35.5 1.06 539.74

low execution time. In addition, it is worthily to highlight the low computational
cost for solve the OCM, which was already pointed in Chagas et al. (2019).

3.6 Conclusions and future directions

In this work, we proposed the HH-CR, a hybrid heuristic for the overlapping com-
munity detection by the conductance minimization. This method is composed by
coupling two well-known community detection algorithms namely, NISE and LFM
to a mixed-integer linear program (OCM). Furthermore, local search methods for
conductance minimization were utilized to improve the solution generated by our
hybrid heuristic. We also evaluate two other versions of our proposed method: a
version where the local search methods were not applied, and another version where
only the LFM algorithm was utilized for generating the input clusters’ set.

With the experimental tests carried out in this work in synthetic and real-world
graphs, we showed that the complete version of the hybrid heuristic obtained the
best results among the other versions. In addition, these tests show that our method
can produce overlapping clustering with better overall conductance than NISE and
LECM, two state-of-the-art overlapping community detection algorithms.

For future work, we could implement a faster algorithm instead of using the LFM,
which was the main reason for the high computational cost of the HH-CR. However,
it is necessary to use a algorithm that has some key features of the LFM that were
essential for the results of our method: starting a cluster from random vertex, ensure
that each vertex is inserted into a cluster and controlling the size of the clusters by
an input parameter. In addition, we will propose a modification of the OCM to
handle larger instances.
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4 A BRANCH AND PRICE METHOD FOR THE p-MEDIAN PROB-
LEM WITH OVERLAP CONTROL

This chapter is organized as follows. An introduction is presented in Section 4.1.
Some relevant related works are presented in Section 4.2. In Section 4.3, the mathe-
matical formulations of the p-median problem with overlap control are shown. The
algorithms we propose to solve one of these formulations are detailed in Section 4.4.
Section 4.5 presents the results of our computational experiments. Our concluding
remarks and considerations on future work are presented in Section 4.6.

4.1 Introduction

Facility location problems aim to locate a number of facilities from m potential
locations known a priori in order to fulfill the demands of n clients at a minimum
cost. In the graph theory context, both potential locations and clients are vertices
of an input graph. In this sense, clients vertices assigned to a facility vertex consist
of a subset of vertices allocated to a facility. In this work, we refer to such subsets as
clusters centered around the facility. Then, location problems can be described as
the problem of partitioning the vertices of a graph into a given number of clusters,
where the partition cost is minimized. In addition, if vertices can be allocated to
more than one facility, we can also consider these problems as covering problems
with a cardinality constraint.

Among these problems, the p-median problem (PMP), first introduced by Hakimi
(1964), is the problem of selecting p distinct vertices, also known as medians, mini-
mizing the sum of the distances from each vertex to its closest median. This mini-
mization version of the PMP is a well known NP-hard problem (KARIV; HAKIMI,
1979).

While in the p-median problem each node is assigned to exactly one facility on the
basis of a weight function between the demand vertex and the facility vertex, in
some applications it is desirable that vertices be assigned to more than one facility
at a time, effectively covering the vertex more than once. This overlap is useful, for
example, to backup coverage, where the service provided by facilities are critical and
may become unavailable due to unpredictable reasons such as weather and electricity
problems (PANTELI et al., 2019). In addition, the number of demand vertices can
also increase in certain regions and instead of opening new facility locations, one
can use a close by facility, not necessarily the closest one, to satisfy the demand of
the new clients (ARAÚJO et al., 2020). For instance, in the COVID-19 pandemic
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context, where hospitals located in highly dense urban areas can handle the demand
of a regular day, but are now facing overwhelming demand (MILLER et al., 2020). An
alternative would be assign the excess demand to a temporary healthcare structure
or even to a backup hospital (ARAÚJO et al., 2020). On the other hand, a hospital
located in a less populated region might not be dealing with a burden on its system
(MILLER et al., 2020). Therefore, in order the reduce operational costs, not every
area should be served by an additional temporary facility or an extra hospital.

Other examples arise in computer networks, where some critical systems must have
higher redundancy that others, or more generally to any context in which some
entities being served are more important than others (WANG et al., 2009). From
the provider’s perspective, such as in the hospital example, facilities more prone to
failure may be elected to require extra coverage for its users. It then becomes useful
to assign a client to more than one facility at a time and also be able to adapt
covering strategies.

To this end, we introduce the p-median problem with overlap control (PMPOC)
which is similar to the PMP but imposes that (some) vertices may be assigned to
more than one median. Furthermore, the number of vertices shared between medians
can be controlled by simple parameters determining for example how many vertices
can be shared by a facility and the degree of multiple coverage of a client. Different
overlapping statistics exist, and a widely used one is the Jaccard similarity coefficient
(JACCARD, 1912), which measures the similarity of two sets: if they are identical,
the coefficient equals one and if they do not overlap at all, the coefficient equals
zero.

To solve the PMPOC, we first propose a non-linear mixed-integer programming
model for it. The non-linearity stems from the Jaccard coefficient, that requires
computing intersections and unions of the clusters, modeled explicitly. An implicit
cluster formulation requires enumerating the clusters and their similarities a priori.
To solve such a model, we derive a column generation (CG) algorithm that iteratively
generates new clusters and computes the similarity coefficients with all other known
clusters. The CG is applied at each node of a search tree, which is explored in parallel
by a branch-and-price (B&P) algorithm.

4.2 Related work

Although the literature of the PMP is vast (BARBAROS et al., 1983; DASKIN;
MAASS, 2015; MARÍN; PELEGRÍN, 2019; MLADENOVIĆ et al., 2007; REESE,
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2006), to the best of our knowledge, there are few works concerning the PMP where
vertices can be assigned to more than one median. One of these studies is the work
of Wang et al. (2009), who introduced the backup 2-center problem and the backup
2-median problem. These authors were motivated by a problem where they had to
locate two servers, which may fail, in a tree network. Then, every vertex is assigned
to two servers simultaneously. When one of them fails, the other server fulfills all
vertices’ demands. Wang et al. (2009) proposed a linear algorithm for the backup
2-center problem and a log-linear algorithm for the backup 2-median problem.

Another example is the study of Karatas et al. (2016), where the authors compared
the coverage location problem (CLP) and the PMP with the requirement that each
vertex must be served by q medians. Note that, when q = 1, the PMP is defined. In
the CLP, one seeks to locate facilities covering all demand vertices minimizing some
criteria, such as the number of facilities. These authors evaluated the mathematical
formulations of both problems considering five different decision criteria. Panteli
et al. (2019) also studied the PMP with multiple coverage, which they called as
multiple assignment p-median problem (MPMP). As Karatas et al. (2016), they
also used a parameter to define the number of medians that each vertex must be
assigned to. Panteli et al. (2019) proposed a biclustering heuristic to solve the MPMP
and compared it with the solutions from a commercial solver. Although the heuristic
did not obtained optimal solutions in the tested instances, it was able to generated
MPMP solutions at a low computational cost.

A recent constraint that allows managing the overlap between clusters was presented
by Chagas et al. (2019), where the amount of overlap is controlled by a user-defined
parameter. This constraint was proposed in the context of the overlapping cluster
editing problem, where the objective is to minimize the number of edges’ addition
and deletion in order to partition the vertices of the input graph into maximal cliques
that may overlap. The overlap control constraint was also successfully applied to
the CLP by Araújo et al. (2020). The authors used this constraint to handle the
overlapping between the facilities’ coverage. These authors called this problem as
the coverage location problem with overlap control.

CG algorithms were already successfully applied to p-median problems. For exam-
ple, Lorena and Senne (2004) proposed a CG method for the capacitated p-median
problem (CPMP) and applied it to some real-world instances. The CPMP, is a PMP
where each vertex has a demand and each median has a capacity, which must not be
exceeded. The authors used a pricing sub-problem with Lagrangean relaxation that
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increased the CG convergence. Another example is the work of Garía et al. (2011),
who introduced a column-and-row generation algorithm using a branch-and-bound
approach for the PMP.

The first two B&P algorithms proposed in the p-median context, that we are aware
of, are the works of Ceselli and Righini (2005) and Senne et al. (2005). In the first
paper, the authors developed a B&P method for the CPMP. Ceselli and Righini
(2005) utilized two different branching rules and tested the algorithm against other
methods from the literature and a general purpose solver. The proposed algorithm
obtained the best results on medium and large size instances. Senne et al. (2005)
introduced a B&P algorithm for the PMP using Lagrangean relaxation in the pricing
sub-problem. They utilized the partitioning with identical subsets method (RYAN;
FOSTER, 1981) as the branching rule. This method is used in this work and is
detailed in Section 4.4.2.1. Senne et al. (2005) showed that the proposed B&P can
solve small and medium sizes instances of the PMP at a small computational cost.

Another relevant algorithm is the branch-and-cut-and-price method for the PMP
developed by Avella et al. (2007). The authors also obtained good quality PMP
solutions at a low execution time. In addition, an example of the B&P applied
to other PMP variant is the study of Güden and Haldun (2019). These authors
proposed a B&P algorithm for the dynamic PMP, where the facilities locations can
change over time.

4.3 Formal problem description and mathematical formulation

Let G = (V ,E) be an undirected, weighted and connected graph, where V is a set
of n vertices, E is the set of m edges, and to each edge (i, j) ∈ E is associated a
weight dij ∈ R. In the facility location context, dij is the distance between vertices
i and j, which is often the euclidean distance. Then, D = (dij) is an n× n distance
matrix of non-negative real values. In addition, a subset C ⊆ V is called a cluster.
The PMP requires that exactly p facilities be selected among the vertices of V , and
that all other vertices are assigned to the closest facility. It is implicitly assumed
that a facility vertex is assigned to itself.

The PMP can be formulated as the integer linear program (PMP-ILP) (REVELLE;
SWAIN, 1970), presented by (4.1a)–(4.1e).
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min
n∑
i=1

n∑
j=1

dijxij (4.1a)

subject to
n∑
j=1

xij = 1, i = 1, . . . ,n, (4.1b)

n∑
j=1

xjj = p, (4.1c)

xij − xii ≤ 0, i, j = 1, . . . ,n, (4.1d)
xij ∈ {0, 1}, i, j = 1, . . . ,n, (4.1e)

where the decision variables xij, known as allocation variables, are defined by

xij =
{

1, if vertex i ∈ V is assigned to facility vertex j ∈ V ,
0, otherwise.

In the PMP-ILP, the objective function (4.1a) minimizes the assignment distances.
Equations (4.1b) are the single assignment constraints and define that each vertex i
is allocated to only one facility. Note that even if an inequality (greater than or equal
to) is used, the objective function cannot improve by allowing double assignments.
Constraint (4.1c) ensures that p vertices are selected as facilities. Constraints (4.1d)
impose that a vertex i can only be assigned to an open facility j, i.e., only if xjj = 1.
Decision variables xij are defined as binaries by constraints (4.1e).

The PMP can also be considered as the problem of partitioning set V into p disjoint
clusters of minimum cost, where the cost ci of a cluster Ci, i = 1, . . . , p, is computed
by Equation (4.2). In addition, the median is the vertex j ∈ Ci which achieved the
minimum cost ci.

ci = min
j∈Ci

∑
k∈Ci

dkj

 . (4.2)

Given N clusters, the amount of overlap between each cluster and the remaining
N−1 clusters can be determined by an overlap control constraint (OCC) (CHAGAS
et al., 2019) using a similarity measure and a user-defined overlap control parameter
z ∈ [0, 1]. The overlap control aims to select clusters whose similarity measure
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between them is as close as possible to z. Then, the overlap decreases when z is
closer to zero and it increases when z is closer to one. In order to achieve this,
Chagas et al. (2019) added N variables ui ∈ R, −N − 1 ≤ ui ≤ N + 1, to the
objective function whose values are defined by inequality 4.3.

N∑
j=1
j 6=i

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (yi + yj − 1) ≤ ui, i = 1, . . . ,n, (4.3)

where variables yi, i = 1, . . . ,N , are binary variables with values defined as

yi =
{

1, if cluster i is selected to compose the final clustering,
0, otherwise,

(4.4)

and J(Ci,Cj) is the Jaccard coefficient (JACCARD, 1912) between clusters Ci and
Cj. This similarity measure is defined in Equation (4.5).

J(Ci,Cj) = |Ci ∩ Cj|
|Ci ∪ Cj|

. (4.5)

As the OCEP is a minimization problem, variables ui penalize the solution with the
value computed by its related constraint, which is the absolute difference between
the similarity measure and z. However, in the context of the PMP it is necessary
to ensure uniformity in the service level provided to each client, even if they can
still have a different number of assignments. Then, instead of using N OCCs, one
for each cluster, we use only one OCC which is the same for all clusters. In this
way, the amount of overlap between every pair of clusters is controlled uniformly. In
addition, since two variables, yi and ui, exist for every cluster i, two new columns
are added to the problem whenever a new cluster is generated. In addition, the
number of rows of the problem is also increased through the column generation
process, as an overlapping control constraint is defined for every cluster. In this way,
the problem becomes larger and, therefore, harder to solve. In order to overcome
this issue, we modified the original OCC and defined just one overlapping control
constraint instead of N . The modified OCC is defined by Equation (4.6).

N∑
i=1

N∑
j=1
j 6=i

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (yi + yj − 1) ≤ u, (4.6)

If both clusters Ci and Cj are selected (yi = 1 and yj = 1), then J(Ci,Cj) should be
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as close as possible to z in order to minimize the penalty in the objective function.
In case only one of them is selected, the penalty is zero. If neither Ci nor Cj are
selected (yi = 0 and yj = 0), the value of J(Ci,Cj) should be as different as possible
from z in order to yield the minimum penalty in the objective function.

In order to adapt the OCC to the PMP context to model the PMPOC, it is also
necessary to define the Jaccard coefficient in terms of the decision variables xij.
For this, consider the cardinality of the intersection and the union sets given by
Equations (4.7) and (4.8), respectively. The Jaccard coefficient is thus defined as
the ratio between the values of these both equations.

| ∩ij | =
n∑
k=1

xkixkj (4.7)

| ∪ij | =
(

n∑
k=1

xki + xkj

)
− | ∩ij |. (4.8)

Then, the OCC can be added to the model presented in Equations (4.1a)–(4.1e),
yielding the PMPOC. The PMPOC can be cast as the following mixed-integer non-
linear program.

min
n∑
i=1

n∑
j=1

dijxij + u (4.9a)

subject to
n∑
j=1

xij ≥ 1, i = 1, . . . ,n, (4.9b)

n∑
i=1

xii = p, (4.9c)

xij − xii ≤ 0, i, j = 1, . . . ,n, (4.9d)
n∑
i=1

n∑
j=1
j 6=i

∣∣∣∣∣∣ | ∩ij || ∪ij |
− z

∣∣∣∣∣∣ · (xii + xjj − 1) ≤ u, (4.9e)

xij ∈ {0, 1},u ∈ R, i, j = 1, . . . ,n. (4.9f)

This formulation differs from that of the PMP-ILP as variable u was added to the
objective function (4.1a). In addition, constraints (4.1b) were updated to (4.9b) to
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allow multiple assignments (cover constraint).

Note, however, that constraints (4.9e) are non-linear, therefore this formulation
cannot be solved by the Dantzig’s simplex algorithm. An alternative is to first
to formulate the PMP-ILP as a set covering problem with cardinality constraint
(GARFINKEL et al., 1974; SWAIN, 1974) and then add the OCC as follows. Let
C = {C1, . . . ,C2n} be the power set of V , i.e., the set of all possible subsets of V
where |C| = 2n. Furthermore, consider the decision variables yi, i = 1, . . . , 2n, as
defined in Equation (4.4). The new PMPOC model is defined by (4.10a)–(4.10f)
(PMPOC-MP). This mixed-integer linear program (MILP) can also be obtained by
applying the Dantzig-Wolfe decomposition (DANTZIG; P., 1960) to the PMPOC
and, in this context, it is known as master problem (MP) (LORENA; SENNE, 2004).

min
2n∑
i=1

ciyi + u (4.10a)

subject to
2n∑
j=1

aijyj ≥ 1, i = 1, . . . ,n, (4.10b)

2n∑
i=1

yi = p, (4.10c)

2n∑
i=1

2n∑
j=1
j 6=i

∣∣∣∣J(Ci,Cj)− z
∣∣∣∣ · (yi + yj − 1) ≤ u, (4.10d)

N∑
j=1

bijyj ≤ 1, i = 1, . . . ,n, (4.10e)

yi ∈ {0, 1},u ∈ R, i = 1, . . . , 2n. (4.10f)

The objective function (4.10a) minimizes the clusters costs ci, which are computed by
Equation (4.2), plus the u penalty value. It is guaranteed by cover constraints (4.10b)
that each vertex is contained in at least one cluster, where matrix A = (aij) is a
n× 2n matrix such that

aij =
{

1, if vertex i belongs to cluster Cj,
0, otherwise.

(4.11)

Constraint (4.10c) is similar to constraint (4.1c). Inequalities (4.10d) define the
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overlap control constraint. In addition, it is necessary to ensure that all p medians
are distinct. Then, constraints (4.10e) impose that if cluster j is selected, its median
i cannot be the median of any other selected cluster, where matrix B = (bij) is given
by

bij =
{

1, if vertex i is the median of cluster Cj,
0, otherwise.

(4.12)

The PMPOC-MP, however, is not practical since it requires all possible clusters to
be known a priori, which is an exponential number. In order to efficiently solve this
formulation, we present in the next section a solution algorithm based on CG and
on B&P.

Although the objective function (4.10a) is composed by the clusters costs and the
value of variable u, only the ci coefficients have practical meaning. Then, in this
work, whenever we describe the cost of a solution, we are considering only the sum
of the clusters costs, i.e, the PMP cost.

4.4 Solution algorithms

As we indicated, formulation (4.10a)–(4.10f) is only tractable if all clusters in C
are known. For any instance of practical interest, it is prohibitive to even try to
enumerate them. In order to solve this formulation and obtain optimal solutions for
the problem, our algorithm works with only a subset C ⊂ C, where |C| = N and
N � 2n. This formulation is known as the restricted master problem (RMP) and
the remaining clusters can be generated through a CG process.

In brief, the CG algorithm solves a relaxed version of the RMP with an initial set of
variables (columns). Then, by solving n sub-problems, a pricing algorithm adds up
to n new columns to the RMP, restarting the process. Each column has a reduced
cost and only columns with negative reduced costs are inserted in the RMP. This
procedure stops when the pricing algorithm cannot find new columns for the RMP.
The CG algorithm is detailed in Section 4.4.1.

If the solution found by the CG is still fractional, then its RMP becomes the root
node of a search tree, which is explored by a B&P algorithm in a parallel breadth-
first search fashion. Two child nodes are then created from the root node following a
branching rule, which imposes different constraints to the sub-problem of each child’s
RMP. Then, this process, known as branching, is repeated whenever a fractional
solution is found. When an integer solution is obtained at a node, the branching ends
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and the node becomes a leaf. The algorithm stops when all nodes were explored, i.e.,
a branch cannot be generated in any node or when an stopping criterion, e.g., the
maximum execution time, is met. The B&P algorithm is detailed in Sections 4.4.2.

4.4.1 Column generation

The CG algorithm works by iteratively solving the RMP and identifying variables
that can potentially improve its objective function value. These steps are described
next.

4.4.1.1 Initial pool

The RMP is initially defined with only a subset of all possible clusters. In our algo-
rithm, we considered an initial pool of clusters generated by Algorithm 8 (SENNE
et al., 2005). At each iteration, p clusters of random medians are generated. Then,
each graph vertex is assigned to the closest one. These steps are repeated until the
size of the pool is greater than a threshold.

Algoritmo 8: Generation of an initial pool of columns.
input : vertex set V ; distance matrix D = (dij); number of medians p;

minimum number of clusters in the pool minSize.
output: pool of initial clusters C; initial incumbent solution.

1 begin
2 C ← ∅;
3 while |C| < minSize do
4 U ← {u1, . . . ,up}; // generate a set of p random vertices
5 C ← {Ci | Ci = {ui} ∧ ui ∈ U , i = 1, . . . , p};
6 foreach v ∈ V \ U do
7 i← arg min

u∈U
(duv); // find the index i of the closest median

8 Ci ← Ci ∪ v; // insert v in the ith cluster
9 end foreach

10 foreach Ci ∈ C do
11 cost(Ci); // compute Equation (4.2)
12 end foreach
13 if v(C) ≤ v(incumbent) then incumbent← C;
14 C ← C ∪ C;
15 end while
16 return [C, incumbent];
17 end
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Note that a feasible solution is generated at each iteration of lines 3-15. Then, we
keep the best solution generated through these lines as the initial incumbent. In
addition, to ensure the feasibility of the PMPOC-RMP, we also added p dummy
clusters to the initial set. All vertices of V are inserted in each of these clusters.

4.4.1.2 Restricted Master Problem

The PMPOC-RMP is defined as follows.

min(1− α)
N∑
i=1

ciyi + αu (4.13a)

subject to (4.10b), (4.10c), (4.10d), (4.10e),
yi ∈ [0, 1],u ∈ R, i = 1, . . . ,N . (4.13b)

Note that constraints (4.10b), (4.10c), (4.10d), (4.10e) are defined only for the N
clusters of the initial set instead of all 2n possible clusters. In addition, the integral-
ity requirement of variables y of the PMPOC-MP is relaxed in order to make the
PMPOC-RMP easier to solve. Furthermore, we added a new parameter α ∈ [0, 1]
to the objective function to balance the relevance between the y variables and the u
variable. Note that, when α = 0, the PMP is defined as the OCC would take no ef-
fect. We also normalized the distances matrix D = [dij] to the interval [0, 1] in order
to compute the coefficients of the y variables in the objective function, since the u
variable is composed by a sum of values in this same interval. The normalization was
carried out using the min-max scaling method, which computed by Equation (4.14).

d′ij = dij −minij (d)
maxij (d)−minij (d) . (4.14)

4.4.1.3 Pricing sub-problem

Given a solution for the PMPOC-RMP, we obtain the dual values πi, ρ, σ, and µi
associated with constraints (4.10b), (4.10c), (4.10d) and (4.10e). In the sequence,
new columns are added to the problem by solving the pricing sub-problem. Our
pricing sub-problems, one for each j = 1, . . . ,N , are presented below (LORENA;
SENNE, 2004).
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v(pricing)j = min
n∑
i=1

(d′ij − πi)xij, (4.15)

where distances d′ij are given by Equation (4.14).

This equation is easily solved by considering xij = 0 if (d′ij − πi) > 0 and xij = 1
otherwise. Then all columns j where v(pricing)j values satisfy the inequality

v(pricing)j − σ − ρ−
n∑
i

µi < 0, (4.16)

i.e., columns with negative reduced costs, can be added to the PMPOC-RMP.

The pricing sub-problem then optimally identifies all possible new columns j with a
negative reduced price, and returns them to the PMPOC-RMP for another iteration.
At each iteration, up to n new columns can be identified. Note also that the sub-
problems are independent, hence all n sub-problems can be solved in parallel.

Note that a cluster Cj is not a column itself, but a column on the matrix A of coef-
ficients related to the cover constraints (4.10b) and on the matrix B of coefficients
corresponding to constraints (4.10e) of the yj variable. A PMPOC-RMP column
K is composed by these coefficients and the coefficients of constraints (4.10c) and
(4.10d) as shown below.

K =


Aj

1
J
Bj

 , (4.17)

where J is the coefficient of variable yj in the OCC.

When a new column is added to the PMPOC-RMP, it is necessary to update the
OCC coefficients of all y variables. In addition, the value of the right-hand side of
the OCC is also updated.

4.4.1.4 Column substitution

In order to limit the size of the PMPOC-RMP column pool and, therefore, pre-
vent it to become too hard to solve, we employed a column substitution procedure.
Whenever the number of columns of the PMPOC-RMP exceeds a threshold, new
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columns are not appended to it anymore, but they replace the old columns with
the highest reduced costs. To achieved this, we sort the PMPOC-RMP column pool
in decreasing reduced costs order and the column substitution takes place following
this order.

Note that removing the columns from the PMPOC-RMP would be a costly opera-
tion, then the coefficients (4.17) of the old column are updated to the coefficients
of the new column. In addition, we always maintain the p dummy columns in the
column pool to ensure the model feasibility.

4.4.1.5 CG pseudocode

A CG pseudocode is depicted by Algorithm 9. The algorithm takes as input an initial
column pool C. At each iteration, at most n columns are generated and added to the
RMP if their reduced costs are negative. When the maximum number of columns
in the RMP is reached, the column substitution procedure is utilized.

Algoritmo 9: Column generation algorithm.
input : Initial column pool C; Graph G = (V ,E); distance matrix D = (dij);

number of medians p; overlap control parameter z; minimum number
of clusters in the pool minSize; Maximum number of columns in the
RMP maxRmpSize.

1 begin
2 pmpoc_rmp.init(G, p, z, C);
3 do
4 solver.solve(pmpoc_rmp);
5 [π, ρ,σ,µ]← solver.getDuals(pmpoc_rmp);
6 columnFound← false;
7 for j = 1, . . . ,n do
8 Cj ← pricing.solve(D, j, π);
9 if pricing.getObjV al()− ρ− σ − (

n∑
i=1

µi) < 0 then
10 columnFound← true;
11 if pmpoc_rmp.nbColumns() > maxRmpSize then

// replace the column with the highest reduced cost
12 pmpoc_rmp.replaceHighestRC(Cj);
13 else
14 pmpoc_rmp.append(Cj);
15 end for
16 while columnFound;
17 end
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4.4.2 Branch-and-price

The CG algorithm provides an optimal solution for the linear relaxation of the
PMPOC-RMP. This is not necessarily a solution for the PMPOC as some variables
might take fractional values. If all variables are integer, the solution is optimal for
the PMPOC. However, if some variables are fractional, branching needs to take
place. Then, each branch of the tree is solved using the algorithm just described in
Section 4.4.1.

This section is organized as follows. In Section 4.4.2.1, we present the branching rule
utilized. A pseudocode of our B&P, compiling all methods described in this work,
is presented in Section 4.4.2.3.

4.4.2.1 Branching rule

Our branching rule is based on the partitioning with identical subsets (PIS) rule
described by Ryan and Foster (1981). This method was already used to solve a
PMP (SENNE et al., 2005) and works as follows. Given two vertices q and r and a
cluster Ci, three cases may arise: either both q and r belong to Ci, only one of them
belong to Ci, or none of them belong to this cluster. The PIS branching rule creates
two child nodes with the following constraints: on the left child, either both q and r
appear in cluster Ci or none of them are present at this cluster. On the right child
node, at most one vertex q or r must belong to Ci but not both, i.e., they do not
appear together. This branching rule creates two child nodes and contemplates all
three scenarios described above. Then, new columns are generated, at each branch
side, respecting the related PIS constraint. Moreover, all columns from the parent
node which violate the child node’s PIS rule are removed from the child node’s RMP.

In order to determine the vertex q, we proceed as in Senne et al. (2005). Let ȳi be
the value of the variable yi in the current PMPOC-RMP solution and C = {Ci | 0 <
ȳi < 1, i = 1, . . . ,N} be the set of clusters related to the decision variables yi with
fractional values. In addition, consider the set of clusters Q(i) = {Cj | i ∈ Cj, j =
1, . . . , |C|}, i.e, the set of clusters that vertex i belongs to. Then, q is selected as the
vertex contained in the largest number of clusters as defined by Equation (4.18).

q = arg max
1≤i≤n

(|Q(i)|). (4.18)

The choice of vertex r is performed based on the set R(i) = {Cj | Cj ∈ Q(q) ∧ i ∈
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Cj, j = 1, . . . , |C|}, i.e., the subset of clusters of Q(q) where vertex i is contained.
In addition, consider that R(i) 6= ∅. Then, r is defined as the vertex belonging to
the minimum number of clusters which q is also contained, that is,

r = arg min
1≤i≤n

(|R(i)|). (4.19)

The new columns are generated using the pricing sub-problem presented in Section
4.4.1.3 with the PIS constraints. Analogously to the pricing sub-problem (4.15), all
columns satisfying inequality (4.16) are inserted in the RMP related to the current
node. On a left branch node, vertices q and r must appear together in a cluster Cj
or not appear at all in this cluster. In order to achieve this, the sub-problem shown
in Equations (4.20a) and (4.20b) is solved.

v(pricing)j = min
n∑
i=1

(d′ij − πi)xij (4.20a)

subject to
xqj = xrj. (4.20b)

On a right branch node, vertices q and r must not belong to a same cluster Cj. These
columns are generated by solving the sub-problem presented in Equations (4.21a)
and (4.21b).

v(pricing)j = min
n∑
i=1

(d′ij − πi)xij (4.21a)

subject to
xqj + xrj ≤ 1. (4.21b)

Note that constraints (4.20) and (4.21) are accumulated from the root node to the
current child node through the related path in the B&P search tree. Thus, the pricing
sub-problem of a node is composed by its own constraint (4.20), if it is a left node,
or (4.21), if it is a right node, and its ancestor’s constraints. These sub-problems
cannot be easily solved as the pricing sub-problem of the root node, and are solved
using a commercial solver.
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4.4.2.2 Pruning

The tree exploration is improved by using a pruning procedure. Whenever the cost
of a solution, either fractional or integer, found by the CG algorithm in a node is
greater than the best integer solution found so far, the node is pruned.

4.4.2.3 B&P pseudocode

A simplified pseudocode of the B&P is shown in Algorithm (10). As mentioned, we
utilized a parallel breadth-first search algorithm to explore the B&P tree. Then, a
queue is used to store the nodes created whenever branching takes place. A node
is dequeued and assigned to an idle thread, which solves the related PMPOC-RMP
by the CG algorithm and creates a new branch if the solution is fractional and its
cost is less then the incumbent cost. If the cost of a fractional solution is not less
then the cost of the incumbent solution, then the tree is pruned and a branch is
not performed. Moreover, in the event that all threads are busy solving models, the
algorithm waits for one of them to finish to dequeue the next queue node.

In order to save memory we utilized two kinds of column pools in the B&P algorithm:
a global and a local one. The local pool keeps only columns generated by the CG on
the related node. Then, all CG columns insertions and substitutions are performed
on this pool. When the CG algorithm finishes, its local pool is copied to the global
pool, which is used as the initial pool to build the PMPOC-RMP of the subtree
nodes respecting the corresponding PIS constraints. Since nodes of the subtree use
different columns from the global pool, the column substitution is not applied to it.
The particular case is the root node, where its local pool is the global pool. Then,
the column substitution is also carried out on the global pool.

4.5 Computational experiments and analysis

We now present the computational tests designed to evaluate our proposed B&P
algorithm. All implementations were written in C++ language and compiled with
g++ compiler version 10.1 using -O3 flag. For the resolution of models we used the
Gurobi™ 9.0.2 (OPTIMIZATION, 2020). All the computational tests were executed
on a computer with Intel® Core™i9-9900K CPU 3.60GHz× 16 processor with 16MiB
cache memory and 128GiB of RAM. The operating system installed on this machine
is Ubuntu 18.04.4 64 bits. The tests were carried out using the well-known PMP
instances from the OR-library (BEASLEY, 1985; BEASLEY, 1990). This set consists
of 40 instances with n ∈ [100, 900] and p ∈ [5, 200]. The bigger the n

p
ratio the harder
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Algoritmo 10: Branch-and-price algorithm.
input : Graph G = (V ,E); distance matrix D = (dij) number of medians p;

overlap control parameter z; minimum number of clusters in the pool
minSize.

1 begin
2 C ← generateInitialPool(); // Algorithm (8)
3 pmpoc_rmp.init(G, p, z, C); // build the initial RMP
4 root← createNode(pmpoc_rmp);
5 unexploredNodes.enqueue(root);
6 while !unexploredNodes.empty() do
7 if threads.idle() then

/* give the next node in the queue to a worker thread */
8 node← unexploredNodes.dequeue();
9 solution← cg.solve(node); // solve using CG algorithm (9)

10 if isFractional(solution) then
11 [leftChild, rightChild]← node.branch();
12 unexploredNodes.enqueue(leftChild);
13 unexploredNodes.enqueue(rightChild);
14 end if
15 else
16 wait(); // wait for an idle thread
17 end if
18 end while
19 end

is to find a PMP solution (CHRISTOFIDES; BEASLEY, 1982; SENNE et al., 2005).

In all experiments realized in this work, the following B&P parameters values were
used: 1000 initial columns; p dummy columns; 4000 as the maximum number of
columns at each node; 2000 as the maximum number of CG iterations and 3h as
the execution time limit. Furthermore, up to 16 threads were utilized through the
B&P execution since the CPU of the machine where the tests were carried out has
16 threads.

We evaluated our method using three values of the overlap control parameter
z = {0, 0.5, 1}, i.e., with minimum amount of overlap, with an intermediary value
and with maximum amount of overlap, respectively. For each of these values, we
tested with α = {0.05, 0.5, 0.95}, that is, with more relevance to the clusters costs,
with equal relevance between the clusters costs and the OCC value and with more
relevance to the OCC value, respectively. Moreover, in order to evaluate the algo-
rithm in the PMP context, we also tested with α = 0 when z = 0. Thus, the B&P
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was tested in ten scenarios for each of the 40 instances.

The results of tests performed with the proposed B&P algorithm are presented in
tables 4.1 and 4.2. The acronyms presented is these tables are:

• opt: the optimal PMP cost, obtained by the commercial solver;

• ts: the tree size (considering only explored nodes);

• th: the tree height;

• ncg: the number of columns generated;

• np: the number of tree prune;

• cost: the PMP cost of the solution;

• |sc|: the normalized sum of the number of coverage of each vertex, i.e., the
sum of the number of clusters that each vertex belongs to divided by n;

• mc(%): percentage of vertices contained in more than one cluster.

The remaining of this section is organized as follows. Subsection 4.5.1 presents the
results of the tests of our algorithm performed in the PMP context, i.e., using z = 0
and α = 0. The results of the experiments with different values of the overlap control
parameter are shown in Subsection 4.5.2.

4.5.1 PMP tests results

In order to evaluate the effectiveness of our method and ensure that it is working
properly, we applied it to solve the OR-library instances in the PMP context, that
is, with parameters z = 0 and α = 0. The results of these experiments are presented
in Table 4.1. In addition to the table information described in the previous section,
in Table 4.1 the gap (%) between the optimal PMP solution and the solution found
by the B&P algorithm is shown. The gap is computed by Equation (4.22).

gap = cost− opt
opt

· 100. (4.22)

From Table 4.1 it can be noticed that the B&P algorithm obtained the optimal
PMP solution in 12 of the 40 instances (bolded costs). Considering the remaining

80



Table 4.1 - Results of the experiments in the OR-library instances (BEASLEY, 1985;
BEASLEY, 1990) using z = 0 and α = 0.

B&P
Instance n p opt ts th np ncg cost gap(%) t(s)

pmed1

100

5 5819 1 0 0 4397 5819 0.00 3.84
pmed2 10 4093 15 4 7 46578 4093 0.00 769.59
pmed3 10 4250 29 5 12 55372 4250 0.00 831.59
pmed4 20 3034 1 0 0 5545 3034 0.00 3.47
pmed5 33 1355 1 0 0 3305 1355 0.00 1.74
pmed6

200

5 7824 1222 14 375 1689472 7827 0.04 11396.20
pmed7 10 5631 1 0 0 14210 5631 0.00 37.02
pmed8 20 4445 1 0 0 47052 4445 0.00 45.32
pmed9 40 2734 3 1 0 69483 2734 0.00 561.25
pmed10 67 1255 3 1 0 10697 1255 0.00 578.28
pmed11

300

5 7696 52 8 0 665897 8498 10.42 13821.60
pmed12 10 6634 141 8 16 3367049 6639 0.08 12031.70
pmed13 30 4374 1 0 0 17476 4374 0.00 27.24
pmed14 60 2968 19 5 9 4437794 2979 0.37 4909.11
pmed15 100 1729 1 0 0 12682 1729 0.00 8.57
pmed16

400

5 8162 1 0 0 399087 9179 12.46 949.43
pmed17 10 6999 58 7 0 1043513 8715 24.52 12874.70
pmed18 40 4809 15 3 7 5688576 4866 1.19 5040.01
pmed19 80 2845 3 1 1 865816 2859 0.49 1432.68
pmed20 133 1789 1 0 0 11562 1789 0.00 8.40
pmed21

500

5 9138 1 0 1 500505 9996 9.39 2178.24
pmed22 10 8579 25 7 0 1471261 10309 20.17 18021.40
pmed23 50 4619 5 2 2 4357584 4625 0.13 8264.04
pmed24 100 2961 13 4 2 11765777 3034 2.47 11879.20
pmed25 167 1828 1 0 0 112931 1830 0.11 65.54
pmed26

600

5 9917 1 0 1 1200404 11562 16.59 6293.14
pmed27 10 8307 1 0 0 1200117 9764 17.54 5263.18
pmed28 60 4498 15 4 0 15268367 4524 0.58 16707.00
pmed29 120 3033 15 4 3 17050266 3043 0.33 15538.80
pmed30 200 1989 32 6 0 2660719 2000 0.55 15105.70
pmed31

700

5 10086 1 0 0 1400305 11187 10.92 10042.50
pmed32 10 9297 1 0 0 699544 10759 15.73 4753.99
pmed33 70 4700 31 5 0 18769506 4715 0.32 16574.10
pmed34 140 3013 27 5 1 17194437 3071 1.92 16124.70
pmed35

800
5 10400 1 0 1 800205 11775 13.22 5452.39

pmed36 10 9934 1 0 0 800210 11922 20.01 4775.64
pmed37 80 5057 15 4 0 453706 5245 3.72 14714.30
pmed38

900
5 11060 1 0 1 900105 12265 10.90 8270.78

pmed39 10 9423 1 0 0 899847 11650 23.63 6377.96
pmed40 90 5128 13 4 5 10844189 5144 0.31 15619.20

instances where our method did not found the optimal solutions, the average gap
was 7.79% with a maximum value of 24.52%. The B&P stopped at the root node
without generating columns with negative reduced costs in 19 instances. In the
others 21 instances, the branching procedure took place, since an integer solution
was not found. From these tests, we can conclude that the B&P can generate good
quality PMP solutions.

The largest tree explored was in instance pmed6, where 1222 nodes were solved
within 11396.2 seconds. Since we implemented a prune procedure, 375 sub-trees
were pruned in this instance, avoiding processing unnecessary nodes. Even though
we set 3h as the B&P time limit, in some instances a node was still being solved
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when the time limit was reached. This is the reason for the execution in some of
them took more than 3h.

4.5.2 Overlap control results

In this subsection we present the summary of the results with each pair of values
z = {0, 0.5, 1} and α = {0.05, 0.5, 0.95} in each of the 40 OR-library instances. Since
the difficult an instance in the PMP context is related to its n/p ratio, we organized
the instances into sets of same n/p values. For example, instances pmed3 and pmed8
are in the same set as both have equal n/p ratio (100

10 = 200
20 ). Then, we computed the

average results for each of the n/p sets related to each pair of z and α. These results
are shown in the Table C.1. The first column of this table shows the rounded n/p
ratio; the second column is the number of instances with the same n/p value; the
third and the fourth columns are the z and α parameters values, respectively; and
the remaining columns are the average results for each information. The complete
results are presented in Table 4.2 of Appendix C.

Table 4.2 - Summary of the overlap control results in the OR-library instances
(BEASLEY, 1985; BEASLEY, 1990).

B&P
n/p # z α tsa tha npa ncga |sc|a mca(%) ta(s)

3 6

0
0.05 1.00 0.00 0.00 700782.33 1.33 0.33 666.96
0.50 1.00 0.00 0.00 700782.33 1.34 0.33 554.54
0.95 1.00 0.00 0.00 668182.33 1.33 0.33 528.48

0.5
0.05 44.00 5.83 13.50 4701391.50 4.57 0.69 2083.99
0.50 3.00 0.83 0.67 203149.00 3.33 0.58 120.54
0.95 1.00 0.00 0.00 362632.33 3.62 0.56 223.35

1
0.05 17.17 4.50 3.17 4467165.33 7.68 0.70 3403.00
0.50 1.00 0.00 0.00 108982.33 58.53 0.76 59.12
0.95 1.00 0.00 0.00 201032.33 85.30 0.93 85.71

5 7

0
0.05 1.00 0.00 0.00 800717.14 1.20 0.20 856.67
0.50 1.00 0.00 0.00 800717.14 1.20 0.20 568.08
0.95 1.00 0.00 0.00 800717.14 1.20 0.20 534.88

0.5
0.05 36.71 5.29 7.86 7705701.57 3.82 0.64 5414.77
0.50 1.00 0.00 0.00 324817.14 3.03 0.47 203.26
0.95 1.00 0.00 0.00 440074.29 3.00 0.37 279.51

1
0.05 39.86 3.29 5.86 6958425.00 7.41 0.61 3493.47
0.50 1.00 0.00 0.00 178474.29 6.75 0.54 105.98
0.95 1.00 0.00 0.00 600817.14 47.71 0.79 297.17

10 10

0
0.05 1.00 0.00 0.00 920607.00 1.10 0.10 1334.55
0.50 1.00 0.00 0.00 920607.00 1.10 0.10 696.51
0.95 1.00 0.00 0.00 920607.00 1.10 0.10 595.56

0.5
0.05 291.60 10.60 62.70 11550302.80 2.49 0.61 12682.83
0.50 1.00 0.00 0.00 523507.00 2.10 0.29 349.39
0.95 1.00 0.00 0.00 455427.00 2.01 0.30 281.61

1
0.05 215.60 19.80 97.40 5443384.50 3.40 0.53 3209.45
0.50 1.00 0.00 0.00 224607.00 3.58 0.45 149.82

Continued on next page
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Table 4.2: Conclusion.
B&P

n/p # z α tsa tha npa ncga |sc|a mca(%) ta(s)
0.95 1.00 0.00 0.00 673307.00 13.34 0.59 378.97

[20, 40] 5

0
0.05 1.00 0.00 0.00 480768.00 1.03 0.03 458.43
0.50 1.00 0.00 0.00 480768.00 1.03 0.03 280.29
0.95 1.00 0.00 0.00 480768.00 1.03 0.03 271.02

0.5
0.05 58.40 6.60 2.60 21070468.00 1.46 0.34 13254.70
0.50 1.00 0.00 0.00 480768.00 1.37 0.19 300.64
0.95 1.00 0.00 0.00 480768.00 1.36 0.19 284.39

1
0.05 49.60 5.40 7.20 15873068.00 1.40 0.26 10398.69
0.50 1.00 0.00 0.00 480768.00 1.48 0.26 322.74
0.95 1.00 0.00 0.00 480768.00 1.48 0.26 306.95

[50, 70] 4

0
0.05 1.00 0.00 0.00 1050483.75 1.02 0.02 1321.99
0.50 1.00 0.00 0.00 1050483.75 1.02 0.02 755.63
0.95 1.00 0.00 0.00 1050483.75 1.02 0.02 690.15

0.5
0.05 11.00 3.00 0.00 8346833.75 1.81 0.36 16002.93
0.50 1.00 0.00 0.00 1050483.75 1.26 0.12 749.90
0.95 1.00 0.00 0.00 1050483.75 1.17 0.09 664.63

1
0.05 11.25 2.75 1.25 9096458.75 1.98 0.33 13651.08
0.50 1.00 0.00 0.00 1050483.75 1.93 0.26 1291.50
0.95 1.00 0.00 0.00 1050483.75 1.81 0.36 994.81

[80, 120] 4

0
0.05 1.00 0.00 0.00 1200406.25 1.01 0.01 1980.40
0.50 1.00 0.00 0.00 1200406.25 1.01 0.01 1026.62
0.95 1.00 0.00 0.00 1200406.25 1.01 0.01 908.56

0.5
0.05 7.00 2.75 0.00 6997506.25 1.33 0.18 15747.08
0.50 1.00 0.00 0.00 1200406.25 1.31 0.16 1201.54
0.95 1.00 0.00 0.00 1200406.25 1.35 0.30 795.91

1
0.05 8.00 2.75 0.00 8196903.00 1.82 0.34 16581.48
0.50 1.00 0.00 0.00 1200406.25 1.50 0.11 1811.20
0.95 1.00 0.00 0.00 1200406.25 1.87 0.37 1254.24

[140, 180] 3

0
0.05 1.00 0.00 0.00 1600205.00 1.01 0.01 3567.40
0.50 1.00 0.00 0.00 1600205.00 1.01 0.01 2254.35
0.95 1.00 0.00 0.00 1600205.00 1.01 0.01 1612.41

0.5
0.05 1.67 1.33 0.00 2533071.67 1.53 0.47 16892.87
0.50 1.00 0.00 0.00 1600205.00 1.10 0.06 1328.89
0.95 1.00 0.00 0.00 1600205.00 1.10 0.05 1234.88

1
0.05 3.00 1.67 0.33 4798605.00 1.37 0.17 17449.23
0.50 1.00 0.00 0.00 1600205.00 1.41 0.19 3358.60
0.95 1.00 0.00 0.00 1600205.00 1.38 0.18 2866.55

From Table 4.2, we can assume that the overlap control worked properly and the
B&P was able to find PMPOC solutions. In all instances sets, as shown by |sc|a and
mca(%) results, the minimum overlapping between the clusters were found using
z = 0, as expected. However, even in the z = 0 and α = 0.05 scenario, some overlap
is observed. The reason why this occurs is the fact that constraints (4.10b) allow it
and the selection of the p-medians relies on the generated column pool.

Note that the percentage of vertices belonging in more than one cluster increase as
the z value increase, although this increase is note proportional neither linear. This
can observed mainly in the easier instances (small n/p ratio), where there are more

83



medians and the vertices can be divided fairly. Furthermore, similar behavior can
be seen in the average normalized total number of covers (|sc|a). In the easier set of
instances (n/p = 3) and for z = 1 and α = 0.95 each vertex was covered, on average,
85 times. In such scenarios one could decrease the overlap control parameters values
to avoid such extreme solutions.

Some outliers results were observed in the harder instances sets. For example, in
instance set n/p = [140, 180] with z = 0.5, the highest overlap degree was found
with α = 0.05. As the number of vertices per median is high, the overlap become
fuzzy and harder to control. Also, recollect that our PMPOC restricted master
problem is a modification of the original one, where there is a OCC for each vertex.
Then, the overlap control is not precise as would be in the original model.

The branching took place only when using α = 0.05, i.e., when the PMP part of the
objective function (4.13a) is more relevant than the u variable. For the others α the
tree size was equal to one, meaning that the execution stopped at the rode node.
This is due the fact that the branching is performed over the y variables rather than
the u variable. Then, if the overlap control has equal or more relevance than the
PMP part, an integer solution is find more easily since PMP part of the objective
function ins not as relevant as the α = 0.05.

In addition, as one can see from results presented in Appendix C, the number of
columns generated is nearly the same in most of the instances of the same set of
n/p values, e.g., instances pmed3 and pmed8. This corroborates with the fact that
instances with similar n/p ratio have the same level of difficult in the PMP context.

Note that the average execution time, in some scenarios, was greater than the time
limit of 3h. As explained in Subsection 4.5.1, we did not stop a node execution when
the time limit is reached.

4.6 Conclusions and future directions

In this chapter, we proposed a new variant of the p-median problem namely, p-
median problem with overlap control. In addition, a parallel branch-and-price algo-
rithm was developed to solve the PMPOC.

In the PMP context, our method was able to find good-quality solutions at a rea-
sonable computational time. Indeed, the B&P found optimal solutions in 12 of 40
instances. In the instances where our algorithm did not found the optimal solutions,
the average gap was of 7.79%.
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Considering the overlap control tests, the results of the application of the PMPOC
model and the B&P algorithm proved to be satisfactory. The overlap control worked
properly in instances of small to medium n/p ratio. Regarding the harder instances,
our method found good solutions in terms of overlapping between the medians, but
a careful parameter adjustment should be carried out as the overlap control is not
precise as in the easier instances.

Further investigation needs to be done to test other branching rules. Moreover, tests
comparing a depth-first search exploration against the implemented breadth-first
search should be performed. In addition, we should apply the proposed B&P algo-
rithm in larger instances and adapt it and the model to other overlapping clustering
problems.

85





5 A PARALLEL ADAPTIVE LARGE NEIGHBORHOOD SEARCH
FOR MULTIPLE ASSIGNMENT p-MEDIAN PROBLEMS

This chapter is organized as follows. An introduction is presented in Section 5.1.
The mathematical formulations are presented in Section 5.2. The proposed parallel
adaptive large neighborhood search is detailed in Section 5.3. The results of the
computational tests are shown in Section 5.4. Our concluding remarks and consid-
erations on future work are presented in Section 5.5.

5.1 Introduction

Facility location problems are extensively studied and an essential topic in operations
research. The aim is to determine the location of a given number of facilities, whereas
the cost of serving the clients is minimized or the profit maximized. These problems
have several applications in logistics and data mining (NG; HAN, 1994; HANSEN
et al., 2009; GRANGIER et al., 2016; CONTARDO et al., 2019).

A classical facility location problem is the p-median problem (PMP) (HAKIMI,
1964). Given a graph, the PMP’s objective is to choose p vertices, also known as
medians, minimizing the sum of the distances from each vertex to its closest median.
However, there are some applications where a client should be assigned to more
than one facility, which is not allowed in the PMP. These cases are common in some
critical services provided by emergency facilities, such as hospitals and fire stations,
and computer networks, where a backup coverage is needed (WANG et al., 2009;
CHAGAS et al., 2019; PANTELI et al., 2019; ARAÚJO et al., 2020). Then, Panteli
et al. (2019) proposed the multiple p-median problem (MPMP), which generalizes
the PMP requesting to each vertex be assigned to mc ≥ 1 medians. Note that when
mc = 1 the PMP is defined. These authors also proposed the Biclustering Multiple
Median algorithm (BIMM) to solve the MPMP and compared it with a commercial
solver.

Even though the literature related to p-medians problems is vast (BARBAROS
et al., 1983; REESE, 2006; MLADENOVIĆ et al., 2007; DASKIN; MAASS, 2015;
MARÍN; PELEGRÍN, 2019), to the best of our knowledge, there are few works
concerning variations of these problems where vertices can be assigned to more than
one median. One of these studies is the work of Wang et al. (2009), who introduced
the backup 2-center problem and the backup 2-median problem. In these problems,
every vertex is served by two medians. Another study that we are aware of is the
work of Karatas et al. (2016). The authors introduced the requirement of each vertex
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to be assigned to a number of facilities and compared it under five different criteria.

Then, following Panteli et al. (2019), we also relaxed the assignment constraints of
the capacitated p-median problem (CPMP) and the p-center problem (PCP), two
variations of the PMP and classical facility location problems. The CPMP is a
modification of the PMP where each median has a capacity and each client has
a demand. All clients’ demands must be fulfilled without exceeding the medians’
capacities. Introduced by Hakimi (1965), the PCP aims to minimize the maximum
distance between a vertex and its closest median. Then, we introduced, in this
work, the capacitated multiple p-median problem (CMPMP) and the multiple p-
center problem (MPCP). These problems are similar to the original ones, but they
required each vertex to be served by mc medians.

The PMP, CPMP and PCP were proven to be NP-hard (GAREY; JOHNSON, 1979;
KARIV; HAKIMI, 1979; MASUYAMA et al., 1981). Since the MPMP, CMPMP and
the MPCP are generalizations of these problems, there are also NP-hard. Hence, ex-
act methods are only practical in small-sized instances and metaheuristics are an
alternative to obtaining solutions at a low computational time. Therefore, we de-
veloped an adaptive large neighborhood search (ALNS) (PISINGER; ROPKE, 2007;
ROPKE; PISINGER, 2006) and applied it to MPCP, CMPMP and MPCP. In or-
der to take advantage of modern multi-core CPU, we implemented a parallelized
version of the ALNS metaheuristic (PALNS) (ROPKE, 2009). The ALNS was pro-
posed in the context of vehicle routing problems and it has been successfully applied
to several other problems (AVCI; AVCI, 2019; LAHYANI et al., 2019; HAMMAMI
et al., 2020). Also, the ALNS was previously applied to a facility location problem
(PEREIRA et al., 2015).

5.2 Mathematical notation and problems definitions

Let G = (V ,E) be an undirected, weighted and connected graph, where V is the
set of vertices and E is the set of edges, where |V | = n, |E| = m and to each edge
(i, j) ∈ E is associated a weight dij ∈ R. In facility location problems, dij is often
the euclidean distance or the length of the shortest path between vertices i and j,
but dissimilarity values are also common. In all these cases, the triangular inequality
is not violated.

It is assumed that there is a distance dij between every pair of vertices i, j ∈ V .
Note that even though an edge joining vertices i and j may not exists in the original
graph, (i, j) can be added to E with dij equal to the length of the shortest path
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between these vertices since G is connected and the triangular inequality holds. In
this way, D = (dij) is an n × n distance matrix of non-negative real values. The
radius of a median j is determined by the farthest distance of a vertex i assigned to
it.

Let P be the set of the p open medians. Since it is required that all vertices must
be assigned to mc facilities in the MPMP, CMPMP and the MPCP, it is implicitly
assumed that each vertex is always assigned to the mc closest medians from the
p open ones. Let φb(i) be the (mc + 1)-th nearest open median from vertex i and
let φf (i) be the farthest of the mc medians which vertex i is currently assigned to.
Whenever a facility j is closed, each vertex i that was assigned to j is automatically
assigned to φb(i). Whenever a facility j is open, every vertex i whose φf (i) is farthest
than j, is removed from φf (i) and assigned to j.

In this work, a subset C ⊆ V is also called a cluster. In addition, facility and center
are used interchangeably to denote a median vertex.

The remainder of this section is divided as follows. In Subsection 5.2.1, the MPMP
formulation is presented. The integer linear program of the CMPMP is described in
Subsection 5.2.2. The MPCP formulation is shown in Subsection 5.2.3.

5.2.1 MPMP formulation

The MPMP requires that exactly p medians be selected from V and that all other
vertices are assigned to the closest mc medians. It is implicitly assumed that a
facility vertex is assigned to itself. The MPMP can be formulated as the integer linear
program (MPMP-ILP) (PANTELI et al., 2019) as shown by Equations (5.1a)-(5.1e).

min
n∑
i=1

n∑
j=1

dijxij (5.1a)

subject to
n∑
j=1

xij ≥ mc, i = 1, . . . ,n, (5.1b)

n∑
j=1

xjj = p, (5.1c)

xij ≤ xjj, i = 1, . . . ,n, j = 1, . . . ,n, (5.1d)
xij ∈ {0, 1}, i = 1, . . . ,n, j = 1, . . . ,n, (5.1e)

89



where decision variables xij control whether client i is allocated at facility j or not,
i.e.,

xij =
{

1, if vertex i ∈ V is assigned to median vertex j ∈ V ,
0, otherwise.

In the MPMP-ILP, the objective function (5.1a) minimizes the sum of distances
between every vertex i assigned to each median j. Constraints (5.1b) are the multiple
assignment constraints and impose that every vertex must be covered by at least mc
clusters. Equation (5.1c) guarantee that p vertices are open medians. A vertex i can
only be assigned to a vertex j if j is an open facility, i.e, only if xjj = 1 and this is
ensured by Inequalities (5.1d). Constraints 5.1e define variables xij as binary. Note
that the difference between the MPMP-ILP and the the PMP model (REVELLE;
SWAIN, 1970) is only the constraint (5.1b), which is relaxed in the former to allow
multiple assignments.

5.2.2 CMPMP formulation

Analogously to the MPMP, the CMPMP seeks to select p vertices as medians
whereas the sum of distances of every graph vertex to the mc nearest medians
is minimized. However, in the CMPMP the total demand of all vertices assigned to
a facility cannot exceed its capacity. The CMPMP can be formulated as the integer
linear program (CMPMP-ILP) as shown by (5.2a)-(5.2e).

min
n∑
i=1

n∑
j=1

dijxij (5.2a)

subject to
n∑
j=1

xij ≥ mc, i = 1, . . . ,n, (5.2b)

n∑
j=1

xjj = p, (5.2c)

n∑
i=1

qixij ≤ Qxjj, j = 1, . . . ,n, (5.2d)

xij ∈ {0, 1}, i = 1, . . . ,n, j = 1, . . . ,n. (5.2e)

The MPMP-ILP and CMPMP-ILP are similar formulations, the only difference
between them are the capacity constraints (5.2d). These constraints are a modified
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version of constraints (5.1d) which ensure that the every median capacity Q is not
exceeded by the sum of its clients demands, where qi is the demand of client i.
The constraint (5.2b) is a generalization of the assignment constraint of the original
CPMP formulation (MULVEY; BECK, 1984).

In addition, note that if the p medians are fixed, the CMPMP reduces to the gener-
alized multi-assignment problem (GMAP) (PARK et al., 1998), which is much easier
to solve than the CMPMP (FLESZAR; HINDI, 2008). The GMAP integer linear
formulation (GMAP-ILP) can be defined as shown in Equations (5.3a) to (5.3d).

min
n∑
i=1

∑
j∈P

dijxij (5.3a)

subject to∑
j∈P

xij ≥ mc, i = 1, . . . ,n, (5.3b)

n∑
i=1

qixij ≤ Q, ∀j ∈ P , (5.3c)

xij ∈ {0, 1}, i = 1, . . . ,n, j ∈ P . (5.3d)

Note that if we relax the integrality requirement of variables of x variables of the
GMAP-ILP and if we substitute them by x′ij

qi
, it becomes a minimum-cost network

flow problem (MCNFP) (FLESZAR; HINDI, 2008). Also, it is necessary to create a
dummy sink node to deal with the possibly remaining flow (capacity). A MCNFP
can be solved in polynomial time and it yields a fair lower bound to the GMAP
(FLESZAR; HINDI, 2008).

5.2.3 MPCP formulation

In the MPCP, p vertices, from V , are selected as medians and each vertex is assigned
to the nearest mc of them. We relaxed the mathematical formulation of the PCP
(DASKIN, 1995) in order allow each vertex to allow multiple assignments. Let σmc(i)
be the sum of the distances between a vertex i and the mc medians which it is
assigned to. The objective is to minimize v(MPCP ) = maxi∈V (σmc(i)), i.e, the
maximum sum of distances between a vertex and the mc medians that serve it. The
MPCP mixed-integer linear program (MPCP-MILP) is presented by (5.4a)-(5.4f).
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min z (5.4a)
subject to

n∑
j=1

xij ≥ mc, i = 1, . . . ,n, (5.4b)

n∑
j=1

xjj = p, (5.4c)

xij ≤ xjj, i = 1, . . . ,n, j = 1, . . . ,n, (5.4d)
n∑
j=1

dijxij ≤ z, i = 1, . . . ,n, (5.4e)

z ∈ R, xij ∈ {0, 1}, i = 1, . . . ,n, j = 1, . . . ,n. (5.4f)

The MPCP-MILP shares similarities with the models presented in the previous sub-
sections. However, there are some differences between them, such as the extra con-
tinuous variable z ∈ R. The value of z is minimized by the objective function (5.4a)
which lower bound is given by constraint (5.4e). In other words, the maximum sum
of distances between a vertex and its mc closest medians is minimized.

5.3 Parallel adaptive large neighborhood search

Proposed by Pisinger and Ropke (PISINGER; ROPKE, 2007; ROPKE; PISINGER,
2006), the ALNS is a neighborhood-based metaheuristic where the neighborhood
functions are continuously evaluated and their usage selection is adapted based on
their performance. These functions are divided into two sets namely, destroy and
repair operators. At each iteration, a destroy and a repair method are randomly
selected and applied to the current solution. The probability to pick out a method is
computed considering its score, which is obtained through the previous metaheuris-
tic’ iterations. If a pair of destroy and repair operators improves the current solution
or if it generates a new solution, their score are increased. Methods with a higher
score have a higher probability to be chosen.

In order to take advantage of modern multi-core CPU, we implemented a paral-
lelized version of the ALNS metaheuristic. We developed our PALNS following the
guidelines of Ropke (2009). However, instead of sharing the current solution among
all worker threads, we let each thread has its own local copy and only the best so-
lution is shared between them. Then, each worker thread performs the ALNS main
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loop independently and updates the global incumbent solution whenever a better
solution is found. In this way, we can avoid the overhead of sharing the current solu-
tion among all threads, since there are destroy/repair operators with different time
complexity and the main thread must wait to the worker threads to finish applying
their destroy/repair operators.

A pseudocode of our PALNS is shown in Algorithm 11. All these steps, with the
exception of lines 10 and 21, are performed locally by each worker thread. In addition,
all threads start with the same set of parameters and destroy/repair methods. At
line 2, a random initial solution is generated and it becomes the current solution s
and the incumbent solution sbest. A destroy method fd and a repair method fr are
selected, at line 5, from Γd and Γr, respectively, using a roulette wheel mechanism
based on the their current weights. Then, at line 6, the selected operators fd and fr
are applied to the current solution s and a neighbor solution s′ is generated. If the
cost of s′ is less than the cost of s, then it becomes s. In addition, if s′ cost is less
than sbest cost, it becomes the new incumbent, which is updated to all threads at
line 10. The temperature t is locally updated through the PALNS execution, where
it is cooled at line 17. In addition, we also utilized a re-heating process, shown at
lines 19 to 21, that updates t with tr whenever it becomes less than the temperature
threshold tt. Moreover, we update the worker thread current solution with the global
incumbent whenever the re-heating temperature is reached.

At each iteration of Algorithm 11, the selected operators fd and fr are reward as
follows: at line 11, with σ1, if fd and fr generated a new best solution; at line 13, with
σ2, if fd and fr not improved the best solution but found a better current solution; at
line 16, with σ3, if the simulated annealing (SA) acceptance criteria (KIRKPATRICK
et al., 1983), presented in Algorithm 12, is satisfied and if s′ is a new solution. A
hash-table data structure is used to keep track of the visited solutions. At line 18,
the weight of the neighborhood functions are updated, at every θ iterations, using
their accumulated scores.

The same PALNS implementation, presented in the above pseudocodes, is shared be-
tween the MPMP, CMPMP and MPCP contexts. Only solutions data structure, the
destroy and repair methods and some minor features are adapted to each problem.
These details are presented in the following subsections.
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Algoritmo 11: PALNS.
input : set of destroy operators Γd; set of repair operators Γr; reward values

σ1, σ2 and σ3; maximum number of iterations max_iter; segment size
θ; initial temperature tinit; threshold for re-heating tt; re-heating
temperature tr; cooling rate α.

output: incumbent solution sbest.
1 begin
2 sbest ← s← gen_initial_solution();
3 t← tinit; i← 0;
4 while (i < max_iter) do
5 [fd, fr]← select_operators(Γd, Γr);
6 s′ ← fr(fd(s));
7 if (cost(s′) < cost(s)) then
8 s← s′;
9 if (cost(s′) < cost(sbest)) then

10 sbest ← s′;
11 reward(fd, fr,σ1);
12 else
13 reward(fd, fr,σ2);
14 else if (accept(s′, s, t) and is_new(s′)) then
15 s← s′;
16 reward(fd, fr,σ3);
17 t← t · α; i← i+ 1;
18 if (i mod θ = 0) then update_weights(Γ) ;
19 if (t < tt) then
20 t← tr;
21 s← sbest;
22 end while
23 return sbest;
24 end

Algoritmo 12: SA acceptance criteria.
input : current solution s; new solution s′; current temperature t.
output: true if inequality holds, false otherwise.

1 begin
2 if (rand(0, 1) < exp(−(s′.cost()−s.cost())

t
)) then return true ;

3 else return false ;
4 end
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5.3.1 Initial solution

Since it is well known that the initial solution makes no difference on the ALNS final
solution quality (BARRENA et al., 2014; C. CORDEAU J-F, 2012b; C. CORDEAU
J-F, 2012a; LAHYANI et al., 2019), our implementation starts with a random so-
lution. For each problem, p medians are selected at random and then each vertex is
assigned to the closest mc of them.

In the CMPMP context, however, using this random method can lead to a scenario
where some few vertices may not fit into any cluster, even though the total remaining
capacity is greater than the total remaining demand. Then every time a set of p
vertices are selected, the GMAP-ILP is solved. If the problem is feasible, then the p
medians are used as initial solution. Otherwise, p new medians are randomly selected
and this procedure is repeated until feasibility is detected.

5.3.2 Neighborhood functions

In this section, the PALNS neighborhood functions are described. All destroy and
repair operators only close and open medians, respectively.

5.3.2.1 Destroy operators

The following destroy operators were implemented:

• randomly close k medians (d1): in this method, k medians, chosen at ran-
dom, are closed. Following Pereira et al. (2015), the value of k is computed
by Equation (5.5), where ω1 ∈ [0, 1] and ω2 ∈ [0, 1] are two random vari-
ables given by an uniform distribution. Equation (5.5) gives a random value
following a non-uniform decreasing distribution in the interval [1, p2 ], i.e.,
values close to 1 are more likely to occur than values close to p

2 . This same
operator is applied to all problems;

k = bp2(|ω1 − ω2|) + 1c. (5.5)

• close highest cost median (d2): close the median with the highest cost. For
the MPMP and CMPMP, the median with the maximum sum of the dij
distances is closed. For the MPCP, the median with the maximum radius
is closed;

• close minimum loss median (d3): close the median which yields the mini-
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mum increase in the objective function. This operator was inspired by the
heuristics of Resende and Werneck (2007) and of Mladenović et al. (2003).
Let Cj be the set of vertices assigned to median j. The increasing in the
objective function by closing median j is computed by Equation (5.6), for
the MPMP and CMPMP, and by Equation (5.7), for the MPCP. Then,
the median j ∈ P with the minimum δlj is closed.

δlj =
∑
i∈Cj

(diφb(i) − dij). (5.6)

δlj = max
i∈Cj

(v(MPCP ),σmc(i)− dij + diφb(i)). (5.7)

• close farthest median from the farthest vertex (d4): close the farthest me-
dian from the farthest vertex, i.e., the median φf (i) of the vertex i with
the maximum σmc(i). This operator is only applied to the MPCP.

5.3.2.2 Repair operators

The repair operators are repeated until the number of open medians is equal to p.
The following repair operators were implemented:

• randomly open a median (r1): randomly open a median. The non-median
vertex to be open is selected using an uniform distribution. This same
operator is applied to all problems;

• open smallest sum of distances (r2): greedily selects the non-median vertex
with the smallest sum of distances to all other vertices. The sum of dis-
tances from a vertex to all other vertices is computed a priori. This same
operator is applied to all problems;

• open maximum gain median (r3): open a median which yields the maxi-
mum decrease in the objective function. This operator was inspired by the
heuristics of Resende and Werneck (2007) and of Mladenović et al. (2003).
The decrease in the objective function by opening a non-median vertex j
is given by Equation (5.8), for the MPMP and CMPMP, and by Equa-
tion (5.9), for the MPCP. Then, the vertex j /∈ P with the maximum δgj

becomes a facility.

δgj =
n∑
i=1

max (0, diφf (i) − dij). (5.8)
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δgj = v(MPCP )−max
i∈V

(σmc(i)−max(0, diφf (i) − dij)). (5.9)

• open closest median from the farthest vertex (r4): open the closest non-
median vertex from the vertex whose the sum of distances is maximum, i.e,
open the closest non-median vertex from vertex k = arg maxi∈V (σmc(i)).
This operator is only applied to the MPCP.

5.3.3 CMPMP details

In order to evaluate a CMPMP solution, we implemented the Fleszar and Hindi
(2008) approach. The idea proposed by the authors is to avoid solve the related
GMAP-ILP every time a new solution is generated as much as possible. Given a
solution s, two lower bounds are used:

• LB1(s): the MPMP cost, i.e., the capacities are ignored and just the as-
signment costs are considered;

• LB2(s): the MCNFP cost. As mentioned in Subsection 5.2.2, the linear
relaxation of the GMAP-ILP is a MCNFP. Then, a complete bipartite
network flow is built using the p medians as source vertices and the re-
maining client vertices as sink ones. An additional dummy sink vertex is
needed to handle the remaining flow. The MCNFP is solved by a network
simplex algorithm from a commercial solver.

With these lower bounds, two CMPMP solutions s and s′ can be compared by
Algorithm 13. If LB1(s′) ≥ cost(s) or if LB2(s′) ≥ cost(s), then the CMPMP cost
of s′ cannot be better than the cost of s. Otherwise, then the GMAP-ILP related to
s′ is solved. Additional hash tables are also used in Algorithm 13 to store MCNFP
and GMAP-ILP costs, avoiding to recompute them. Moreover, the implementation
of the Algorithm 13 can still be improved. For further details, please refer to the
work of Fleszar and Hindi (2008).

Indeed, all CMPMP destroy and repair operators work only at the MPMP level,
i.e., the medians’ capacities and the vertices’ demands are ignored. They are only
considered when the related MCNFP or the related GMAP-ILP need to be solved,
as presented in Algorithm 13.
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Algoritmo 13: is better procedure (FLESZAR; HINDI, 2008).
input : new solution s′; solution s.
output: true if s′ is better than s, false otherwise.

1 begin
2 if (LB1(s′) ≥ cost(s)) then return false ;
3 if (LB2(s′) ≥ cost(s)) then return false ;

/* compute cost(s′) by solving the related GMAP-ILP */
4 if (GMAP-ILP is feasible ∧ cost(s′) < cost(s)) then
5 return true
6 else return false ;
7 end

5.3.4 PALNS setup

In this subsection, PALNS implementation details and the parameters used are
presented. Each PALNS thread has its own operators score and its current solution.
The input parameters and the operators are the same for all threads and only the
incumbent solution is shared. Whenever the reheating procedure takes place, the
incumbent solution is updated to the current solution of each thread. In addition,
as presented in Subsection 5.3.2, the destroy operators d1, d2 and d3 and repair
operators r1, r2 and r3 are applied to all problems. The exception are the d4 and
the r4 methods, which are applied only to the MPCP.

The PALNS parameters’ values, common to all problems, are presented in Table
5.1. In this table, θ is the PALNS segment size, α is the cooling rate, tt is the thresh-
old temperature for re-heating and σ1, σ2 and σ3 are the reward values. Specifically,
CALIBRA software (ADENSO-DÍAZ; LAGUNA, 2006) was used to obtain these val-
ues. The CALIBRA tests were performed in 10 instances of Beasley (1985), Beasley
(1990) for the MPMP and MPCP and in 10 instances of Baldacci et al. (2002) for
the CMPMP.

Table 5.1 - PALNS parameters’ values utilized in the MPMP, CMPMP and MPCP.

Parameter θ α tt σ1 σ2 σ3
Value 200 0.99 10−3 10 5 2

The others PALNS parameters namely, maximum number of iterations (max_iter),
initial temperature (tinit) and re-heating temperature (tr) were adjusted to each
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scenario. In all MPMP and MPCP instances, we utilized max_iter = 2500, tinit =
1500 and tr = 750. For the CMPMP instances of up to 100 vertices, it was used
max_iter = 3500, tinit = 2000 and tr = 1000. In CMPMP instances with 150
and 200 vertices, we utilized max_iter = 20000, tinit = 12500 and tr = 7500. For
CMPMP instances with more than 200 vertices, it was used max_iter = 35000,
tinit = 15000 and tr = 10000.

5.4 Computational experiments and analysis

All implementations were written in C++ language and compiled with g++ compiler
version 10.1.0. For the resolution of all models we used the IBM® ILOG® CPLEX®

12.10 (IBM Corporation, 2020). The MCNFP was solved using the simplex network
optmizer of this commercial solver. All the computational tests were executed on
a computer with Intel® i7-8086K® CPU 4.00GHz × 12 processor with 12MiB cache
memory and 62GiB of RAM. The operating system installed on this machine is
Ubuntu 18.04.4 64 bits with kernel 5.3.0-40-generic.

All CPLEX executions were limited to 3 hours. In addition, we ran the PALNS 20
times in all instances and selected the best solution. Then, the average execution
time, over the 20 runs, is presented.

To evaluate our heuristic in the MPMP and the MPCP context, we used the OR-
library instances (BEASLEY, 1985; BEASLEY, 1990). This well-known set con-
tains 40 instances with sizes ranging between 100 vertices and 900 vertices. For the
CMPMP, the sets of instances that we utilized are described below.

• Instances of Osman and Christofides (1994): this set contains 20 CPMP
instances divided into 10 graphs with 50 vertices and 10 graphs with 100
vertices;

• Instances of Baldacci et al. (2002): set of 20 instances with sizes n = 150
and n = 200, which are larger versions of the Osman and Christofides
(1994) instances;

• Instances of Lorena and Senne (2003), Lorena and Senne (2004): this set
consists of six real-world problem instances, with sizes ranging between
100 and 402 vertices, from the city of São José dos Campos, Brazil.

Following Panteli et al. (2019), we performed tests with our method using two pairs
of p and mc values in each instance: p = 10 and mc = 5 and p = 20 and mc = 10.
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Then, there is two scenarios for each instance of each problem. In the CMPMP in-
stances, we also increased their capacities by the factor of mc to make them feasible.
In addition, in some CMPMP instances we use the original p to avoid infeasibility.

The tests results are shown in the next subsections. In Subsection 5.4.1, we present
experiments comparing the sequential version of our method with the parallel one.
In the sequence, the results of the tests in the MPMP, CMPMP and the MPCP
are shown in Subsections 5.4.2, 5.4.3 and 5.4.4, respectively. In these subsections,
the CPLEX and the PALNS solutions costs (cost) and their executions times (t(s)),
in seconds, are presented for each instance of each problem. Specifically, as we ran
our heuristic 20 times in each instance, the average computational time (tavg(s)) is
shown. Also, the gap (%) between the solution cost of PALNS and the solution cost
of CPLEX is presented. Let costbest be the cost of the best-known feasible solution
and cost′ be the cost of a given solution. The gap between cost′ and costbest is
determined by Equation (5.10).

gap = cost′ − costbest
costbest

· 100. (5.10)

5.4.1 Single thread and multithread analysis

In order to compare the impact of the parallelization of the PALNS against
the sequential version of it, we performed tests in the MPMP context. For
these tests, we selected nine OR-library instances, one of each size n =
{100, 200, 300, 400, 500, 600, 700, 800, 900} and used p = 20 and mc = 10 in all of
them. The ALNS and the PALNS were executed 10 times in each instance. The
results of these experiments are presented in Table 5.2. In this table, column σ is
the standard deviation related to the solutions costs and tbestavg (s) is the average time,
in seconds, that the method took to find the best solution.

In results presented by Table 5.2, both heuristics versions found the optimal solutions
in all instances. Besides, it can be noticed that the PALNS took less computational
time than the ALNS to find the best solution in every instance tested. The PALNS
found the best solution in almost all of each of its 10 runs since the standard deviation
observed was zero in all but one instance. We can then conclude that the parallel
version is a better choice than the sequential one, as it finds the best solution faster
and is more consistent.
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Table 5.2 - Tests with p = 20 and mc = 10 in some OR-library instances to evaluate the
benefits of the parallelization of the ALNS.

ALNS PALNS
Instance n cost σ tbest

avg (s) cost σ tbest
avg (s)

pmed1 100 84027 79.31 0.05 84027 0.00 0.05
pmed6 200 102347 42.35 0.21 102347 0.00 0.08
pmed11 300 93903 2.70 0.18 93903 0.00 0.13
pmed16 400 101027 4.22 0.77 101027 0.00 0.46
pmed21 500 114895 0.00 0.66 114895 0.00 0.25
pmed26 600 119392 0.00 0.11 119392 0.00 0.11
pmed31 700 123848 3.38 1.26 123848 2.21 0.24
pmed35 800 125727 0.00 0.58 125727 0.00 0.31
pmed38 900 133369 6.10 0.32 133369 0.00 0.31

5.4.2 MPMP results

Table 5.3 shows the MPMP results of our method in the OR-library instances
(BEASLEY, 1985; BEASLEY, 1990). This table also presents the costs of the BIMM
heuristic solutions, as shown by Panteli et al. (2019). Also, the gap between the so-
lutions generated by this algorithm and the CPLEX solutions are presented. Since
the BIMM was executed, by its authors, in a different machine than ours, its run-
ning time is not shown because a fair comparison cannot be made. Besides, the best
solutions costs are bolded.

Table 5.3 - MPMP results in the OR-library instances (BEASLEY, 1985; BEASLEY,
1990).

CPLEX BIMM PALNS
Instance n p mc cost t(s) cost gap (%) cost gap (%) tavg(s)

pmed1

100

10 5 40592 0.41 41462 2.14 40592 0.00 0.35
20 10 84027 0.39 88745 5.61 84027 0.00 0.46

pmed2
10 5 39421 0.40 40134 1.81 39421 0.00 0.34
20 10 80660 0.54 83021 2.93 80660 0.00 0.44

pmed3
10 5 43345 0.56 44000 1.51 43345 0.00 0.31
20 10 88180 0.36 91166 3.39 88180 0.00 0.46

pmed4
10 5 46854 0.58 51351 9.60 46854 0.00 0.31
20 10 95441 0.67 104680 9.68 95454 0.01 0.50

pmed5
10 5 34167 0.42 35054 2.60 34167 0.00 0.33
20 10 70836 0.29 72192 1.91 70836 0.00 0.49

pmed6

200

10 5 50759 3.59 52734 3.89 50759 0.00 1.09
20 10 102341 3.24 105089 2.69 102341 0.00 1.40

pmed7
10 5 44978 2.86 46621 3.65 44978 0.00 1.12
20 10 91465 2.68 95486 4.40 91465 0.00 1.58

pmed8
10 5 49837 2.88 51064 2.46 49837 0.00 1.15
20 10 101003 2.61 103998 2.97 101003 0.00 1.59

pmed9
10 5 47636 3.14 48638 2.10 47636 0.00 1.29
20 10 96365 3.10 99371 3.12 96365 0.00 1.43

pmed10
10 5 36864 3.38 37968 2.99 36864 0.00 1.11
20 10 74770 4.18 77136 3.16 74770 0.00 1.55

Continued on next page
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Table 5.3: Continuation.
CPLEX BIMM PALNS

Instance n p mc cost t(s) cost gap (%) cost gap (%) tavg(s)

pmed11

300

10 5 46297 19.16 47657 2.94 46297 0.00 2.41
20 10 93903 13.30 94851 1.01 93903 0.00 2.92

pmed12
10 5 53082 18.10 54997 3.61 53082 0.00 2.48
20 10 106863 19.81 111812 4.63 106863 0.00 3.43

pmed13
10 5 48257 18.78 49012 1.56 48257 0.00 2.43
20 10 97837 14.21 99802 2.01 97837 0.00 3.50

pmed14
10 5 55342 20.43 56304 1.74 55342 0.00 2.36
20 10 111488 19.85 113774 2.05 111488 0.00 3.27

pmed15
10 5 47426 17.12 47581 0.33 47426 0.00 2.41
20 10 96190 19.53 98231 2.12 96190 0.00 3.41

pmed16

400

10 5 49941 47.65 51171 2.46 49941 0.00 4.16
20 10 101027 47.73 103530 2.48 101027 0.00 5.08

pmed17
10 5 53403 49.11 55475 3.88 53403 0.00 4.19
20 10 107608 70.44 111679 3.78 107608 0.00 5.99

pmed18
10 5 59089 50.53 59734 1.09 59089 0.00 3.69
20 10 119282 51.68 121202 1.61 119282 0.00 5.42

pmed19
10 5 56234 49.40 57270 1.84 56234 0.00 4.14
20 10 113107 50.92 115688 2.28 113107 0.00 5.09

pmed20
10 5 58389 49.58 59239 1.46 58389 0.00 4.18
20 10 118523 44.04 121468 2.48 118523 0.00 6.01

pmed21

500

10 5 56961 93.45 57735 1.36 56961 0.00 5.51
20 10 114895 87.38 116754 1.62 114895 0.00 8.30

pmed22
10 5 62650 135.57 64217 2.50 62650 0.00 6.26
20 10 125994 149.91 132925 5.50 125994 0.00 8.90

pmed23
10 5 60660 107.13 62488 3.01 60660 0.00 6.44
20 10 122437 100.05 127093 3.80 122437 0.00 8.96

pmed24
10 5 60210 105.11 61725 2.52 60210 0.00 6.46
20 10 121462 127.16 124517 2.52 121462 0.00 8.64

pmed25
10 5 54793 90.52 56284 2.72 54793 0.00 6.41
20 10 111435 83.16 114231 2.51 111435 0.00 9.23

pmed26

600

10 5 59347 154.40 59955 1.02 59347 0.00 10.92
20 10 119392 172.47 121537 1.80 119392 0.00 12.92

pmed27
10 5 57705 143.48 58046 0.59 57705 0.00 8.80
20 10 116498 135.63 117508 0.87 116498 0.00 12.88

pmed28
10 5 58252 195.00 59076 1.41 58252 0.00 9.10
20 10 117933 136.07 120718 2.36 117933 0.00 12.90

pmed29
10 5 60745 160.02 61661 1.51 60745 0.00 7.84
20 10 122339 150.88 125649 2.71 122339 0.00 10.94

pmed30
10 5 65738 177.32 66300 0.85 65738 0.00 9.05
20 10 133069 139.75 133935 0.65 133069 0.00 12.58

pmed31

700

10 5 61463 244.27 62571 1.80 61463 0.00 10.53
20 10 123848 240.92 129303 4.40 123848 0.00 17.44

pmed32
10 5 67073 290.61 68186 1.66 67073 0.00 12.17
20 10 134470 569.17 137108 1.96 134470 0.00 17.93

pmed33
10 5 66024 239.31 67924 2.88 66024 0.00 12.66
20 10 132822 228.99 136182 2.53 132822 0.00 17.88

pmed34
10 5 63475 218.37 64656 1.86 63475 0.00 13.40
20 10 127779 240.73 130290 1.97 127779 0.00 17.66

Continued on next page
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Table 5.3: Conclusion.
CPLEX BIMM PALNS

Instance n p mc cost t(s) cost gap (%) cost gap (%) tavg(s)

pmed35

800

10 5 62408 432.30 62937 0.85 62408 0.00 13.95
20 10 125727 427.53 127188 1.16 125727 0.00 23.02

pmed36
10 5 70805 409.19 72878 2.93 70805 0.00 17.07
20 10 142084 693.30 149330 5.10 142084 0.00 22.61

pmed37
10 5 74125 381.64 74661 0.72 74125 0.00 16.46
20 10 149976 265.97 152607 1.75 149976 0.00 21.73

pmed38

900

10 5 66456 704.86 68235 2.68 66456 0.00 21.31
20 10 133369 1091.66 135485 1.59 133369 0.00 28.50

pmed39
10 5 66129 456.37 66604 0.72 66129 0.00 20.80
20 10 133246 831.62 136345 2.33 133246 0.00 29.47

pmed40
10 5 75386 460.13 78237 3.78 75386 0.00 20.48
20 10 151713 654.96 153743 1.34 151713 0.00 29.43

# best - - 80 - 0 - 79 - -

All CPLEX solutions shown in Table 5.3 are optimal and were achieved within the
time limit of three hours. Our heuristic obtained better MPMP costs than the BIMM
in all the 80 instances, decreasing the total average gap from 2.55% to 0.0002%.
Indeed, 79 of the 80 solutions costs are optimal. Only in the pmed4 instance, with p =
20 and mc = 10, the PALNS did not achieve optimality. However, the solution found
in this instance scenario has a gap of just 0.01% from the optimal one. Moreover, our
method’s MPMP results can be considered consistent since the maximum coefficient
of variation, related to the 20 runs in all instances, was 0.01% for the solutions’ costs.

As one can note from Table 5.3, the proposed method was significantly better than
the CPLEX in terms of computational time in almost all instances. Apart from the
smallest instances (with n = 100), both methods showed similar execution times,
and the PALNS outperforms the CPLEX. Indeed, our method was up to 38 times
faster than the commercial solver in the largest ones. Considering the average of the
executions times in all 80 scenarios, the PALNS was nearly 19 times faster than the
CPLEX.

5.4.3 CMPMP results

Table 5.4 shows the CMPMP results of our method in the instances of Osman
and Christofides (1994) (CCPX01 to CCPX20 ), Baldacci et al. (2002) (CCPX21
to CCPX40 ) and Lorena and Senne (2003), Lorena and Senne (2004) (SJC1 to
SJC4b). These table has the same structure of the previous one.
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Table 5.4 - CMPMP results in Osman and Christofides (1994), Baldacci et al. (2002) and
Lorena and Senne (2003), Lorena and Senne (2004) instances.

CPLEX PALNS
Instance n p mc cost t(s) cost gap (%) tavg(s)

CCPX01

50

10 5 7260 1.02 7260 0.00 0.21
20 10 14773 0.64 14773 0.00 0.32

CCPX02
10 5 6556 0.85 6556 0.00 0.21
20 10 13330 0.56 13330 0.00 0.32

CCPX03
10 5 7092 0.89 7092 0.00 0.21
20 10 14388 0.57 14388 0.00 0.31

CCPX04
10 5 6237 0.61 6237 0.00 0.21
20 10 12768 0.47 12768 0.00 0.32

CCPX05
10 5 6538 0.76 6538 0.00 0.21
20 10 13414 0.53 13414 0.00 0.32

CCPX06
10 5 7108 1.05 7108 0.00 0.21
20 10 14308 0.72 14308 0.00 0.32

CCPX07
10 5 6453 0.94 6453 0.00 0.21
20 10 13148 0.59 13148 0.00 0.33

CCPX08
10 5 6701 0.52 6701 0.00 0.20
20 10 14054 0.55 14054 0.00 0.32

CCPX09
10 5 6166 0.68 6166 0.00 0.20
20 10 12627 0.47 12627 0.00 0.32

CCPX10
10 5 7081 0.77 7081 0.00 0.21
20 10 14407 0.55 14407 0.00 0.32

CCPX11

100

10 5 13312 6.30 13313 0.01 1.13
20 10 27044 7.95 27044 0.00 0.71

CCPX12
10 5 13703 12.97 13703 0.00 1.45
20 10 27619 13.32 27619 0.00 0.73

CCPX13
10 5 14334 13.60 14334 0.00 1.13
20 10 28875 51.75 28875 0.00 0.71

CCPX14
10 5 13466 7.77 13466 0.00 0.99
20 10 27582 13.96 27582 0.00 0.72

CCPX15
10 5 14343 10.67 14343 0.00 1.18
20 10 28917 10.05 28917 0.00 0.71

CCPX16
10 5 13165 17.23 13165 0.00 2.26
20 10 26315 70.42 26318 0.01 0.72

CCPX17
10 5 14574 13.09 14574 0.00 2.78
20 10 29237 60.49 29248 0.04 0.72

CCPX18
10 5 14618 11.45 14618 0.00 1.42
20 10 29392 11.75 29392 0.00 0.72

CCPX19
10 5 13945 12.51 13946 0.01 2.27
20 10 28111 17.66 28111 0.00 0.74

CCPX20
10 5 14609 13.37 14609 0.00 1.42
20 10 29420 29.74 29420 0.00 0.72

Continued on next page
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Table 5.4: Continuation.
CPLEX PALNS

Instance n p mc cost t(s) cost gap (%) tavg(s)

CCPX21

150

15 5 16940 87.80 16940 0.00 25.42
20 10 43455 898.78 43458 0.01 7.79

CCPX22
15 5 17153 78.45 17153 0.00 5.92
20 10 44048 648.11 44048 0.00 7.25

CCPX23
15 5 16089 77.81 16089 0.00 12.43
20 10 40457 741.33 40457 0.00 6.98

CCPX24
15 5 17196 99.16 17196 0.00 5.87
20 10 43741 749.66 43741 0.00 7.10

CCPX25
15 5 16823 98.90 16823 0.00 6.62
20 10 42721 703.69 42721 0.00 7.17

CCPX26
15 5 17398 228.28 17405 0.04 5.99
20 10 44057 803.07 44057 0.00 7.15

CCPX27
15 5 16608 63.74 16608 0.00 6.40
20 10 43543 657.55 43541 0.00 6.98

CCPX28
15 5 16628 77.31 16628 0.00 5.39
20 10 42071 874.13 42071 0.00 6.85

CCPX29
15 5 16842 74.53 16842 0.00 19.61
20 10 43471 609.52 43471 0.00 7.34

CCPX30
15 5 16342 104.93 16343 0.01 8.85
20 10 41844 888.72 41844 0.00 6.88

CCPX31

200

20
5 18844 1574.28 18845 0.01 81.06
10 57557 10801.00 57518 -0.07 28.71

CCPX32 20
5 18471 10800.00 18471 0.00 20.86
10 56390 3153.30 56392 0.00 16.48

CCPX33 20
5 18926 545.05 18927 0.01 11.44
10 58227 10800.80 58227 0.00 13.88

CCPX34 20
5 18266 478.33 18266 0.00 14.25
10 56996 2462.55 56995 0.00 13.57

CCPX35 20
5 18949 142.71 18949 0.00 23.45
10 59257 10800.00 59257 0.00 20.80

CCPX36 20
5 17840 134.00 17840 0.00 12.44
10 56663 1693.63 56663 0.00 11.80

CCPX37 20
5 18608 497.20 18608 0.00 38.57
10 57759 2522.29 57760 0.00 17.10

CCPX38 20
5 18793 439.09 18794 0.01 49.24
10 55381 2790.44 55380 0.00 36.43

CCPX39 20
5 18241 196.84 18241 0.00 26.51
10 54097 2204.17 54097 0.00 14.18

CCPX40 20
5 18338 574.23 18338 0.00 13.35
10 58469 10801.10 58442 -0.05 11.52

SJC1 100
10 5 211622 4.34 211622 0.00 0.93
20 10 432101 6.13 432101 0.00 0.67

SJC2 200
15 5 426525 781.34 426525 0.00 23.37
20 10 1042490 876.84 1344710 28.99 50.62

SJC3a 300 25
5 576200 988.68 576200 0.00 42.76
10 1735320 10801.20 1713450 -1.26 42.04

SJC3b 300 30
5 520050 803.34 520164 0.02 46.68
10 1537630 10802.40 1537610 0.00 45.58

SJC4a 402 30
5 772352 2681.67 772681 0.04 122.39
10 2281640 10800.30 2274990 -0.29 72.54

SJC4b 402 40
5 647064 2123.86 647342 0.04 136.40
10 2001770 10800.10 1969080 -1.63 112.91

Continued on next page
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Table 5.4: Conclusion.
CPLEX PALNS

Instance n p mc cost t(s) cost gap (%) tavg(s)
# best - - 83 - 76 - -

From the 92 CMPMP instances scenarios, the PALNS achieved the best solutions
costs in 76 of them. In these 76 instances, our method obtained 65 solutions equal
to the CPLEX’s and improved the best-known solutions in nine instances (negative
gap). Considering the others 16 instances where our method did not found the best
solutions, the gap in 15 of them was not greater than 0.04%. The outlier was instance
SJC2, with p = 20 and mc = 10, with a gap of 28.99%. Besides this case, it can be
considered that the PALNS obtained consistent results, as results presented in the
previous subsection. The maximum coefficient of variation, related to the 20 runs of
our heuristic in all instances, was 0.2% for the solutions costs.

Regarding the computational times, the proposed heuristic was significantly better
than the CPLEX in all instances. The PALNS was at least 10 times faster than the
commercial solver in 59% of the instances and at least 100 times faster in 21% of
them. For example, in instance CCPX40, with p = 20 and mc = 10, our method
was 938 times faster than CPLEX and still obtained a gap of −0.05%.

5.4.4 MPCP results

In Table 5.5, the MPCP tests results in the OR-library instances are presented. This
table has the same structure than the previous ones and we also tested each instance
with two pairs of p and mc values.

Table 5.5 - MPCP results in the OR-library instances (BEASLEY, 1985; BEASLEY,
1990).

CPLEX PALNS
Instance n p mc cost t(s) cost gap (%) tavg(s)

pmed1

100

10 5 651 148.35 663 1.84 0.35
20 10 1286 181.79 1311 1.94 0.53

pmed2
10 5 672 135.68 674 0.30 0.35
20 10 1320 487.84 1325 0.38 0.51

pmed3
10 5 713 218.70 719 0.84 0.35
20 10 1506 1.40 1506 0.00 0.50

pmed4
10 5 744 673.95 750 0.81 0.36
20 10 1458 2508.49 1474 1.10 0.52

pmed5
10 5 607 16.19 607 0.00 0.35
20 10 1215 187.08 1224 0.74 0.49

Continued on next page
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Table 5.5: Continuation.
CPLEX PALNS

Instance n p mc cost t(s) cost gap (%) tavg(s)

pmed6

200

10 5 454 10800.20 452 -0.44 1.06
20 10 875 7729.60 891 1.83 1.47

pmed7
10 5 418 10800.20 421 0.72 1.07
20 10 819 10800.00 826 0.85 1.53

pmed8
10 5 472 1167.64 474 0.42 1.07
20 10 942 5589.05 943 0.11 1.47

pmed9
10 5 441 5929.48 441 0.00 1.06
20 10 879 547.02 886 0.80 1.37

pmed10
10 5 374 1285.30 377 0.80 1.05
20 10 754 4.85 757 0.40 1.40

pmed11

300

10 5 311 10800.30 314 0.96 2.14
20 10 608 8175.55 614 0.99 3.01

pmed12
10 5 344 9642.45 345 0.29 2.18
20 10 740 9.71 740 0.00 2.79

pmed13
10 5 323 10800.20 323 0.00 2.17
20 10 633 2769.54 640 1.11 2.86

pmed14
10 5 356 5013.15 357 0.28 2.07
20 10 736 78.81 739 0.41 2.33

pmed15
10 5 311 10800.30 311 0.00 2.19
20 10 611 8254.75 615 0.65 2.96

pmed16

400

10 5 246 10800.40 246 0.00 3.74
20 10 483 10800.10 485 0.41 5.12

pmed17
10 5 237 10800.30 237 0.00 3.82
20 10 468 10800.10 471 0.64 4.98

pmed18
10 5 278 10800.50 278 0.00 3.78
20 10 556 10786.30 560 0.72 4.68

pmed19
10 5 248 10801.20 249 0.40 3.90
20 10 483 10800.10 486 0.62 5.45

pmed20
10 5 269 10800.40 271 0.74 3.82
20 10 529 10800.10 533 0.76 5.24

pmed21

500

10 5 213 10800.50 213 0.00 5.81
20 10 416 10800.10 421 1.20 7.72

pmed22
10 5 247 10800.50 240 -2.83 5.38
20 10 496 10800.30 499 0.60 6.02

pmed23
10 5 232 10800.30 230 -0.86 6.01
20 10 449 10800.10 454 1.11 8.15

pmed24
10 5 218 10800.60 218 0.00 5.74
20 10 431 10802.40 438 1.62 7.00

pmed25
10 5 234 10800.30 235 0.43 5.76
20 10 463 4719.56 466 0.65 7.30

pmed26

600

10 5 201 10801.30 196 -2.49 8.28
20 10 387 10800.10 390 0.78 10.50

pmed27
10 5 194 10801.30 194 0.00 8.05
20 10 388 10800.10 391 0.77 10.60

pmed28
10 5 238 571.51 238 0.00 7.07
20 10 556 10.92 556 0.00 10.13

pmed29
10 5 205 10800.30 199 -2.93 8.14
20 10 391 10812.50 391 0.00 11.07

pmed30
10 5 215 10800.40 211 -1.86 8.01
20 10 428 10837.20 430 0.47 9.30

Continued on next page
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Table 5.5: Conclusion.
CPLEX PALNS

Instance n p mc cost t(s) cost gap (%) tavg(s)

pmed31

700

10 5 166 10800.50 160 -3.61 11.29
20 10 315 10800.10 315 0.00 15.79

pmed32
10 5 299 98.35 299 0.00 9.14
20 10 697 14.46 697 0.00 13.61

pmed33
10 5 179 10800.50 169 -5.59 11.14
20 10 336 10800.40 337 0.30 14.01

pmed34
10 5 204 10800.50 195 -4.41 10.52
20 10 438 247.54 438 0.00 12.12

pmed35

800

10 5 165 10800.80 159 -3.64 14.67
20 10 317 10800.20 319 0.63 19.99

pmed36
10 5 179 6857.59 181 1.12 13.75
20 10 426 35.04 426 0.00 18.36

pmed37
10 5 171 10800.80 168 -1.75 14.14
20 10 344 10800.20 345 0.29 16.16

pmed38

900

10 5 177 10801.60 167 -5.65 17.57
20 10 384 538.66 384 0.00 23.31

pmed39
10 5 313 820.39 313 0.00 14.99
20 10 722 32.40 722 0.00 20.91

pmed40
10 5 175 10801.00 154 -12.00 19.06
20 10 304 10800.3 306 0.66 24.04

# best - - 66 - 36 - -

As can be observed from Table 5.5, the PALNS achieved the best results in 36 of
80 the MPCP instances scenarios. From these 36 best results, our method obtained
23 solutions equal to the CPLEX’s and improved the best-known solutions in 13
instances (negative gap). Considering the other 44 instances scenarios in which our
heuristic did not found the best solutions, the maximum gap observed was 1.94%.
However, when taking into account all instances, the PALNS presented an overall
average gap of −0.18%. Moreover, the generated solutions are consistent, as the
maximum coefficient of variation observed, related to the 20 runs in all instances,
was of 0.65%.

The PALNS did not performed in the MPCP, in terms of solution quality, as it
performed in the MPMP and CMPMP, because in the MPCP there are several
solutions with the same cost. Then, in some instances, our heuristic got stuck in
some plateau and could not found an optimal solution, only local ones.

Regarding the execution time, as results presented in the previous subsections, the
PALNS performance was significantly better than CPLEX’s. In 83% of the instances
scenarios, our method was at least 100 times faster than CPLEX and at least 1000
times faster in 55% of them. For example, in instance pmed40, with p = 10 and
mc = 5, the PALNS improved the CPLEX solution in 12%, taking 568 times less
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computational time.

5.5 Conclusions and future directions

An effective parallel adaptive large neighborhood search heuristic was proposed for
facility location problems with multiple assignments in this work. We applied the
PALNS in the multiple p-median problem, in the capacitated multiple p-median
problem and in the multiple p-center problem.

The computational tests results show that our heuristic can generate optimal solu-
tions at a low computational cost in all problems tested. Specifically, the PALNS
found 79 optimal solutions of the 80 instances scenarios spending, on average, nearly
19% times less execution time than the commercial solver. In addition, our heuristic
outperformed the BIMM algorithm in all instances.

In the CMPMP context, the PALNS found the best solution in 76 of the 92 instances.
From these 76 best solutions costs, our method could outperform the CPLEX in
nine of them. The gap between the PALNS solutions and the CPLEX solutions in
15 of the 16 remaining instances was at most 0.04%. In CMPMP experiments, the
proposed heuristic was, on average, 97 times faster than the CPLEX.

Regarding the MPCP tests, the PALNS generated the best solutions in 36 of the
80 instances. Indeed, 13 of these 36 solutions were better than the CPLEX’S. The
maximum gap observed in the remaining 44 instances was 1.94%. On average, the
PALNS was nearly 1007 times faster than the commercial solver in the MPCP tests.

However, further investigation needs to be done to improve the results in all the
problems. In the MPMP, parameters should be adjusted to reduce the execution
time on instances with 100 vertices. For the CMPMP and MPCP, more operators
should be implemented in order to improve the solutions. Furthermore, an alter-
native MPCP objective function should be used to add more information to the
solution cost.
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6 CONCLUSIONS AND FUTURE DIRECTIONS

Four new overlapping clustering problems variations, namely overlapping cluster
editing problem, p-median problem with overlap control, capacitated multiple p-
median problem and the multiple p-center problem were proposed in this work.
These modifications were introduced to deal with non-disjoint clusters that arise
from real-world applications since the original problems do not handle it. Efficient
methods were proposed to solve all these new problems. Furthermore, a hybrid
heuristic was introduced for the overlapping community detection problem. In all
contexts, the solution algorithms could generate good quality solutions.

In Chapter 2, three versions of a hybrid heuristic were proposed to solve the OCEP.
These hybrid heuristics are composed by coupling two metaheuristics with a MILP.
The HHM1 presented the best results in the cluster editing cost, execution time and
controlling the overlap between the clusters.

With the good results obtained by the first overlapping clustering MILP from the
Chapter 2, we decided to apply it to the overlapping community detection problem.
Then, a hybrid heuristic was introduced to solve the OCDP by conductance min-
imization. Two state-of-art OCDP methods from the literature were implemented
to generate a set of input clusters to the MILP. Also, local search procedures were
used to improve the solutions found by the hybrid heuristic. Experimental tests in-
dicate that the proposed method can detect overlapping clusters with better overall
conductance than some state-of-art algorithms.

Driven by the good results achieved by the overlapping clustering model in both
Chapters 2 and 3, the OCM was applied to the context of the p-median problem.
Then, the PMPOC was presented in Chapter 4 and a parallel branch-and-price
algorithm to solve it was developed. Through a series of computational tests, it was
shown that the model can control the overlap between the facilities and the proposed
B&P can find good-quality solutions.

Following the work developed in the Chapter 4, another study in the facility location
context was done in Chapter 5. In this chapter, a parallel adaptive large neighbor-
hood search was introduced to solve the MPMP, the CMPMP and the MPCP, which
the two later ones were proposed in this work. The PALNS obtained the best known
solutions in 76% of the instances at a low execution time.

These contributions can be considered useful to overlapping clustering problems
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since new problems variations were introduced to allow clusters to overlap. In ad-
dition, it was shown that the OCM is suitable to different overlapping clustering
contexts as it was successfully applied to the OCEP, to the OCDP and to the PM-
POC.

For future work, the OCM could be applied to another facility location problems,
such as the CPMP and the PCP. In this sense, the proposed B&P could be adapted to
these problems contexts. Other overlapping clustering problems should be explored
as well. In addition, the PALNS could also be applied to another facility location
problems with multiple assignment, e.g., the capacitated multiple p-center problem.
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APPENDIX A - OCEP DETAILED RESULTS

Table A.1 shows the results, in terms of overlapping cluster editing costs, of the tests
performed in order to evaluate the metaheuristics’ influence on each of the three
models. In these tests, 12 random graphs, three of each value n = {25, 50, 100, 200},
were used.

Table A.1 - Overlapping cluster editing costs of all hybrid heuristic versions in 12 random
graphs instances. For each MILP it is shown the results of tests using just
BRKGA, just SA and both metaheuristics to generate input clusters.

M1 M2 M3
Instance z BRKGA SA both BRKGA SA both BRKGA SA both

cmpr_101_5_25 0 68 58 68 52 61 48 52 61 48
1 51 43 42 47 57 46 47 57 46

cmpr_102_1_25 0 35 62 39 31 36 23 31 36 23
1 21 44 20 26 36 21 26 36 21

cmpr_102_4_25 0 68 74 66 51 60 60 51 60 60
1 46 43 45 48 70 56 48 70 56

cmpr_105_2_50 0 132 194 81 114 123 104 114 123 101
1 152 187 90 102 105 96 102 105 96

cmpr_105_3_50 0 177 202 204 162 188 152 152 188 152
1 144 157 134 153 159 142 153 159 140

cmpr_105_6_50 0 360 446 355 333 319 303 333 319 303
1 315 299 283 322 321 312 322 321 312

cmpr_109_1_100 0 249 485 219 281 256 299 281 265 299
1 202 186 184 291 317 263 293 317 263

cmpr_109_2_100 0 505 805 487 512 488 445 512 488 445
1 449 705 417 486 613 439 486 613 452

cmpr_110_8_100 0 1971 2364 1931 1917 1829 1825 1917 1829 1825
1 1836 1804 1715 2107 1827 1793 2107 1827 1824

cmpr_113_1_200 0 939 1123 871 1083 1432 1050 1083 1432 1054
1 856 1254 808 1088 1076 1034 1083 868 851

cmpr_113_2_200 0 1920 2544 2107 2090 1941 2037 2090 1941 2037
1 1854 1800 1787 2020 2099 1994 2020 1876 1994

cmpr_113_10_200 0 9795 9709 9477 9595 9106 8967 9595 9029 8979
1 8658 8703 8438 9769 8808 8934 9769 8915 8934

Best values 3 2 19 2 3 19 3 4 18

Table A.2 shows results of the tests in random graphs (BASTOS et al., 2016) with
up to 100 vertices in which the optimal cluster editing cost is known. These opti-
mal costs were obtained by CPLEX (IBM Corporation, 2018) solving the Charikar
et al. (2005) linear integer programming model. The CPLEX execution time for
solving this model are also presented. The cluster editing costs of the solutions gen-
erated by the BRKGA and SA metaheuristics and their execution times, in seconds,
are shown. With regard to hybrid heuristic variations (HHM1, HHM2 and HHM3)
results, in Table A.2, the solutions costs, the execution time, in seconds, and the
number of vertices belonging to more than one cluster (ovlp) are presented. In par-
ticular, the execution time of each hybrid heuristic versions presented in all tables
is only the execution time spent by CPLEX in the resolution of the models. Then,
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the total execution time of the hybrid heuristic versions is composed by the sum of
metaheuristics’ time and the CPLEX time.

Table A.3 presents results of the hybrid heuristic tests in random graphs with sizes
ranging from 50 vertices to 100 vertices. This table has the same structure as Table
A.2, except for the results of the Charikar et al. (2005) model resolution. Since 3h
was used as CPLEX maximum execution time, it was not possible to obtain cluster
editing optimal solutions for these instances.

Table A.4 presents results of the hybrid heuristic tests in random graphs with sizes
ranging from 200 vertices to 1000 vertices. This table has the same structure as
Table A.3. It were also not possible to obtain cluster editing optimal solutions for
instances presented in Table A.4.

In Table A.5 results of the all hybrid heuristic versions tests on the 30 LF benchmark
graphs are shown. These instances have sizes ranging from 25 to 1000 vertices. In
order to differentiate each graph, the number of edges (m) is presented. For each
size, there are five instances that have graph density ranging from sparse to dense.
In addition, the results of the supervised metric FBCubed are shown for the three
variations of the hybrid heuristic. All the 30 instances have ground truth overlapping
clustering.
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APPENDIX B - LF BENCHMARK DETAILED RESULTS

In this appendix, the deitaled results of tests performed on the 24 LF benchmark
graphs are shown. These results are divided into four tables that presents the results
of each method in each set of instances.

Table B.1 - Results of each algorithm in the set LF1 of LF benchmark graphs.

Metrics values
Instance m N Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

LFB1 76116 1949

auc-cond 0.083 0.103 0.080 0.100 0.078 0.079
avg-cond 0.100 0.175 0.101 0.104 0.099 0.100
GNMI 0.959 0.995 0.988 0.992 0.999 1.000
F1avg 0.983 0.961 0.971 0.997 0.999 1.000

LFB2 77467 2301

auc-cond 0.161 0.199 0.176 0.183 0.174 0.187
avg-cond 0.185 0.251 0.192 0.183 0.175 0.204
GNMI 0.912 1.000 0.924 0.950 0.954 0.998
F1avg 0.857 0.977 0.833 0.887 0.890 0.987

LFB3 75469 2384

auc-cond 0.227 0.267 0.249 0.258 0.247 0.252
avg-cond 0.257 0.333 0.270 0.254 0.245 0.273
GNMI 0.874 0.999 0.897 0.943 0.952 0.996
F1avg 0.854 0.966 0.833 0.889 0.893 0.984

LFB4 75928 2517

auc-cond 0.280 0.324 0.306 0.316 0.302 0.311
avg-cond 0.315 0.384 0.332 0.316 0.308 0.339
GNMI 0.867 0.999 0.891 0.942 0.954 0.995
F1avg 0.833 0.972 0.793 0.889 0.896 0.984

LFB5 75461 2781

auc-cond 0.328 0.366 0.355 0.359 0.344 0.352
avg-cond 0.362 0.449 0.383 0.362 0.352 0.376
GNMI 0.847 0.997 0.897 0.948 0.958 0.990
F1avg 0.829 0.950 0.792 0.895 0.904 0.976

LFB6 76040 3065

auc-cond 0.369 0.402 0.398 0.397 0.378 0.387
avg-cond 0.402 0.473 0.430 0.406 0.397 0.419
GNMI 0.851 0.997 0.866 0.953 0.961 0.990
F1avg 0.822 0.957 0.780 0.906 0.914 0.980

Best values - - - 5 5 0 0 7 7
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Table B.2 - Results of each algorithm in the set LF2 of LF benchmark graphs.

Metrics value
Instance m N Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

LFB7 76266 3877

auc-cond 0.267 0.304 0.298 0.300 0.235 0.234
avg-cond 0.299 0.357 0.328 0.308 0.297 0.298
GNMI 0.901 0.984 0.940 0.995 1.000 1.000
F1avg 0.978 0.962 0.947 0.994 1.000 1.000

LFB8 75996 4309

auc-cond 0.350 0.372 0.379 0.369 0.332 0.336
avg-cond 0.371 0.399 0.405 0.367 0.358 0.360
GNMI 0.918 0.995 0.923 0.990 0.994 0.996
F1avg 0.933 0.980 0.871 0.970 0.974 0.980

LFB9 75282 4731

auc-cond 0.394 0.422 0.444 0.419 0.395 0.396
avg-cond 0.424 0.466 0.476 0.412 0.402 0.413
GNMI 0.888 0.994 0.880 0.979 0.981 0.988
F1avg 0.898 0.967 0.811 0.943 0.944 0.961

LFB10 76919 4553

auc-cond 0.440 0.463 0.497 0.461 0.439 0.437
avg-cond 0.469 0.506 0.527 0.456 0.447 0.455
GNMI 0.809 0.992 0.865 0.975 0.978 0.984
F1avg 0.882 0.959 0.758 0.939 0.942 0.961

LFB11 75818 4793

auc-cond 0.478 0.500 0.546 0.498 0.467 0.467
avg-cond 0.508 0.553 0.577 0.502 0.493 0.497
GNMI 0.758 0.990 0.834 0.968 0.972 0.977
F1avg 0.856 0.947 0.729 0.932 0.940 0.951

LFB12 76471 5508

auc-cond 0.508 0.529 0.578 0.713 0.736 0.746
avg-cond 0.539 0.578 0.613 0.521 0.500 0.505
GNMI 0.712 0.985 0.705 0.035 0.051 0.053
F1avg 0.811 0.930 0.674 0.617 0.630 0.621

Best values - - - 2 7 0 0 10 9

Table B.3 - Results of each algorithm in the set LF3 of LF benchmark graphs.

Metrics values
Instance m N Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

LFB13 76111 1935

auc-cond 0.437 0.277 0.208 0.262 0.188 0.187
avg-cond 0.099 0.161 0.100 0.105 0.100 0.100
GNMI 0.952 0.994 0.986 0.995 0.999 1.000
F1avg 0.978 0.968 0.974 0.997 0.999 1.000

LFB14 76573 5210

auc-cond 0.482 0.398 0.348 0.180 0.173 0.173
avg-cond 0.469 0.337 0.241 0.255 0.222 0.240
GNMI 0.907 0.992 0.904 0.958 0.969 0.996
F1avg 0.780 0.875 0.738 0.826 0.790 0.822

LFB15 76223 6403

auc-cond 0.479 0.493 0.461 0.076 0.096 0.076
avg-cond 0.509 0.459 0.379 0.311 0.290 0.304
GNMI 0.850 0.983 0.840 0.065 0.190 0.170
F1avg 0.659 0.772 0.619 0.562 0.529 0.525

LFB16 76464 6531

auc-cond 0.507 0.559 0.553 0.552 0.492 0.701
avg-cond 0.507 0.549 0.491 0.400 0.381 0.386
GNMI 0.753 0.979 0.688 0.036 0.125 0.158
F1avg 0.566 0.731 0.564 0.487 0.442 0.448

LFB17 76288 6678

auc-cond 0.570 0.610 0.615 0.699 0.735 0.737
avg-cond 0.546 0.612 0.590 0.513 0.499 0.482
GNMI 0.606 0.968 0.574 0.900 0.916 0.122
F1avg 0.537 0.677 0.532 0.612 0.579 0.448

LFB18 76244 6436

auc-cond 0.269 0.304 0.291 0.299 0.237 0.239
avg-cond 0.606 0.659 0.653 0.569 0.552 0.557
GNMI 0.559 0.958 0.498 0.044 0.057 0.089
F1avg 0.526 0.612 0.520 0.472 0.445 0.451

Best values - - - 2 9 0 1 7 7
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Table B.4 - Results of each algorithm in the set LF4 of LF benchmark graphs.

Metrics values
Instance m N Metric LECM LFMbest NISE HH HH-CR HH-CRLF M

LFB19 76951 3991

auc-cond 0.454 0.415 0.396 0.410 0.307 0.307
avg-cond 0.299 0.369 0.328 0.308 0.296 0.297
GNMI 0.902 0.985 0.935 0.994 1.000 1.000
F1avg 0.979 0.955 0.961 0.994 1.000 1.000

LFB20 75960 7319

auc-cond 0.479 0.500 0.511 0.637 0.671 0.685
avg-cond 0.512 0.456 0.442 0.400 0.374 0.391
GNMI 0.948 0.985 0.916 0.981 0.988 0.996
F1avg 0.807 0.832 0.776 0.840 0.816 0.827

LFB21 75518 8159

auc-cond 0.538 0.572 0.595 0.690 0.723 0.728
avg-cond 0.526 0.551 0.550 0.448 0.422 0.425
GNMI 0.862 0.973 0.764 0.051 0.134 0.140
F1avg 0.654 0.722 0.642 0.556 0.538 0.533

LFB22 76449 8330

auc-cond 0.599 0.628 0.660 0.711 0.753 0.753
avg-cond 0.572 0.613 0.634 0.524 0.497 0.506
GNMI 0.717 0.963 0.599 0.050 0.119 0.137
F1avg 0.567 0.632 0.547 0.500 0.478 0.493

LFB23 75908 8475

auc-cond 0.646 0.670 0.704 0.722 0.557 0.764
avg-cond 0.630 0.666 0.696 0.591 0.570 0.571
GNMI 0.577 0.941 0.480 0.054 0.104 0.115
F1avg 0.503 0.554 0.480 0.474 0.450 0.449

LFB24 76670 8533

auc-cond 1.000 1.000 1.000 1.000 1.000 1.000
avg-cond 0.680 0.706 0.741 0.650 0.631 0.641
GNMI 0.475 0.907 0.446 0.059 0.077 0.874
F1avg 0.431 0.468 0.418 0.456 0.438 0.490

Best values - - - 4 8 1 2 11 6
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APPENDIX C - DETAILED B&P PMPOC RESULTS

Table C.1 shows the B&P results in all the 40 OR-library instances with each pair
of z and α values. This table presents the detailed results of Table 4.2.

Table C.1 - B&P results with overlap control in OR-library instances (BEASLEY, 1985;
BEASLEY, 1990).

B&P
Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed1 100 5 5819

0
0.05 1 0 0 200905 11264 104 0.04 138.32
0.50 1 0 0 200905 13165 104 0.04 110.96
0.95 1 0 0 200905 13837 104 0.04 111.30

0.5
0.05 118 10 13 23589205 10771 108 0.05 11928.80
0.50 1 0 0 200905 13949 130 0.17 107.64
0.95 1 0 0 200905 14776 130 0.20 108.23

1
0.05 130 10 29 25988005 10150 106 0.03 11579.30
0.50 1 0 0 200905 15712 141 0.32 100.66
0.95 1 0 0 200905 16006 139 0.27 101.75

pmed2 100 10 4093

0
0.05 1 0 0 200910 9514 109 0.09 119.88
0.50 1 0 0 200910 11896 109 0.09 102.13
0.95 1 0 0 200910 9860 109 0.09 100.72

0.5
0.05 5 2 2 1000510 10269 117 0.09 1445.54
0.50 1 0 0 200910 15694 164 0.31 101.71
0.95 1 0 0 200910 16379 165 0.35 102.97

1
0.05 3 1 1 600710 11881 124 0.13 504.41
0.50 1 0 0 200910 17957 172 0.39 97.35
0.95 1 0 0 200910 16142 174 0.36 94.77

pmed3 100 10 4250

0
0.05 1 0 0 200910 12066 109 0.09 134.36
0.50 1 0 0 200910 11318 109 0.09 98.57
0.95 1 0 0 200910 11739 109 0.09 102.19

0.5
0.05 128 8 0 25588210 14560 202 0.70 11643.80
0.50 1 0 0 200910 20991 206 0.65 101.27
0.95 1 0 0 200910 17080 161 0.34 102.57

1
0.05 132 9 10 26387810 12662 122 0.13 11655.40
0.50 1 0 0 200910 19085 174 0.32 102.34
0.95 1 0 0 200910 19177 174 0.38 96.42

pmed4 100 20 3034

0
0.05 1 0 0 200920 11905 119 0.19 131.22
0.50 1 0 0 200920 12314 120 0.20 100.09
0.95 1 0 0 200920 12302 119 0.19 93.39

0.5
0.05 135 9 17 25188420 14294 137 0.19 11966.40
0.50 1 0 0 200920 26051 255 0.64 99.67
0.95 1 0 0 200920 22183 213 0.47 95.00

1
0.05 136 8 1 27187419 15879 149 0.22 11554.90
0.50 1 0 0 200920 27497 271 0.64 95.74
0.95 1 0 0 200920 25895 231 0.49 93.51

Continued on next page
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed5 100 33 1355

0
0.05 1 0 0 200956 9132 132 0.32 138.94
0.50 1 0 0 200956 8628 132 0.32 95.52
0.95 1 0 0 5356 8628 132 0.32 1.79

0.5
0.05 173 10 41 27587256 14478 281 0.61 11770.60
0.50 1 0 0 200956 22182 251 0.44 97.93
0.95 1 0 0 200956 24095 290 0.57 95.03

1
0.05 37 18 14 3799156 13282 160 0.32 7018.03
0.50 1 0 0 200956 18133 222 0.57 105.43
0.95 1 0 0 200956 20208 233 0.59 104.68

pmed6 200 5 7824

0
0.05 1 0 0 400805 13823 205 0.03 332.25
0.50 1 0 0 400805 13255 205 0.03 247.71
0.95 1 0 0 400805 14057 207 0.04 233.62

0.5
0.05 64 7 0 25588205 10005 225 0.13 14526.70
0.50 1 0 0 400805 15694 238 0.12 238.28
0.95 1 0 0 400805 15836 260 0.14 219.86

1
0.05 52 6 0 20790605 10200 200 0.00 12188.10
0.50 1 0 0 400805 18678 267 0.22 244.64
0.95 1 0 0 400805 17700 270 0.27 244.14

pmed7 200 10 5631

0
0.05 1 0 0 400810 12241 209 0.05 349.38
0.50 1 0 0 400810 10754 209 0.05 221.74
0.95 1 0 0 400810 10937 209 0.05 209.76

0.5
0.05 64 7 0 25588210 15154 301 0.36 12850.10
0.50 1 0 0 400810 17904 314 0.28 238.86
0.95 1 0 0 400810 20065 306 0.30 234.16

1
0.05 50 7 7 19991010 11138 223 0.06 12416.50
0.50 1 0 0 400810 18694 327 0.30 248.47
0.95 1 0 0 400810 20652 319 0.35 237.10

pmed8 200 20 4445

0
0.05 1 0 0 400820 12073 219 0.10 273.42
0.50 1 0 0 400820 12199 219 0.10 202.74
0.95 1 0 0 400820 11615 219 0.10 200.39

0.5
0.05 64 6 0 25588220 22469 460 0.62 13337.50
0.50 1 0 0 400820 22887 390 0.34 228.54
0.95 1 0 0 400820 23858 389 0.35 221.48

1
0.05 54 6 1 20790620 64590 1153 1.00 12789.00
0.50 1 0 0 400820 27940 455 0.50 235.84
0.95 1 0 0 400820 26610 448 0.44 228.09

pmed9 200 40 2734

0
0.05 1 0 0 400840 11727 239 0.20 310.20
0.50 1 0 0 400840 12311 241 0.21 197.55
0.95 1 0 0 400840 11518 240 0.20 193.22

0.5
0.05 25 9 7 9996040 34889 742 0.77 11618.10
0.50 1 0 0 400840 32755 570 0.60 227.75
0.95 1 0 0 400840 27124 465 0.46 220.36

1
0.05 56 7 1 20786599 85192 1690 0.91 12379.20
0.50 1 0 0 400840 41840 692 0.63 222.79
0.95 1 0 0 400840 37032 640 0.59 216.77

Continued on next page
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed10 200 67 1255

0
0.05 1 0 0 400872 9129 266 0.33 334.34
0.50 1 0 0 400872 9267 268 0.34 211.15
0.95 1 0 0 400872 9033 266 0.33 210.30

0.5
0.05 1 0 0 400872 49318 1177 0.87 214.89
0.50 1 0 0 400872 27776 579 0.60 246.78
0.95 1 0 0 400872 29290 670 0.76 227.90

1
0.05 62 9 5 22389872 70019 1759 0.93 13029.50
0.50 1 0 0 400872 60305 1226 0.79 221.40
0.95 1 0 0 400872 210567 4128 1.00 157.67

pmed11 300 5 7696

0
0.05 1 0 0 600705 11469 304 0.01 597.52
0.50 1 0 0 600705 13293 304 0.01 513.19
0.95 1 0 0 600705 13907 304 0.01 461.08

0.5
0.05 31 5 0 18591705 11537 377 0.24 14649.80
0.50 1 0 0 600705 17484 416 0.20 498.73
0.95 1 0 0 600705 13190 360 0.16 357.98

1
0.05 28 5 0 16792605 18500 525 0.62 13652.80
0.50 1 0 0 600705 16483 367 0.17 410.12
0.95 1 0 0 600705 14419 366 0.18 376.88

pmed12 300 10 6634

0
0.05 1 0 0 600710 13789 309 0.03 567.32
0.50 1 0 0 600710 13334 309 0.03 329.61
0.95 1 0 0 600710 13452 309 0.03 331.69

0.5
0.05 31 5 0 18591710 16895 551 0.60 14217.40
0.50 1 0 0 600710 18197 431 0.22 378.47
0.95 1 0 0 600710 17404 412 0.19 356.51

1
0.05 1 0 0 600710 24455 583 0.53 485.07
0.50 1 0 0 600710 19027 444 0.24 387.54
0.95 1 0 0 600710 22138 469 0.27 373.80

pmed13 300 30 4374

0
0.05 1 0 0 600750 11616 329 0.10 467.67
0.50 1 0 0 600750 11278 329 0.10 318.96
0.95 1 0 0 600750 11540 330 0.10 299.88

0.5
0.05 31 5 0 18591750 26149 792 0.72 13310.10
0.50 1 0 0 600750 25806 616 0.32 385.79
0.95 1 0 0 600750 22168 578 0.33 357.54

1
0.05 7 2 3 4198950 38275 998 0.72 3743.43
0.50 1 0 0 600750 33578 803 0.52 402.01
0.95 1 0 0 600750 35346 856 0.43 385.27

pmed14 300 60 2968

0
0.05 1 0 0 600780 13247 359 0.20 493.01
0.50 1 0 0 600780 14051 359 0.20 332.73
0.95 1 0 0 600780 13538 360 0.20 328.38

0.5
0.05 31 5 0 18591780 57187 1404 0.77 13938.70
0.50 1 0 0 600780 42660 923 0.66 367.50
0.95 1 0 0 600780 43168 895 0.42 358.31

1
0.05 1 0 0 600780 86477 1903 0.84 331.69
0.50 1 0 0 517980 63814 1410 0.65 332.61
0.95 1 0 0 600780 60712 1332 0.48 353.05

Continued on next page
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed15 300 100 1729

0
0.05 1 0 0 600800 11136 399 0.33 507.22
0.50 1 0 0 600800 10994 399 0.33 371.96
0.95 1 0 0 600800 11610 401 0.34 352.78

0.5
0.05 49 13 23 160442 42230 1218 0.61 308.64
0.50 1 0 0 600800 47686 1160 0.59 354.41
0.95 1 0 0 600800 40010 973 0.57 362.70

1
0.05 1 0 0 600800 85200 2200 0.85 360.11
0.50 1 0 0 20900 144343 3196 0.48 9.84
0.95 1 0 0 600800 884197 17831 1.00 248.68

pmed16 400 5 8162

0
0.05 1 0 0 800605 13308 404 0.01 992.98
0.50 1 0 0 800605 14413 404 0.01 642.51
0.95 1 0 0 800605 12618 404 0.01 555.59

0.5
0.05 15 4 0 11995005 10160 425 0.06 14187.00
0.50 1 0 0 800605 16025 503 0.18 749.30
0.95 1 0 0 800605 15834 455 0.10 509.47

1
0.05 15 4 0 11995005 19336 637 0.41 14047.50
0.50 1 0 0 800605 16742 504 0.07 606.03
0.95 1 0 0 800605 15311 486 0.14 577.67

pmed17 400 10 6999

0
0.05 1 0 0 800610 12071 409 0.02 904.88
0.50 1 0 0 800610 12775 409 0.02 491.43
0.95 1 0 0 800610 13515 409 0.02 468.73

0.5
0.05 15 4 0 11995010 16965 708 0.59 12750.50
0.50 1 0 0 800610 18303 533 0.18 539.95
0.95 1 0 0 800610 16283 515 0.13 503.19

1
0.05 15 4 0 11995010 22590 743 0.69 15324.50
0.50 1 0 0 800610 20490 617 0.25 632.36
0.95 1 0 0 800610 20134 600 0.14 577.95

pmed18 400 40 4809

0
0.05 1 0 0 800640 14050 439 0.10 690.93
0.50 1 0 0 800640 14008 442 0.10 471.02
0.95 1 0 0 800640 13962 441 0.10 432.67

0.5
0.05 15 4 0 11995040 47222 1424 0.74 15563.10
0.50 1 0 0 800640 29230 803 0.22 541.18
0.95 1 0 0 800640 28539 778 0.30 499.96

1
0.05 1 0 0 800640 47999 1390 0.77 531.80
0.50 1 0 0 800640 42504 1194 0.42 620.25
0.95 1 0 0 800640 44963 1195 0.31 562.69

pmed19 400 80 2845

0
0.05 1 0 0 800720 14070 480 0.20 1102.12
0.50 1 0 0 800720 13248 481 0.20 513.87
0.95 1 0 0 800720 13127 481 0.20 470.99

0.5
0.05 25 4 12 80965 50524 1699 0.62 155.37
0.50 1 0 0 800720 31414 878 0.27 535.86
0.95 1 0 0 800720 29833 897 0.40 560.86

1
0.05 81 7 38 124144 33535 1186 0.54 174.47
0.50 1 0 0 80720 109321 3144 0.51 61.80
0.95 1 0 0 800720 613532 15645 1.00 358.05
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed20 400 133 1789

0
0.05 1 0 0 800797 13659 532 0.33 756.38
0.50 1 0 0 800797 13651 532 0.33 632.78
0.95 1 0 0 800797 13716 533 0.33 563.57

0.5
0.05 21 6 9 19597 48498 1644 0.62 109.64
0.50 1 0 0 6797 44490 1327 0.43 3.99
0.95 1 0 0 800797 62323 1652 0.54 531.38

1
0.05 1 0 0 5197 64640 2003 0.48 3.65
0.50 1 0 0 28797 214027 5308 0.70 15.81
0.95 1 0 0 1197 2137120 46966 1.00 0.95

pmed21 500 5 9138

0
0.05 1 0 0 1000505 15396 504 0.01 1356.81
0.50 1 0 0 1000505 14735 506 0.01 874.79
0.95 1 0 0 1000505 15481 504 0.01 799.06

0.5
0.05 7 3 0 6997505 20179 612 0.20 12247.30
0.50 1 0 0 1000505 19770 688 0.20 1148.88
0.95 1 0 0 1000505 15496 543 0.05 573.72

1
0.05 7 3 0 6997505 25345 852 0.36 13464.80
0.50 1 0 0 1000505 19782 684 0.10 909.94
0.95 1 0 0 1000505 21548 676 0.20 808.93

pmed22 500 10 8579

0
0.05 1 0 0 1000510 16188 512 0.02 1168.32
0.50 1 0 0 1000510 15998 513 0.03 633.15
0.95 1 0 0 1000510 15123 515 0.03 607.45

0.5
0.05 7 3 0 6997510 26983 1144 0.79 16015.20
0.50 1 0 0 1000510 19893 632 0.13 646.47
0.95 1 0 0 1000510 19555 581 0.03 606.95

1
0.05 7 2 3 6997510 38688 1258 0.19 12583.90
0.50 1 0 0 1000510 25062 731 0.13 949.19
0.95 1 0 0 1000510 26480 824 0.09 830.68

pmed23 500 50 4619

0
0.05 1 0 0 1000550 14808 552 0.10 1334.40
0.50 1 0 0 1000550 14184 554 0.11 607.99
0.95 1 0 0 1000550 13975 549 0.10 560.46

0.5
0.05 139 14 0 14321703 38343 1495 0.67 16037.50
0.50 1 0 0 1000550 28443 1040 0.32 637.29
0.95 1 0 0 1000550 31472 1057 0.25 610.52

1
0.05 1 0 0 4818 50988 1960 0.68 4.16
0.50 1 0 0 1550 28661 1087 0.32 0.98
0.95 1 0 0 1000550 377307 11086 1.00 551.80

pmed24 500 100 2961

0
0.05 1 0 0 1000600 14652 601 0.20 1138.40
0.50 1 0 0 1000600 13986 601 0.20 698.14
0.95 1 0 0 1000600 14427 600 0.20 647.69

0.5
0.05 11 4 5 23451 54226 2132 0.74 60.50
0.50 1 0 0 184600 46908 1595 0.44 125.37
0.95 1 0 0 1000600 54024 1731 0.29 663.46

1
0.05 1 0 0 2973 149804 5004 0.71 2.02
0.50 1 0 0 16600 125461 4029 0.33 9.99
0.95 1 0 0 1000600 1202410 33218 1.00 446.81
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed25 500 167 1828

0
0.05 1 0 0 1000669 12065 668 0.34 873.99
0.50 1 0 0 1000669 12113 668 0.33 816.60
0.95 1 0 0 1000669 12111 668 0.34 861.48

0.5
0.05 13 4 5 21054 32414 1656 0.56 48.64
0.50 13 5 4 7669 8555 1000 0.63 18.70
0.95 1 0 0 156169 66005 2081 0.48 111.21

1
0.05 1 0 0 3167 231018 8174 0.73 2.20
0.50 1 0 0 1169 2677880 73207 1.00 1.07
0.95 1 0 0 1169 2733070 72724 1.00 1.06

pmed26 600 5 9917

0
0.05 1 0 0 1200405 15429 605 0.01 1987.37
0.50 1 0 0 1200405 16914 605 0.01 1072.89
0.95 1 0 0 1200405 15236 606 0.01 960.49

0.5
0.05 3 2 0 3599205 21493 902 0.23 13448.80
0.50 1 0 0 1200405 20938 811 0.13 1472.34
0.95 1 0 0 1200405 32062 1220 1.00 709.35

1
0.05 7 3 0 8396805 25971 1014 0.46 19249.70
0.50 1 0 0 1200405 18935 756 0.07 1527.35
0.95 1 0 0 1200405 25139 765 0.15 1361.90

pmed27 600 10 8307

0
0.05 1 0 0 1200410 13665 609 0.02 1528.70
0.50 1 0 0 1200410 13441 609 0.02 803.63
0.95 1 0 0 1200410 15735 609 0.02 736.49

0.5
0.05 3 2 0 3599210 25125 1066 0.21 13530.20
0.50 1 0 0 1200410 18101 749 0.11 804.52
0.95 1 0 0 1200410 18497 713 0.09 741.62

1
0.05 7 2 2 8396810 20547 931 0.38 16284.10
0.50 1 0 0 1200410 32227 1395 0.34 1532.60
0.95 1 0 0 1200410 39800 1582 1.00 747.55

pmed28 600 60 4498

0
0.05 1 0 0 1200480 13134 662 0.10 1361.96
0.50 1 0 0 1200480 14214 660 0.10 785.59
0.95 1 0 0 1200480 13741 663 0.10 718.95

0.5
0.05 1252 14 0 8628002 36675 1719 0.69 11295.10
0.50 1 0 0 1200480 34000 1401 0.24 817.02
0.95 1 0 0 1200480 32662 1379 0.21 796.44

1
0.05 1 0 0 2880 82399 3494 0.41 1.88
0.50 1 0 0 8280 77640 3404 0.87 5.94
0.95 1 0 0 53280 67717 2892 0.48 26.98

pmed29 600 120 3033

0
0.05 1 0 0 1200600 14214 724 0.21 1338.97
0.50 1 0 0 1200600 14241 720 0.20 927.49
0.95 1 0 0 1200600 14337 729 0.21 866.80

0.5
0.05 5 2 2 15296 59123 2757 0.71 39.55
0.50 1 0 0 30000 40958 1739 0.34 20.60
0.95 1 0 0 34800 64977 2587 0.30 27.79

1
0.05 3 1 1 3000 319866 11212 0.46 8.69
0.50 1 0 0 7200 186687 7282 0.59 4.14
0.95 1 0 0 1200600 1702050 55829 1.00 610.65
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed30 600 200 1989

0
0.05 1 0 0 1200600 15434 808 0.34 1390.90
0.50 1 0 0 1200600 15506 813 0.35 1199.22
0.95 1 0 0 1200600 15325 808 0.35 1180.95

0.5
0.05 7 2 3 19128 106102 4357 0.87 51.52
0.50 1 0 0 1800 77370 3242 0.77 1.46
0.95 1 0 0 16200 64351 2375 0.42 11.86

1
0.05 1 0 0 4800 92920 4181 0.86 4.51
0.50 1 0 0 1200 3613230 103486 1.00 1.18
0.95 1 0 0 1200 3470510 99918 1.00 1.20

pmed31 700 5 10086

0
0.05 1 0 0 1400305 15665 706 0.01 2094.80
0.50 1 0 0 1400305 17260 704 0.01 2060.67
0.95 1 0 0 1400305 15006 705 0.01 1417.42

0.5
0.05 3 2 0 4198905 17277 944 0.31 24081.20
0.50 1 0 0 1400305 16045 755 0.05 1074.44
0.95 1 0 0 1400305 17967 764 0.03 1002.74

1
0.05 3 2 0 4198905 24663 1147 0.29 16782.00
0.50 1 0 0 1400305 20962 986 0.25 2436.77
0.95 1 0 0 1400305 22093 929 0.23 2052.10

pmed32 700 10 9297

0
0.05 1 0 0 1400310 15593 713 0.02 1993.42
0.50 1 0 0 1400310 17205 711 0.02 1072.56
0.95 1 0 0 1400310 16196 710 0.01 955.56

0.5
0.05 3 2 0 4198910 30702 1343 0.21 19816.50
0.50 1 0 0 1400310 18481 800 0.03 1049.90
0.95 1 0 0 1400310 18902 795 0.07 951.97

1
0.05 3 2 0 4198910 33791 1485 0.14 12083.50
0.50 1 0 0 1400310 43518 1908 0.39 2274.10
0.95 1 0 0 1400310 27440 1220 0.18 2024.11

pmed33 700 70 4700

0
0.05 1 0 0 1400420 15481 778 0.11 2384.47
0.50 1 0 0 1400420 15872 779 0.11 1123.64
0.95 1 0 0 1400420 16388 784 0.12 956.10

0.5
0.05 795 26 391 5934602 33403 1886 0.73 21711.00
0.50 1 0 0 244720 38613 1702 0.16 183.84
0.95 1 0 0 136220 41254 1755 0.14 115.27

1
0.05 1574 102 777 1292867 18237 1319 0.51 2012.32
0.50 1 0 0 9520 90780 3870 0.42 9.03
0.95 1 0 0 74620 89352 3973 0.48 47.25

pmed34 700 140 3013

0
0.05 1 0 0 1400560 14945 843 0.20 1482.76
0.50 1 0 0 1400560 14729 845 0.21 1206.69
0.95 1 0 0 1400560 14794 843 0.20 1143.69

0.5
0.05 25 4 12 43959 45652 2726 0.72 124.79
0.50 1 0 0 55860 69917 3111 0.38 46.07
0.95 1 0 0 41860 58065 2478 0.25 30.80

1
0.05 1 0 0 4060 53927 2730 0.56 3.34
0.50 1 0 0 25060 136567 5852 0.45 14.76
0.95 1 0 0 1260 2571480 87806 1.00 1.33
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Table C.1: Continuation.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed35 800 5 10400

0
0.05 1 0 0 1600205 15706 804 0.01 3360.53
0.50 1 0 0 1600205 16254 804 0.01 1936.67
0.95 1 0 0 1600205 16896 804 0.01 1677.36

0.5
0.05 1 1 0 1600205 19411 1216 0.45 11314.20
0.50 1 0 0 1600205 21772 920 0.12 1358.12
0.95 1 0 0 1600205 19806 877 0.06 1129.30

1
0.05 3 2 0 4798605 18853 1027 0.17 15835.00
0.50 1 0 0 1600205 22173 1170 0.23 3191.26
0.95 1 0 0 1600205 22815 1141 0.18 2713.23

pmed36 800 10 9934

0
0.05 1 0 0 1600210 18251 809 0.01 2382.10
0.50 1 0 0 1600210 19129 809 0.01 1245.54
0.95 1 0 0 1600210 18265 812 0.02 1142.79

0.5
0.05 1 1 0 1600210 23313 1310 0.53 12228.50
0.50 1 0 0 1600210 21756 959 0.06 1244.30
0.95 1 0 0 1600210 21483 958 0.07 1098.26

1
0.05 3 2 0 4798610 32842 1595 0.73 15048.70
0.50 1 0 0 1600210 33163 1562 0.18 3177.58
0.95 1 0 0 1600210 29622 1392 0.17 2812.74

pmed37 800 80 5057

0
0.05 1 0 0 1600320 18430 892 0.12 2438.53
0.50 1 0 0 1600320 19058 893 0.12 1392.39
0.95 1 0 0 1600320 16924 888 0.11 1152.32

0.5
0.05 26 6 12 150960 32479 1947 0.50 386.68
0.50 1 0 0 17120 36272 1628 0.17 12.26
0.95 1 0 0 1920 30202 1919 0.63 1.44

1
0.05 1 0 0 5812 95092 4502 0.73 8.54
0.50 1 0 0 10720 79333 3520 0.30 9.04
0.95 1 0 0 1600320 816832 32874 1.00 780.91

pmed38 900 5 11060

0
0.05 1 0 0 1800105 16996 905 0.01 5246.87
0.50 1 0 0 1800105 17862 904 0.00 2765.71
0.95 1 0 0 1800105 16243 904 0.00 1742.44

0.5
0.05 1 1 0 1800105 23531 1558 0.65 15283.20
0.50 1 0 0 1800105 18495 964 0.02 1554.10
0.95 1 0 0 1800105 18946 993 0.07 1572.61

1
0.05 3 1 1 5398305 18921 1070 0.05 19730.70
0.50 1 0 0 1800105 23638 1227 0.09 4447.78
0.95 1 0 0 1800105 22995 1245 0.13 3834.33

pmed39 900 10 9423

0
0.05 1 0 0 1800110 18171 911 0.01 3584.43
0.50 1 0 0 1800110 15310 910 0.01 1516.29
0.95 1 0 0 1800110 16918 909 0.01 1319.09

0.5
0.05 3 2 0 5398310 24813 1390 0.22 23105.20
0.50 1 0 0 1800110 22678 1122 0.12 1435.65
0.95 1 0 0 1800110 18184 1034 0.04 1391.12

1
0.05 3 1 0 5398297 36049 2062 0.15 19563.90
0.50 1 0 0 1800110 33868 1918 0.20 4201.49
0.95 1 0 0 1800110 64984 3258 1.00 2268.46
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Table C.1: Conclusion.
B&P

Instance n p opt z α ts th np ngc cost sc mc(%) t(s)

pmed40 900 90 5128

0
0.05 1 0 0 1800270 18307 1014 0.13 4139.89
0.50 1 0 0 1800270 18299 1018 0.13 1862.09
0.95 1 0 0 1800270 18427 1015 0.12 1431.95

0.5
0.05 461 21 222 3704031 26970 2037 0.61 22098.00
0.50 1 0 0 568170 41498 2150 0.15 485.02
0.95 1 0 0 11070 29909 1570 0.13 7.88

1
0.05 382 78 182 348738 24976 1586 0.26 843.56
0.50 1 0 0 11970 120165 5931 0.45 15.41
0.95 1 0 0 1800270 1017980 43245 1.00 1015.49
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