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ABSTRACT

PolSAR (Polarimetric Synthetic Aperture Radar) images can be represented by
a set of complex Hermitian positive definite matrices, which have a natural Rie-
mannian metric tensor. PolSAR images are, also, known for following the Wishart
distribution, and, by using the information theory contrast function, stochastic dis-
tances between Wishart distributions can be derived. This work addresses unsuper-
vised classification strategies, explores the Riemann geometry and studies stochas-
tic distances applied to PolSAR images. The proposed algorithm, named Bisecting
Stochastic Clustering (BSC), is a combination between the Stochastic Clustering
(SC) algorithm and the hierarchical divisive clustering algorithm. The SC algorithm
is technique based on K-means, which uses stochastic distances as similarity metric.
The SC algorithm can, usually, be trapped in a local minimum, what led to incorrect
clustering results. Therefore, the choice of good initial parameter candidates is essen-
tial for the clustering quality. The BSC algorithm is a top-down procedure, it starts
with all samples in an unique cluster, that are successively splitted into two new
sub-clusters. This algorithm is mainly divided into three steps: the initial parameter
determination, the cluster bi-partitioning procedure, and the choice of a suitable
cluster to split. In this work, two algorithms for the initial parameter determina-
tion are tested: the Expectation-Maximization (EM) algorithm for Wishart Mixture
Model and the Riemann Principal Direction Divisive Partitioning (RPDDP). The
RPDDP is a new proposed algorithm, whose goal is to perform the bi-partition of a
dataset. This algorithm estimates the dataset covariance matrix under the the Rie-
mann geometry, in order to find the principal component, which is used to separate
the input data in two sub-clusters. From the RPDDP two estimated sub-clusters,
the BSC derives the initial parameters. The BSC second step is performed by the SC
algorithm. The BSC builds a dendrogram in order to represent the dataset splitting.
Each sub-cluster, or “node”, links two successor sub-clusters in the dendrogram.
When three or more nodes are available in one dendrogram level, the algorithm
needs to choose a node to split. The BSC third step uses the information gain as
the node choice rule. This work analyses the SC algorithm and two main variants
of BSC. The first variant uses the RPDDP as initial parameter determiner, and the
second, uses the EM algorithm as initial parameter determiner. The Bhattacharyya
(B), Kullback-Leibler (KL) and Hellinger (H) stochastic distances are analysed in
this work. In total, nine algorithms are evaluated: SC-B, SC-KL, SC-H, BSC-R-B,
BSC-R-KL, BSC-R-H, BSC-EM-B, BSC-EM-KL, BSC-EM-H. The algorithms were
analysed in a quantitative and qualitative way. The quantitative analysis consists in
the confusion matrix and accuracy estimation, and the qualitative analysis explore
the BSC dendrogram and the clusters scattering mechanism by inspecting the Plan
H − α.

Keywords: Stochastic distance. Riemann geometry. Divisive hierarchical clustering.
PolSAR image. Unsupervised classification.
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BI-DIVISÃO ESTOCÁSTICA DE AGRUPAMENTO: UM NOVO
ALGORITMO PARA CLASSIFICAÇÃO NÃO SUPERVISIONADA

DE IMAGENS POLSAR

RESUMO

As imagens PolSAR (Polarimetric Synthetic Aperture Radar) podem ser represen-
tadas por um conjunto de matrizes definidas positivas Hermitianas complexas, que
possuem um tensor métrico Riemanniano. As imagens PolSAR também são conhe-
cidas por seguir a distribuição de Wishart e, usando a função de contraste da teoria
da informação, distâncias estocásticas entre as distribuições de Wishart podem ser
derivadas. Este trabalho aborda estratégias de classificação não supervisionadas, ex-
plora a geometria de Riemann e estuda distâncias estocásticas aplicadas às imagens
PolSAR. O algoritmo proposto, denominado Bisecting Stochastic Clustering (BSC),
é uma combinação entre o algoritmo Stochastic Clustering (SC) e o algoritmo hi-
erárquico divisivo. O algoritmo SC é uma técnica baseada no K-médias, que usa
distâncias estocásticas como métrica de similaridade. O algoritmo SC pode, geral-
mente, ficar preso em um mínimo local, o que leva a agrupamentos incorretos. Por
isso, a escolha de bons parâmetros iniciais é essencial para a qualidade do agru-
pamento. O algoritmo BSC é um procedimento top-down, ele começa com todas as
amostras em um único cluster, que é sucessivamente dividido em dois novos subclus-
ters. Este algoritmo é dividido em três etapas: a determinação do parâmetro inicial,
o procedimento de bi-particionamento do cluster e a escolha de um cluster adequado
para dividir. Neste trabalho, dois algoritmos para a determinação dos parâmetros
iniciais são testados: o algoritmo Expectation-Maximization (EM) para o Modelo de
Mistura de Wishart e o Particionamento Divisivo da Direção Principal de Riemann
(RPDDP). O RPDDP é um novo algoritmo, proposto com objetivo de realizar a
bi-partição de um conjunto de dados. Este algoritmo estima a matriz de covariância
do conjunto de dados sob a geometria de Riemann, a fim de encontrar a compo-
nente principal, que é usada para separar os dados de entrada em dois subclusters.
A partir dos dois subclusters estimados pelo RPDDP, o BSC deriva os parâmetros
iniciais. A segunda etapa do BSC é realizada pelo algoritmo SC. O BSC constrói um
dendrograma para representar a divisão do conjunto de dados. Cada sub-cluster, ou
“nó”, é ligado a dois sub-grupos sucessores no dendrograma. Quando há três ou mais
nós disponíveis em um nível de dendrograma, o algoritmo precisa escolher um nó
para ser dividido. A terceira etapa do BSC usa o ganho de informação como regra de
escolha desse nó. Este trabalho analisa o algoritmo SC e as duas variantes principais
do BSC. A primeira variante usa o RPDDP como determinador dos parâmetros ini-
ciais e a segunda, usa o algoritmo EM. As distâncias estocásticas de Bhattacharyya
(B), Kullback-Leibler (KL) e Hellinger (H) são analisadas neste trabalho. No total,
nove algoritmos são avaliados: SC-B, SC-KL, SC-H, BSC-R-B, BSC-R-KL, BSC-R-
H, BSC-EM-B, BSC-EM-KL, BSC-EM-H. Os algoritmos foram analisados de forma
quantitativa e qualitativa. A análise quantitativa consiste no calculo da matriz de
confusão e na estimativa da acuracia; a análise qualitativa explora o dendrograma e
os mecanismos de espalhamento dos clusters através da inspeção do Plan H− alpha.
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1 INTRODUCTION

Remote sensing area has progressed rapidly due to the increasing availability of
satellites for Earth observation and the continuous sophistication of sensor systems
and algorithms for processing these data. Therefore, images nowadays have better
spatial, temporal, spectral, and radiometric resolutions.

Currently, there are a great number of satellites operating in diverse spectral bands
(for instance, optical, thermal, and microwave), supplying the databases with mil-
lions of images every day - the European Space Imaging agency alone collects over
three million square kilometers of imagery daily (IMAGING, 2019). This abundance
of information requires a constant improvement of algorithms for processing the
data, and this availability of different types of sensors and image formats allow us
to understand the physicochemical properties of objects in a more complete way,
since each wavelength interacts in a particular manner with them. Moreover, dif-
ferent wavelengths can provide complementary features. For instance, while optical
images have a visual response closer to the humans vision, microwave sensors can
be used almost independently of weather conditions and sunlight, and, depending
on the wavelength, clouds, dust, or even the vegetation canopy could be transparent
to this frequency spectrum.

Synthetic Aperture Radar (SAR) is an active microwave sensor on board either
space-borne or air-borne. SAR images have an important role in socioeconomic
applications, helping on the environmental monitoring and surveillance activities.
SAR systems have potential in a diverse range of applications, for instance, sea
and ice monitoring (DIERKING; BUSCHE, 2006), oil pollution (ARCGIS, 2019), vessel
monitoring (WU et al., 2016), flood monitoring (KUSSUL et al., 2011), urban growth
monitoring (HENDERSON; XIA, 1997), classification of earth terrain (LIU et al., 2018),
among others.

Usually SAR systems have two major product groups: basic image products and
enhanced image products. The basic image product is the raw data, which consists
of a In-Phase and Quadrature signal data that can be processed to become a single
look complex (SLC) image. The enhanced image products represent a higher level
of processing in terms of a more precise geometric correction, mosaicking, cloud
thickness and, vegetation indices.

The SAR antenna can allow different polarization, such as linear - horizontal (h),
vertical (v) - or circularly polarization in addition to a variety of polarimetric combi-
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nations: single, dual or quad. The use of PolSAR (Polarimetric Synthetic Aperture
Radar) images, which measures the target backscattering in different polarization,
provides further information such as soil moisture, surface roughness, target shape,
and object geometry.

A SAR system containing quad polarization, i.e. having the polarization hh, hv,
vh, and vv, is known as Fully PolSAR. As already discussed, PolSAR systems can
provide a rich set of information about objects on land surfaces, and high spatial
resolution images. However, SAR images have an interference pattern called speckle,
which causes a granular texture in SAR image. The speckle provides a rich statis-
tical information that can be essential to good comprehension about the scattering
mechanisms. Hence, a huge effort to characterize the statistical properties of PolSAR
images has been done by (FRERY et al., 2013; FRERY et al., 1999; NASCIMENTO, 2012).
The statistical analysis can improve the PolSAR image interpretation and help the
development of smart algorithms for speckle filtering (TORRES et al., 2014), segmen-
tation (SALDANHA, 2013; DOULGERIS, 2014; DOULGERIS; ELTOFT, 2014), feature
extraction (YANG et al., 2012), and classification (BRAGA et al., 2015).

Classification is one of the main topics of scientific research, and image classifica-
tion techniques appear as important tools for environmental preservation, national
security and management of natural resources. Due to this topic importance, many
Earth observation programs invest heavily in image classification. In Brazil, the
National Institute for Space Research (INPE) develops and coordinates diverse re-
mote sensing and geoprocessing programs that have in their scope several image
classification techniques, such as PRODES (Programa de Monitoramento da Flo-
resta Amazônica Brasileira por Satélite), the DETER (Detecção de Desmatamento
em Tempo Real), and DEGRAD (Sistema de Monitoramento de Áreas de Florestas
Degradadas na Amazônia), among others. In addition, INPE also develops soft-
ware that contains image classification algorithms, such as TerraAmazon, Spring,
and TerraView (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. COORDENAÇÃO

GERAL DE OBSERVAÇÃO DA TERRA - INPE/OBT, 2016).

A large number of approaches have been proposed for SAR image classification.
Many methods are based on incomplete polarimetric information, such as the inten-
sities or amplitude of hh, hv, vh or vv; or on the phase difference between hh, hv,
vh or vv, among other variants. The use of PolSAR images for classification of the
Earth terrain has been widely explored since 1980 decade. For instance, one of the
first classification using the three complex polarimetric components hh, hv, and vv
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was performed by Kong et al. (1988). They applied the Bayes classification using
the a multivariate complex Gaussian distribution.

However, multilook PolSAR images are extensively known for following the Wishart
distribution, for this reason, Lee et al. (1994) developed a maximum likelihood clas-
sifier based on the complex Wishart distribution. Another famous PolSAR image
classifier is the H-α decomposition, proposed by Cloude e Pottier (1997). This algo-
rithm is based on the eigenvalues and eigenvectors decomposition of the coherency
matrix T , and it has two parameter, the entropy (H) and α angle. The entropy can
be related with the number of scattering mechanism within a PolSAR resolution
cell and the α angle can be understood as the type of scattering mechanism. This
two feature are combined into a two-dimensional space, known as Plan H-α, which
is divided into scattering mechanism classification zones. Pottier e Cloude (1997)
introduced another component to the H-α decomposition: the anisotropy (A). The
anisotropy is used to discriminate the second and third eigenvalues, helping on the
characterization of the scattering mechanisms.

There are many tools addressing PolSAR image processing, such as PolSARpro
(POTTIER, 2019), and RAT (REIGBER; HELLWICH, 2004). Both PolSARpro and RAT
offer as classification tools the supervised Wishart classification, the unsupervised
H-α, A-α, H-A, and the H-A-α classifications.

1.1 Motivation

PolSAR images are usually represented by its second-order polarimetric represen-
tation, the covariance matrix. There are many applications for PolSAR covariance
images; it can be used to estimate the scattering mechanism present at the image
(FREEMAN; DURDEN, 1998), or it can be used as input for PolSAR image classifica-
tion (LEE et al., 1999).

The use of covariance matrix as a feature has been widely explored in recent years,
especially in the field of pattern recognition and machine learning. As a consequence,
these matrices are explored exhaustively in relation to their space. According to Lim
et al. (2019), real symmetric positive definite or complex Hermitian positive defi-
nite matrices have a natural Riemannian metric tensor, therefore covariance PolSAR
images are better clustered by a non-flat geometry metric, as some hierarchical algo-
rithms. Besides the advantage of working with arbitrary cluster shapes, hierarchical
algorithms do not need to specify the number of clusters, and the dendrogram pro-
duced is very useful in understanding the data distribution.
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In literature, there are some works approaching the semi-supervised hierarchical
clustering for SAR image (YAO et al., 2016; SAPUCCI; NEGRI, 2019) and unsupervised
hierarchical clustering for SAR images (ZHAO et al., 2017; CERRA; DATCU, 2010). In
all these works, the hierarchical clustering showed to have a great potential to deal
with SAR images, with particular regards to the algorithms that use the global
merging criterion. Improvements in this field are still needed, particularly for more
efficient and accurate approaches.

Another interesting feature of PolSAR images are their speckle statistical informa-
tion, which can be explored by attributes derived from Information Theory, such as
divergences (SONG et al., 2014), entropy (FRERY et al., 2012), and stochastic distances
(SILVA et al., 2012). Stochastic distances are dissimilarity measures used for evaluat-
ing the contrast between two Probability Density Functions (PDF). Since PolSAR
images are widely known for following the Wishart distribution, we consider the
distances as stochastic distances between Wishart Distribution.

Stochastic distances are derived from divergence, which is a concept introduced by
Kullback e Leibler (1951). There are many divergence families, and Nascimento
(2012) used the divergence class h − φ to develop five stochastic distance between
Wishart distributions: Bhattacharyya, Kullback-Leibler, Hellinger, Rényi of order
β, and Chi-square.

In the study conducted in Carvalho et al. (2019), these five stochastic distances,
plus the Euclidean distance, and the Wishart mixture model were compared. The K-
means algorithm, when using stochastic distances as similarity metric, were named
Stochastic Clustering (SC). In order to handle PolSAR images, the Expectation-
Maximization (EM) algorithm were applied to the Wishart mixture. A Monte Carlo
simulation was performed over a set of simulated PolSAR images to find all possible
classification outcomes for each algorithm (K-means using the Euclidean distance,
SC using the Bhattacharyya distance, SC using the Kullback-Leibler distance, SC
using the Hellinger distance, SC using the Rényi of order β distance, SC using
the Chi-square distance, and EM for Wishart mixture model). The Monte Carlo
simulation had the goal of computing the classification overall accuracy in order to
produce a quantitative analysis of the results.

According to the Monte Carlo simulation results, the EM showed to have great po-
tential, classifying the homogeneous areas with small errors, while the SC algorithm
accuracy performance was highly dependent on the stochastic distance choice. The
stochastic distances Bhattacharyya, Kullback-Leibler, and Hellinger had strong and
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similar results, having a clearly superior performance over the Euclidean distance.
However, the Rényi of order β and Chi-square distances had the lowest classifi-
cation accuracy results, primarily due to numerical instabilities presented by both
distances.

The Monte Carlo simulation also exposed the dependency of all algorithms upon
the correctness of the initial centroids. Bad initial parameter make the algorithms
terminate at a local maximum or minimum, resulting in the non-optimized estima-
tion. Therefore, a better initial guess would make the clustering convergence faster.
There are a large number of methods for choosing initial centroids. Celebi et al.
(2013) presented a comparative of commonly used methods for clustering initializa-
tion, such as the Ball and Hall’s method, Simple Cluster Seeking method, Maximin
method, among others.

PolSAR image classification using stochastic distance as a similarity measure is a
relatively new field in SAR image processing, and has been growing in recent years.
One of most significant works is this area was presented by Silva et al. (2013).
In this work, the authors proposed a supervised classification algorithm to classify
segments of PolSAR images using hypothesis test statistics derived from stochastic
distances between Wishart distributions. Gomez et al. (2017) presented a supervised
classification algorithm using the maximum likelihood and stochastic distance for
classification of PolSAR images. Negri et al. (2019) combined support vector ma-
chines and stochastic distances to perform a region-based classification. Although
great progress has been achieved in this field, there is still room for investigating
the potential of stochastic distances applied on PolSAR data, especially when allied
with unsupervised classification.

1.2 Objectives

This work has as its main goal the development and presentation of a new algorithm
for PolSAR image unsupervised classification, named Bisecting Stochastic Clustering
(BSC). The BSC is a hybrid algorithm of hierarchical and partitional algorithms, and
it uses stochastic distances as similarity metric. It explores the handling of PolSAR
covariance matrix under the Riemannian geometry and applies the information gain
to define the best cluster to split.
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1.2.1 Specific objectives

• Demonstration of the initial parameter estimation importance for unsu-
pervised classification algorithms;

• Proposing and developing a new approach named Riemannian Principal
Direction Divisive Partitioning (RPDDP) to determine the initial param-
eter on hierarchical divisive clustering algorithm for PolSAR images;

• Development of a new algorithm named Stochastic Clustering (SC);

• Study about the stochastic clustering robustness, showing the distances
with better performance when applied on PolSAR image;

• Comparison between the covariance matrix handling in the Riemann ge-
ometry against the Euclidean geometry.

1.3 Thesis hypothesis

Based on the objectives of this work, two hypothesis have been defined:

• it is possible to employ the Riemannian geometry in determining initial
parameters of PolSAR data represented by their covariance matrices, with
the aim of mitigating the effects of the arithmetic mean of covariance
matrices, and improving the quality and efficiency of divisive hierarchical
groupings, for the development of unsupervised PolSAR image classifiers.

• it is possible to develop a robust unsupervised classifier for PolSAR data
based on divisive hierarchical clustering algorithms and using stochastic
distances.

1.4 Contributions

This work contributes to the PolSAR image unsupervised classification characteri-
zation by:

• Doing a quantitative comparison of several stochastic distances between
Wishart distribution, against the mixture models, exploring the stochastic
distances weaknesses and strengths.
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• Studying the impacts of initial parameter determination on the clusters
quality and efficiency;

• Analysing of the pros and cons of Riemann geometry usage in the PolSAR
covariance matrices manipulation;

• Proposing and developing a new PolSAR unsupervised classifier, based
on hierarchical divisive clustering algorithms, using as dissimilarity metric
the stochastic distances (This algorithm handles the polSAR covariance
matrices in the Riemann space);

• Analysing the hierarchical divisive clustering algorithms classification out-
puts and dendrogram using the H-α plan, in order to have a better under-
standing of the PolSAR scattering mechanism relationship with clustering.

1.4.1 Research items

Published journal paper:

CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S. Analysis of Stochas-
tic Distances and Wishart Mixture Models Applied on PolSAR Images. Remote
Sensing, V. 11, 2994, 2019. Disponível em: https://doi.org/10.3390/rs11242994.

Published conference article:

CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S. Monte Carlo Simu-
lation study of stochastic distances applied on k-means algorithm for Fully Polari-
metric SAR images. In: POLinSAR, Frascati (Rome), Italy, 2019.

CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S.Incoherent Polarimetric
target scattering decomposition: An overview and their implementation in TerraLib
system. In: POLinSAR, Frascati (Rome), Italy, 2019.

Mini-Course:

Fundamentos de Imagens SAR, avilable at PGCAP youtube chanel:
https://youtu.be/nWh12Y89JUs.

Journal paper work in progress:

CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S. Riemann PDDP for
PolSAR image classification.
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CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S. Bisecting SC: a new
algorithm for PolSAR image classification.

CARVALHO, N. C. R. L.; BINS, L. S.; SANT’ANNA, S. J. S. Analysis of Bisecting
SC using Wishat Mixture Model as the initial parameter estimator.

1.5 Thesis organization

This work is organized as follows. Chapter 2 describes the PolSAR image descrip-
tion and its representation, the speckle generation, its statistical representation and
the stochastic distance formulation. In Chapter 3 the clustering algorithms are de-
scribed, we discuss about the user’s dilemma, cluster taxonomy and pros and cons
of some clustering techniques. Chapter 4 describes the proposed algorithm, BSC,
we present all the needed steps in this algorithm and some variants. Chapter 5
presents the methodology and describes the PolSAR images used to evaluate the
BSC classifier. Chapter 6 shows the comparison between the Riemann geometry
and Euclidean geometry, presents the initial parameter estimation importance and
shows the classification results using SC and BSC algorithms applied on the set of
simulated images and real PolSAR images. Finally, our conclusions and future work
proposal are presented in Chapter 7.
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2 SAR IMAGE

Radar (Radio Detection and Ranging) is an electromagnetic sensor, which operates
in the microwave spectrum, for detection and localization of objects in space (SKOL-

NIK, 2008). As presented in Figure 2.1, the radar radiates electromagnetic energy
from its antenna - a common waveform radiated by this sensor is a series of narrows
rectangular pulses - to propagate through space. A parcel of the radiated energy is
intercepted by a reflective target and re-radiated in many directions, and a small
portion of the reflected energy returns to the radar. The returned signal is amplified,
and based on the time difference between the transmitted and received signal, the
target radial position is determined.

Figure 2.1(a) shows the radar operation, where r is the target range distance and t
is the time delay between the received and transmitted signal. Figure 2.1(b) shows
the transmitted, received and processed signals. Based on time delay between trans-
mitted and received signals, the target radial position is calculated.

Figure 2.1 - Radar time and distance measurement.

(a) The radar operation. (b) Transmitted, received and processed signal.

SOURCE: Author’s production.

Radars are used for many applications, one of the most important being the imag-
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ing. Usually, imaging radar operates with lateral or side-looking geometry. In this
configuration, the platform travels with speed Vp towards the flight path (in x-axis)
with the nadir directly below the platform (on the z-axis), while electromagnetic
waves are transmitted obliquely to the flight direction (WOLFF, 2018), as showed in
Figure 2.2.

Figure 2.2 - Imaging radar geometry.

SOURCE: Author’s production.

The radar antenna’s footprint size, i. e. the illuminated area on the ground, depends
on the azimuth ψa and elevation ψe aperture angles, the sensor’s platform height
H, and the angle α between slant range and nadir, as shown in Figure 2.3. The
imaging radar produces a two-dimensional image representing the footprint of its
antenna. The amount of detail on this image depends on the radar azimuth and
range resolution.

The azimuth resolution of real aperture radars with antenna length da and wave-
length λ is given by the equation (LEE; POTTIER, 2009):

δra = λ

da
.R (2.1)

where R is the radial distance between the platform and ground.
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Figure 2.3 - Imaging radar footprint representation.

SOURCE: Author’s production.

It can be seen from Equation (2.1) that the azimuth resolution is inversely propor-
tional to da, meaning that the bigger the antenna length, the better the azimuth
resolution. However, due to physical limitations, the enlarging of antenna length
could be impractical in many remote sensing situations. In order to overcome this
problem, Wiley (1985) proposed the use of an antenna with modest size, moving
along path sending pulses, whose echos would be compressed, proving a finer az-
imuth resolution. In this way, a small moving antenna electronically simulates a
large antenna; this process is called SAR. The azimuth resolution for SAR system
becomes:

δsa = da
2 (2.2)

and therefore, the azimuth resolution is no longer dependent on wavelength or target
range (MOREIRA et al., 2013), and the smaller the antenna length, the better the
azimuth resolution.
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Even thought the SAR method was developed to improve the azimuth resolution,
in order to have an image with great level of detail, the range resolution should be
improved as well. In order to have a finer range resolution, the pulse bandwidth
shall be wide. One way to achieve a fairly wide bandwidth is to use a step frequency
waveform, also known as a chirp pulse. The slant range resolution of a chirp waveform
with bandwidth B is defined as (SKOLNIK, 2008):

δr = c

2.B (2.3)

where c is the light speed.

A SAR image is 2D raster, where each pixel represents a small portion of the Earth’s
surface, named resolution cell, whose size depends on range and azimuth resolutions.
Each pixel carries the amplitude and phase information of the backscattered signal.
These values depend on the target radar cross-section, reflectivity coefficient, surface
topography, roughness, dielectric properties of the medium, and moisture; but also
depends on radar parameters such as frequency, polarization, and incident angle,
among others (LEE; POTTIER, 2009).

2.1 Speckle generation

The resolution cell is the smallest area of Earth’s surface that can be represented
by one pixel in a SAR image. Within this area, there are many different targets
or scatterers located in random positions. The SAR emitted wave interacts with
the scatterers and the total received signal S is the coherent sum of the sw signals
backscattered by the W scatterers within a resolution cell, as defined by Equa-
tion (2.4):

S =
W∑
w=1

swe
φw = sa + jsb (2.4)

where j =
√
−1, sa = ∑W

w=1 sw cos(φw) is the total received signal in-phase compo-
nent, while sb = ∑W

w=1 sw sin(φw) is the quadrature component; sw and φw are the
wave amplitude and phase of individual scatterers.

Since the scatterers’ distance to SAR sensor is random, the received waves are coher-
ent in frequency but not in phase (LEE; POTTIER, 2009). Therefore, if the received
waves are constructively added, the signal will be strong. However, if the received
waves are out of phase, then the signal will be destructively added, resulting in

12



a weak signal, as shown in Figure 2.4. This phenomenon, called speckle, causes a
granular pattern in SAR images.

Figure 2.4 - Speckle formation.

SOURCE: Adapted from Palumbo (2017).

The pixel-to-pixel variation in intensities that appear on SAR images due to speckle
can lead to a reduction in classification accuracy and segmentation effectiveness.
Over the decades many methods were developed in order to mitigate speckle. For
instance, the multi-look technique can be done in spatial domain (non-coherent aver-
aging of adjacent pixels intensity of an image), in time domain (divide the synthetic
aperture and process each segment separately), or in frequency domain (HELLMAN,
2000). Further algorithms in spatial domain are the Local Statistics Filter (LEE,
1980), the Refined Local Statistics Filter (LEE, 1981), the Sigma Filter (LEE, 1983),
the Frost Filter (FROST et al., 1982), the Kalman filtering (AZIMI-SADJADI; BAN-

NOUR, 1991), and more recently the Nonlocal Means (TORRES et al., 2014), among
others.

Another factor that influences the speckle statistical modeling is the scattering mech-
anism. Roughly, the SAR backscattering can be defined into three scattering mech-
anisms: smooth surface scattering (such as lakes or pasture), double bounce (such
as urban areas) and the volume scattering (such as forests).

Surface roughness is defined by the Rayleigh Criterion, which says that a surface is
smooth if:

δh <
λ

8 cos θi
(2.5)
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where δh is the standard deviation of surface roughness, λ is the radar wavelength,
and θi is the incident angle (LÓPEZ-MARTÍNEZ et al., 2005). The signal which interacts
with smooth surfaces is mostly reflected away from the radar and only a slight
backscatter is received by the radar, as shown in Figure 2.5. Therefore the resolution
cells of smooth surfaces usually have a dark tonality on radar images (EUROPEAN

SPACE AGENCY - ESA, 2017).

Among diverse factors, the backscattering intensity can be seem as a factor of scat-
tering mechanism type, for instance, resolution cells with volume scattering have
an intermediate backscatter, and resolution cells with double bounce scattering
have very strong backscatter. Therefore, the higher the backscattered intensity, the
rougher the imaged surface, as presented in Figure 2.5.

Figure 2.5 - Reflectiveness of different scattering mechanism.

SOURCE: Adapted from Nascimento (2012).

2.2 PolSAR images

SAR systems use electromagnetic waves, in microwave spectrum, to determine the
pixel value of a radar image; therefore, the electromagnetic wave carries all the im-
portant information between the radar and observed target. Electromagnetic waves
can be characterized by their frequency, amplitude, phase, direction of propagation,
and polarization. Wave polarization happens when the electrical field distorts the
electrons’ cloud in a particular direction, i. e., the polarization refers to electric ( ~E)
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and magnetic ( ~B) field alignment in a plane perpendicular to propagation direction.

Under assumption that, in the Cartesian coordinate system, the electromagnetic
waves propagate in z−direction, the electromagnetic field is located in the plan
x− y, where:

~E = Ex + Ey (2.6)

with

~Ex = Ex0 cos(ωt− kz + δx) (2.7)

~Ey = Ey0 cos(ωt− kz + δy) (2.8)

where ω = 2πf , k = 2π
λ

is the wave number, f is the signal frequency, λ is the
wavelength, and δ is phase angles.

Depending on the behavior of amplitudes E0 and angular phase δ in a plane per-
pendicular to the propagation direction, three types of polarization can be derived:

• Elliptical polarization: the general case of electromagnetic wave polariza-
tion with Ex0 6= 0 and Ey0 6= 0 and δx − δy 6= 0;

• Circular polarization: with Ex0 = Ey0 and δx − δy = π

2 ;

• Linear polarization: with δx = δy, meaning that the electric field is confined
to a single plane along the propagation direction.

The most common forms of linear polarization are horizontal linear h and vertical
linear v. The SAR antenna may be designed to transmit and receive waves at more
than one polarization, therefore, the SAR system can have the following channels
(CANADA, 2014):

• hh - for horizontal transmit and horizontal receive;

• vv - for vertical transmit and vertical receive;

• hv - for horizontal transmit and vertical receive;
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• vh - for vertical transmit and horizontal receive.

A SAR system that incorporates the linear polarization combinations between ver-
tical and horizontal directions for transmitted and received waves is named PolSAR.
Depending on the levels of polarization complexity, a PolSAR system can be classi-
fied as:

• Single polarized - hh or vv or hv or vh;

• Dual polarized - different channels combination, for instance, hh and vv,
hh and hv, among others;

• Full polarization having hh, vv, hv, and vh;

In linear polarization context, a scatterer is illuminated by a transmitted wave, such
that the incident wave is given by (HELLMAN, 2000):

~Et = ~Et
h + ~Et

v (2.9)

and the received wave is given by (LEE; POTTIER, 2009):

~Er = S ~Et = ejk0r

r

Shh Shv

Svh Svv

Et
h

Et
v

 (2.10)

where term ejk0r

r
refers to the propagation effects both in amplitude and phase,

S, named as scattering matrix or Jones matrix, is a matrix of complex scattering
amplitudes, with Sxy = {Sxy{ejφxy} | x, y ∈ h, v}. The elements on S main diagonal
are named ‘co-pol’, and the elements on secondary diagonal are named ‘cross-pol’.

The scattering behavior of targets in matrix S depends on, among other things,
the coordinate systems. In the coordinate system named Back Scattering Alignment
(BSA), the transmitting and receiving antennas are collocated in space. Due to this,
electromagnetic waves have a reciprocal medium. In the BSA coordinate system,
the reciprocity theorem says that the cross-pol channels of the scattering matrix are
equal, i.e., Shv = Svh.

Usually, for the studying of PolSAR behavior, it is more convenient to represent the
matrix S in vector basis, as defined in Equation (2.11).
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~k = 1
2Tr(SΨ) (2.11)

where Tr(.) is the matrix trace and Ψ is a set of 2 × 2 complex basis matrices.
There are two basis widely known in PolSAR images field: the Borgeaud basis and
the Pauli basis. The Borgeaud basis follows the lexicographic expansion of S, with:

Ψb =

2
1 0

0 0

 , 2
0 1

0 0

 , 2
0 0

1 0

 , 2
0 0

0 1

 (2.12)

and the corresponding vector ~kb:

~kb =
[
Shh Shv Svh Svv

]†
(2.13)

considering that Shv = Svh, ~kb becomes:

~kb =
[
Shh

√
2Shv Svv

]†
(2.14)

where † denotes the conjugate transpose.

The latter group is the complex Pauli spin matrix basis set given by:

Ψp =

√2
1 0

0 1

 ,√2
1 0

0 −1

 ,√2
0 1

1 0

 ,√2
0 −i
i 0

 (2.15)

and the corresponding vector ~kp:

~kp = 1√
2
[
Shh + Svv Shh − Svv Shv + Svh i(Svh − Shv)

]†
(2.16)

considering that Shv = Svh, ~kp becomes:

~kp = 1√
2
[
Shh + Svv Shh − Svv 2Shv

]†
(2.17)

One of the most usual vector basis of S in polarimetric applications are the Pauli
basis (~kp), from which the coherence matrix T is determined (Equation (2.19)). The
coherence matrix of a PolSAR image is computed by the product between the Pauli
vector ~kp and its transposed conjugate complex, denoted by ~kp

T
, as presented in
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Equation (2.18).

T = ~kp. ~kp
†

(2.18)

T = 0.5


|Shh + Svv|2 (Shh + Svv).(Shh − Svv)∗ 2(Shh + Svv).(Shv)∗

(Shh − Svv).(Shh + Svv)∗ |Shh − Svv|2 2(Shh − Svv).(Shv)∗

2Shv.(Shh + Svv)∗ 2Shv.(Shh − Svv)∗ 4|Shv|2

 (2.19)

where (.)∗ represents the complex conjugate and |.| means the absolute value of a
given number.

Usually, for the studying of PolSAR statistical behavior, it is more convenient to
represent the matrix S by the lexicographic basis vector ~kb (DENG et al., 2017).
The covariance matrix of a PolSAR image is computed by the product between
the scattering vector ~kb and its transposed conjugate complex, denoted by ~kb

T
, as

presented in Equation (2.20).
Z = ~kb.~kb

†
(2.20)

The matrix Z is a Hermitian positive semidefinite matrix, where the elements of
its main diagonal are positive real numbers and they correspond to the values of
intensity. Elements outside the main diagonal are complex numbers and contain,
in addition to the product information between the amplitudes of the polarimetric
components, the phase difference information between the transmitted and received
signals in the different polarization.

Since PolSAR data is affected by speckle, a common approach to reduce it is to per-
form multi-look processing. From the statistical point of view, multi-look processing
is defined as the averaging of L neighboring samples, resulting in the covariance
matrix Z (LEE; POTTIER, 2009), as defined in Equation (2.21):

Z = 1
L

L∑
`=1


|Shh(`)|2

√
2Shh(`).S∗hv(`) Shh(`).S∗vv(`)√

2Shv(`).S∗hh(`) 2|Shv(`)|2
√

2Shv(`).Svv(`)∗

Svv(`).S∗hh(`)
√

2Svv(`).S∗hv(`) |Svv(`)|2

 (2.21)

where (.)∗ represents the complex conjugate and |.| means the absolute value of
a given number.
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2.3 PolSAR target decomposition

The PolSAR images target decomposition consists of identifying and isolating dif-
ferent types of scattering mechanisms. This is an important field of study for targets
characterization and feature extraction. Generally, the target decomposition could
be split into two main groups: coherent decomposition and incoherent decomposi-
tion.

2.3.1 Coherent decomposition

The so-called coherent targets are those which do not depolarize the wave when
interacting with it, such as the corner reflectors used for radar calibration. In the
coherent decomposition, the scattering matrix S is decomposed into a sum of com-
plex elements and each element represents a certain canonical scattering mechanism,
as described in the Equation (2.22).

S =
k∑
i=1

ciSi (2.22)

where where Si represents the scattering matrix of a canonical target and ci is the
contribution of the canonical target to obtain the final target.

Examples of coherent target decomposition are Cameron decomposition and Kro-
gager decomposition. Figure 2.6 shows a representation of the coherent decomposi-
tion. In this figure, the target is composed by a cylinder, a sphere, and a dihedral.

Figure 2.6 - Coherent Decomposition representation.

SOURCE: Author’s production.
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2.3.2 Incoherent decomposition

Incoherent targets are those with random backscatter, which produces partially
polarized or completely depolarized waves. Natural targets in the scene, as trees
or buildings, are know as incoherent targets, and they are better analyzed by the
statistical point of view. The incoherence target decomposition can be split into two
groups: the first one are the decomposition based in models, such as the Freeman-
Durden algorithm (FREEMAN; DURDEN, 1998); and the second group is the one
based on eigenvalues and eigenvectors analyzes, for example, the Cloude-Pottier
decomposition (CLOUDE; POTTIER, 1996).

2.3.2.1 Freeman-Durden decomposition

The Freeman-Durden decomposition seeks to estimate the canonical model’s contri-
bution in the total backscattered answer of PolSAR images (FREEMAN; DURDEN,
1998). The three mechanisms that could be identified by this model are: volume or
canopy scatter from a cloud of randomly oriented dipoles, even or double-bounce
scatter from a pair of orthogonal surfaces with different dielectric constants, and
Bragg scatter from a moderately rough surface (LEE; POTTIER, 2009). This model
could be described by the set of Equations (2.23)

〈|Shh|2〉 = fs|β|2 + fd|α|2 + fv

〈|Svv|2〉 = fs + fd + fv

〈ShhS∗vv〉 = fsβ + fdα + fv/3

〈|Shv|2〉 = fv/3

〈ShhS∗hv〉 = 〈ShvS∗vv〉 = 0

(2.23)

where fv corresponds to the volume scattering component contribution, fd corre-
sponds to the double-bounce scattering component contribution, fs corresponds to
the surface scattering component contribution. If <(ShhS∗vv) is positive, then α = −1.
If <(ShhS∗vv) is negative, then β = 1.

The Freeman-Durden models the covariance matrix C as a composition of fs, fd,
and fv, as presented in Figure 2.7. The output of this decomposition will be the
contribution of each canonical mechanism in each cell of the analyzed image, in
other words, the output will be three parameters defined as Ps, Pd and Pv, where:
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Ps = fs(1 + |β|2)

Pd = fd(1 + |α|2)

Pv = 8.fv/3

(2.24)

Figure 2.7 - Freeman-Durden canonical mechanism and their contribution to the final co-
variance matrix.

SOURCE: Author’s production.

2.3.2.2 Cloude-Pottier decomposition

The Cloude-Pottier decomposition performs the analysis of a 3×3 coherency matrix
T eigenvalues to decide how many mechanisms contributes to the total backscatter-
ing of a cell and its magnitude (LEE; POTTIER, 2009). The decomposition output are
two polarimetric parameters: Entropy (H) (Equation (2.25)), and the Alpha Angle
(α) (Equation (2.26)) (CLOUDE et al., 2002).

H = −
3∑
i=1

(Pi log3 Pi), Pi = λi
λ1 + λ2 + λ3

(2.25)

where λi are the eigenvalues of T and Pi is a pseudo-probability determine by the
Bernoulli process.

α =
3∑
i=1

(Pi cos−1(kxi)) (2.26)
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where kxi is the first element of the eigenvector associated with the eigenvalue λi.

The Entropy H represents the scattering randomness, it varies from 0 to 1. H = 0
means that only one eigenvalue is nonzero, and H = 1 means that the three eigen-
values are equal, i. e., they equally contribute to the scattering formation. The alpha
angle describes the target geometry, it varies from 0o to 90o, where α = 0o repre-
sents a surface scattering mechanism, α = 45o represents a volumetric mechanism
and α = 90o represents the double bounce scattering mechanisms. The entropy and
angle alpha information can be combined into a graphical representation named
Plan H − α, as described in Figure 2.8.

Figure 2.8 - Plan H − α.

SOURCE: Author’s production.

The Plan H −α is divided into nine zones: z1, z2, z3, z4, z5, z6, z7, z8, and z9. The
z1 region distinguishes double bounce mechanisms in a high entropy environment.
The z2 region groups high entropy volume scattering mechanism. The z3 region is
out of H − α feasible region. In the z4 region, dihedral scattering mechanism with
moderate entropy can be found. The z5 region have moderate entropy with dominant
dipole scattering mechanisms. The z6 region have random surface, meaning that the
mechanism is like Bragg scatterer with moderate entropy. The z7 corresponds to
low entropy and double or ‘even’ bounce scattering mechanisms. The z8 have low
entropy dipole scattering mechanisms. Finally, the z9, have low entropy and Bragg
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surface mechanisms.

Cloude e Pottier (1997) describes these region in more details, and they give some
examples of real scenarios where the mechanisms can be found. For instance, the
z1 and z2 regions mechanisms can be observed in forestry areas; z4, z5, and z8
mechanisms are related with vegetation areas, while in the z7 zone, the mechanism
are provided by urban ares, for example. Lakes and very smooth land surfaces are
related to z9.

2.4 SAR image statistical modeling

Although speckle causes a granular pattern in SAR images, it contains rich statisti-
cal information. Understanding SAR speckle statistic is essential to have a scattering
mechanisms quality comprehension. Moreover, the statistical analysis can improve
the PolSAR image interpretation by presenting the proper statistical distribution
to model it, helping to develop smart algorithms for speckle filtering (TORRES et al.,
2014), segmentation (DOULGERIS, 2014; DOULGERIS; ELTOFT, 2014; SALDANHA,
2013), feature extraction (YANG et al., 2012), and classification (SILVA et al., 2013;
BRAGA et al., 2015; FORMONT et al., 2010; NEGRI et al., 2019). In the following sub-
sections, the statistical models of SAR images will be explored, and the application
and limitation of each kind of statistical model will be discussed.

2.4.1 Single polarization SAR images

The speckle statistic field has been explored since the 1970s, with one of the first
models being proposed by Arsenault (ARSENAULT; APRIL, 1976). In this model, the
resolution cell is assumed to have homogeneous surface and stationary targets, and
the speckle is modeled considering the following hypotheses (GAO, 2010):

• the number of scatterers within the resolution cell is large, provided that
sa and sb (Equation (2.4)) satisfy the Central Limit theorem;

• sa and sb are statistically independent;

• sa and sb phases are normally distributed in the interval (−π, π);

• inside a resolution cell, there are no dominant scatterer (Figure 2.9(a));

• the size of a resolution cell is large enough, compared with the size of a
scatterer.
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The speckle formation is modeled as a random walk process in complex domain
(SOBRINO, 2002), which allows the magnitude of the signal to be described as a
finite sum of random phasors (LENCINA et al., 2003). Therefore, the contributions
of many scatterers in a resolution cell is statistically independent in amplitude and
phase. Under theses conditions, the returned signal, sa and sb, are assumed to be
identically Gaussian distributed, with zero mean and a variance denoted as σ2/2
(LEE; POTTIER, 2009), as presented Table 2.1.

The quantities sa and sb are the real and imaginary part of returned signal, and they
represent the In-phase and Quadrature images, respectively. From these images a
variety of other images can be derived, for instance, the image in amplitude defined
as A =

√
s2
a + s2

b , and the image in intensity defined as I = s2
a + s2

b . The image in
amplitude follows the Rayleigh distribution, with mean value

√
(πσ)/2 and variance

defined as (1− π/4). The intensity image has a negative exponential distribution,
with mean value equals to σ and variance σ2.

However, in resolution cells where a strong scatterer dominates the signal response,
as presented in Figure 2.9, the backscattering is represented by the coherent combi-
nation of the dominant scatterer and the clutter (LÓPEZ-MARTÍNEZ et al., 2005). The
intensity image of heterogeneous regions is better described by Rician distribution
(Table 2.1) (GAO, 2010), with variance σ2(1+2×SRC), where SRC is the Signal to
Clutter Ratio. Figure 2.9(a) shows the resolution cell without a dominant scatterer.
Figure 2.9(b) shows the resolution cell with dominant scatterer (blue arrow) and the
clutter (black arrows).

Figure 2.9 - Coherent response of a resolution cell.

(a) No dominant scat-
terer.

(b) One dominant scat-
terer.

SOURCE: Adapted from López-Martínez et al. (2005).
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Frery (FRERY et al., 1997) proposed one of the greatest accomplishments in the field
of speckle statistic by introducing the idea of degrees of homogeneity, where a multi-
look SAR image can be divided into homogeneous, heterogeneous, and extremely
heterogeneous regions. Multi-look images in amplitude having homogeneous targets
are modeled as square root Gamma distribution, while the images in intensity are
modeled by the Gamma distribution. For heterogeneous regions, for instance urban
areas, the K-distribution fits better, and for extremely heterogeneous regions the G0

is more suitable.

2.4.2 Fully PolSAR SAR images

Considering the reciprocal medium, the polarimetric complex vector can be defined
as:

~s =
[
Shh Shv Svv

]†
(2.27)

and it follows the multivariate complex Gaussian distribution:

f(~s; Σ) = 1
π3|Σ|

exp(−~s†Σ−1~s) (2.28)

where Σ = E(~s×~s†) is the complex covariance matrix and † is denotes the complex
conjugate transpose. The matrix Σ contains the information needed to analyse the
data from the statistical point of view.

Multilook PolSAR images containing areas with limited roughness and homogeneous
regions can be modeled by the Wishart distribution. Let Z = {Z1, ...,ZN} be a
random variable data set, with N samples and L number of looks. The matrix Z
follows the complex multivariate Wishart distribution (Equation (2.29)). Therefore,
the PolSAR data can be described by the two Wishart parameters: the covariance
matrix, where |Z| is related to image brightness, and the number of looks L, which
is related to signal to noise ratio.

f(Z; Σ, L) = LqL|Z|L−q

|Σ|LΓq(L)exp{−L.Tr(Σ
−1Z)} (2.29)

where Σ = E(Z), E(.) is the expectation operator, Γq(.) is the Gamma function,
q is the covariance matrix order, Tr(.) is the matrix trace, and |.| is the matrix
determinant.

According to Frery et al. (2007), the complex Wishart law can be generalized into
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the Kp distribuiton, in order to deal with PolSAR images from heterogeneous areas.
The extremely heterogeneous areas in PolSAR images can be modeled by the G0

p ,
which is a particular case of the polarimetric Gp law.

2.5 Stochastic distances

The information theory is the mathematical branch that deals with concepts, pa-
rameters, and rules of message transmission through communication systems. This
field has been explored since 1948, when Shannon published the paper titled “A
Mathematical Theory of Communication” (SHANNON, 1948). The main concepts of
information theory are the entropy and information, and the primary goal of entropy
is to quantify the amount of information in a data set. Given the random variable X
with m different values for xi and having a probabilistic distribution function f(xi),
the entropy is defined as:

H(X) =
∫
f(xi) logb

(
1

f(xi)

)
dx (2.30)

If the log has base b = 2, the entropy can be interpreted as the minimum number
of bits it would take to encode the information (KURT, 2017). Although the entropy
can provide the average rate of information produced from a stochastic process, it
cannot indicate the optimal encoding scheme for data compression or whether a
given PDF is more suitable to data set than another.

The information theory concepts were introduced into the statistic field by Kull-
back e Leibler (1951), in 1951. They developed the relative entropy concept, which
computes the logarithmic difference between two distributions expectations, i. e., it
measures the similarity between two PDFs. Given the random variable X, which
follows the distribution f , but also fits in distribution g, the relative entropy of g
relative to f is defined as:

HKL(X) =
∫
f(xi) logb

(
f(xi)
g(xi)

)
dx (2.31)

The relative entropy can have different notations and names, and is often named as
Kullback–Leibler divergence. In this way, a divergence is any non-negative function
that gauges the contrast between two PDF(FRERY et al., 2013). Following Kullback
and Leibler’s work, a number of divergence classes were developed. Among then,
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Salicru et al. (1993) defined the class of entropy (h− φ), defined as:

Hh
φ(θ) = h

(∫
A
φ (fX(X,θ)) dX

)
(2.32)

where X is a random matrix with probabilistic density fX(X,θ), A is the sample
space, h is a strictly increasing function, and φ is a convex function.

In the context of PolSAR data, and considering that it follows the Wishart distri-
bution, the (h− φ) class can be rewritten as (NASCIMENTO, 2012):

Dh
φ(X,Y ) = h

( ∫
A
φ
(
fX(Z; ΣX , L)
fY (Z; ΣY , L)

)
fY (Z; ΣY , L)dZ

)
(2.33)

where X and Y are random covariance matrices having density fX(Z; ΣX , L) and
fY (Z; ΣY , L), respectively, with parameter {ΣX , L} and {ΣY , L}.

Through the combination of the functions h and φ, several divergences can be de-
rived from Equation 2.32. For instance, Nascimento (2012) explored the followings
measures: the Bhattacharyya, Kullback-Leibler, Hellinger, Rényi of order β, and
Chi-square, as presented in Table 2.2.

Table 2.2 - h− φ divergences and related functions.

Divergence h(y) φ(x)

Bhattacharyya − log(−y + 1), 0 < y < 1 −
√

(x) + x+1/2

Kullback-Leibler y/2 (x− 1) log(x)

Hellinger y/2, 0 < y < 2 (
√
x− 1)2

Rényi of order β 1/β−1 log((β − 1)y + 1), 0 < y < 1/β−1
xβ−1+xβ−β(x−1)−2

2(β−1) , 0 < β < 1

Chi-squared y/4
(x−1)2(x+1)/x

SOURCE: Nascimento (2012).

Although these divergences work as a good contrast estimator, they cannot be de-
fined as similarity metric, because the symmetry property is not necessarily satisfied.
To address the symmetry problem, the simplest solution to generate a symmetric
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divergence, defined as (SEGHOUANE; AMARI, 2007):

d(X,Y ) = d(Y ,X) =
Dh
φ(X,Y ) +Dh

φ(Y ,X)
2 (2.34)

The function d(X,Y ) is defined as a distance once the following properties are
satisfied:

• Non-negativity: d(X,Y ) > 0, X 6= Y

• Self-identity: d(X,Y ) = 0, X = Y ;

• Symmetry: d(X,Y ) = d(Y ,X);

According to Frery et al. (2013), distances between random variables which follow
the same PDF could be indexed by their parameters. Therefore, stochastic distances
can be simplified into distances between parameters d({ΣX , L}, {ΣY , L}). Assuming
an equal number of looks L for the entire analysed data set, the distance could
be summarized as a distance between covariance matrices d(ΣX ,ΣY ). Based on
this notion, Nascimento (2012) derived the stochastic distances between Wishart
distributions parameters presented hereafter:

a) Bhattacharyya;

dWB
(ΣX ,ΣY ) = L

[
log|ΣX |+ log|ΣY |

2 −log
∣∣∣∣(ΣX

−1 + ΣY
−1

2

)−1∣∣∣∣] (2.35)

b) Kullback-Leibler;

dWKL
(ΣX ,ΣY ) = L

[
Tr(ΣX

−1ΣY + ΣY
−1ΣX)

2 − q
]

(2.36)

c) Hellinger;

dWH
(ΣX ,ΣY ) = 1−

[ |2−1(ΣX
−1 + ΣY

−1)−1|√
|ΣX ||ΣY |

]L
(2.37)

29



d) Rényi of order β;

dWβ
R

(ΣX ,ΣY ) = log2
1− β + 1

β − 1 log{[|ΣX |−β|ΣY |β−1|(βΣX
−1 + (1− β)ΣY

−1)−1|]L+

[|ΣY |−β|ΣX |β−1|(βΣY
−1 + (1− β)ΣX

−1)−1|]L}
(2.38)

e) Chi-square;

dWχ2 (ΣX ,ΣY ) = 1
4

{[ |ΣX |
|ΣY |2

abs(|(2ΣY
−1 −ΣX

−1)−1|)
]L

+[ |ΣY |
|ΣX |2

abs(|(2ΣX
−1 −ΣY

−1)−1|)
]L
− 2

} (2.39)

where q is the matrix order, |.| represents the matrix determinant, Tr(.) means the
matrix trace, (.)−1 indicates the inverse of a matrix, and abs(·) denotes the absolute
value.

According to Frery et al. (2013), the number of looks L alters the data set distri-
bution in a non-linear way, which can be perceived by the stochastic distances. As
lower the number of looks, more sensitive are the stochastic distances to smaller
differences between classes, leading to a noisier classification result. On the other
side, as the number of looks becomes higher, more the data can be modeled as a
normally distributed data.

2.6 Covariance matrices intrinsic mean

The PolSAR images can be represented by a set of covariance matrices Z =
{Z1, . . . ,Zn}, with N samples and L number of looks. The covariance matrix Zn is
a Hermitian positive semidefinite matrix, which implies that the eigenvalues of Zn
are reals and non negatives, and the eigenvectors are orthogonal (LEE; POTTIER,
2009). According to Horn e Johnson (2012), a positive semidefinite matrix is posi-
tive definite if, and only if, it is nonsingular, i. e., if it has inverse. The stochastic
distances defined in Section 2.5 requires nonsingular covariance matrix Zn as input.
Therefore only Symmetric Positive Definite (SPD) matrices are considered in this
work.

During the PolSAR images classification or segmentation tasks it is needed to es-
timate a covariance matrix that represents a group or a cluster. In many cases,
when the space of covariance matrices is viewed as an extrinsic convex cone in <n,
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the estimation can be done by using the sample covariance matrix, as expressed in
Equation (2.40).

Σ = 1
N

N∑
n=1
Zn (2.40)

However, usually the cone of complex Hermitian positive definite matrices Cn has a
natural Riemannian metric (LIM et al., 2019). Therefore, the regular sample covari-
ance matrix is biased, resulting in an inefficient estimator. Indeed, according to Lin
(2019), the Euclidean metrics are not adequate for applications with SPD matrices
for two reasons:

a) The arithmetic mean of SPD matrices is not invariant under inversion;

b) The arithmetic mean of SPD matrices suffers from swelling effect, i.e., the
average covariance matrix determinant is larger than any of the original
determinants.

Various metrics have been introduced in the literature to handle SPD matrices,
such as the Riemannian metric named Log-Euclidean Metric (LEM), introduced by
Arsigny et al. (2006). In this metric, a covariance matrix Zn forms a differentiable
manifoldM, and at each point Zn (i.e. each covariance matrix) of the manifoldM,
a scalar product can be defined in the associated tangent space TZM.

The tangent space TZM is Euclidean and locally homomorphic to the Riemannian
manifold, therefore the metrics can be approximated by Euclidean metrics com-
putations in the tangent space (BARACHANT et al., 2013). Figure 2.10 shows the
transformation between M and TZM. The logarithmic map logZ(.) projects the
matrix Zn into the tangent space, and the exponential map expZ(.) projects the
tangent space element Cn back to the manifoldM.

In LEM, the expectation is determined by the intrinsic mean, also known as geo-
metric mean, which is defined as the point with minimal sum of squared distances:

µ = argmin
∑
n

δ2
Rdist(Z1,Z2) (2.41)

where δ2
R denotes an optional weight for each sample, and dist(Z1,Z2) is denoted

as:
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dist(Z1,Z2) = | log(Z−1
1 ,Z2)| =

[∑
i

log2 λi
]1/2

(2.42)

where λi are the real eigenvalues of (Z−1
1 ,Z2)

Figure 2.10 - Representation of manifold M and the corresponding local tangent space
TZM at Z.

SOURCE: Barachant et al. (2013).

In this, work the PolSAR covariance matrices algebraic manipulation relies on Rie-
mann geometry. The geometric mean can be computed interactively by the algorithm
proposed by Moakher (2005):

Algorithm 1 Intrinsic Mean of SPD matrices.
Input: Z the set of N covariance matrices
Output: µ the estimated geometric mean

1: procedure
2: Initialize µ1 = 1

N

∑N
n=1(Zn)

3: repeat:
4: Σ = 1

N

∑N
n=1 logµt(Zn)

5: µt+1 = expµt(Σ)
6: until: error < ε
7: return µt+1
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3 CLUSTERING

Image classification is one of the most important tools for image interpretation and
analysis. It consists of assigning the same label to a set of data that share common
properties, with the goal of reducing the amount of information and simplifying
the data interpretation. This topic, in regards to the mathematical and algorithmic
aspect, has been explored since 1967, when Birkhoff (1967) introduced the modal
distributive lattices notion, while, at almost same time, Sneath et al. (1973) inves-
tigated the mathematical models of hierarchical classifications. Since then, a large
number of algorithms for classification have been developed.

The classification methods can be roughly categorized as supervised or unsuper-
vised. Supervised classification requires prior information (training samples), while
in unsupervised classification, the prior information is not available. Of the several
unsupervised classification methods, perhaps the most common is based on cluster-
ing algorithms.

Clusters can be defined as high density regions separated by low density regions
(JAIN, 2010). Therefore, clustering techniques aim to maximize the inner cluster
homogeneity and the inter clusters heterogeneity, based on the data sets natural
evidence of division.

Clustering the data set X = {~x1, ..., ~xM}, which usually can be represented in a
N -dimensional Euclidean space RN , is the processes of division or partitioning this
data set into K groups based on a similarity metric, such that (PEDRINI; SCHWARTZ,
2008):

(a) Ck 6= ∅, k ∈ {1, ..., K};

(b) Ck ∩ Cz = ∅, k, z ∈ {1, ..., K};

(c)
K⋃
k=1

Ck = X;

where Ck is the group k.

The basic steps of cluster analysis are presented in Figure 3.1, and they can be
summarized into four main steps: feature extraction, clustering algorithm, cluster
validation, and interpretation of results. The goal of feature extraction is to find
significant feature samples that can represent data set patterns. The clustering algo-
rithm step refers to the choice of appropriated algorithm and the suitable similarity
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metric selection. The results of clustering algorithm can be verified by using the
proper evaluation tool, and in the interpretation step, experts of a given application
area must label the clusters or data partition. These four steps help the user to find
meaningful insights from the original data (XU; WUNSCH, 2005).

Figure 3.1 - Clustering steps.

SOURCE: Adapted from Xu e Wunsch (2005).

Clustering technique has a broader field of application, for instance, it is widely used
for market analysis, helping on the costumer groups and purchasing patterns char-
acterization (TSAI; CHIU, 2004). It is crucial on Earth observation area, helping on
the land cover and land use identification (CHAKRABORTY, 2019; MÜLLER-HANSEN

et al., 2017). It also helps recognition of fraudulent or criminal activity (CALVO et al.,
2017), and on diagnostic of neurological diseases (ALASHWAL et al., 2019), among
many others application.

3.1 User’s dilemma

Clustering a data set, from which no information is known, could be a difficult task,
even harder when considering noise and interference presence. Therefore, seeking out
an appropriated clustering technique is fundamental to reach an optimum result.
Despite the large number of clustering algorithms, there is no optimal method;
each clustering technique has it owns advantages and drawbacks. A single algorithm
cannot appropriately handle the different type of cluster shape, singularities, and
nature of various data types. Although the clustering techniques are characterized
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as unsupervised, the user must define the proper algorithm, metric and some other
input parameters. Jain e Dubes (1988) highlighted the fundamental challenges on
clustering technique choosing as the identification of:

(a) Data set type (numerical real, numerical complex, categorical);

(b) Data set normalization need;

(c) Similarity measure;

(d) Number of clusters;

(e) Cluster shape;

(f) Outliers, and how to deal with them;

(g) The initial centroid location choice;

(h) The clusters evaluation.

The data type definition and whether the data set needs normalization helps with
the feature selection, which is an important preprocessing step used to enhance
the underlying clustering quality. Data features are the redundant attributes which
are likely to belong to same cluster. Popular feature selection techniques include
information gain, chi squares tests, and Fisher score, among others (AGGARWAL,
2014).

The appropriate similarity measure definition is still a challenge on clustering tech-
nique. It is necessary to exercise caution when choosing the similarity measure. For
example, an improper metric can make false good separability that does well in
capturing the data variability, but actually makes no sense, because the data has
been wrongly clustered. According to Hastie et al. (2009), an appropriate similarity
measure is far more important in obtaining success with clustering than the choice
of clustering algorithm itself.

The number of cluster definition is one of most difficult tasks. For instance, if the
number of clusters are bigger than needed the cluster quality may improve, how-
ever it could be useless for data comprehension and decision makers. Usually this
parameter is determined by the user, based on prior information. However, there
are algorithms used to automatically determine the number of clusters. A simple
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and famous solution consists of analysing the dendrogram provided by hierarchi-
cal clustering, and additional examples includes the elbow and silhouette methods
(YELLOWBRICK, 2019). We can also apply some statistical analyses to derive the
number of cluster, such as gap statistic (TIBSHIRANI et al., 2001).

Clustering techniques may have restriction on the shape of clusters, for instance, al-
gorithms that uses Euclidean distance just accept convex and hyperspherical shaped
cluster. Algorithms that use Mahalanobis distance deal better with data set which
tends to have a hyperellipsoidal shape. Usually, partitioning and model-based al-
gorithms are limited to shapes that consider the data set as represented in a flat
manifold, i. e., a manifold that locally looks like an Euclidean space. Some hierarchi-
cal (depending on method and dissimilarity metric), and density-based algorithms
can be applied as non-flat geometry clustering, i. e., they can be used in situations
where the clusters have a shape represented in a non-flat manifold, consequently the
standard Euclidean distance is not the proper metric.

The proper statistical model definition helps to find out the proper cluster shape,
the appropriated similarity measure, and to define the most suitable algorithm. It
also can be used to derive information about outliers, helping on its identification
and filtering.

3.2 Similarity metrics

The main goal of clustering is to divide the data set into subsets, based on the
similarity between samples, regardless the type of clustering technique. Distances
are the most predominately metric to quantify the similarity between two samples.

Let X = {~x1, ..., ~xM} be the analysed data, and the distance between two samples
of X is given by d(~xi, ~xj). In order to be considered valid, the distance shall satisfy
the following properties (DEZA; DEZA, 2009):

(a) d(~xi, ~xj) ≥ 0, ∀xi, xj ∈ X;

(b) d(~xi, ~xj) = 0 ⇒ ~xi = ~xj;

(c) d(~xi, ~xj) = d(~xj, ~xi);

(d) d(~xi, ~xj) ≤ d(~xi, ~xz) + d(~xz, ~xj);

There are a number of distance metrics, among them the Minkowski distance is a
metric in normed vector space, i. e., a vector space over the real or complex numbers,
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on which a norm is defined. The Minkowski distance between two samples ~xi and
~xj defined as:

d(~xi, ~xj) =
(

n∑
i=1
|~xi − ~xj|p

)1/p

;∀p ≥ 1, p ∈ Z+ (3.1)

where Z+ is the set of positive integer numbers.

If p = 1, the Minkowski distance receives the name of Manhattan distance. This
distance is measured along axes at right angles. In short, the Manhattan distance
generally works better if the samples are arranged in the form of a grid and the
problem prioritize the distance between the points only along with the grids, but
not the geometric distance.

If p = 2, then the Minkowski distance is named Euclidean distance. The Euclidean
distance gives the shortest, or minimum, distance between two points. In other
words, the Euclidean distance is the square root of the sum of squared differences
between ~xi and ~xj. This distance is more suitable for data sample that could be
grouped in a hyperspherical shaped cluster, and thus make it only appropriate for
data measured on the same scale. Therefore, when Euclidean distance is used as a
similarity metric, highly correlated samples should be filtered, otherwise it may lead
to the distortion on the final classification.

For data sets represented in a multivariate space, and that could be grouped in a
cluster with elongated shape, a better approach would be to apply the Mahalanobis
distance. Note that for uncorrelated samples, the Mahalanobis distance is equal to
the Euclidean distance. Let ~xi = (x1, ..., xm) be an observation of the analysed data
X, with mean ~µ = (µ1, ..., µm), and covariance matrix Σ, the Mahalanobis distance
is defined as:

d(~xi) =
√

(~xi, ~µ)T Σ−1 (~xi, ~µ) (3.2)

Another well known clustering metric in statistic field is the Bhattacharyya distance,
which measures the similarity of two probability distributions, and is defined as:

d(p, q) = − log(
∑
A

√
p(x)q(x)) (3.3)

where p and q are probability distributions in the same sample space A.
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Each distance has its own peculiarities, advantages, and disadvantages and the choice
of similarity metric is a critical step in clustering since it influences the shape of the
clusters. A good distance metric helps in improving the clustering and classification
result performance.

3.3 Clustering taxonomy

The clustering algorithms can be categorized into four classes: partitioning based,
hierarchical, density-based, and model-based clustering algorithms.

There are a large number of clustering techniques in literature, and they can be
broadly categorized into four classes: partitional, hierarchical, density-based, and
model-based, as shown in Figure 3.2. The classes and example of the algorithms are
discussed in the following subsections.

Figure 3.2 - Clustering Taxonomy.

SOURCE: Adapted from Fahad et al. (2014).

3.3.1 Partitioning based clustering algorithms

Partitioning algorithms divide the data set into K partitions, where each partition
represents a cluster. In this case, each cluster is represented by its center or cluster
centroid (BANDYOPADHYAY; SAHA, 2012). The clusters in partitioning algorithms
shall fulfil the following requirements: a) each cluster must have at least one sample;
and b) each sample must belong to exactly one group.

One of most popular partitioning algorithm is the K-means algorithm, which is an
interactive clustering technique that divides the data set X into K clusters based on
the minimal Euclidean distance between a sample ~xi and a centroid ck. The K-means
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association equation is represented as:

J =
N∑
i=1

K∑
k=1

ui,kd(~xi, ck) (3.4)

where ui,k = 1 if xi belongs to cluster ck, or ui,k = 0 otherwise, and d(.) represents
the distance metric.

In K-means algorithm first iteration, the centroids are randomly chosen, then the ini-
tial partitions are formed using the distance criteria (Equation (3.4)). Subsequently,
the cluster centroids are recomputed by the rule for updating given by:

ck =
∑N
i=1 ui,k~xi∑N
i=1 ui,k

(3.5)

The algorithm terminates when a number of iterations is achieved or when a defined
error is lower than a threshold. The K-means algorithm is very easy to implement,
and in many cases gives satisfactory results. However, it has a number of limitations,
for instance, as shown in Carvalho et al. (2019), this algorithms is affected by the
choice of initial centroid and may converge to values that are not optimum. Moreover,
once this algorithm uses the Euclidean distance, it assumes that the clusters have a
hyperspherical shape, being susceptible to outliers.

The K-means algorithm is computationally difficult and the optimal solution is NP-
hard but under specific heuristic, the problem can be translated into a NP-problem
and the algorithm can converge quickly to a local optimum. There are a variety
of heuristic algorithms to find the optimal solution to the K-means clustering, for
instance the Lloyd’s algorithm (BOCK, 2008) assumes that the number of samples
N , the data dimension D, the number of cluster K, and the number of interations
I are known, therefore the complexity is O(NDKI).

3.3.2 Hierarchical clustering algorithms

The hierarchical algorithms aim to produce a sequence of clusters that are rep-
resented graphically by a dendrogram or valued tree. The dendrogram is a n-tree,
where the individual elements are named leaves, the joins of two branches are named
nodes, the parent node of all the others is named root, and the height of dendrogram
is named levels, which are determined by the similarity between the samples (GAN

et al., 2007), as showed in Figure 3.3. Each dendrogram level (Li, i ∈ {0, ..., Q})
is formed with a junction (or bipartition) of groups at lower levels. An important
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feature of these algorithms is that it is not necessary to determine a specific number
of clusters, but this value is determined by the dendrogram level.

Figure 3.3 - Hierarchical clustering dendrogram.

SOURCE: Author’s production.

Hierarchical clustering methods can be agglomerative (bottom-up) or divisive (top-
down) (BANDYOPADHYAY; SAHA, 2012). An agglomerative clustering starts with
one object for each cluster and recursively merges two or more of clusters, there-
fore, the decisions are made based on local standards. A divisive clustering starts
with the dataset as one cluster and recursively splits into a number smaller groups,
consequently making global decisions.

Hierarchical clustering outputs are more informative than a set of flat clusters, which
makes the analysis easier, especially when the number of classes is unknown. How-
ever, the major drawback of these methods is that once a step (merge or split)
is performed, this cannot be undone, therefore, the hierarchical heuristic can con-
tribute to the spread of errors. The algorithms DIANA, BIRCH, CURE, ROCK and
Bisecting K-means are some of the well-known algorithms of this category.

The Bisecting K-means, proposed by Karypis et al. (2000), is a hierarchical variant
of K-means algorithm. The idea is to split the dataset into two clusters in each
iteration, using the K-means algorithm until K clusters are obtained. As a result, a
binary tree is created and each tree node has two children that correspond to two
sub-clusters, as shown in Figure 3.4.
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Figure 3.4 - Tree generated by Bisecting K-Means.

SOURCE: Author’s production.

3.3.3 Density-Based clustering algorithms

Density-based clustering techniques visualize clusters as areas of high density sepa-
rated by areas of low density. These algorithms are closely related to the k Nearest
Neighbors (kNN) algorithm, since it groups the samples in the a given point vicinity.

The most known density based algorithm is the Density-based spatial clustering of
applications with noise (DBSCAN), proposed by Ester et al. (1996). This algorithm
has two parameters: the minimum number of samples and the minimum distance.
The data samples are classified as core points, (density-)reachable points and out-
liers. The core point is randomly picked from the dataset, then the DBSCAN forms
an m dimensional shape around it and checks the points that fall within the shape
based on a distance measurement, usually Euclidean distance. These are the reach-
able points and the points that are out of the shape are the outliers. Then DBSCAN
counts how many samples are classified as reachable points, and if a minimum num-
ber of points is achieved, the cluster is expended interactively. A new cluster can
be initialized by picking the core point in the group of samples classified as outlier.
The process repeats until every points can be allocated in one cluster. The time
complexity of DBSCAN is O(n2).

3.3.4 Model-Based clustering algorithms

Model-based clustering algorithms optimize the fit between the given data and some
predefined mathematical model (FAHAD et al., 2014). Usually these methods assume
that the samples are represented in statistical terms, such as mean, variance, and
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covariance. These parameters are used to estimate degrees of statistical separability
between classes. One of the biggest challenges of these algorithms is to determine the
method that, given a probabilistic distribution of the data, allows an optimal degree
of separation between the classes (JENSEN, 2005). A well-known algorithm is the
Expectation Maximization (EM), which uses a mixture density model to perform
the clustering.

The EM algorithm is an iterative procedure that uses the maximum a posteriori rule
to compute the maximum likelihood of a mixture model distribution in the latent
variables presence. Let X be the set of observable data, Y be the latent variables,
θ be vector of unknown parameter, and L(θ;X, Y ) be the likelihood function. The
maximum likelihood of θ can be determined by maximizing the marginal likelihood
of X:

L(θ;X, Y ) =
∫
f(X, Y |θ)dY (3.6)

The EM algorithm seeks to find the maximum likelihood by applying two steps:

a) E-step: estimate the values for the latent variables as the log likelihood
expectation:

Q(θ,θt) = EY |X,θt [logL(θ;X, Y )] (3.7)

b) M-step: do the model optimizing by maximizing Q(θ,θt):

θt+1 : ∂Q(θ,θt)
∂Ψ = 0 (3.8)

3.4 Cluster validation

Cluster validation refers to the procedures used to evaluate the results of clustering
in a quantitative way in order to find the clusters with a better fit in a given data set.
According to Theodoridis e Koutroumbas (2010), the clustering validation statistics
methods can be categorized into three classes: internal cluster validation, external
cluster validation, and relative cluster validation.

3.4.1 Internal cluster validation

Internal cluster validation uses the internal information of the clustering process to
quantify the clustering accuracy or quality Q. Usually, the internal validation aims
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to evaluate two criteria (BERRY; LINOFF, 2004): compactness, and separation.

The compactness is an inner cluster metric and it measures how close the samples of
cluster are from each other. The compactness assesses cluster homogeneity. There-
fore, a common measure of compactness is the variance; the lower the variance the
better the compactness. On the other hand, the separation is an inter cluster metric
which evaluates how far the clusters are from each other. Compactness and separa-
tion are opposing trends, and while the compactness increases with the number of
clusters, the separation decreases.

Given a data set X = {~x1, ..., ~xM} with dimension P , which is clustered into K

groups C = C1, ...Ck, having centroids c = c1, ..., ck, the simplest internal validation
measure is the Root-Mean-Square Standard Deviation (RMSSTD), which is designed
to evaluate either the compactness or separation:

QRMSSTD =

√√√√∑k

∑
x∈Ck ‖x− ck|2

P
∑
k(nk − 1) (3.9)

where nk is the number of data points in cluster Ck.

The Dunn Index (DUNN, 1973) and Silhouette Width (ROUSSEEUW, 1987) are ex-
amples of non-linear combinations of compactness and separation. The Dunn index
is defined as:

Qd = min
(
min

( d(ck, cp)
max(d(Xk))

))
(3.10)

where d(ck, cp) defines the intercluster distance, i. e. the distance between centroinds;
d(Xk) is the inner cluster distance, or the distance between the samples that belongs
to a given cluster.

If the data set contains compact and well-separated clusters, the diameter of the
clusters is expected to be small, and the distance between the clusters is expected
to be large. Thus, the Dunn index should be maximized. The drawback of the Dunn
index is the computational effort, which can be computationally expansive as the
number of clusters and data points increase.

The silhouette analysis estimates the average distance between clusters and each
sample. It is defined as:

Qs = 1
K

∑
k

( 1
nk

∑
x∈Ck

( b(x)− a(x)
max(b(x), a(x))

))
(3.11)
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where a(x) = 1
nk−1

∑
y∈Ci,y 6=x d(x, y) and b(x) = minp 6=k

(
1
np

∑
y∈Cp d(x, y)

)
.

The Silhouette value measures the degree of confidence in the clustering assignment
of a particular sample. If a sample has Qs close to one, it means that the sample was
correctly clustered. Small values of Qs, i. e., around 0, means that the sample may
belong to a different cluster or that it can be be clustered into two or more clusters.
Samples with a negative Qs are likely placed in the wrong cluster.

3.4.2 External cluster validation

External cluster validation consists of comparing the results of a cluster analysis to
an externally known result. In this kind of evaluation, the clustering labels must be
already known, therefore, henceforth clusters will be referred as classes.

The confusion matrix M , or error matrix, is a well-known means of reporting the
clustering results by comparing it with the ground truth. The confusion matrix M
is a N ×N matrix, with the elements eij, where the rows refer to cluster outcomes
results and columns refer to the ground truth. The M main diagonal represents
the number of samples correctly classified, i.e., the outcome label is equal to the
true label; while off-diagonal, i. e., elements eij with i 6= j, represent the incorrectly
clustered samples. For instance, considering a binary classifier where the samples
can be classified between ‘positive’ and ‘negative’ classes, the confusion matrix can
be represented as shown in Figure 3.5.

Figure 3.5 - Confusion Matrix.

SOURCE: Author’s production.
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From the confusion matrixM , a number of validation metrics can be derived, includ-
ing the overall accuracy, the cluster precision, the cluster recall and the F1-measure.
The accuracy (Acc) is computed as the number of all correct predictions divided by
the total number of the dataset. The best accuracy result is equal to 1.0, whereas
the worst is 0.0. The accuracy is defined as:

acc = Tr(M)∑
i=1

∑
j=1 eij

(3.12)

where Tr(.) is the matrix trace.

The recall is computed for each class, therefore it is the samples correctly identified
as belonging to a given class proportion. The best recall is equal to 1.0, whereas the
worst is 0.0. Considering we are analysing the class Ci, the recall is defined as:

r = eii∑
j=1 eij

(3.13)

The precision is also computed for each class, and it refers to the proportion of
samples correctly identified as belonging to class Ci, among all samples of which
the classifier claims that they belong to class Ci. The best precision is equal to 1.0,
whereas the worst is 0.0. Considering the analysis of class Ci, the precision is defined
as:

p = eii∑
i=1 eij

(3.14)

and the F1-Measure provides a single score that balances both the concerns of
precision and recall in one number. The F-measure is defined as:

F1 = 2× p× r
r + p

(3.15)

3.4.3 Relative cluster validation

Relative cluster validation evaluates the clustering by varying different parameter
values for the same algorithm, for instance, varying the number of clusters. Often
an external or internal validation index is used for this function. The RMSSTD can
be applied to evaluate the clusters, or if the ground truth is known, the results can
be represented in a confusion matrix form. A good example of application for this
method is the hierarchical algorithm, where the relative improvement between two
consecutive partitions can be assessed by applying the information gain between
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the partitions. The information gain is the expected reduction in entropy caused by
the partitioning of a subset. Given a parent cluster C and a cluster child Ci, the
information gain is defined as:

IG = H(S)−
n∑
i=1

( |Ci|
|C|

)
×H(Ci) (3.16)

where H(.) is the entropy of a data set, and |.| is the number of samples in a given
data set.
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4 NEW PROPOSED CLASSIFIER

4.1 Contextualization

Hierarchical clustering algorithms can be used to overcome the limitations of par-
titional clustering. Usually partitional clustering requires a predefined number of
cluster and are strongly dependent on the initial centers. While hierarchical algo-
rithms do not require input parameters, they are more flexible and easy to interpret.
However, in practice, hierarchical algorithms are overtaken by partitional algorithms
for images clustering applications, because hierarchical algorithms do not work well
with missing data, or with large data sets.

Another latent difference between partitioning and hierarchical algorithms refers to
scalability and flexibility. An algorithm is considered scalable if the computational
cost roughly increases with the number of samples (ZAÏANE et al., 2002), and the
clustering flexibility refers to the ability to discover clusters with different shapes or
to work with different data type.

Partitional algorithms, as the K-means, can have complexity O(NDKI), as pre-
sented in Section 3.3.1. If the K-means algorithm converges in a few number of
iterations I, and the number of cluster K is small, then the time performance grows
almost linearly as the amount of data increases, therefore it is considered scalable.
On the other hand, hierarchical agglomerative clustering usually have complexity
O(N3), while hierarchical divisive clustering with an exhaustive search, as the DI-
ANA (STRUYF et al., 1997), can be O(2N), which make these algorithms unfeasible
for large datasets. Additionally, large datasets, especially with agglomerative clus-
tering, makes the tree too large and the nodes and leafs can overlap each other,
which then makes the dendrogram difficult to visualize and analyze.

Although, in special situations, the K-means can be scalable, it cannot be used for
flexible data. Since K-means uses the Euclidean distance, it is applicable only to
numerical data that fit into the Euclidean space, and assumes that the shape of
a given cluster is spherical. Additionally, K-means needs linear separability among
clusters to correctly distinguish them. An algorithm using the Mahalanobis distance
is more flexible because it has the data covariance information, which allows the user
to detect spherical or ellipsoid cluster shapes. However, the Mahalanobis distance
assumes that the standard deviations of the two classes are the same. Therefore, an
even flexible algorithm would use the Bhattacharyya distance, which is the general
case of Mahalanobis distance. Likewise, hierarchical algorithms can be more flexible
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than the K-means, and can handle different types of data.

This work uses the partitional clustering scalability and the hierarchical clustering
flexibility, allied to the statistical knowledge about the data, in order to provide an
accurate classification result. Therefore, the algorithm proposed here is based on the
Bisecting K-means, a hybrid algorithm of the divisive hierarchical clustering algo-
rithm and K-means clustering. As discussed in Section 3.3.2, the Bisecting K-means
algorithm splits one cluster into two sub clusters by using the K-means strategy, at
each dendrogram level, until K clusters are obtained.

Since K-means is biased towards hyperspherical clusters, and handles the data set
in Euclidean Space, the use of stochastic distances is proposed (Section 2.5) as a
similarity metric for K-means strategy, in order to make the algorithm more flexible.
This algorithm is named SC. The divisive hierarchical proposed algorithm is named
BSC.

The focus of this work is on PolSAR images, therefore, the dataset is formed by a
group of covariance matrices Z = {Z1, . . . ,Zn}, with N samples and L number of
looks, where Zn is given by Equation (2.21). The dataset Z follows the Wishart
distribution, therefore the similarity metrics used by the BSC are the stochastic
distances defined in Section 2.5.

An important feature of K-means, or SC (Stochastic Clustering), is its greedy be-
havior (JAIN, 2010), meaning that this algorithm makes locally optimal choices at
each stage, with the goal of finding the global optimal solution to the entire parti-
tioning problem. The drawback of this feature is the local minimum convergence;
the algorithm is able to converge to the global optimum only when clusters are well
separated. Additionally, as demonstrated in Carvalho et al. (2019), the K-means and
SC can, frequently, be trapped in a local minimum, which results in wrong classifica-
tion. One of the main reasons is the choice of initial centroids. Bad initial centroids
are likely to result in non-optimized and wrong clustering estimations. Therefore,
choosing good candidates for initial centroids implies the need for more accurate
results and faster convergence, i. e., it reduces the amount of time spent in areas
away from the global maximum. Therefore, in our approach, the two initial centroids
can be determined by two different strategies: using the RPDDP algorithm or by
the EM algorithm.

The new proposed classifier based on BSC algorithm (BSC Classifier) is divided
into 7 modules, which are shown in Figure 4.1. The first step in BSC classifier is to
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select the input PolSAR images. After that, the stochastic distances are presented,
the user can select the suitable distance. The next steps are gathered as the BSC
algorithm, and they are ordered from one to three. The BSC algorithm step number
1 consists in determine the suitable cluster to split, the step number 2 seeks the
initial centroids or parameter determination, in here two options are presented, and
the user shall select the strategy (RPDDP OR EM). The step number 3 is the
dataset splitting. Once the BSC algorithm converges, the cluster labeling shall be
done by the user. And, finally, the image classification is validated.

Figure 4.1 - BSC classifier modules.

SOURCE: Author’s production.

The SC algorithm has time complexity O(KNi), where K is the number of clusters,
N is the number of samples and i number of iterations. Considering that the BSC
divides the data into two clusters in each interaction, i. e., K = 2. The BSC does one
bipartition per time therefore, considering C BSC iterations, this algorithm would
have complexity O(2CNi).

4.2 Bisecting stochastic clustering algorithm

The BSC algorithm, presented in Figure 4.2, is a combination between the SC algo-
rithm, as described in Carvalho et al. (2019), and the hierarchical divisive algorithm.
This algorithm aims to split one cluster into two sub clusters at each bisecting step
by using the SC strategy. The BSC starts with a single cluster and the splitting
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procedure is done until stop criteria is reached.

Figure 4.2 - BSC flowchart.

SOURCE: Author’s production.

The BSC outputs are the clustered image and the dendrogram. There are three
major steps in the bisection procedure: 1) the initial parameters determination; 2)
the splitting procedure; 3) the choice of a suitable cluster to split. These steps will
be further discussed in the following sections.

4.2.1 Initial parameters determination

The correctness of initial parameters choice makes the greedy algorithms convergence
faster and the classification result more accurate. There is a large number of methods
for initial parameters determination, including the Ball and Hall’s, Simple Cluster
Seeking, Maximin (CELEBI et al., 2013), and methods based on Principal Component
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Analysis (PCA).

The BSC uses the stochastic distances as similarity metric. Due to that, the initial
parameters are the expected covariance matrices Σk, where k = 1, ..., K, withK = 2.
Since PolSAR images are widely known for following the Wishart distribution, the
initial parameter determination can be done by the hidden probabilistic parameter
estimation. The EM algorithm is an iterative method to estimate of parameters in
statistical models, therefore, the first way to determine the initial parameter is done
by the EM for Wishart mixture model distribution.

The second way to determine the initial parameter is done by a new proposed
approach named Riemannian Principal Direction Divisive Partitioning (RPDDP)
which is based on the Principal Direction Divisive Partitioning (PDDP) algorithm.
The original PDDP algorithm was proposed by Boley (1998) with the goal of bi-
partitioning data samples based on an embedding in a high dimensional Euclidean
space. However, since the PolSAR images are represented by the covariance matrices
Z, the original version of PDDP is not applicable, as long as these matrices do not
form a Euclidean space (YING-HUA; CHONG-ZHAO, 2010). Indeed, symmetric positive
definite matrices are better manipulated with Riemannian geometry (CONGEDO;

BARACHANT, 2015), for this reason the the PDDP is handled by the Riemannian
geometry.

4.2.1.1 Riemannian Principal Direction Divisive Partitioning (RPDDP)

The PDDP algorithm is a fast and scalable hierarchical divisive clustering algorithm.
The basic idea is to recursively split the dataset into sub-clusters based on the
Principal Component Analysis (PCA) routing; the output of this algorithm is the
clustered data and a binary tree.

In our approach, the input data set is the group of covariance matrices Z, and the
covariance matrix Σ is defined as the geometric mean of the dataset Z, given by
Equation (2.41). The matrix Σ can be decomposed as Σwj = λjwj, where λj are the
eigenvalues associated to eigenvectors wj. The principal direction is the eigenvector
with the largest eigenvalue with which it is associated.

In order to perform the samples projection onto the principal direction, only the
main diagonal of the Zn is considered, i. e., only the information related to image
brightness is taken into account at this phase. The diag(Zn) projection is given by
the Equation (4.1).
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σvn = wTj (diag(Zn)− diag(Σ)) (4.1)

The values vn are separated into two groups accordingly to their sign, as well the
correspondent covariance matrix Zn. The geometric mean of the covariance matri-
ces Σk is computed to each group, and the initial parameters are determined, as
presented in Figure 4.3.

Figure 4.3 - RPDDP flowchart.

SOURCE: Author’s production.

4.2.1.2 Expectation-Maximization (EM)

The EM for Wishart mixture model procedure used in this work was described in
Carvalho et al. (2019). Assuming Z = {Z1, . . . ,Zn} as the set of observed complex
covariance matrices, the Wishart mixture model can be expressed by (HIDOT; SAINT-

JEAN, 2010):

f(Zn; Ψ) =
K∑
k=1

πkfk(Zn; θk) (4.2)

where K is the number of Wisharts within the mixture. In this approach, there
are two Wisharts per time, or K = 2, and Ψ = {π1, ..., πK , θ1, ..., θK} is the un-
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known mixture model parameter vector, containing the weighting factor per Wishart
πk, which must sum up to one, and the parameter vector θk. All functions fk(.)
correspond to same density model, i. e., the Wishart distribution, for this reason
θk = {Σk, L}, with the expected covariance matrix Σ1 and the number of Looks L.
Also, the algorithm is executed over all Z samples, therefore the complete-data log
likelihood is formulated as:

logL(Ψ) =
N∑
n=1

K∑
k=1

un,k log
(
πkfk(Zn; Σk, L)

)
(4.3)

where un,k = 1 if the sample n produces a measurement k, or un,k = 0 otherwise.

The goal of EM algorithm is to find the maximum likelihood estimation through the
iterative maximization of the conditional expectation. At every iteration the EM
algorithm consists of two steps:

a) In the expectation step, the log-likelihood of the observed data Zn, given
the estimated parameter Ψt, is calculated as:

Q(Ψ,Ψt) =
N∑
n=1

K∑
k=1

un,k
[

log(πtk)−L log |Σt
k|+(L−q) log |Zn|−Tr(Σt

kZn)
]

(4.4)

b) In the maximization step, the new parameter Ψt+1 is estimated. Since the
parameter Ψ is composed of πk and Σk, the parameter optimization is
done by setting the respective partial derivative to zero, meaning that the
function local maximum has been found:

Ψt+1 : ∂Q(Ψ,Ψt)
∂Ψ = 0 (4.5)

The optimization, with respect to πt+1
k , can be summarized as:

πt+1
k = 1

N

N∑
n=1

un,k (4.6)

and the new estimation for Σt+1
k is given by the geometric mean presented in Equa-

tion (2.41). After EM convergence, the initial parameter is given by the estimated
Σ.
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4.2.2 Splitting procedure: Stochastic Clustering

The partition algorithm presented here is based on K-means procedure, and was
described in Carvalho et al. (2019). The K-means algorithm divides the dataset into
K clusters based on Euclidean distance, and each cluster can be summarized by its
mean. However, as previously discussed, the inputs of BSC are a group of covariance
matrices Z = {Z1, . . . ,Zn}, and this set does not form an Euclidean space, nor can
the group be summarized as the arithmetic mean.

Since the similarity metric used to split the dataset Z is the stochastic, the splitting
procedure is called Stochastic Clustering. In Section 2.5, it is stated that Nasci-
mento (2012) derived five stochastic distances between Wishart distributions: the
Bhattacharyya, Kullback-Leibler, Hellinger, Rényi of order β, and Chi-square. How-
ever, as testified by Carvalho et al. (2019), only Bhattacharyya, Kullback-Leibler,
and Hellinger distances achieved successful results when used as similarity metrics
on the SC algorithm. The Rényi of order β and Chi-square presented poor accuracy
classification results, due to their numerical instabilities. Therefore, the last two dis-
tances are not indicated to perform PolSAR classification, and for that reason, they
were excluded from the final version of BSC.

The SC procedure follows a simple way to cluster the dataset Z into two cluster
at each bisecting iteration. The main idea is to define two initial parameter, the
next step is to associate each sample from Z to the more likely parameter. Once no
sample is pending, the parameters are recalculated and the samples are reassigned.
The algorithm repeats until convergence. The association function is given by:

J =
N∑
n=1

K∑
k=1

un,kd(Zn,Σk) (4.7)

where K = 2, un,k = 1 if xn belongs to cluster ck, or un,k = 0 otherwise, and d(.)
represents the stochastic distance. The rule for updating the cluster parameter is
given by the geometric mean, represented by Equation (2.41).

4.2.3 Determination of new nodes and clusters

The BSC is built as a top-down procedure: it starts with all samples in an unique
cluster (named parent), that are split into two new subclusters (named children),
which later will be assigned as parents and divided successively into new subclusters.
Once the number of subclusters and, therefore, the number of nodes, is higher than
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one, a rule to determine which cluster shall be split is needed.

The BSC uses the information gain as node decision rule. The information gain is
based on the decrease in entropy after the dataset splitting, i. e., it represents the
amount of entropy removed between clusters. Mathematically, it can be represented
as:

I(X, Y ) = E(X)− E(X|Y ) (4.8)

where I(X, Y ) is the entropy gain between cluster X (the parent cluster) and Y (the
child cluster). The entropy of the parent cluster E(X) is subtracted by the entropy
of the subcluster E(X|Y ), resulting in a decrease in entropy.

The entropy is a fundamental concept to compute the cluster homogeneity. There
are several families of entropy; this work presents the (h − φ)-family, proposed by
Salicru et al. (1993), to derive the entropy for positive definite Hermitian matrices.
The Z follows the Wishart distribution fZ(Z,Σ, L). The Shannon Entropy obtained
by using the (h− φ)-entropy class is defined as (FRERY et al., 2012):

HS(θ) = q(q−1)
2 ln(π)− q2 ln(L) + q ln |Σ|+ qL+ (q − L)ψ(0)

q (L) +∑q−1
k=0 ln Γ(L− k) (4.9)

where q is the order of Σ. The clustering procedure shall be done in one set of
PolSAR image per time, therefore the number of looks L is assumed to be equal, as
well the covariance matrices order q. Then, the number of looks L and the order q
are considered constant, the entropy can be summarized as a function of Σ, and can
be written as H(Σi), where i is the cluster index.

The information gain is computed to all nodes in a given level; these nodes are named
candidates. For each cluster associated to a candidate node, the initial parameter
Σ is determined (by RPDDP or EM precedure). The estimated initial parameter is
used to compute the entropy gain of future children, as shown in Figure 4.4. The
candidate node with the highest information gain is the winner and will be split in
the next bisecting step.
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Figure 4.4 - Information Gain computation.

SOURCE: Author’s production.

4.2.4 BSC Dendrogram

The dendrogram is a binary tree structure used to represent the hierarchical rela-
tionship between the subclusters. It can be defined as a nodes collection, starting
with the root node and ending with leaf nodes (see Figure 3.3). Each node is a data
structure consisting of: node ID, parent ID, cluster entropy, information gain, and
the splitting initial parameters Σi, as show in Figure 4.5. Associated to the dendro-
gram is the ID image, which has the same number of rows and columns of the input
image, and the pixel position (x, y) has as value the node ID. In the end, the image
pixels will be classified according to ID number with which it is associated.

The dendrogram can show information about the splitting history, but it can also
tell about the subclusters or classes that are more similar. For instance, looking at
the leaves of a dendrogram, the classes that are closer, are similar (it can be, for
example, the same type of plantation, but in different periods), and they can even
be clustered again after analysis. While the classes that a far away from each other
are unrelated (for example, forest and urban area).
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Figure 4.5 - Dendrogram Structure and ID image.

SOURCE: Author’s production.
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5 METHODOLOGY AND DATA DESCRIPTION

In this chapter the work methodology used to obtain the results described in Chapter
6 is presented. Simulated and real PolSAR images are used in order to evaluate the
proposed algorithm.

As presented in Figure 4.1, the last module in the BSC classifier is the classification
validation. In this work the classification results are evaluated by a quantitative
and qualitative analysis. Therefore, in this chapter the dataset and the methods
used to analyse these outputs are presented. The quantitative analysis evaluates the
confusion matrices and accuracy. While, the qualitative analysis assay the cluster
information gain, the dendrogram, and the scattering mechanism.

5.1 Data set description

This section describes the PolSAR images analysed by the proposed algorithms. The
first set of image, composed by four real PolSAR images, is described in Section 5.1.1.
Section 5.1.2 describes the simulated images and the simulation procedure.

5.1.1 Real PolSAR images

In order to bring variety to the proposed algorithms validation, four PolSAR images
were analysed. The images are from three different scenarios: the Brazilian Caatinga,
the Amazon forest and urban area. Hence, our ambition is to analyse the BSC
algorithm with various scattering mechanisms.

Two images are provided by the Spaceborne Imaging Radar-C/X-SAR (SIR-C/X-
band), which is a joint project between National Aeronautics and Space Adminis-
tration (NASA), the German Space Agency (DARA) and the Italian Space Agency
(ASI). The SIR-C/X-SAR system acquires images at three wavelengths: L band, C
band, and X band. The L and C band can be tuned to select among several po-
larization options, and the SIR-C is capable of recording full quad-polarized images
(FREEMAN et al., 2019). The images used in this work are in L and C bands, and
full quad-polarized.

The other two images are generated by the PALSAR (Phased Array type L-band
Synthetic Aperture Radar), which is an active microwave and L band frequency
sensor. The PALSAR is one of three instruments on the Advanced Land Observing
Satellite (ALOS), which is a the Japan Aerospace Exploration Agency (JAXA)
mission.
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5.1.1.1 SIR-C images

The SIR-C instrument includes the L band, which has frequency of 1.25 GHz and
23 cm of wavelength, and the C band, which has 5.304 GHz and 6 cm of wavelength.
Both frequencies have four polarizations (hh, hv, vh, and vv). The main information
about them are described in Table 5.1.

Table 5.1 - SIR-C images parameters.

Year of acquisition 1994

Image Size 407 x 370 pixels

Frequency L band (1.25GHz) / C band (5.304GHz)

Polarization hh, hv, vv

Product Type Complex Multilook

Number of nominal looks 4.79

SOURCE: Correia (1998).

Figures 5.1(a) and 5.1(b) present the color composition of SIR-C images in L and C
bands, respectively. The scene refers to an agricultural region in Bebedouro, located
in the São Francisco river sub-middle region, about 40 km northeast of Petrolina,
Pernambuco, Brazil. The Bebedouro region is characterized by a vegetation named
Caatinga, which is a common type of desert vegetation in the interior of Brazilian
northeastern.

The Bebedouro area, according to information derived from a study field, has six
main classes: caatinga, tillage, bare soil, soy, corn and river. However there are
regions with different ages for soy and corn, resulting in nine different classes, as
shown in Figure 5.1(c): Corn 1, Corn 2, Soy 1, Soy 2, soy3, Tillage, Bare Soil,
Caatinga and River (CORREIA, 1998).

The input image of every algorithm analysed in this work is the PolSAR image
covariance matrix representation, therefore, every image pixel is a covariance matrix,
and the dataset is represented as a group of covariance matrices Z = {Z1, . . . ,Zn}
with N samples and L number of looks. Samples from the regions marked as classes
in Figure 5.1(c) were collected, and, from these samples, nine covariance matrices
were estimated. The covariance estimation was performed in two ways: 1. using
the arithmetic mean, and this kind of estimated covariance matrix will be named
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AvCM (average covariance matrix); 2. using the intrinsic mean described in Section
2.6, this kind of estimated covariance matrix is named, henceforth, InCM (intrinsic
covariance matrix).

Figure 5.1 - SIR-C image of Bebedouro, with the components hh (R), hv (G) and vv (B),
in C and L band.

(a) L band PolSAR image. (b) C band PolSAR image.

(c) Classes.

SOURCE: Correia (1998).

Since the Bebedouro images have nine classes, nine AvCM and nine InCM were
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estimated. The determinant and trace of these matrices, from the L band image, are
presented in Table 5.2. As described in Section 2.6, the determinant values computed
from AvCM tend to suffer from swelling effect, therefore these determinant values
are bigger than the InCM ones. In the same way, the AvCM traces values a higher
than the InCM traces values.

Table 5.2 - Bebedouro SIRC-C L band determinant and trace of the estimated covariance

matrices.

Class
AvCM

Determinant
AvCM
Trace

InCM
Determinant

InCM
Trace

Corn 1 1.05× 10−4 0.24 6.06× 10−5 0.21

Corn 2 2.58× 10−5 0.13 1.62× 10−5 0.11

Soy 1 1.82× 10−5 0.12 1.01× 10−5 0.09

Soy 2 2.26× 10−5 0.11 1.21× 10−5 0.08

Soy 3 4.99× 10−5 0.14 2.80× 10−5 0.12

Tillage 1.54× 10−6 0.05 9.25× 10−7 0.04

Bare Soil 1.94× 10−8 0.02 1.24× 10−8 0.01

Caatinga 8.07× 10−4 0.31 5.14× 10−4 0.27

River 1.20× 10−8 0.02 7.98× 10−9 0.02

SOURCE: Author’s production.

The PolSAR image covariance matrix determinant is related to the image brightness.
Therefore, by analysing the values presented in Table 5.2 it is possible to have a key
about what classes are similar to each other. For instance, the classes Corn 2 and
Soy 2 have the closest determinant values, meaning that, visually, these classes are
similar. The Caatinga has the highest determinant, consequently this is the brightest
area in the PolSAR image, as can be seen in Figure 5.1(a). The class with the lowest
determinant and less bright in the picture is the Bare Soil, followed by the River
and Tillage.

In order to have a clearer idea about the classes relationship, the Hellinger stochastic
distance between the estimated covariance matrices were computed and a distance
table was derived. The distance values are represented by gray-scale in the distance
table. Two distance tables were derived, one considering the AvCMs, shown in Figure
5.2(a), and the second using the InCMs, presented in Figure 5.2(b).
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Figure 5.2 - Hellinger distances between all classes within SIR-C image in L band.

(a) AvCM distance table.

(b) InCM distance table.

SOURCE: Autor’s production.

The distance table shades vary from white to dark gray, where a distance equals to
zero is represented by the white color, and the highest distance is represented by
the darkest gray shade. In both distance tables, the classes Soy 1 and Soy 2 are the
closest, with 0.15 in AvCM table and 0.16 in InCM table. It is interesting to note
that while these classes have the smallest stochastic distance between then, their
determinants are not the most similar, Soy 2 determinant is more similar to Corn 2
determinant, as shown in Table 5.2. The second closest classes are Soy 1 and Corn
2, with 0.19 in AvCM table and 0.20 in InCM table; followed by Soy 2 and Corn 2,
with 0.20 distance in both AvCM and InCM table. Therefore a confusion between
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Soy 1, Soy 2 and Corn 2 is expected

The River and Bare Soil classes are similar, having distances 0.57 in AvCM table
and 0.58 in InCM table, however these are the classes with the highest distances
when compared with Corn 1, Corn 2, Soy 1, Soy 2, and Soy 3. The Caatinga class
also has a great distance from the other classes, meaning that this classes should
be well clustered. Comparing Figure 5.2(a) and Figure 5.2(b), the gray level does
not change much between them, i. e., the classes with highest distances and lowest
distance are the same in both distances tables. However, the closest classes have a
slightly better/higher stochastic distance values in InCM distance table. For instance
the classes Corn 1 and Corn 2 are distant 0.56 using AvCM and 0.58 using InCM.

Using the same procedure as for L band, Table 5.3 presents the determinant and
traces of the C band PolSAR estimated covariance matrices. This table has the
AvCM and InCM determinant and traces values, and, as seen in L band, the AvCM
determinants and traces are bigger than the InCM ones.

Table 5.3 - Determinant and trace of the estimated covariance matrices from classes of C

band image.

Class
AvCM

Determinant
AvCM
Trace

InCM
Determinant

InCM
Trace

Corn 1 4.53× 10−4 0.30 2.84× 10−4 0.27

Corn 2 3.79× 10−4 0.26 2.32× 10−4 0.22

Soy 1 7.90× 10−4 0.37 4.76× 10−4 0.33

Soy 2 3.89× 10−4 0.28 2.59× 10−4 0.25

Soy 3 3.16× 10−4 0.27 2.10× 10−4 0.24

Tillage 6.44× 10−4 0.33 3.94× 10−4 0.28

Bare Soil 7.82× 10−07 0.07 4.77× 10−07 0.06

Caatinga 1.38× 10−3 0.42 8.85× 10−4 0.37

River 5.12× 10−8 0.02 3.30× 10−8 0.02

SOURCE: Author’s production.

In C band image, contrasting the L band PolSAR image, there are more confusion
between the classes, i. e., the determinants values are similar, except for the River
and Bare Soil. All classes have bigger determinant values in comparison with L band.
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Therefore the C band image is brighter than the L band image, and the classes Corn
1, Corn 2, Soy 1, Soy 2, Soy 3, Tillage, and Caatinga, visually, have low contrast, as
a result it is almost not possible to discriminate between these classes. Consequently
the C band image is expected to have three big classes: Vegetation (Corn 1, Corn
2, Soy 1, Soy 2, Soy 3, Tillage, and Caatinga), River and Bare Soil.

The confusion between the vegetation classes can be explained by the nature of the
C band. The L band has a much bigger wavelength (24 cm) than the C band (5.6
cm), what implies that L band wave interacts with canopy and vegetation branches,
it can penetrate the vegetation, and it can interact with the ground. Therefore,
the L band sensor can measure the vertical structure of vegetation, and provide
information about the three majors scattering mechanism (surface, double-bounce
and volumetric) in vegetation areas. The C band interacts much more with the
vegetation canopy, leaves and branch, therefore, with this frequency is more difficult
to have information about the vertical structure of the vegetation. This can explain
why all Vegetation classes are very similar in C band image.

The similarity between the classes in C band image can be also checked in the
distance table. As in L band, two distance tables, using the Hellinger stochastic
distance, were derived. The first distance table uses the AvCM is presented in Figure
5.3(a), and the second, using InCM, is presented in Figure 5.3(b).

As above cited, it is possible to group the classes into three major classes: Vegetation,
Bare Soil, and River. The distances between the Vegetation classes are smaller than
0.32, what is a low value in comparison with L band image distance tables. For
instance the distance between Tillage and Caatinga is 4.45 in L band image (Figure
5.2(b)), while in C band the distance between these classes is only 0.28 (Figure
5.3(b)). Also, the distance between Tillage and Corn 1 is 2.24 in L band image
(Figure 5.2(b)), and only 0.08 in C band (Figure 5.3(b)).

About the difference between the AvCM and InCM distance tables, as for L band, the
gray level does not alter in both images. However, the InCM has a slightly better
overall separation between the closest classes. For instance, the distance between
Corn 2 and Soy 1 in AvCM distance table is 0.19, while in InCM distance table, the
distance value is 0.21.
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Figure 5.3 - Hellinger distances between all classes within SIR-C image in C band.

(a) AvCM distance table.

(b) InCM distance table.

SOURCE: Author’s production.

5.1.1.2 ALOS/PALSAR images

The ALOS/PALSAR has three observation modes: the fine mode, the scanSAR
mode, and the polarimetric mode. The fine resolution is the conventional mode, it
offers a spatial resolution of 7 m. The scanSAR mode acquires a 250 to 350 km width
SAR image, with a coarse resolution. The last mode is the polarimetric, which has a
resolution of 30 m, but offers a complete polarization scheme (hh, hv, vh, and vv).

ALOS/PALSAR data are available in different levels of processing, according to
range and azimuth compression to the acquired data. The ALOS/PALSAR images
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level 1.0 are a slant range data as they are recorded and they require a processing
program before utilizing the data. The images in level 1.1 are single-look slant-range
imagery generated by applying range and azimuth compression to the level 1.0 data.
The images in level 1.5 are amplitude data, after range and azimuth compression
and multi-look process, and are also projected to ground range.

The ALOS/PALSAR images used in this work are level 1.1, in polarimetric mode.
They are a dataset from the Tapajós National Forest and the well-known San Fran-
cisco polarimetric dataset. Table 5.4 presents the main information about both Tapa-
jós and San Francisco images, as the year of acquisition, the image size, the sensor
frequency, incidence angle, the product type and image number of looks.

Table 5.4 - ALOS/PALSAR images parameters.

Parameter Tapajós San Francisco

Year of acquisition 2007 2015

Image Size 401 x 576 pixels 374 x 626

Frequency L band (1.27GHz) L band (1.27GHz)

Polarization hh, hv, vv hh, hv, vv

Incidence angle 23.7o 23.7o

Product Type Complex Single Look Complex Single Look

Number of nominal looks 1 1

SOURCE: Author’s Production.

The Tapajós National forest PolSAR image color composition image is presented
in Figure 5.4(a). The Tapajós imaged area is located in Belterra, State of Pará,
Brazil. This is considered an important conservation unit in the Brazilian Amazon
Forest. The unit is bounded by the Tapajós River and the BR-163 Santarém–Cuiabá
road. The forest coverage includes dense rainforest, alluvial rainforest, open tropical
forest, and secondary forest along the borders and access routes.

The Tapajós PolSAR image has five identified classes: Primary Forest, Pasture, Bare
Soil, and three types of agriculture (Agriculture 1, Agriculture 2 and Agriculture
3). The classes represented in Figure 5.4(b) were identified by a fieldwork campaign
conducted by INPE.
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Figure 5.4 - Tapajós National Forest ALOS/PALSAR image with the components hh (R),
hv (G) and vv (B).

(a) PolSAR image.

(b) PolSAR image with classes.

SOURCE: Carvalho et al. (2019).
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Table 5.5 - Determinant and trace of the average covariance matrices from Tapajós

ALOS/PALSAR image classes.

Class
AvCM

Determinant
AvCM
Trace

InCM
Determinant

InCM
Trace

Bare Soil 3.07× 1030 5.39× 1010 1.64× 1030 4.50× 1010

Agriculture 1 2.82× 1029 2.64× 1010 1.48× 1029 2.19× 1010

Agriculture 2 1.66× 1033 1.26× 1012 6.30× 1032 9.62× 1011

Agriculture 3 5.08× 1032 8.73× 1011 2.12× 1032 7.22× 1011

Primary Forest 1.75× 1032 1.77× 1011 9.19× 1031 1.44× 1011

Pasture 5.54× 1031 1.46× 1011 2.81× 1031 1.23× 1011

SOURCE: Author’s production.

As for Bebedouro SIR-C images, a number of covariance samples from the areas
marked as classes in Figure 5.4(b) were selected, and the average covariance matrices
were estimated as the AvCM and InCM, from where the determinant and matrix
trace, shown in Table 5.5, were computed. The AvCM determinant and trace values
are bigger than the InCM ones, however, for both AvCM and InCM, these values
are bigger and diverse, what may indicate that the samples shall be well clustered.

The Hellinger stochastic distance between the six classes are presented in Figure
5.5(a) and 5.5(b). In these figures, the distance values are characterized by a gray-
scale, where lower values are white and the highest values are dark gray. The dis-
tances between the same classes are, off course, zero; for example, the distance
between Bare Soil against Bare Soil is zero, therefore those cells are white. On the
other hand, the most distant classes are the Agriculture 1 and Agriculture 2, having
distance 7.69 in AvCM distance table and 7.29 using InCM estimation, and these
are the darkest cells.

In general, the AvCM and the InCM distance tables showed that the Tapajós classes
have a good distance values between them, in comparison with the SIR-C L band
lowest distances (Figures 5.2(a) and 5.2(b)). Both Figures 5.5(a) and 5.5(b) have
similar gray-level, meaning that the classes with bigger distance values or lower
distance values are the same in both distance tables. However the InCM overtakes
the AvCMwhen the classes are closer. For instance the distances between Agriculture
3 and Agriculture 2 is 0.39 in AvCM distance table, and 0.42 in InCM distance table.
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Figure 5.5 - Hellinger distances between all classes within Tapajós ALOS/PALSAR image.

(a) AvCM distance table.

(b) InCM distance table.
SOURCE: Autor’s production.

The San Francisco PolSAR image, presented at Figure 5.6(a), is from the San Fran-
cisco Bay area, California, United States. This image is widely used for PolSAR
image processing validation due to it diversity in terms of scattering mechanism.

The San Francisco PolSAR image is dominated by the San Francisco city, by the
waterway entrance to San Francisco Bay from the Pacific Ocean, called the Golden
Gate, and it has also the Golden Gate bridge and vegetation zones. This image is
rich in term of urban scattering, volumetric and smooth scattering. Liu et al. (2019)
identified six classes in San Francisco PolSAR image, videlicet, Mountain, Water,
Vegetation, High Density Urban, Low Density Urban, and Developed Urban, as
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presented in Figure 5.6(b).

Figure 5.6 - San Francisco ALOS/PALSAR image, located in the state of California, with
the components hh (R), hv (G) and vv (B).

(a) PolSAR image. (b) PolSAR image with classes.

SOURCE: Liu et al. (2019).

Covariance matrices samples from the areas marked as classes in Figure 5.6(b) were
selected, and from them, six AvCM and InCM were estimated in order to compute
the determinants and trace values presented in Table 5.6. As happened in all above
cited images, the determinants values are bigger with AvCM than with InCM.

The Hellinger stochastic distance between the six classes are presented in Figure
5.7(a) and 5.7(b). The classes Vegetation and Mountain are the closest classes,
having a distance value of 0.17 in AvCM distance table, and 0.16 in InCM distance
table, therefore some confusion between these classes is expected. The Low Density
Urban class is also close to Vegetation, having a distance of 0.45 in AvCM distance
table, and 0.46 in InCM distance table. The other classes have higher distance values
between them.
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Table 5.6 - Determinant and trace of the average covariance matrices from San Francisco

ALOS/PALSAR image classes.

Class
AvCM

Determinant
AvCM
Trace

InCM
Determinant

InCM
Trace

Mountain 1.02× 1032 1.91× 1011 1.94× 1031 9.83× 1010

Low Density Urban 5.68× 1032 2.65× 1011 2.17× 1032 1.92× 1011

High Density Urban 5.68× 1034 2.65× 1012 1.59× 1034 1.78× 1012

Water 6.63× 1029 1.22× 1011 3.64× 1029 1.11× 1011

Vegetation 9.94× 1031 1.51× 1011 3.91× 1031 1.13× 1011

Develop Urban 6.81× 1032 3.98× 1011 2.74× 1032 2.98× 1011

SOURCE: Author’s production.

Figure 5.7 - Hellinger distances between all classes within San Francisco ALOS/PALSAR
image.

(a) AvCM distance table.

(b) InCM distance table.

SOURCE: Author’s production.
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5.1.2 PolSAR simulated image

As discussed in Chapter 2, a radar sensor emits electromagnetic signals which inter-
act with W elementary scatterers within a resolution cell, each scatterer reflects the
signal back to the sensor and the received signal S is the result of a coherent sum
of W waves reflected by the elementary scatterers. The received signal S = sa + jsb

is, then, transformed into an image pixel value. Assuming the model proposed by
Arsenault e April (1976), the speckle formation is modeled as a random walk process
in complex domain, and the real and imaginary part of the returned signal, i. e. sa
and sb, are assumed to be identically Gaussian distributed with zero mean and a
variance σ2/2.

The PolSAR image pixel can be represented as the complex vector ~Sq
T

= [s1 +
js4, s2 + js5, s3 + js6], where s1 + js4 represents the Shh component of the scat-
tering Matrix S (equation (2.10)), s2 + js5 represents the Shv component, and
s3 + js6 represents the Svv component. ~Sq follows a circularly symmetric multi-
variate complex Gaussian distribution, denoted by ~Sq ∼ CN (0,Σq). The vector ~Sq
can be represented in real domain as the vector ~x2q

T = [s1, s2, s3, s4, s5, s6], such
that ~x2q ∼ N (0,Σ2q), where Σ2q is described as (SILVA, 2013):

Σ2q = 1
2

 <(Σq) −=(Σq)
=(Σq) <(Σq)

 = 1
2Σ2q

′ (5.1)

where <(.) and =(.) represents the real and imaginary part of a complex number,
and q is the Σq order. Considering that Shv = Svh, the matrix Σq is described by
equation (2.21). Therefore the matrix Σ2q can be expanded as:

Σ2q’ =



<(|Shh|2) −=(|Shh|2) <(
√

2Shh.S∗hv) −=(
√

2Shh.S∗hv) <(Shh.S∗vv) −=(Shh.S∗vv)
=(|Shh|2) <(|Shh|2) =(

√
2Shh.S∗hv) <(

√
2Shh.S∗hv) =(Shh.S∗vv) <(Shh.S∗vv)

<(
√

2Shv.S∗hh) −=(
√

2Shv.S∗hh) <(2|Shv|2) −=(2|Shv|2) <(
√

2Shv.S∗vv) −=(
√

2Shv.S∗vv)
=(
√

2Shv.S∗hh) <(
√

2Shv.S∗hh) =(2|Shv|2) <(2|Shv|2) =(
√

2Shv.S∗vv) <(
√

2Shv.S∗vv)
<(Svv.S∗hh) −=(Svv.S∗hh) <(

√
2Svv.S∗hv) −=(

√
2Svv.S∗hv) <(|Svv|2) −=(|Svv|2)

=(Svv.S∗hh) <(Svv.S∗hh) =(
√

2Svv.S∗hv) <(
√

2Svv.S∗hv) =(|Svv|2) <(|Svv|2)


(5.2)

The pixel simulation is done by sampling the vector ~x2q using the covariance Σ2q.
The first q elements are the real part of ~Sq, while the last q elements are the imaginary
part of ~Sq. This process is executed in order to create a single look image PolSAR
image. The multilook covariance PolSAR image is achieved by:
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Σ = 1
L

L∑
i=1

~Sq. ~Sq
T

(5.3)

The covariance matrices Σq used as samples in the simulation process were estimated
from Bebedouro SIR-C L band image. Six classes from the nine described in Section
5.1.1.1 were selected: Corn 2, Soy 1, Soy 3, Bare Soil, Caatinga, and River. The
covariance matrices Σq were estimated by the arithmetic mean, in order to follow
the procedure proposed by Silva (2013). The covariance matrices used to create the
simulated data are described from equation (5.4) to (5.9). Since the matrices are
symmetric, only the upper triangular is shown in the following equations.

ΣCorn2 =


4.53× 10−2 3.08× 10−3 − j6.01× 10−4 7.30× 10−3 − j1.39× 10−4

1.08× 10−2 4.10× 10−4 − j1.79× 10−4

4.98× 10−2

 (5.4)

ΣSoy1 =


1.82× 10−2 1.86× 10−4 + j7.78× 10−4 1.26× 10−4 + j4.37× 10−3

3.43× 10−3 3.94× 10−4 − j5.83× 10−6

4.05× 10−2

 (5.5)

ΣSoy3 =


9.26× 10−2 −9.72× 10−3 + j7.73× 10−3 5.44× 10−4 − j1.01× 10−2

1.65× 10−2 −5.16× 10−3 + j2.98× 10−3

4.41× 10−2

 (5.6)

ΣBareSoil =


1.20× 10−2 8.11× 10−5 + j1.69× 10−4 8.65× 10−3 − j1.61× 103

8.12× 10−4 −2.91× 10−5 − j2.79× 10−5

1.15× 10−2

 (5.7)

ΣCaatinga =


1.25× 10−1 −5.44× 10−3 + j5.65× 10−5 7.22× 10−3 − j1.54× 10−2

4.59× 10−2 −4.12× 10−3 − j5.71× 10−3

1.40× 10−1

 (5.8)
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ΣRiver =


3.40× 10−3 3.38× 10−5 + j7.75× 10−5 4.32× 10−3 − j5.96× 10−4

3.80× 10−4 −5.58× 10−5 − j1.35× 10−4

1.31× 10−2

 (5.9)

The simulated images size is 240 by 240 pixels, and each class were simulated as a
square segment. The number of segments within an image and the classes location
are random. An example of simulated image is shown in Figure 5.8(a), this image
has 64 segments and six classes. The Corn 2 class has eleven segments, the Soy 1
has eight segments, the Soy 3 has thirteen segment, the Bare Soil has nine segments,
the Caatinga class has nine, and the River has fourteen segments. The truth map
image (Figure 5.8(b)) is generated for each simulated image, and this image will be
later used to compute the classification result accuracy.

Figure 5.8 - Simulated PolSAR image with the components hh (R), hv (G) and vv (B).

(a) Simulate image. (b) Simulated truth image.

SOURCE: Author’s production.

According to (FRERY et al., 2013) the number of looks alters the data set distribution
in a non-linear way, which can be perceived by the stochastic distances. As lower
the number of looks, more sensitive are the distances to smaller differences between
classes, leading to a noisier classification result. Because of that, the PolSAR images
were simulated with a number of looks equals to five.
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Since the images were simulated under the circularly symmetry assumption, the
real and imaginary parts are assumed to be equally Gaussian distributed with zero
mean and a variance σ2

/2. Therefore, the PolSAR multilook image in amplitude
follows the square root Gamma distribution, as discussed in Section 2.4.1. Figure
5.9(a) shows the square root Gamma distribution of Shh PolSAR simulated image,
presented in Figure 5.8(a), classes. In the same way, Figure 5.9(b) presents the
square root Gamma distribution of Shv PolSAR image classes. Finally, the Figure
5.9(c) presents the square root Gamma distribution of Svv PolSAR image classes.
The classes distribution are represented by curves, where the Corn 2 is represented
by the purple curve, the Soy 1 by the salmon curve, the Soy 3 by the maroon curve,
the Bare Soil is represented by the red curve, the Caatinga is represented by the
green curve, and the River is represented by the blue curve.

As presented by Table 5.2, the Caatinga is the class with highest determinant,
therefore the brighter one. This behaviour can be checked also in Figures 5.9(a),
5.9(b), and 5.9(c). The Caatinga curves are the ones with highest mean, and with
the highest variance. Differently, the River is the class with the lowest determinant,
and its curves are the ones with lowest mean value and less spreaded, i. e., with low
variance values. As discussed in Figure 5.2, the Caatinga and River are the most
distant classes, with 10.83 of distance value, what can be perceived by the curves as
well.

Further, in Figure 5.2 the closest classes are Corn 2 and Soy 1, with distance value
of 0.19, and in Figures 5.9 this behavior is also confirmed, the Corn 2 curve (the
purple one) is even covered by Soy 1 curve (the salmon one), in Shh and Shv figures.
However in Svv curves (Figure 5.9(c)), the Soy 1 curve is more similar to Soy 3
curve, meaning that the vertical polarimetric answer between Soy 1 and Soy 3 are
probably closer than Soy 1 and Corn2.

In Figure 5.2, the Bare Soil and River are also close classes, with a distance of 0.57.
In Figures 5.9, the Bare Soil and River curves are more similar in th Svv band, and
more dissimilar in Shh band.
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Figure 5.9 - Simulated PolSAR image square root Gamma distribution.

(a) Shh square root Gamma distribution.

(b) Shv square root Gamma distribution.

(c) Svv square root Gamma distribution.

SOURCE: Author’s production.

5.2 Experiments description

In order to evaluate the BSC classification result, four different experiments were
conducted. The first experiment address the algorithm initialization problem in the
SC algorithm. The second experiment explore the pros and cons of using the Rie-

77



mannian geometry to estimate covariance matrices. The third experiment has the
goal of quantify the proposed algorithms accuracy, therefore it is focused on the
quantitative analysis. In this experiment a Monte Carlo simulation over a set of
one hundred simulated PolSAR images was conducted. The fourth experiment was
conducted using a set of real PolSAR images in different frequency bands and from
different scenarios.

5.2.1 Experiment I

In Carvalho et al. (2019) an analysis about the algorithm initialization problem in
the SC algorithm were addressed. The SC algorithm, described in Section 4.2.2,
identifies K clusters and allocates every data sample to the closest cluster, by using
as similarity metric the stochastic distances.

The SC, and consequently the BSC, are greedy algorithms (JAIN, 2010), i.e., these
algorithms make the optimal choice at each step with the goal of finding the global
optimal solution to the entire problem. Due to that, these algorithms are able to con-
verge to the global optimum only when clusters are well separated. In (CARVALHO

et al., 2019), a Monte Carlo simulation over 100 simulated PolSAR images was per-
formed. The simulation exposed the algorithms dependency upon the correctness of
the initial parameters determination. Randomly determined initial parameters may
terminate at a local minimum, meaning that the algorithm may run a lot of iter-
ations trapped in segments away from the global minimum, resulting in incorrect
clustering results.

In order to investigate the classification behaviour according to the initial param-
eter determination, the PolSAR image with six classes, showed in Figure 5.8(a)
was used as the input for SC algorithm using the Bhattacharyya, Hellinger, and
Kullback-Leibler distances as similarity metrics. The SC algorithm requires the ini-
tial parameter determination, therefore, six scenarios to force the bad and good
initial parameters choosing were defined:

a) S01: All six initial parameters were selected from the same class;

b) S02: The six initial parameters are distributed over three classes;

c) S03: The six initial parameters were picked from the borders of two classes;

d) S04: Three initial parameters were selected in three different class, and the
other three comes from the borders of two classes;
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e) S05: All initial parameters comes from outliers;

f) S06: One initial parameters were picked per class.

Good initial parameters are defined as the ones that allows a faster and assertive
convergence. On the other hand, bad initial parameters can lead to increased num-
bers of required clustering iterations to reach convergence, a greater overall run-time,
and a less-efficient algorithm overall accuracy. The scenarios S01, S02, S03, S04, and
S05 are considered bad scenarios, while S06 is the best possible scenario.

Figure 5.10 shows the flowchart of the initial parameter determination evaluation
schema. In this experiment the three variants of SC algorithm, according to the
stochastic distance, are used. The first SC variant uses the Bhattacharyya distance as
similarity metric, and it is named SC-B. The second variant is the SC with Hellinger
distance, named SC-H, and the last variant is the SC using Kullback-Leibler dis-
tance, named SC-KL. For each scenario, the initial parameter are determined and
the SC three variants share the same initial parameter. In the end the accuracy of
every classification image shall be computed.

Figure 5.10 - Initial parameter determination analysis flowchart.

SOURCE: Author’s production.

5.2.2 Experiment II

This section describes the experiment II, which is responsible for compare the co-
variance arithmetic mean versus the covariance intrinsic mean. Here, the algorithm
proposed in Section 4.2.1.1 is addressed, and two variants of this algorithm is de-
fined: 1) PDDP using the AvCM, named only PDDP; 2) PDDP using InCM, named
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RPDDP. The idea is to split the PolSAR images into two big clusters and then
analyse the intrinsic mean performance.

The input images are the covariance representation of PolSAR images, therefore
the samples are a set of covariance matrices Z = {Z1, . . . ,Zn} with N samples
and L number of looks. The average covariance matrix ΣAvCM is computed by the
arithmetic mean, while the ΣInCM is estimated by the intrinsic mean. From the
average covariance matrix, the eigenvalues and eigenvectors are estimated, and the
samples are grouped into two classes, according with the Equation 4.1 sign result.
This procedure is done for both ΣAvCM and ΣInCM .

The PDDP and RPDDP algorithms variants are evaluated using the four real images
described in Section 5.1.1. As evaluation criteria, the stochastic distance between
classes and the Root-Mean-Square Standard Deviation (RMSSTD) error (Equation
3.9) are computed. The goal of these evaluation criteria is to judge the cluster quality
by assuming that an optimum clustering means compact clusters (i. e., cluster with
low RMSSTD error), and well-separation from other clusters (i. e., bigger stochastic
distances between clusters). Figure 5.11 shows the Experiment II flowchart.

Figure 5.11 - ΣAvCM versus ΣInCM comparisson flowchart .

SOURCE: Author’s production.
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5.2.3 Experiment III

In this experiment, a set of 100 simulated PolSAR images shall be classified by the SC
and BSC using the stochastic distances of Bhattacharyya, Hellinger, and Kullback-
Leibler distances. Therefore, in this work, the PolSAR images were classified using
the techniques presented in Table 5.7.

Table 5.7 - Algorithms used for the PolSAR images classification analysis.

Characteristic Parameter Selection Stochastic Distance Algorithm initials

Partitional

Bhattacharyya SC-B

Random Kullback-Leibler SC-KL

Hellinger SC-H

Hierarchical

Bhattacharyya BSC-R-B

RPDDP Kullback-Leibler BSC-R-KL

Hellinger BSC-R-H

Bhattacharyya BSC-EM-B

EM Kullback-Leibler BSC-EM-KL

Hellinger BSC-EM-H

SOURCE: Author’s production.

As described in Figure 4.1, before the data splitting, the BSC algorithm must de-
termine the initial parameter. The same procedure is required to the SC algorithm.
As described in Table 5.7, the SC algorithm, described in Section 4.2.2, randomly
selects the initial parameters, while in the BSC algorithm, described in Section 4.2,
the parameters are estimated in two ways: or using the RPDDP, or using the EM
algorithm.

After the K initial parameter determination the SC algorithm allocates every data
sample the closest cluster, represented by its parameter. After the allocation, K new
parameters are estimated and the allocation procedure starts again. These steps will
be performed until the stop criteria is reached.

The BSC algorithm, is a divisive procedure that bi-partitions the data set using the
SC algorithm at each dendrogram level. Therefore for every new created node, two
initial parameter must be determined.
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In order to quantitatively evaluate the BSC and SC algorithms, a Monte Carlo
simulation over a set of one hundred simulated PolSAR images is conducted. Figure
5.12 presents the Monte Carlo simulation flowchart. At each Monte Carlo simulation
iteration, one of the simulated PolSAR image is selected, and from this image the
initial parameters are defined, or randomly for the SC algorithm, or by RPDDP
or EM for the BSC algorithm. The simulated PolSAR image is tested by the nine
above cited algorithms, therefore, in the end, 900 classified images are generated.

Figure 5.12 - Monte Carlo Simulation flowchart.

SOURCE: Author’s production.

In this experiment only the quantitative analysis is addressed. The classified image is
compared against its correspondent truth image and the confusion matrices are built
(see Section 6.4.1). From the confusion matrix the accuracy values are computed,
and with this values, the classification result with better accuracy and performance
can be determined.
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5.2.4 Experiments IV

The second experiment has the goal of ratifying the Monte Carlo simulation results.
In this experiment four real PolSAR images, described in Section 5.1.1 are analysed.

This experiment evaluates the classification in both quantitative and qualitative
ways. However, since the Monte Carlo simulation showed that the Bhattacharyya,
Kullback-Leibler, and Hellinger stochastic distances achieved similar accuracy re-
sults for SC and BSC algorithms, only the Hellinger distance was selected to perform
the second experiment analysis. In this case the images were classified by the:

a) SC using Hellinger distance (SC-H);

b) BSC using Hellinger distance + RPDDP (BSC-R-H);

c) BSC using Hellinger distance + EM (BSC-EM-H).

5.3 Quantitative analysis

The confusion matrix, as explained in Section 3.4.2, is an external cluster validation
method used to quantitatively characterise the image classification accuracy. It con-
sists in a table that shows the correspondence between the classification result and
the truth image. Therefore, to compute the confusion matrix it is needed to know
the ground truth data.

The confusion matrix rows represent the truth classes, and the columns refer to
cluster outcomes results. The elements eij, with i = j, represents the number of
samples correctly classified; while the elements eij, with i 6= j, represent the incor-
rectly classified samples. Figure 5.13 illustrates a confusion matrix, the left picture
represents the truth image with its labels, and the up center picture represents the
classified image. The classified image pixels are compared against the truth image
pixels, and the confusion matrix elements show the number of pixels for all the
possible correlations between the truth and the classified image.

In order to make the analysis clearer and easier to understand, the confusion matrix
elements values are transformed into percentage values. In this way, the eij value
varies from 0 to 100. Figure 5.14 shows how the confusion matrix shall be presented
hereafter. The balls diameter varies according to the eij value, the bigger the value,
bigger the diameter. The eij values are displayed in the confusion matrix chart only
if they are higher than 10. The confusion matrix columns values should sum up to
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100. The ideal confusion matrix would have 100 value on its main diagonal, meaning
that all samples were correctly classified.

Figure 5.13 - Confusion matrix.

SOURCE: Author’s production.

Figure 5.14 - Confusion matrix representation.

SOURCE: Author’s production.
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The Figure 5.14 title shows the overall accuracy result. The accuracy is computed
according to Equation (3.12). The classification accuracy is the ratio of correct pre-
dictions over the total predictions made, therefore it is a simple and good indicative
about the correctness of a classification.

Although the accuracy is a very useful metric, it has two major two drawbacks:
the values out of the diagonal are not used, and the classes with a low number of
sample are lower weighted in the calculation. Therefore it is important to analyse
the confusion matrix together with the accuracy result.

5.4 Qualitative analysis

The qualitative analysis seeks for features that are observed and can not be measured
with a numerical result in order to validate the BSC algorithm classified image. In
this work the qualitative analysis uses the cluster dendrogram, and the scattering
mechanism. In Section 5.4.1 the dendrogram analysis is explained. Section 5.4.2
presents the Plan H −α, which is a product of the incoherent target decomposition
based on eigenvalues analysis proposed by Cloude e Pottier (1996), whose goal is to
describe the polarimetric data in terms of the scattering mechanism. The idea is to
use the scattering mechanism information to help the validation/characterization of
unknown clustered classes.

5.4.1 Dendrogram analysis

The BSC algorithm is a divisive hierarchical clustering algorithm that splits the data
set into two sub-clusters at each iteration. The dataset splitting history is saved on
a structure named dendrogram, which is a binary tree used to visually represent the
hierarchical relationship between the sub-clusters. The dendrogram contains nodes
and branches, where each node represents one sub-cluster, and stores information
as the cluster ID, entropy, and information gain between the actual node and its
parent node. Every node, as described in Figure 3.3, is connected by branches that
represent the hierarchical relationships between the sub-clusters.

The information gain is used to measure the entropy decrease within sub-clusters
while the image or dataset is splitted. Ideally, the entropy should decrease after a
cluster splitting, and one cluster is considered completely homogeneous if the entropy
is zero. In that way, the dendrogram grows while seeking for groups that returns the
highest information gain.

In order to elucidate how the dendrogram analysis should be performed, Figure 5.15
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presents a BSC algorithm dendrogram. As presented in Figure 5.14, the truth image
has the classes A, B, C, D, E, and F. Therefore the first assumption is that the
input image has at least these six classes, thereat the first node has classes A, B, C,
D, E, F. Since clusters IDs are sorted in crescent way and respecting the splitting
sequence, the first node has ID 1. This node is splitted into sub-cluster ID 2 and
sub-cluster ID 3.

Figure 5.15 - Simulated PolSAR image dendrogram, generated by the BSC-R-H algorithm.

SOURCE: Author’s production.

As explained in Section 4.2.3, except for the root node (ID 1), it is needed to choose
which node shall be splitted at each BSC iteration. The selected node is determined
by the information gain value between the current nodes in a given level and their
possible children. The possible children parameters are determined by the initial
parameter selector algorithm (RPDDP or EM, in our approach). Once a particular
node is selected, the SC algorithm, using the already determined initial parameter,
finds the new sub-clusters. This procedure is internal to the algorithm, therefore,
to perceive which is the next node in the splitting queue, the user must follow the
ID order. The information gain presented (I) in Figure 5.15 is computed between
the current node and its parent, therefore it represents the change in entropy inside
a sub-cluster after the parent node cluster splitting. For instance, node ID 2 has
I = 6.88 and node ID 3 has I = 13.76.
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In Figure 5.15, the next splitting occurs to cluster ID 2, where the classes A, B, C,
D, and E were splitted into A, B, and C (ID 5), and E (ID 4). Sub-cluster ID 5 is
splitted into A and B (ID 6) and C 3 (ID 7). Then cluster ID 3 is finally splitted
into D (ID 8) and F (ID 9), and successively. The BSC algorithm, in the example,
created two new classes, meaning that the classified image has 8 classes named: a,
b, c, d, e, f, new1 and new2.

The information gain tends to decrease while the dendrogram grows, however it is
not rule. Sub-clusters which are too different from their parent node cluster can have
a higher information gain value, for instance, the node ID 4 has a bigger information
gain than node ID 2.

As already discussed in Section 4.2.4, the dendrogram leaves carry an important
information about the clusters: the dissimilarity between classes. As far one class is
from another, the more different they are in relation to each-other. Lets pick the f
and e class, for example, these are unrelated classes, meaning that f could be, for
example, a river classes while e could be a vegetation class.

5.4.2 Scattering mechanism analysis

In this work, the method based on an eigenvalue analysis proposed by Cloude and
Pottier, which is presented in Section 2.3.2.2, was chosen for the cluster splitting
qualitative analysis. The Cloude-Pottier decomposition characterize the PolSAR im-
ages scattering mechanisms given their Entropy (H) and Alpha Angle (α) parame-
ters.

The entropy and angle alpha can be represented in a graphical space named Plan
H − α, as described in Figure 2.8. The goal of using Plan H − α is to analyse if the
BSC splitting makes sense, and if the samples with different scattering mechanism
are separated.

Figure 5.16 extrapolate one dendrogram node and its connections into a picture
representation. This figure has two levels: the parent level, identified as Level 1, and
the children level, identified as Level 2. On Level 1, there are three pictures, and
the middle picture represents the input image cluster, the picture on its right side
represents the Plan H − α of the entire data set. The Plan H − α is represented by
a heat map, were the red spots are the regions with high sample concentration.

The cluster ID 1 is splitted into two subclusters, ID2, represented by the orange
color, and ID 3 represented by the green color. In level 2 the cluster split and the
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correspondent Plan H − α of ID 2 and ID 3 are presented.

Figure 5.16 - Plan H − α of image first splitting.

SOURCE: Author’s production.

The first picture in Level 1 summarizes the scattering mechanism representation.
The little balls in the plan represents the average entropy and α angle for each node,
for instance, the node ID 1 is represented by a gray ball, and node ID 2 is represented
by the orange ball, while the node ID 3 is represented by the green ball.
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6 RESULTS

This chapter presents the BSC classification results. In Section 6.1 the initial pa-
rameter determination importance is outlined. Section 6.2 describes the pros and
cons of using the Riemann geometry to compute the data average when using SPD
matrices as feature. After that, the simulated PolSAR images classification results
is outlined in Section 6.3, were the results are quantitatively evaluate, by using con-
fusion matrices in order to delivery the classification accuracy values. Finally, the
experiment using the real PolSAR images classification is presented in Section 6.4,
in this section the dendrogram information is explored together with the Plan H−α
information, in order to provide a qualitative analysis of the classifications results.

6.1 Experiment I - initial parameter determination

In Section 5.2.1 the experiment methodology is described. In this experiment, the
SC algorithm greedy behavior is explored. Six scenarios are defined and their clas-
sification accuracy result was calculated by using the truth image associated to the
simulated PolSAR image, as explained in Section 5.3.

Figure 6.1 and Table 6.1 present the accuracy results for each classification algorithm
per scenario. The scenarios S05, where the initial parameter where selected from
outliers samples, has the worst classification result. This scenario achieved only
17.26 % of overall accuracy. The second worst scenario is the S01, where all initial
parameters are picked from the same class, this scenario achied 35.55 % of overall
accuracy with SC-B and SC-H, and 54.49 % with SC-KL.

The scenarios S02, S03, and S04 are intermediate scenarios, with an average accuracy
of approximately 60 % for all SC variants. However, when the parameters have a
good fit, i.e., when the parameters are taken from scenario S06 for instance, the
classification results achieves high accuracy for all distances, accomplishing around
82 % of overall accuracy.

Figures 6.2 to 6.7 enlighten the accuracy results showed in Figure 6.1 and Table
6.1. Each figure has six sub-figures, where the sub-figures on the left (a), (c), and
(e) show the PolSAR image classification using the SC-B, SC-KL, and SC-H, re-
spectively. And the sub-figures (b), (d), and (f) present the correspondents confu-
sion matrices. As discussed in Section 5.3, the confusion matrix rows represents the
ground truth, given by the truth image, and the columns represent the algorithm
outcomes. The confusion matrix main diagonal elements eij represent the number
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of samples corrected classified; while off-diagonal elements eij, with represent the
misclassified samples. The eij value varies from 0% to 100%.

Figure 6.1 - Accuracy of the simulated PolSAR image classification using the SC algorithm
with different initial parameters.

SOURCE: Author’s production.

Table 6.1 - Initial parameter scenarios accuracy [%].

Algorithm S01 S02 S03 S04 S05 S06

SC-B 35.55 59.16 62.32 58.05 17.26 82.09

SC-KL 54.49 61.52 62.51 58.19 17.26 81.92

SH-H 33.55 59.16 62.32 58.05 17.26 82.09

SOURCE: Author’s production.

Figure 6.2 describes the classification results of SC algorithm using the initial pa-
rameters taken from the S01. Figure 6.2(a) shows the SC-B classification result and
Figure 6.2(b) shows the related confusion matrix. Using the Figure 5.8 as pattern, it
is possible to see that the SC-B algorithm in S01 was able to correctly identify the
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Corn 2 class, however the Soy 1 class was also classified as Corn 2, therefore in the
column related to Corn 2 the values are spread, mainly, between Corn2 and Soy1.
The Corn 2-Corn 2 cell in Figure 6.2(b), for instance, has an accuracy of only 51 %.

As happened with Corn 2 and Soy 1, the Bare Soil were correctly classified, but
its accuracy dropped because the River class was classified as Bare Soil. Remember
that the PolSAR simulated image has nine Bare Soil segments and fourteen River
segments, for this reason the River-Bare Soil cell has a high percentage value (61
%) than Bare Soil-Bare Soil cell (39 %).

The Caatinga class, looking only at Figure 6.2(b), had a good result, achieving 99
% of accuracy. However this accuracy is not so related to reality, because only few
pixels that truly belongs to Caatinga class were actually classified as Caatinga class.
Indeed, a great amount of samples that are from Caatinga class were classified as
Soy 3, instead. Therefore the cell Soy 3-Caatinga had a high percentage value (92
%).

Figure 6.2(c) shows the SC-KL classification result and Figure 6.2(d) presents the
related confusion matrix. In this classification, the Caatinga were truly classified
as Caatinga class, while the Soy 3 were correctly classified as Soy 3. The confu-
sion between Corn 2 and Soy 1, and Bare Soil and River is present in the SC-KL
classification also. Figure 6.2(e) presents the SC-H classification result and Figure
6.2(f) shows the related confusion matrix. The SC-B and SC-H had an analogous
results, what is excepted due to the close relationship between the Hellinger and
Bhattacharyya distance (CARVALHO et al., 2019). Note that the SC-B and SC-H
alike results are a pattern, that will be repeated in every scenario.

It is important to recall Figure 5.2, where the stochastic distances between classes
are presented. By that figure, Corn 2 and Soy 1 are the most similar classes, and
they are also close related to Soy 3. In the same way River and Bare Soil are quite
close and similar. Therefore a confusion between these classes are expected.

In scenario S02 the six initial parameters are picked over three different classes.
The Figure 6.3(a) shows the SC-B classification result and Figure 6.3(b) shows the
related confusion matrix. In this scenario, the SC-B was able to correctly identified
the Caatinga and Soy 3. Also, it was fairly able to separate the Corn 2 and Soy 1
classes. As in S01, the river were completely classified as Bare Soil. However, some
samples from Caatinga class were wrongly classified as River.
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Figure 6.3(c) presents the SC-KL classification result and Figure 6.3(d) shows the
related confusion matrix. SC-KL classification result, in S02, is similar to SC-B,
excepted that in SC-KL classification less Caatinga samples were classified as River.
Figure 6.3(e) shows the SC-H classification result and Figure 6.3(f) shows the related
confusion matrix. The SC-H result is very similar to SC-B. As already discussed,
these two algorithm tend to have similar answers.

The classification results for scenario S03, where the initial parameters were picked
from the borders of two classes, were very similar to S02. Figure 6.4(a) shows the SC-
B classification result and Figure 6.4(b) shows the related confusion matrix. Figure
6.4(c) shows the SC-KL classification result and Figure 6.4(d) shows the related
confusion matrix. Figure 6.4(e) shows the SC-H classification result and Figure 6.4(f)
shows the related confusion matrix. Again, Corn 2 and Soy 1 are mixed, and the
River still classified as Bare Soil. However the Caatinga class is much less nosier in
S03.

In S04, three initial parameters were selected from three different class, and the
other three comes from the borders of two classes. Figures 6.5(a), 6.5(c), and 6.5(e)
shows the SC-B, SC-KL, and SC-H classification result, respectively, and Figures
6.5(b), 6.5(d), and 6.5(f) shows the SC-B, SC-KL, and SC-H confusion matrices,
respectively. In the S04 scenario, almost 40% of the samples classified as Corn 2,
were actually Soy 1, in all SC variants. The Soy 3 achieved a great classification, while
the Caatinga was fairly well classified, but some Caatinga samples still classified as
River. The River still classified as Bare Soil.

The worst classification result came with S05 (Figure 6.6), where all initial parame-
ters come from outliers. In this scenario the image was classified as one single class
in all SC variants, because the algorithm got stuck in a local minimum.

As expected, the best result came with S06, which is shown in Figure 6.7. In this
scenario one initial parameter was picked per class, therefore this is the best possi-
ble situation. In this case, the algorithm found the global minimums in a quick and
effective way. The Soy 3, Bare Soil, Caatinga and River achieved a great accuracy
value, over 90 %. The Corn 2 and Soy 1 were mixed, however this an expected be-
havior, due to these class similarity. Given the results of the initial parameter choice
scenarios, it is clear that the good candidates estimation for the SC initial parame-
ter determination is essential for improving the clustering quality and performance,
allowing the algorithm to have a faster and accurate convergence.
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Figure 6.2 - Classification result S01.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.3 - Classification result S02.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.4 - Classification result S03.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.5 - Classification result S04.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.6 - Classification result S05.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.7 - Classification result S06.

(a) SC-B. (b) Confusion matrix -SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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6.2 Experiment II - covariance arithmetic mean versus covariance in-
trinsic mean

The goal of this section is to explore the pros and cons of using the Riemannian
geometry to estimate covariance matrices. The methodology and the evaluation
criteria of this experiment was described in Section 5.2.2.

The use of intrinsic mean is indicated to estimate positive-definite matrices, its
calculation involves the use of logarithm and exponential operator. Therefore, the
pro of intrinsic mean is that it can estimate a more assertive and less biased average
covariance matrix, and the con is the time consuming; since the algorithm should
run until convergence, the intrinsic mean is computationally expensive in comparison
with arithmetic mean.

As already discussed in Section 5.2.2, the PDDP and RPDDP algorithms aims
to create two clusters. These clusters are presented in this section in a form of a
segmented image, where the clusters are represented by the red segments, and a
clustered image. The clustered image has two classes: the Black and the Gray.

The first analysed image is the Bebedouro SIR-C in C band PolSAR image. Figures
6.8(a) presents the RPDDP segmented image and 6.8(c) presents the RPDDP clus-
tered image with the two classes Black and Gray. Figures 6.8(b) and 6.8(d), shows
the PDDP segmented image and the clustered image respectively. The Black and
Gray clusters generated by both RPDDP and PDDP algorithms are very similar,
however the RPDDP segmented and clustered images are slightly less nosier than
PDDP output images, i. e., RPDDP images have less segments than the PDDP
images. On the other hand, the region marked as Bare Soil in Figure 5.1(c) is better
clustered by the PDDP algorithm.

Table 6.2 summarizes the results of the evaluation criteria. The first row in the table
refers to the Hellinger stochastic distance between the Black and Gray clusters
generated by PDDP and RPDDP. In the second row the RMSSTD error of the
Black cluster class is presented, and the third row presents the RMSSTD error of
the Gray cluster. By Table 6.2, it is possible to conclude that the RPDDP, for this
particular image, generates a more homogeneous clusters, in comparison with the
PDDP algorithm. The Black and Gray cluster have a lower RMSSTD error with
RPDDP algorithm, than with PDDP. The clusters also have a better separation
inter cluster, i. e., a bigger distance error, with RPDDP algorithm.
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Figure 6.8 - RPDDP and PDDP algorithm applied on Bebedouro SIR-C C band image.

(a) RPDDP segmented image. (b) PDDP segmented image.

(c) RPDDP clustered image. (d) PDDP clustered image.

SOURCE: Author’s production.
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Table 6.2 - Bebedouro SIR-C C band image PDDP and RPDDP analysis.

Evaluation criteria PDDP RPDDP

Hellinger distance 5.5402 6.9937

RMSSTD error - Black class 7.3551e-16 4.6496e-16

RMSSTD error - Gray class 4.5048e-16 2.6194e-16

SOURCE: Author’s production.

Following the same procedure, Figure 6.9 shows the result of RPDDP and PDDP
algorithms applied on the Bebedouro SIR-C in L band PolSAR image. Figures 6.9(a)
and 6.9(b) presents the RPDDP and PDDP segmented images, respectevely. While
Figures 6.9(c) and 6.9(d) show the RPDDP and PDDP clustered images.

The RPDDP algorithms clustered the Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, Caatinga,
and Tillage classes in the Gray cluster, and the Bare Soil and River classes in the
Black Cluster. The PDDP algorithm clustered the Corn 1, Corn 2, Soy 1, Soy 2,
Soy 3, and Caatinga classes in the Gray cluster, and the Tillage, Bare Soil, and
River in the Black Cluster. Therefore, the major difference between RPDDP and
PDDP clustering is the Tillage clustering decision, whether it is more similar to the
vegetation classes, as in RPDDP, or more similar to the surface mechanisms classes
(River and Bare Soil), as in PDDP algorithm.

The tillage practices disturb soils in different ways, it can use manual or mechan-
ical agitation of various types, such as digging, stirring, and overturning, leaving
amounts of crop residues on the soil surface. Unfortunately there is not much infor-
mation about the level of disturbance in the soil on the region classified as Tillage
in SIR-C images. Therefore, it is needed a deeper investigation on the Tillage scat-
tering mechanisms to decide whether this class would fit better with the vegetation
mechanisms or with the surface mechanism.

Table 6.3 summarizes the evaluation criteria results for Bebedour SIR-C in L band
PolSAR image. Although there is a doubt about the Tillage class clustering, the
RPDDP clusters seams to be more homogeneous than the PDDP, having a bigger
stochastic distance between clusters and lower RMSSTD error inner clusters.
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Figure 6.9 - RPDDP and PDDP algorithm applied on Bebedouro SIR-C L band image.

(a) RPDDP segmented image. (b) PDDP segmented image.

(c) RPDDP clustered image. (d) PDDP clustered image.

SOURCE: Author’s production.
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Table 6.3 - Bebedouro SIR-C L band image PDDP and RPDDP analysis.

Evaluation criteria PDDP RPDDP

Hellinger distance 3.1455 5.3413

RMSSTD error - Black class 1.0589e-15 3.3128e-16

RMSSTD error - Gray class 5.8445e-15 5.4605e-16

SOURCE: Author’s production.

In the Tapajós ALOS/PALSAR image analysis, the clusters difference between
RPDDP and PDDP algorithm is more evident. The RPDDP clustered the Primary
Forest, Agriculture 2, and Agriculture 3 in the Gray class, while the Agriculture 1,
Bare Soil, and Pasture were clustered in the Black class. The PDDP clustered part
of Primary Forest samples, Agriculture 2, and Agriculture 3 in the Gray class, while
the other part of Primary Forest samples, Agriculture 1, Bare Soil, and Pasture were
clustered in the Black class, as showed in Figure 6.10.

In the PDDP algorithm clustering, the major clusters confusion came with the forest
samples. Visually the forest samples are brighter and it is present in more quantity
than the non-forest samples. Since the arithmetic mean is the sum of a samples
collection divided by the amount of these samples, the AvCM reflects a systematic
sample size bias, meaning that the forest class has a bigger influence in the average
covariance matrix, what make the forest class be splitted.

Due to the confusion generated by forest mechanism in the PDDP algorithm cluster-
ing, the PDDP segmented image, shown in Figure 6.10(b), has much more segments
than the RPDDP segmented image, presented by Figure 6.10(a). In the same way,
in the RPDDP clustered image, presented in Figure 6.10(c), the clusters borders
are clearer than in PDDP clustered image, shown in Figure 6.10(d). Therefore, the
RPDDP algorithm could fairly well separate the forest and non forest classes, while
the PDDP struggle to do the same task.

Table 6.4 confirms the visual information. The RMSSTD error inner clusters, for
Black or Gray cluster, are lower in RPDDP algorithm. While The stochastic distance
between the cluster is bigger in RPDDP approach. For this reason, the clusters
generated by RPDDP are more homogeneous and they have a better separability,
than the PDDP clusters.
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Figure 6.10 - RPDDP and PDDP algorithm applied on Tapajós ALOS/PALSAR image.

(a) RPDDP segmented image. (b) PDDP segmented image.

(c) RPDDP clustered image. (d) PDDP clustered image.

SOURCE: Author’s production.
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Table 6.4 - Tapajós ALOS/PALSAR image PDDP and RPDDP analysis.

Evaluation criteria PDDP RPDDP

Hellinger distance 0.28899 0.65475

RMSSTD error - Black class 3.5107e-10 3.8243e-11

RMSSTD error - Gray class 3.9766e-11 8.4702e-12

SOURCE: Author’s production.

In ALOS/PALSAR San Francisco image the difference between the segmented im-
ages is more subtle. The RPDDP and PDDP algorithms results are very similar.
The RPDDP clustered the Mountain, Low Density Urban, High Density Urban,
Vegetation, and Develop Urban in the Gray class, while the Water were clustered
in the Black class; the PDDP had a similar result to RPDDP clusters, excepted for
the region labeled as Mountain, where part of the samples were clustered as water,
and also some Vegetation samples were clustered in the water cluster.

The Mountain region in the image presents darker areas and brighter patches on
the mountain slopes, which face in the radar illumination direction. In PDDP clus-
tering, the mountains brighter patches were clustered with the urban region, which
is characterized by a stronger and, therefore, brighter answer due to the double
bounce mechanism presence in these regions. While the darker Mountain regions
were clustered with the Water region. On the other hand, the RPDDP was able to
fairly separate the water and non-water regions.

Therefore, the RPDDP segmented image, presented in 6.11(a) has less segments
than the PDDP segmented image, presented in 6.11(b). What can be perceived also
in Figures 6.11(c) and 6.11(d).

Table 6.5 provides the evaluation criteria results. As happened for the previous
images, i. e., the RPDDP clustering has a bigger stochastic distance value between
the Black and Gray clusters, than the distances between the PDDP Black and
Gray clusters. The RMSSTD error for the Gray class is smaller with the RPDDP
clustering. However, the RMSSTD error, for the Black cluster, is lower with the
PDDP clustering than in RPDDP clustering.
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Figure 6.11 - RPDDP and PDDP algorithm applied on ALOS/PALSAR San Francisco
image.

(a) RPDDP segmented image. (b) PDDP segmented image.

(c) RPDDP clustered image. (d) PDDP clustered image.

SOURCE: Author’s production.
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Table 6.5 - San Francisco ALOS/PALSAR image PDDP and RPDDP analysis.

Evaluation criteria PDDP RPDDP

Hellinger distance 6.2626 6.7132

RMSSTD error - Black class 6.935e-10 1.1928e-09

RMSSTD error - Gray class 4.0379e-10 2.9415e-10

SOURCE: Author’s production.

6.3 Experiment III - simulated PolSAR image classification

Section 5.2.3 describes the Monte Carlo simulation over 100 simulated PolSAR
methodology. Nine different approaches are tested: SC-B, SC-H, SC-KL, BSC-R-
B, BSC-R-H, BSC-R-KL, BSC-EM-B, BSC-EM-H, and BSC-EM-KL.

The output of Monte Carlo simulation is presented in Figure 6.12, which synthesizes
simulated images classification accuracy. In this graph, on each blue box, the bottom
and top edges indicate the 25th and 75th percentiles of the overall accuracy outcomes,
the dotted line indicates the maximum and minimum accuracy result (excluding the
outliers), the central red mark indicates the median accuracy, and the outliers are
plotted individually using the ‘+’ symbol in red.

The SC-B, SC-KL, and SC-H have a balanced accuracy results, with the first quartile
and third quartile between 60% and 90%, which is in agreement with the resulted
presented in Carvalho et al. (2019). The BSC-EM-B, BSC-EM-KL, and BSC-EM-H
had a good result, having the first quartile and third quartile between 90% and 95%,
however this approach had more outliers results than the others approaches. The
BSC-R-B, BSC-R-KL, and BSC-R-H had the best accuracy results, having the first
quartile and third quartile between 95% and 98%, this approach also had outliers
accuracy.

Tables 6.6 to 6.7 presents the execution time for each algorithm analysed in this work.
All computations were performed in a computer with Intel Core i7 2.4GHz processor,
8GB of RAM, and Matlab 2018. The SC algorithm had the best performance in
terms of computational effort, what is expected, since this algorithm is a partitional
method. The BSC variants had a much bigger computational time in comparison
with SC algorithm. The BSC-EM variants were the most expensive technique, since
two interactive algorithms are executed at each bisecting step: the EM, used to
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estimate the initial parameters, and the SC used to do the bipartition.

Figure 6.12 - Monte Carlo simulation accuracy box plot.

SOURCE: Author’s production.

Table 6.6 - Algorithms execution time (s), considering 5 iterations for SC.

SC-B SC-H SC-KL

Time [s] 32.93 34.47 34.07

SOURCE: Author’s production.

Table 6.7 - Algorithms execution time (s), considering 15 levels with 5 iterations each for

BSC algorithm.

BSC-EM-B BSC-EM-H BSC-EM-KL

Time [s] 163.82 162.95 164.24

SOURCE: Author’s production.
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Table 6.8 - Algorithms execution time (s), considering 15 levels with 5 iterations each for

BSC algorithm.

BSC-R-B BSC-R-H BSC-R-KL

Time [s] 115.12 114.56 125.32

SOURCE: Author’s production.

In order to elucidate the this experiment, the simulated PolSAR image presented
in Figure 5.8 were classified by the SC-B, SC-H, SC-KL, BSC-EM-B, BSC-EM-
H, BSC-EM-KL, BSC-R-B, BSC-R-H, and BSC-R-KL. Figures 6.13, 6.14 and 6.15
present the classification results, and the correspondents confusion matrices and
overall accuracy results.

The SC algorithm, using randomly chosen initial parameters presented the worst
result. The SC-B classified image is presented in Figure 6.13(a), the SC-KL output
is shown in Figure 6.13(c), and the SC-H result is presented in 6.13(e). In the three
variants, SC-B, SC-KL, and SC-H, only 5 of the six classes were intensified. By
the confusion matrices presented by Figures 6.13(b), 6.13(d), and 6.13(f), can be
checked that the River was classified as Bare Soil, and there are a substantial mix
between Corn 2 and Soy 1 classes. The accuracy results were very similar for the
three variants. The SC-B had 61.66 % of overall classification accuracy, the SC-KL
had 61.66 % of overall accuracy, and the SC-H achieved 61.59 % of overall accuracy.

The BSC-EM classification results are presented in Figures 6.14(a), 6.14(c), and
6.14(e), while the respective confusion matrices are presented in Figures 6.14(b),
6.14(d), and 6.14(f). This method was able to identify the six classes within the
image. The River, Bare Soil, Caatinga, and Soy 3 segments were correctly classified
in the three BSC-EM variants (BSC-EM-B, BSC-EM-KL, and BSC-EM-H), while
the Corn 2 and Soy 1 were mixed. In Table 5.2 the smallest distance intra classes
is between Corn 2 and Soy 1, having a Hellinger distance of 0.19, therefore the
mixture between these classes is expected, specially when the segments of both
classes share borders, as presented in Figure 5.8. The BSC-EM algorithm achieved a
good accuracy result. The BSC-EM-B had 85.23 % of overall classification accuracy,
the BSC-EM-KL had 81.68 % of overall accuracy, and the BSC-EM-H also achieved
83.87 % of overall accuracy.

The classification result of the BSC-R-B, BSC-R-KL, and BSC-R-H achied the best
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overall accuracy in comparassion in the SC and the BSC-EM variants, as show in
Figure 6.15. The BSC-R-B achieved 85.96 % of overall classification accuracy, the
BSC-R-KL had 85.47 % of overall accuracy, and the BSC-R-H achieved 85.05 % of
overall accuracy. The three BSC-R variants were able to correctly classify the River,
Caatinga, Bare Soil, and Soy 3. As in BSC-EM, the classes Corn 2 and Soy 1 were
mixed. However, it is interesting to notice that even when the initial parameter were
selected in the best possible scenario S06 (Figure 6.7), the confusion between Corn
2 and Soy 1 was big.

The SC and BSC algorithms explored the Bhattacharyya Kullback-Leibler and
Hellinger stochastic distances. The three distances achieved similar results. The
Kullback-Leibler divergence and, therefore, the distance is usually associated to
the relative entropy and information gain characterization. In Figure 6.12, this dis-
tance achieved a slightly worse accuracy result in average, in comparison with Bhat-
tacharyya and Hellinger distances. The Bhattacharyya distance is widely used to
evaluate class separability, it is an efficient tool for image segmentation and clas-
sification, and this distance achieved one of the best results in 6.12. The Hellinger
distance had a very similar accuracy result to the Bhattacharyya distance, what
can be explained by the close relationship between Bhattacharyya and Hellinger
distance.
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Figure 6.13 - Simulated PolSAR image classification using SC algorithm and randomly
chosen initial parameter.

(a) SC-B. (b) Confusion matrix - SC-B.

(c) SC-KL. (d) Confusion matrix - SC-KL.

(e) SC-H. (f) Confusion matrix - SC-H.

SOURCE: Author’s production.
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Figure 6.14 - Simulated PolSAR image classification using EM and BSC algorithm.

(a) BSC-EM-B. (b) Confusion matrix - BSC-EM-B.

(c) BSC-EM-KL. (d) Confusion matrix - BSC-EM-KL.

(e) BSC-EM-H. (f) Confusion matrix - BSC-EM-H.

SOURCE: Author’s production.
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Figure 6.15 - Simulated PolSAR image classification using RPDDP and BSC algorithm.

(a) BSC-R-B. (b) Confusion matrix - BSC-R-B.

(c) BSC-R-KL. (d) Confusion matrix - BSC-R-KL.

(e) BSC-R-H. (f) Confusion matrix - BSC-R-H.

SOURCE: Author’s production.
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6.4 Experiment IV - real PolSAR image classification

In Section 6.3 the SC-B, SC-H, SC-KL, BSC-R-B, BSC-R-H, BSC-R-KL, BSC-
EM-B, BSC-EM-H, and BSC-EM-KL were evaluated in a quantitative way, using
simulated PolSAR images, in order to derive the confusion matrices and the accuracy
values.

As discussed in Section 6.3, the three analysed stochastic distances achieved similarly
accuracy results, and according to Frery et al. (2013) the Hellinger distance is the
best option to handle Wishart distributed data. Therefore in order to avoid analyz-
ing repeated or very similar results, the Hellinger distance were chosen to perform
the real PolSAR classification analysis. In next sections the algorithm BSC-R-H
will be analysed in qualitative and quantitative way. The SC-H, and BSC-EM-H
classification results will be analysed in a quantitative way only.

6.4.1 Real PolSAR image qualitative analysis

In this section, the qualitative analysis using the BSC dendrogram and Plan H −
α is explored. The classification results of the BSC-R-H algorithm for the images
Bebedouro SIR-C in C band, Bebedouro SIR-C in L band, Tapajós ALOS/PALSAR
and San Francisco ALOS/PALSAR are addressed.

6.4.1.1 Bebedouro SIR-C in C band image qualitative analysis

The first analysed image is the Bebedouro SIR-C in C band, showed in Figure 5.1(b).
As presented in Figure 5.1(c), the Bebedouro region has none identified classes: Corn
1, Corn 2, Soy 1, Soy 2, Soy 3, Tillage, Bare Soil, Caatinga, and River.

Figure 6.16 shows the Plan H − α scattering distribution of all Bebedouro region
classes. As discussed in Section 5.1.1.1, Bebedouro SIR-C in C band should have a lot
of confusion inside the Vegetation group, due to the backscattering pattern generated
by the C band frequency. In this band, the radar wave interacts much more with the
vegetation canopy, leaves and branches, what means that the scattering mechanism
are mainly volumetric, dipole, or anisotropic, and the entropy is moderate.

In Figure 6.16 the classes Corn 1, Corn 2, Soy 2, Soy 3, Tillage, and Caatinga
occupy basically the same regions, z5 and z6. Soy 1 also occupies the z5 and z6
regions, however its samples are more spread. As discussed in Section 5.4.2, z5 zone
is related with anisotropic particles, where the α angle scattering mechanisms is
the volumetric, and the entropy is moderated. The z6 zone gathers random surface
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elements, were the α angle mechanism is the surface scattering and the entropy is
also moderated.

Figure 6.16 - Bebedouro SIR-C in C band Plan H − α of all identified classes.

SOURCE: Author’s production.

The Bare Soil classes samples are mainly located in region z9. This region is char-
acterized by the Bragg surface scattering. The α angle is represented by the surface
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mechanism and the entropy is low. The River samples are spread between z9 and
z6, therefore the samples are a mix of Bragg surface and random surface elements.

Figure 6.17 shows the Bebedouro SIR-C in C band classified image. On the right
side of the classified image, the outcome legend is shown.

Figure 6.17 - BSC-R-H Bebedouro SIR-C in C band classification result.

SOURCE: Author’s production.

Figure 5.1(c) shows that the Bebedouro SIR-C image has nine identified classes: Corn
1, Corn 2, Soy 1, Soy 2, soy3, Tillage, Bare Soil, Caatinga and River. However the
BSC-R-H was able to identify mainly three classes: River, Bare Soil, and Vegetation,
which includes the classes Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, Tillage, and Caatinga.
The Vegetation class was splitted in many unknown classes, the clusters are actually
named as New 1, New 2, New 3, New 4, New 5, New 6, and New 7.

The clustering history can be followed in Figure 6.18, which presents the Bebedouro
SIR-C in C band clustering steps. The dendrogram grows in a top bottom way until
the stop criteria is reached, as discussed in Section 4.2.

Every node in the dendrogram has a cluster associated to it, therefore hereafter the
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clusters will be addressed by the node ID. For instance, the cluster associated to
node ID: 1 will be named ‘cluster ID1’. Besides that, an important clue presented
by the dendrogram is the information gain (I) between the parent node and its
two children. Using the I information, it is possible to follow the entropy decrease
between the bipartions.

Figure 6.18 - Bebedouro SIR-C in C band BSC-R-H dendrogram.

SOURCE: Author’s production.

In Figure 6.18, the cluster ID1 is splitted into cluster ID2 and the cluster ID3. The
cluster ID2 gathers the Vegetation and Tillage samples, while the cluster ID3 groups
the Bare Soil and River classes. The biggest information gain comes with cluster
ID3, which has I = 20.12. This high value is associated to cluster ID3 because the
Bebedouro SIR-C in C band image has much more Vegetation samples than River
or Bare Soil. Therefore cluster ID3 diverges much more from cluster ID1, than node
ID2, whose information gain is I = 6.28.

The difference between cluster ID2 and cluster ID3 can be checked in Figure 6.19,
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which represents the cluster ID1 splitting. This figure has two levels: the parent
level, identified as Level 1, and the children level, identified as Level 2. In the Level
1, the middle picture represents the Bebedouro SIR-C in C band PolSAR image,
and on this picture side there are the Plans H − α representation. The upper right
Plan H − α plots the cluster ID1 samples, while the Plan H − α on the upper left
image represents the average entropy and α angles of cluster ID1, cluster ID2, and
cluster ID3. On Level 2, the cluster ID2 and cluster ID3, and their respective Plans
H − α are presented.

The Plan H − α is represented by heat map, were the red spots are the regions
with high sample concentration. The cluster ID1 has a high amount of vegetation
samples, in comparison with the River and Bare soil samples. As already discussed,
the vegetation class (Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, and Caatinga) are mainly
concentrated in z5 and z9 on the Plan H − α, therefore the cluster ID1 samples
concentration in z5 and z6 is expected. In the cluster ID2 the samples are even more
concentrated on the z5 and z6 Plan H − α regions. On the other hand, the Bare
Soil and River samples are spread between z5, z6, and z9. The Plan H − α scheme
presented in Figure 6.19 can be generated for every node, allowing to the user to do
a deeper analysis on the clusters splitting and about their scattering mechanism.

As discussed in Section 5.4.1, in order to perceive which is the next node in the
splitting queue, the user must follow the node ID order. Therefore in Figure 6.18,
the next splitted cluster is cluster ID3, which is divided between River (cluster ID4)
and Bare Soil (cluster ID5). It is interesting to note that the Bare Soil information
gain (I = 10.15) is much higher than the River (1.80). This happens because the
cluster ID3 has much more River samples than Bare Soil, as shown in Figure 6.19,
therefore the cluster ID4 (River) is more similar to its parent, the cluster ID3.
Therefore, the entropy difference between these two cluster is smaller than between
cluster ID3 and cluster ID5.

The next splitted cluster is the cluster ID2, where all vegetation classes are grouped.
On this side of the tree, the splittings are hard to follow, since cluster borders are
not well defined. For this reason the cluster are label as ‘New’.

Figure 6.20 summarizes the Hellinger distances between the classes clustered by
BSC-R-H. As presented by Figure 6.17 and Figure 6.18, the BSC-R-H identified 9
classes, which are: New 1, New 2, New 3, New 4, New 5, New 6, New 7, River and
Bare Soil.

118



Fi
gu

re
6.
19

-B
eb

ed
ou

ro
SI
R
-C

im
ag

e
in

C
ba

nd
B
SC

-R
-H

de
nd

ro
gr
am

.N
od

e
ID

1
an

d
its

ch
ild

re
n.

SO
U
R
C
E:

A
ut
ho

r’s
pr
od

uc
tio

n.

119



The farthest classes are River and New 1, with a Hellinger distance of 10.46.
Analysing Figure 6.18, one can see that these clusters (cluster ID12 and cluster
ID4) are also far way from each other. This happens because the dendrogram leaf
location gives a clue about the dissimilarity between classes. As far one cluster is
from another, the more dissimilar its samples are from the other cluster samples.

On the other hand, the cluster New 2 and New 3 have the smallest distance value, i.
e., 0.14, and, in Figure 6.18, they share the same parent cluster. The second smaller
distance, is between classes New 5 and New 6, which are neighbors clusters (cluster
ID17 and cluster ID8), even though these clusters are from different parents. The
clusters on the left branch are similar between them, therefore the distances are low.

Figure 6.20 - Hellinger distances between the classes clustered by BSC-R-H using
Bebedouro SIR-C image in C band as input image.

SOURCE: Author’s production.

Inside the Vegetation branches, the classes New 7 and New 1 have a distance of 2.71,
which is the highest within these groups. This distance can be also checked in Figure
6.18, where the leaf cluster ID12 and cluster ID9 are far from each other. The class
New 7 is, actually, close to River and Bare Soil, and this class, by the distance table,
is the vegetation group class with the smaller distance to River (4.66) and Bare Soil
(1.68). The River and Bare Soil in dendrogram are neighbor class, and the River is
closest class to Bare Soil with a distance of 1.34.
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6.4.1.2 Bebedouro SIR-C in L band image qualitative analysis

The second analysed image is the Bebedouro SIR-C in L band, presented in Figure
5.1(a). As for Bebedouro SIR-C C band image, the first step of the qualitative
analysis is to inspect the entropy and α angles of each class presented in Figure
5.1(c), videlicet, Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, Caatinga, Tillage, Bare Soil,
and River. Figure 6.21 shows the Plan H − α of classes.

Different from C band, the L band waves penetrates the vegetation, and interact with
the ground, vegetation stem, branches and leaves. This behavior allows the L band
sensor to measure the vegetation vertical structure, consequently, the vegetation
area can have information about the three majors scattering mechanism: surface,
double-bounce and volumetric.

Due to that, a latent difference between Bebedouro SIR-C in C band and in L
band is the Caatinga scattering mechanisms location. While in C band (Figure
6.16), Caatinga is located between z5 and z6 zones, in L band, the Caatinga class is
mainly located in z2. The z2 zone is where high entropy volumetric scattering arises.
Example of objects with this kind of entropy and α angles are the forest canopies.

Another difference between C and L band scattering mechanism is with the River
samples. In C band the River samples were splitted between z6 and z9. However,
in L band, the River samples are heavily located in z9, where mechanism with low
entropy and surface scatterer type are located. The Bare Soil samples scattering
mechanism are spread between z9 and z6 for both SIR-C in C and L band.

The Tillage scattering mechanisms samples location also differs in C and L bands.
In C band the samples are spread between z5 and z6, but very concentrated. In L
band. this class samples are spread between zones z5, z6,and z9.

The Corn 1, Corn 2, Soy 1, Soy 2, and Soy 3 samples are mainly grouped at z5,
which is a moderate entropy region with a dominant dipole type of scattering mech-
anism. This zone would include scattering from vegetated surfaces with anisotropic
scatterers.

Figure 6.22 shows the Bebedouro SIR-C in L band (Figure 5.1(a)) classified image.
The BSC-R-H were able to correctly identify the Corn 1, Corn 2, Soy 1, Soy 2,
Soy 3, Tillage, Caatinga, River, and Bare Soil classes described in Figure 5.1(c). In
addition, the algorithm created two new classes, named ‘New 1’ and ‘New 2’.
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Figure 6.21 - Bebedouro SIR-C in L band Plan H − α of all identified classes.

SOURCE: Author’s production.

The clustering history is described in Figure 6.23. In the first level, the cluster ID1
groups all Bebedouro SIR-C in L band image samples, and, therefore, it gathers the
classes Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, Tillage, Caatinga, Bare Soil, and River.
The cluster ID1 is splitted into cluster ID2 and cluster ID3. The cluster ID2 groups
the Corn 1, Corn 2, Soy 1, Soy 2, Soy3, and Caatinga, and the information gain is
I = 7.29. The cluster ID3 groups the classes Bare Soil, River, and Tillage, and has
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an information gain of I = 14.14.

Figure 6.22 - BSC-R-H Bebedouro SIR-C in L band classification result.

SOURCE: Author’s production.

Note that the information gain value for cluster ID3 in C band are higher than in L
band. This happens because the cluster ID3 in C band groups Bare Soil and River,
while cluster ID3 in L band groups, besides Bare Soil and River, the Tillage class,
therefore the cluster ID3 in L band is more similar to its parent cluster, than the
cluster ID3 in C band.

Figure 6.24 extrapolates the cluster ID1 splitting. The upper right picture shows the
Plan H − α of the Bebedouro SIR-C in L band, in this Plan the samples, although
spread over z1, z2, z4, z5, z6, z7, z8, and z9, are highly concentrated in z5 zone,
because the amount of vegetation samples is high on this image. In z9 there is a
moderated concentration of samples, since the River class also has a good amount
of samples.
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On level 2, the cluster ID2 Plan H−α is similar to its parent Plan H−α, except for
the z9 concentration, which disappeared. This similarity can be checked also by the
information gain value (I = 7.29), which is lower, in comparison with cluster ID3
information gain (I = 14.14). On the other hand, the cluster ID3 Plan H − α has a
high concentration on z9 region, because the River samples are more representative
in this cluster.

Getting back to Figure 6.23, the next splitted cluster is the cluster ID3, which is
divided between cluster ID4 and cluster ID5. The cluster ID4 groups the Tillage
samples. The cluster ID5 groups the Bare Soil and River samples, which by the
distance table, presented in Figure 5.2(b), are closer classes, with a distance equal
to 0.58. While the distance from River to Tillage is 3.20, and the from Bare soil to
Tillage the distance is 2.35.

The cluster ID2 is the next in the queue. It is divided into cluster ID6 and cluster
ID7. Cluster ID6 groups the Corn1 and Caatinga, while cluster ID7 groups Corn 2,
Soy 1, Soy 2 and Soy 3. Again, by the distance table, presented in Figure 5.2(b),
the Corn 1 is the closest class to Caatinga, with a distance of 1.14. And because
the amount of Caatinga samples is higher in cluster ID2 and in cluster ID6, the
information gain (I = 2.62) between these cluster is lower, than between cluster ID2
and ID7 (I = 4.82).

The splitting procedure continues until the stop criteria is reached. The last splitted
cluster is the cluster ID17, which is divided between Soy 2 and Soy 3. These classes
have one of the lowest distance in Figure 5.2(b), being only 0.33. In addition, their
Plan H − α, presented in Figure 6.21 are very similar, and, finally, these classes are
spatially neighbors, meaning that their borders are a mix of the two classes.

Figure 6.25 presents the Hellinger distances between the classes New 1, Corn 1, Corn
2, Soy 1, Soy 2, Soy 3, Tillage, Bare Soil, Caatinga, New 2, and River. The closest
classes are the Soy 3 and Corn 2, which distance value is 0.26. These two classes
are very close in the Figure 6.23, as well. The Soy 3 is also very similar to New 2,
with a distance of 0.27, and these classes also share the same parent, as presented in
Figure 6.23. The most dissimilar classes, according to Figure 6.25, are the Caatinga
and River, which clusters (cluster ID13 and cluster ID10) are far way in BSC-R-H
dendrogram. The second unknown class, the New 1, is close to Corn 1. Although
New 1 and Corn 1 are from different parents, they are very close in the BSC-R-H
dendrogram.
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Figure 6.25 - Hellinger distances between the classes clustered by BSC-R-H using
Bebedouro PolSAR image in L band as input image.

SOURCE: Author’s production.

6.4.1.3 Bebedouro SIR-C in C+L band image qualitative analysis

In this section, the multifrequency PolSAR classification is addressed. The
Bebedouro PolSAR images in C and L bands are combined in order to evaluate
the BSC-R-H when using PolSAR image from different frequencies. As already dis-
cussed, the focus of this work is on PolSAR images, meaning that the dataset is
formed by a group of covariance matrices Z = {Z1, . . . ,Zn}, with N samples and L
number of looks, where Zn is given by Equation (2.21).

In order to generate a multifrequency covariance matrix, the C band covariance ma-
trices, named ZC , and the L band covariance matrices, named ZL shall be combined
in a unique matrix, as displayed in Figure 6.26. Considering ZL and ZC as a 3× 3,
merged covariance matrix will be 6× 6.

Figure 6.27 shows the Bebedouro SIR-C multifrequency dataset classification result.
The BSC-R-H identified the classes Corn 1, Corn 2, Soy 1, Soy 2, Soy 3, New 1,
New 2, New 3, Bare Soil, Caatinga, and River. The multifrequency had a better
classification than the Bebedouro SIR-C in C band, but worse that Bebedouro SIR-
C in L band.

The clustering history is described in Figure 6.28. In the first level, the cluster
ID1, which groups all Bebedouro SIR-C in C and L band image samples, is divided
between cluster ID2 and cluster ID3. The cluster ID2 groups the Corn 1, Corn 2,
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Soy 1, Soy 2, Soy 3, Tillage, and Caatinga, while the cluster ID3 groups the Bare
Soil and River. Note that the information gain is much higher for the multifrequency
cluster, than in L or C band. The splitting procedure evolve until the stop criteria
is reached.

Figure 6.26 - Multifrequency covariance matrix.

SOURCE: Author’s production.

Figure 6.27 - BSC-R-H Bebedouro SIR-C multifrequency classification result.

SOURCE: Author’s production.
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Figure 6.29 presents the Hellinger distances between the classes Corn 1, Corn 2, Soy
1, Soy 2, Soy 3, New 1, New 2, New 3, Bare Soil, Caatinga, and River. The closest
classes are the New 1 and New 2, looking at Figure 6.27, these two class seams to
be part of Caatinga region. New 3 is the closest to Corn 1, and by Figure 6.27 and
Figure 6.28, these classes are correlationated. The farthest classes are Caatinga and
River with a distance equal to 15.78.

Figure 6.29 - Hellinger distances between the classes clustered by BSC-R-H using
Bebedouro PolSAR multifrequency.

SOURCE: Author’s production.

6.4.1.4 Tapajós ALOS/PALSAR image qualitative analysis

The next analysed image is the Tapajós ALOS/PALSAR, which is shown in Fig-
ure 5.4(a). As presented in Section 5.1.1.2, the ALOS/PALSAR is a L band sensor,
that can operate in polarimetric mode, where the complete polarization scheme is
offered. The Tapajós PolSAR image is the polarimetric representation of Tapajós
forest. Within this image, besides the primary forest samples, there are agricultural,
pasture, and different types of forests, among others samples. As presented by Fig-
ure 5.4(b), the Tapajós region has six identified classes: Bare Soil, Agriculture 1,
Agriculture 2, Agriculture 3, Primary Forest, and Pasture.

As already discussed, the wavelength band strongly affects what type of objects
the SAR is sensitive to. For instance, in forest areas, longer wavelength radar sig-
nals, such as L-band, penetrate through the forest canopy and interact with the
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larger structures such as the trunks and larger trees branches. All these interac-
tions means that the every polarization combinations (Shh, Shv, and Svv) will have a
strong answer, consequently the entropy is high in forest scenarios. Since the Tapa-
jós ALOS/PALSAR is in L band and this image is formed mostly by forest samples,
the Tapajós ALOS/PALSAR Plan H − α will have samples mainly in zones with
high entropy, i. e., z1 and z2.

Figure 6.30 shows the Plans H − α for the six above cited classes. As expected,
the Primary Forest scattering mechanism samples are highly concentrated in z2,
which is a high entropy and volumetric scattering mechanism region. The Bare Soil,
Agriculture 1, and Pasture samples are mainly located in z5 and z6. While the
Agriculture 2 and Agriculture 3 scattering mechanism samples are in z6 and z9.

Figure 6.30 - Tapajós ALOS/PALSAR Plan H − α of all identified classes.

SOURCE: Author’s production.

Figure 6.31 presents the classified image. On its right side the outcome legend is
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presented. Even though the Tapajós region has six identified class, as presented in
Figure 5.4(b), the BSC-R-H generated ten classes, as showed by the outcome legend.
The classes are Bare Soil, Agriculture 1, Agriculture 2, Agriculture 3, Primary Forest,
Pasture, New 1, New 2, New 3, and New 4.

Figure 6.31 - BSC-R-H Tapajós ALOS/PALSAR classification result.

SOURCE: Author’s production.

Figure 6.32 shows the clustering dendrogram. In the first level, the cluster ID1 is
divided into cluster ID2 and cluster ID3. The cluster ID2 groups the Primary Forest
and Agriculture 2. It is interesting to note that Agriculture 2 is not the closest to
Primary Forest, their distance is 3.24, according to distance Table presented in Fig-
ure 5.5(b), against the 2.69 distance values between Primary Forest and Agriculture
3, for instance. However the Agriculture 2 is the farthest classes from the others,
for example, the distance between Agriculture 2 and Bare Soil is 4.75, and the dis-
tance between Agriculture 2 and Agriculture 1 is 7.29. The cluster ID3 gathers the
remained classes, i. e., Bare Soil, Agriculture 1, Agriculture 3, and Pasture.
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Figure 6.33 extrapolates the cluster ID1 splitting. This clustering division separates
mainly forest and non-forest samples. On Level 1, the cluster ID1 groups all samples
available in Tapajós ALOS/PALSAR image. The upper right image shows the cluster
ID1 Plan H−α, although the samples are spread over all zones in this plan, they are
mainly located in z1, z2, and z5. This is due to the high amount of forest samples
in cluster ID1, which pushes the entropy and α angle frequency onto these classes.

On level 2, the Plan H − α associated to cluster ID2 has scattering mechanism
samples largely located in z1 and z2, which usually are zones associated to forest
scatterings. The cluster ID3 Plan H − α has samples spread principally between
z5 and z6, which are zones associated to less developed and more sparse vegetation
zones.

The cluster ID2 information gain is I = 1.66, while the cluster ID3 is I = 5.94. Since
the amount of forest sample is bigger in cluster ID1, and the cluster ID2 groups the
forest samples, this group is more similar to its parent (cluster ID1), therefore the
information gain is lower. On the other hand, cluster ID2 groups non-forest samples,
which are less representative in this image, in terms of samples amount, resulting
in a more dissimilar image in comparison with its parent, therefore the information
gain is higher between cluster ID3 and cluster ID1.

The next splitted cluster in Figure 6.32 is the cluster ID3, which is divided between
cluster ID4 and cluster ID5. The cluster ID4 groups the Agriculture 3 and Pasture,
and the cluster ID5 groups the Bare Soil and Agriculture 1. The Bare Soil and
Agriculture 1 have similar Plan H − α samples spreading pattern (Figure 6.30),
and the distance between them is only 0.9, which is one of the smallest distances in
Figure 5.5(b). The Pasture and Agriculture 3 have a distance value equals to 2.07,
and their scattering mechanisms are in different zones, while the Pasture are mainly
in z6, the Agriculture 3 samples are spread over z9 region.

The next splitted cluster is the cluster ID5 which is divided between cluster ID7,
that represents a new class, labeled New 4, and cluster ID 6. Then, the cluster ID6
is finally divided between Agriculture 1 and Bare Soil. After that the cluster ID4 is
divided between cluster ID10 and cluster ID11. The cluster ID10 splits into the class
Pasture and New 2 class. The splitting procedure continues until the stop criteria is
reached. The last divided cluster is the ID12, which groups the Primary Forest and
Agriculture 1.

Figure 6.34 presents the Hellinger distances between the classes Bare Soil, Agricul-
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ture 1, Agriculture 2, Agriculture 3, Primary Forest, New 1, Pasture, New , New 3,
and New4. The closest classes are the New 1 and Primary Forest, with a distance of
0.25. These two classes are very close in the Figure 6.32, and they share the same
parent, in Figure 6.31, the class New 1, seams to be part of forest.

The class New 2 is close to Pasture, their distance is 0.42, and in the dendrogram,
these class share the same parent. The class New 3 is is distant 0.40 from class
Agriculture 1, which are close classes in the dendrogram, although they have different
parents. New 4 class is very close to New 2, with a distance of 0.30, and also the
Bare Soil class, with a distance of 0.40. Bare Soil and New 4 share the same parent,
however, New 4 and New 2 are not that close, having as common cluster the cluster
the cluster ID3.

Figure 6.34 - Hellinger distances between the classes clustered by BSC-R-H using Tapajós
ALOS/PALSAR image as input image.

SOURCE: Author’s production.

6.4.1.5 San Francisco ALOS/PALSAR image qualitative analysis

The last analysed image is the San Francisco ALOS/PALSAR image. This image
is divided into six classes (Mountain, Water, Vegetation, High Density Urban, Low
Density Urban, and Developed Urban), as presented in Figure 5.6(b).

Figure 6.35 shows the Plan H−α of each above cited classes. The Mountain samples
are spread between z2, z5, z6, z9. In San Francisco image, the mountain is one of
the most complex regions. According to Xiang et al. (2016), the Mountain class has
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urban areas, lakes, pasture, forest, grass land, cultivated crops, and many others
scenarios, therefore the different scattering mechanisms and diverse entropy values
in this region is understandable.

Figure 6.35 - San Francisco ALOS/PALSAR Plan H − α of all identified classes.

SOURCE: Author’s production.

The Low Density Urban class has a moderate to high entropy, and it is located
between z1, z2, z5, and z6. The High Density Urban class samples are concentrated
in z5, and spread over z4, z5, z6, z7, z8, and z9. Note that the z1 and z2, which are
zones known for having forest scattering mechanisms, have no samples from High
Density Urban class. The water class is completely in z9, while the Vegetation is
spread over z1, z2, z5 and z6. The Develop Urban is concentrated on z5.
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Figure 6.31 shows the BSC-R-H classification result. The classified image has thir-
teen classes, eight more than what Figure 5.6(b) shows. Only the Water class was
splitted into three classes (Water, New 1, and New 2), for instance. The classes
High Density Urban, Low Density Urban, and Developed Urban will be addressed
by their initial hereafter, i. e., HDU, LDU, and DU, respectively.

Figure 6.36 - BSC-R-H San Francisco ALOS/PALSAR classification result.

SOURCE: Author’s production.

Figure 6.37 shows the San Francisco clustering dendrogram. The cluster ID1 groups
all San Francisco ALOS/PALSAR samples, and it is divided between cluster ID2 and
cluster ID3. This clustering split divided the San Francisco ALOS/PALSAR samples
between water and non-water, for instance, cluster ID2 gathers the Mountain, LDU,
HDU, Vegetation, and DU, whilhe cluster ID 3 groups the Water samples.

Figure 6.38 shows the Level 1 splitting procedure. On Level 1, the Parent image
represents the complete San Francisco ALOS/PALSAR dataset, the upper right
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image shows the Plan H − α, in this figure the samples are highly concentrated in
z9 region, due to the high amount of Water samples in the cluster ID1. On Level 2,
the cluster ID2 image shows the non-water samples, and, on its left, the Plan H−α
shows a high concentration of samples in z5 and z2. The cluster ID3 image shows
the water samples, and its Plan H − α has a high concentration in z9, which is a
zone characterized by low entropy surface mechanisms.

The cluster ID2 information gain is I = 12.70, meaning that this cluster is more
dissimilar to its parent, therefore the reduction in entropy in high for this cluster.
The cluster ID3 information gain is I = 6.15, which isn’t such a low value, however
is lower than the cluster ID2 information gain. Since the amount of water samples is
superior in San Francisco ALOS/PALSAR dataset, the dissimilarity is lower between
cluster ID3 and cluster ID1.

The next splitted cluster is the cluster ID2, which is divided between cluster ID4,
which groups the three urban areas, i. e., LDU, HDU, DU, and cluster ID5, which
groups the Mountain and Vegetation. The splitting procedure continues until the
sop criteria is reached. Again, following the dendrogram growth, presented in Figure
6.37, one can see that the cluster ID3, correspondent to the Water class, is splitted
into cluster ID12 and cluster ID13, and further the cluster ID13 is splitted between
cluster ID14 and cluster ID15.

According to Figure 5.6(b), the water class shouldn’t be divided, however as pre-
sented by 6.39, on level 6, the samples associated to cluster ID12 are mainly located
in z9, in the Plan H − α, while the cluster ID13 samples are mainly located at z6,
this is a strong indicative that, indeed, cluster ID12 and cluster ID13 are different
cluster.

Figure 6.40 presents the Hellinger distances between the classes Mountain, LDU,
HDU, Water, New 1, New 2, Vegetation, New 3, DU, New 4, New 5, New 6, and
New 7. The class New 1 and New 2 share the same parent and are very close with
a distance of 0.10. Even though the New 1, New 2, and the Water are grouped by
cluster ID3, the class New 1 is closer to New 3, having 0.12 of distance value, and
LDU having a distance of 0.18. The same pattern is followed by New 2, which is
closer to LDU, having 0.08 of distance. The New 4 is closer to DU class. The New
5 is closer to DU and New 3. New 6 is closer to LDU, and New 7 is closer to LDU.
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Figure 6.40 - Hellinger distances between the classes clustered by BSC-R-H using Tapajós
PolSAR image as input image.

SOURCE: Author’s production.

6.4.2 Real PolSAR data quantitative analysis

This section address the quantitative analysis of the classified images. The confusion
matrices and the accuracy results of Bebedouro SIR-C images in C and L band,
Tapajós ALOS/PALSAR and San Francisco ALOS/PALSAR images using the SC-
H, BSC-R-H, and BSC-EM-H algorithms are presented.

6.4.2.1 Bebedouro SIR-C in C band image quantitative analysis

The first analysed image is the Bebedouro SIR-C in C band. Figure 6.41(a) presents
the classification result of SC-H algorithm. This algorithm selected the initial pa-
rameter randomly and the number of cluster were nine. The algorithm were fairly
able to identify five classes, and the four remained received just few samples, being
classified as noise. Figure 6.41(b) shows the confusion matrix and the classes sam-
ples distribution. The Corn 1 were spread over all image, and just a small parcel of
the samples were correctly classified. The Soy 1 were correctly classified, however it
grouped the Caatinga samples together in it. The Bare Soil and River were correctly
classified. The overall accuracy of SC-H algorithm were 45.17 %

Figure 6.42(a) and Figure 6.42(b) present the classification result of BSC-EM-H
algorithm and their confusion matrix, respectively. The BSC-EM-H algorithm gets
the initial parameter using the EM algorithm. The classification overall accuracy of
this algorithm were much worse than the SC-H, it achieved only 19.6 %. The BSC-
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Figure 6.41 - Bebedouro SIR-C in C band image classification using the SC-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.42 - Bebedouro SIR-C in C band image classification using the BSC-EM-H algo-
rithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.
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Figure 6.43 - Bebedouro SIR-C in C band image classification using the BSC-R-H algo-
rithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

EM-H were able to correctly identify the Corn 1 class, and the Bare Soil, but all
other class were miss-classified. The worst case is the River, which were completely
classified as Bare Soil. The Soy 2, Corn 1, and Corn 2 classes were spread over the
whole image, therefore the Caatinga was classified as a mix of Corn 2 and Soy 2.

Figure 6.43(a) and Figure 6.43(b) present the classification result of BSC-R-H algo-
rithm and its confusion matrix, respectively. This algorithm achieved a better result
in comparison with SC-H and BSC-EM-H. It had 48.54 % of overall accuracy. The
BSC-R-H correctly classified the Bare Soil and River. There is a confusion between
Corn 1 and Corn 2 classes. The Tillage region was classified as Corn 1, Corn 2 and
Soy 1, while the Caatinga was classified as Tillage and Soy 3.

6.4.2.2 Bebedouro SIR-C in L band image quantitative Analysis

Figure 6.44(a) presents the classification result of SC-H algorithm of the Bebedouro
SIR-C in L band image, and Figure 6.44(b) shows the confusion matrix. The initial
parameters ware randomly chosen and the number of cluster were nine. This algo-
rithm were able to correctly classify the Corn 1, Corn 2, Bare Soil, and River. The
Tillage region were classified as Soy 1 . The Soy 3 region were classified as Soy 2,
and the Caatinga is a mix of Caatinga and Soy 3. The overall accuracy is 66.16 %.
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Figure 6.44 - Bebedouro SIR-C in L band image classification using the SC-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.45 - Bebedouro SIR-C in L band image classification using the BSC-EM-H algo-
rithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.
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Figure 6.46 - Bebedouro SIR-C in L band image classification using the BSC-R-H algo-
rithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.45(a) and Figure 6.45(b) present the classification result of BSC-EM-H
algorithm and its confusion matrix, respectively. The BSC-EM-H algorithm gets
the initial parameter using the EM algorithm. This algorithm correctly classified
the Corn 1, Corn 2, and Caatinga. It miss-classified the Bare Soil and River, which
were classified as Tillage. And there is a substantial confusion between Soy 1, Soy
2, and Soy3 classes. The overall accuracy is 36.29 %.

Figure 6.46(a) and Figure 6.46(b) show the classification result of BSC-R-H algo-
rithm and its confusion matrix, respectively. This algorithm had a better result in
comparison with SC-H and BSC-EM-H. It achieved 89.52 % of overall accuracy. The
BSC-R-H correctly classified the Corn 1 class, however this class is splitted into a
new class (the orange), as described in Section 6.4.1.2. The Corn 2 samples were
also correctly classified, while the Soy 1 and Soy 2 were mixed. There was another
mixture between Soy 2 and Soy 3. The Tillage was fairly well classified, while the
Bare Soil had few samples classified as River. The River and Caatinga achieved a
good classification level.

6.4.2.3 Tapajós ALOS/PALSAR image quantitative analysis

Figure 6.47(a) presents the Tapajós ALOS/PALSAR classification result of SC-H
algorithm and Figure 6.47(b) shows its confusion matrix. The initial parameters
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ware randomly chosen and the number of cluster were six (Bare Soil, Agriculture 1,
Agriculture 2, Agriculture 3, Primary Forest, and Pasture). The algorithm was able
to identify three main classes represented by the colors green, yellow, and magenta.
Only the Primary Forest samples were correctly classified. The Agriculture 3 region
was classified as Agriculture 2, and all the other classes were classified as Bare Soil.
The overall accuracy is 38.18 %.

Figure 6.47(a) presents the Tapajós ALOS/PALSAR classification result of BSC-
EM-H algorithm and Figure 6.47(b) shows its confusion matrix. The initial parame-
ters were selected by the EM algorithm. The algorithm correctly classified the Bare
Soil, and some Agriculture 1 samples were classified as Bare Soil as well. However all
samples which were classified as Agriculture 1 were actually Agriculture 1, therefore
the cell Agriculture 1-Agriculture 1 in the confusion matrix achieved 100 %. The
Agriculture 2 were correctly classified, even though some samples from Agriculture
3 were classified as Agriculture 2. The Agriculture 3, Primary Forest and Pasture
were correctly classified. The overall accuracy is 85.98 %.

Figure 6.47 - Tapajós image classification using the SC-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.
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Figure 6.49 - Tapajós image classification using the BSC-R-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.48 - Tapajós image classification using the BSC-EM-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.
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Figure 6.49(a) presents the Tapajós ALOS/PALSAR classification result of BSC-
EM-H algorithm and Figure 6.49(b) shows its confusion matrix. The BSC-RPPD-H
had a slightly better overall accuracy than BSC-EM-H, achieving 90.77 %. The
biggest difference between these classification is on Bare Soil classification, which
had less Agriculture 1 samples classified as Bare Soil.

6.4.2.4 San Francisco ALOS/PALSAR image quantitative analysis

The last analysed PolSAR image is the San Francisco ALOS/PALSAR. Figure
6.50(a) presents the classification result of SC-H algorithm, this algorithm randomly
selected the initial parameter and the number of cluster is six. The algorithm was
able to correctly identify four classes, the remaining two classes got a very small
number of samples. The samples classified as Mountain are from Moutain, LDU,
Vegetation, and DU. The samples classified as LDU are from Mountain, LDU, Wa-
ter, and Vegetation. The samples classified as HDU are from HDU and DU. Even
though the Water got 100 % of accuracy in the confusion matrix, this were splitted
in two: Water and Mountain. The overall accuracy is 71.6 %.

Figure 6.50 - San Francisco image classification using the SC-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.
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Figure 6.52 - San Francisco image classification using the BSC-R-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.51 - San Francisco image classification using the BSC-EM-H algorithm.

(a) Classified Image. (b) Confusion matrix.

SOURCE: Author’s production.

Figure 6.51(a) presents the classification result of BS-EM-H algorithm and Figure
6.51(b) shows its confusion matrix. This images was fairly well classified. The biggest
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confusion happened between Water and Mountain. Some Mountain samples were
classified as Water. The overall accuracy was 79.49 %.

Finally, Figure 6.52(a) presents the classification result of BS-RPDDP-H algorithm
and Figure 6.52(b) shows the confusion matrix and the classes samples distribution.
This algorithm classified fairly well all classes. Note that theWater class were splitted
into two more, and this splitting were already discussed in Section 6.4.1.5.
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7 CONCLUSIONS

In this work, a new unsupervised algorithm to clustering/classify PolSAR images
was proposed. The algorithm is named Bisecting Stochastic Clustering, and uses the
proposed RPDDP and the Stochastic Clustering to build a hierarchical structure
that stores the clustering splitting history. The algorithm input is an image and the
output is a classified image and a set of tools that may help the analyst to better
understating the clustering result.

The focus of this work relied in PolSAR data. This kind of data is widely used in the
process of monitoring the environment, due to the advantages of sensors operating in
microwave frequencies, such as independence from daylight and less influence from
the weather. Therefore this work explored the characteristic of PolSAR images, as
the scattering mechanisms, with the goal of achieve the best classification result.

The PolSAR data used in this work is assumed to follow the Wishart distribution,
therefore the image regions are considered homogeneous and multi-look. It means
that the real and imaginary parts of polarimetric bands (shh, shv, and svv) are as-
sumed to follow a circularly symmetric multi-variate complex Gaussian distribution.
Consequently the stochastic distances are computed between the Wishart param-
eters. In order to validate the algorithm metric, a set of PolSAR were simulated,
where the main idea underlying this simulation is to guarantee that the cluster
samples will follow the defined distribution and that the samples have less noise as
possible.

Simulated images were used to validate the BSC classification. They were also used
in order to investigate the initial parameter estimation influence on partitional algo-
rithms. The BSC algorithm is a hybrid algorithm between the divisive hierarchical
clustering algorithms and partitional clustering algorithms. The BSC partitional
algorithm is the SC algorithm, therefore, this algorithm were used in order to inves-
tigate the greedy behavior of partitional algorithms.

Six scenarios were defined in order to investigate the classification behaviour ac-
cording to the initial parameter determination. Except for scenario S06, all others
scenarios had an accuracy result bellow 65 %, what implies that, besides many
other facts, the correctness of the initial parameters determination is essential to
accomplish a good and consistent classification result. The use of assertive initial
parameter, as presented in scenario S06 significantly improved the final classification
result, and the accuracy was around 20 % better.
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Specially when the clusters are well separated, the SC performance depends com-
pletely on the goodness of the initialization. For instance, lets consider S02, where
two out the of six parameters were picked from the Bare Soil class. One of these
initial parameters should be associated to Bare Soil and the second should be as-
sociated to River, however both seeds stood trapped in local minimum and the SC
wasn’t able to discovered the River class, and the segments which belongs to River
were classified as Bare Soil.

Although there are many initialization algorithms in the literature, as the Ball and
Hall’s method, Simple Cluster Seeking method, Maximin method, in general, the
SC initialization problem is not easy to solve. Therefore, our proposal has the goal
of divide the problem, and works on steps by using the hierarchical algorithm. In
this way two clusters could be found per iteration, and the RPDDP would be used
in order to define the two initial parameters.

The RPDDP is a modification of PDDP algorithm in order to handle covariance
matrices. The PolSAR image can be defined by a group of covariance matrices Z,
which can be better represented in a Riemannian space. In order to investigated
the difference between the average covariance matrix and the intrinsic mean covari-
ance matrix, an experiment using the PDDP against the RPDDP algorithms were
conducted.

Four PolSAR images from different sensors and frequency band are used in this
experiment: The Bebedouro SIR-C in C band, the Bebedouro SIR-C in L band, the
Tapajós ALOS/PALSAR, and the San Francsico ALOS/PALSAR. As evaluation
criteria, the stochastic distance between classes and the Root-Mean-Square Standard
Deviation (RMSSTD) error were computed. The goal of these evaluation criteria is
to judge the cluster quality by assuming that an optimum clustering means compact
and well separated clusters, i. e., a cluster with low RMSSTD and high stochastic
distance inter cluster shall be considered optimum.

The RPDDP had a bigger stochastic distance and lower RMSSTD error with the
Bebedouro SIR-C in C and L bands, and with the Tapajós ALOS/PALSAR. The
San Francisco ALOS/PALSAR clusters had a bigger distance with RPDDP, but one
of the clusters had a smaller RMSSTD error with PDDP. In general the RPDDP
presented a better result; the cluster were less nosier and had a better definition of
the cluster borders, contrasting the PDDP results.

The BSC classification result were evaluated in a quantitative and qualitative way.
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While the quantitative analysis evaluates the confusion matrices and accuracy re-
sults, the qualitative analysis deals with the cluster information gain, the BSC den-
drogram, and the PolSAR scattering mechanisms.

Besides the initial parameter determination and RPDDP versus PDDP analysis, two
more experiments were analysed, one using simulated images and the second using
real PolSAR images. Therefore, the third experiment had the goal of quantify the
sensitiveness of the BSC algorithm, for such, a Monte Carlo simulation over a set of
one hundred simulated PolSAR images was conducted. Aiming to ratify the Monte
Carlo simulation results, the second experiment used the Bebedouro SIR-C in C
band, the Bebedouro SIR-C in L band, the Tapajós ALOS/PALSAR, and the San
Francsico ALOS/PALSAR as input of BSC algorithm. While the first experiment
addressed only a quantitative analysis, the second inspected the accuracy result, the
BSC dendrogram information and the images scattering mechanisms.

In the third experiment, a Monte Carlo simulation delivered the accuracy results of
the classification using the SC, BSC using the EM as estimator of initial parameter,
and the BSC using the RPDDP in order to get the initial parameters. The results
showed that the SC had an inconsistency on the accuracy value, whith this algorithm
the classification accuracy varied from 60 % to 90 %. While the BSC-EM and the
BSC-R had more constancy. The classification accuracy result varied from 90 % to
95 % with BSC-EM, and the classification accuracy result varied from 95 % to 98
% with BSC-R. Therefore, with simulated PolSAR images, the BSC-R had the best
results.

In the forth experiment, the dendrogram and PolSAR scattering mechanisms were
addressed. Using the dendrogram report is possible to follow the clustering bi-
partition steps, and the information gain can help on the decision if a data were
well clustered or not. Also, the Plan H − α helps on the clusters characterization.

Alone, the dendrogram, information gain, and scattering mechanisms information,
can provide knowledge and advice about what to do with a dataset. Together they
form a powerful tool for segmentation, clustering, classification, and analysis of Pol-
SAR data.

One of the advantages of the BSC algorithm is that there is no need for inputs such
as the number of classes. The algorithm can run until the stop criteria is reached
and generate a suitable number of classes. The dendrogram, information gain, and
scattering mechanisms information helps on the unknown classes characterization.
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For instance the BSC-R-H classified the San Francisco image and generated seven
classes more than the predicted on the truth image. Three out of seven classes were
created on Water region, meaning that the ocean may have different classes due to,
for example, sea level, pollution, and so on.

In general the L bands images had superior classification results in comparison with
the C band image. The real PolSAR image classification qualitative analysis ratified
the results of experiment 3 and showed that the BSC-R had the best accuracy result.
The L bands images had an average accuracy result of approximately 60 % with the
SC-H algorithm, 70 % with the BSC-EM-H, and 90 % with the BSC-R.

In Section 1.3 two hypothesis has been defined. The first statement hypnotised that
the use of the Rimmenian geometry to deal with PolSAR covariance matrices could
be beneficial, specially to the determination of the initial parameters of the BSC
classifier. As already discussed the the RPDDP proved to be a good algorithm to the
determination of the initial parameter of PolSAR images data. The second statement
hypnotised that it was possible to develop a robust unsupervised classifier using
divisive hierarchical algorithms and stochastic distances. As presented in Chapter
6, the BSC using the RPDDP had a better overall accuracy with all tested image.
Therefore the hypothesis has been proved correct.

7.1 Future works

The BSC algorithm has potential for many adaptations, tests, and experiment. In
this context, some experiments and results can be improved or further extended. This
section briefly describes some interesting research topics, which worth investigating.
Here are these points:

a) Deeper analysis on PolSAR image covariances under the Riemannian ge-
ometry. Exploring the mathematical foundation of the Hermitian positive
definite covariance matrices and how it forms a differentiable Riemannian
manifold. Explore also the geodesic distances against stochastic distances;

b) As presented in Chapter 2, the SAR image can follow diverse PDFs accord-
ing to the type of image and region. This work addressed only the Wishart
distribution. Therefore, the study and development of stochastic distances
between the G0 and K distributions, for instance, can be considered as well.

c) A short analysis of multi-frequency image classification was conducted on
Chapter 6, therefore a deeper analysis on the potential of multi-frequency
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data is required. Since this kind of image can improve the classification
accuracy, as illustrated by many researchers (FERRO-FAMIL et al., 2001;
FRERY et al., 2007; FREEMAN et al., 1994);

d) The use of multi-source images as input to BSC algorithm, which can be
applied to hyperspectral data, or fused data from a SAR and camera.

e) From the point of view of application, this algorithm can help on the binary
classes characterization, for instance forest and non forest, water and non
water.

f) The BSC can be used to extract features, helping on the unsupervised
learning development, which is a type of machine learning that seeks for
patterns in a dataset without pre-existing labels.

g) The BSC was developed in Matlab, which is a proprietary, closed-source
software, that needs a license, which is quite expensive. Therefore the al-
gorithm translation to an open source language is needed.
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APPENDIX A - BSC FOR IMAGES FOLLOWING THE GAUSSIAN
DISTRIBUTION.

Single-look SAR image from homogeneous region, in-phase or quadrature, can fol-
low the Gaussian distribution. Similarly, multi-look SAR images in amplitude from
homogeneous region also can follow the Gaussian distribution. Although optical im-
ages are not accurately modeled by Gaussian distributions, this is one of the most
applied models when dealing with this kind of images.

Let x = { ~x1, ..., ~xN} be the dataset of unknown samples to be clustered, where ~xn

is represented as a q-tuple of real numbers, q is the dataset number of bands, and
N is the number of samples. If q > 1, the dataset follows the multivariate Gaussian
distribution denoted as x ∼ N (~µ,Σ), where ~µ is the vector of q mean values, and
Σ is a covariance matrix. The multivariate Gaussian distribution is represented as:

f(x; ~µ,Σ) = 1
(
√

2π)q
|Σ|−

1
2 exp

(
− 1

2(x− ~µ)TΣ−1(x− ~µ)
)

(A.1)

whereµ = 1
N

∑N
n=1 ~xn, and Σ = 1

N

∑N
n=1( ~xn − ~µ)T ( ~xn − ~µ).

The BSC algorithm can be easily adjusted to handle a dataset following the Gaus-
sian distribution. Three adjusts must be done: The first one concerns on the initial
parameter determination, where the PDDP should use the regular PCA approach,
while the the EM should use the Gaussian Mixture model; the second adjust is about
the stochastic distance, which shall be between two Gaussian distribution; and the
third, is regarding the entropy calculation.

A.1 Initial parameter determination

A.1.1 PDDP

The PDDP algorithm is based on the PCA routing, which is a method often used to
reduce the dimensionality of large data sets. However, in here it is used to get the
principal component, which will be later used to divide the dataset into two subsets.

The PCA computes the mean (~µ) and covariance matrix (Σ) of a given dataset,
and decomposes the covariance matrix into eigenvectors (U) and eigenvalues (Λ)
matrices. The q principal components of the observed dataset x are given by the
vectors ~δ = UT ( ~xn − ~µ).
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The principal direction is given by the eigenvector ui with the highest eigenvalue λi
associated to it. The projection of ~xn on the principal component is given by:

σvn = uTi ( ~xn − ~µ) (A.2)

The correspondent samples ~xn associated to values vn are splitted into two groups
accordingly to the vn sign. Therefore two groups are created, and their mean and
covariance matrices are considered the initial parameter for BSC algorithm.

A.1.2 EM

The EM algorithm is an iterative procedure that uses the maximum a posteriori
rule to compute the maximum likelihood of a mixture model distribution, when the
data is incomplete, has missing data points, or has unobserved variables. Assuming
x = { ~x1, ..., ~xN} a set of observed samples, the multivariate Gaussian mixture model
can be expressed by:

f(x; Ψ) =
K∑
k=1

πkfk(x; ~µ,Σ) (A.3)

where K is the number of Gaussian within the mixture, Ψ =
{π1, ..., πK , ~µ1, ..., ~µ2,Σ1, ...ΣK} is the mixture model parameter vector, and
πk is the weighting factor per Gaussian.

Each EM iteration consists on an E-step and an M-step. The E-step uses the current
Ψt value to compute the log-likelihood of the observed data, from where the πk
membership weights of data sample ~xn to the distribution fk can be derived. The
log-likelihood of the Gaussian mixture model is expressed in Equation (A.4). In
the M-step, the weights πk, the mean ~µk and covariance matrices Σk of the K
distribution within the mixture model are updated, as presented in Equation (??),
(A.6) and (A.7).

Q(Ψ,Ψt) =
N∑
n=1

K∑
k=1

un,k
[
log(πtk)−

q

2 log(2π)−1
2 log(|Σt

k|)−
1
2( ~xn− ~µtk)T (Σt

k)
−1( ~xn− ~µtk)

]
(A.4)

where un,k = 1 if the sample n produces a measurement k, and un,k = 0 otherwise.
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πt+1
k = 1

N

N∑
n=1

un,k (A.5)

µt+1
k =

∑N
n=1 un,k ~xn∑N
n=1 un,k

(A.6)

Σt+1
k =

∑N
n=1 un,k( ~xn − ~µk)T ( ~xn − ~µk)∑N

n=1 un,k
(A.7)

The EM algorithm runs until convergence or until the spot criteria is reached. The
mean and covariances matrices derived in the M-steps are used as initial parameters
for BSC algorithm.

A.2 Stochastic distances

Theodoridis e Koutroumbas (2010) developed the Bhattacharyya and Kullback-
Leibler stochastic distance between multivariate Gaussian distributions. These dis-
tances are expressed as:

a) Bhattacharyya

dGB( ~xn, ~xp) = 1
8( ~µn− ~µp)T

(
(Σ−1

n + Σ−1
p )

2

)−1

( ~µn− ~µp)+
1
2 log

 (Σ−1
n +Σ−1

p )
2√

|Σn||Σp|


(A.8)

b) Kullback-Leibler

dGKL( ~xn, ~xp) = 1
2( ~µn− ~µp)T (Σ−1

n +Σ−1
p )( ~µn− ~µp)+

1
2Tr(Σ

−1
n ΣpΣnΣ−1

p −2Iq)
(A.9)

A.3 Multivariate Gaussian entropy

In BSC algorithm, the entropy is used to compute the information gain, which
defines the clusters to be splitted. The entropy of the multivariate Gaussian is equal
to:

H = 1
2 log((2πe)Ndet(Σ)) (A.10)
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A.4 Results

The image used as input for the Gaussian version of BSC is the San Francisco
Landsat 7 (Figure A.1). This images is from the same region as presented in Sec-
tion 5.1.1.2. The image is composed by man made structures, as the Golden Gate
Bridge and the Bay Bridge, and natural features such as the Marin Headlands and
the complex currents in San Francisco Bay. This image is provided by the EROS
Data Center Landsat 7 Data Handling Facility Image Assessment System (IAS)
(PRZYBORSKI, 2020).

Figure A.1 - San Francisco Landsat 7.

SOURCE: Przyborski (2020).

As presented in chapter 6, the best classification results were achieved with the
BSC using the RPDDP algorithm, and the Bhattacharyya and Hellinger distances.
Therefore, in this section only the BSC-PDDP-B (BSC using the regular PDDP and
Bhattacharyya) results are presented.
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The classification result of the BSC-PDDP-B algorithm for the Landsat 7 San Fran-
cisco, and its confusion matrix are shown in Figures A.2 and A.3. As presented in
Figure 5.6(b), the San Francisco area has six main classes: Mountain, Water, Veg-
etation, High Density Urban (HDU), Low Density Urban (LDU), and Developed
Urban (DU). Note that the ALOS/PALSAR data, presented in Figure 5.6(a), were
recorded in 2007, and the Landsat 7 image is from 2005, therefore some differences
in the land cover can be found.

Figure A.2 - BSC-PDDP-B San Francisco Landsat 7 classification result.

SOURCE: Author’s production.

The San Francisco six main classes are presented on the Truth Legend of Figure A.2,
while the classes generated by BSC-PDDP-B are described in the Outcome Legend.
The BSC-PDDP-B generate eight classes: Mountain/Vegetation, LDU/HDU, New
1, New 2, New3, New4, New5, and DU. As presented in A.3, the Mountain and
Vegetation were clustered together, the same happened to LDU and HDU. The DU
class was fairly well classified, while the Water class, although it present a good
result in the confusion matrix, it was divided into four new classes, as shown in
Figure A.2. The BSC-PDDP-B classification result overall accuracy is 76.98 %.
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Figure A.3 - BSC-PDDP-B San Francisco Landsat 7 confusion matrix.

SOURCE: Author’s production.

Figure A.4 presents the BSC-PDDP-B dendrogram, where the clustering bisecting
history can be followed. The San Francisco Landsat 7 image was initially divided
into cluster ID2, which gathers the urban classes, i. e., LUD, HDU, and DU; and
cluster ID3, which groups the Mountain, Water, and Vegetation classes.

In the sequence, the cluster ID3 was divided into cluster ID4, where the Mountain
and Vegetation classes are grouped; and into cluster ID5 where the Water classes
samples are clustered. Note, that, differently from SAR images which have effects
as the foreshortening and layover, optical images alone do not provide ways to dif-
ferentiate altitude, therefore the mountain vegetation is note so different from the
vegetation from low altitudes, for this reason the BSC-PDDP-B algorithm wasn’t
able to divide these classes. On the other hand, as can be checked in Figure A.1,
the water region has different shades, what influences the splitting result.
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APPENDIX B - BSC WEBPAGE AND HOW RUN THE CODE

The BSC algorithm were developed in Matlab, which is a high-performance lan-
guage for technical computing. This tool were chosen due to it environment, which
integrates computation, visualization, and programming. Also, Matlab has a vast
collection of computational algorithms ranging from elementary functions like sum,
sine, cosine, and complex arithmetic, to more sophisticated functions like matrix
inverse, matrix eigenvalues, which were exhaustively explored by BSC algorithm.

As discussed in Chapter 6, the BSC algorithms were evaluated with real and sim-
ulated PolSAR images. The Matlab Codes and the set of simulated PolSAR image
can be found at the address https://sites.google.com/view/bscalgorithm. Figure B.1
presents the initial page of the BSC algorithm webpage. In this page there are two
main icons. The first one is a link for the set of 100 simulate PolSAR images. The
second icon is the link to download the BSC algorithm Matlab code.

Figure B.1 - BSC algorithm webpage.

SOURCE: Author’s production.
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The simulated images are available in three version. The first one is a image with
three bands shh, shv, and svv; the second version is the image represented by PolSAR
covariance matrix, and the third is the PolSAR coherence matrix.

After the code downloading, the user shall edit the main.m file. Figure B.2 shows
the code lines where the edits must be done. The user shall inform the initial param-
eter algorithm, if EM or RPDDP; the stochastic distance name (Bhattacharyya or
Kullback-Leibler, for images following the Gaussian distribution, or Bhattacharyya,
Hellinger or Kullback-Leibler, for images following the Wishart distribution); and
the image type, if optical or if PolSAR. If optical image are select, the BSC will
run the Gaussian distribution version, while, if PolSAR images are chose, the BSC
will run the Wishart distribution version. The user shall inform the folder were the
input images are and the folder where the classified image and the dendrogram will
be saved (folderTosave).

Figure B.2 - BSC main.m file configuration.

SOURCE: Author’s production.

The user shall inform the input image name. The BSC can handle PolSAR images
which are in ENVI standard formats. Therefore the images can have extensions .dat
or .bin, and must have a header file, which contains information the image size, data
type, byte order, interleave type (bil, bsq, or bip). The optical images must have
three bands (RGB).In Figure B.3, the red rectangles show where the image names
should be informed. After all configuration be done, the algorithm will aromatically
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generate the classified image and dendrogram, and save in the indicated folder.

Figure B.3 - BSC image name.

SOURCE: Author’s production.
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