
Cartesian
CFD Methods
for Complex
Applications

Ralf Deiterding
Margarete Oliveira Domingues
Kai Schneider  Eds.

ICIAM 2019 SEMA SIMAI Springer Series  3

SEMA SIMAI Springer Series

ICIAM 2019 SEMA SIMAI Springer Series

Volume 3

Editor-in-Chief

Amadeu Delshams, Departament de Matemàtiques and Laboratory of Geometry and
Dynamical Systems, Universitat Politècnica de Catalunya, Barcelona, Spain

Series Editors

Francesc Arandiga Llaudes, Departamento de Matemàtica Aplicada, Universitat de
València, Valencia, Spain

Macarena Gómez Mármol, Departamento de Ecuaciones Diferenciales y Análisis
Numérico, Universidad de Sevilla, Sevilla, Spain

Francisco M. Guillén-González, Departamento de Ecuaciones Diferenciales y
Análisis Numérico, Universidad de Sevilla, Sevilla, Spain

Francisco Ortegón Gallego, Departamento de Matemáticas, Facultad de Ciencias
del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain

Carlos Parés Madroñal, Departamento Análisis Matemático, Estadística e I.O.,
Matemática Aplicada, Universidad de Málaga, Málaga, Spain

Peregrina Quintela, Department of Applied Mathematics, Faculty of Mathematics,
University of Santiago de Compostela, Santiago de Compostela, Spain

Carlos Vázquez-Cendón, Department of Mathematics, Faculty of Informatics,
Universidade da Coruña, A Coruña, Spain

Sebastià Xambó-Descamps, Departament de Matemàtiques, Universitat Politècnica
de Catalunya, Barcelona, Spain

This sub-series of the SEMA SIMAI Springer Series aims to publish some of the
most relevant results presented at the ICIAM 2019 conference held in Valencia in
July 2019.

The sub-series is managed by an independent Editorial Board, and will include
peer-reviewed content only, including the Invited Speakers volume as well as books
resulting from mini-symposia and collateral workshops.

The series is aimed at providing useful reference material to academic and
researchers at an international level.

More information about this subseries at http://www.springer.com/series/16499

http://www.springer.com/series/16499

Ralf Deiterding • Margarete Oliveira Domingues •
Kai Schneider
Editors

Cartesian CFD Methods
for Complex Applications

Editors
Ralf Deiterding
Department of Aeronautics & Astronautics
University of Southampton
Southampton, UK

Margarete Oliveira Domingues
Associate Laboratory of Computing and
Applied Mathematics
National Institute for Space
Research (INPE)
São José dos Campos
Brazil

Kai Schneider
Institut de Mathématiques de Marseille (I2M)
Aix-Marseille Université
Marseille, France

ISSN 2199-3041 ISSN 2199-305X (electronic)
SEMA SIMAI Springer Series
ISSN 2662-7183 ISSN 2662-7191 (electronic)
ICIAM 2019 SEMA SIMAI Springer Series
ISBN 978-3-030-61760-8 ISBN 978-3-030-61761-5 (eBook)
https://doi.org/10.1007/978-3-030-61761-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-61761-5

Preface

Cartesian discretization approaches are ubiquitous in computational fluid dynamics.
When applied to problems in geometrically complex domains or fluid–structure
coupling problems, Cartesian schemes allow for automatic and scalable meshing;
however, order-consistent immersed boundary conditions and efficient dynamic
mesh adaptation take forefront roles. This volume contains selected contributions
from the four-session thematic mini-symposium on “Cartesian CFD Methods for
Complex Applications” at ICIAM 2019 held in Valencia in July. The papers
highlight cutting-edge applications of Cartesian CFD methods and describe the
employed algorithms and numerical schemes. An emphasis is laid on complex
multi-physics applications such as magnetohydrodynamics or aerodynamics with
fluid–structure interaction, solved with various discretizations, e.g. finite difference,
finite volume, multi-resolution or lattice Boltzmann CFD schemes. Software design
and parallelization challenges are also addressed briefly.
The volume is organized into two parts of three contributions each. Part one is
focused on incompressible flows and has the following contributions: Bergmann
et al. propose an adaptive finite-volume method with quad-tree discretization of the
incompressible Navier–Stokes equations. Moving immersed bodies are modelled
with volume penalization, and their interface is tracked using level sets. Test cases
with flows around cylinders show the validity and precision of the approach. Fluid–
structure interaction for flexible insect wings is studied in the paper by Truong et
al. A mass spring model is used for the wing structure. The fluid solver is based
on a Fourier pseudospectral discretization with volume penalization to take into
account the complex and time-varying geometry. Applications consider flapping
bumblebee flight in laminar and turbulent flow. The paper by Kadri and Perrier
presents a numerical scheme for incompressible Navier–Stokes equations in three
dimensions using divergence-free wavelets. Constructions for these basis functions
are given for no-slip and free-slip boundary conditions and divergence-free wavelets
in dimension higher than three are given. Numerical examples illustrate the scheme
for lid-driven cavity problems.
The second part deals with compressible and weakly compressible flows and has
likewise three contributions. Perron et al. propose an immersed boundary method

v

vi Preface

for compressible flows using structured Cartesian grids. A direct forcing approach
based on the use of ghost cells is chosen. Two flow configurations are considered,
a supersonic flow around a blunt body to demonstrate the capability of mesh
adaptation to increase the accuracy and a large eddy simulation of the flow around
a three-dimensional high-lift airfoil. Comparisons with experimental data and a
reference body-fitted computation are as well presented. Moreira Lopes et al.
discuss the performance and detail verification and validation of a wavelet-adaptive
magnetohydrodynamic solver, realized within the MPI-parallel AMROC (Adaptive
Mesh Refinement in Object-oriented C++) framework. A prototype simulation
fuses this solver with actual satellite date for space weather forecasting. Finally,
Gkoudesnes and Deiterding report on the incorporation of the lattice Boltzmann
method into the AMROC environment. The algorithmic details and verification of
large eddy simulation with the wall-adapting local eddy-viscosity model for dynam-
ically adapting meshes and with ghost cell-based embedded boundary conditions are
presented.
We thank all the speakers of the four sessions for making this mini-symposium a
successful event, and we are grateful to the authors for their contributions. We are
indebted to the numerous referees for their constructive and detailed reports. For
all papers, we had three to four reviews, improving thus further the quality of this
edited volume.

Southampton, UK Ralf Deiterding
São José dos Campos, Brazil Margarete Oliveira Domingues
Marseille, France Kai Schneider
May 2020

Contents

AMR Enabled Quadtree Discretization of Incompressible
Navier–Stokes Equations with Moving Boundaries . 1
Michel Bergmann, Antoine Fondanèche, and Angelo Iollo

Fluid–Structure Interaction Using Volume Penalization
and Mass-Spring Models with Application to Flapping
Bumblebee Flight . 19
Hung Truong, Thomas Engels, Dmitry Kolomenskiy, and Kai Schneider

No-Slip and Free-Slip Divergence-Free Wavelets for the Simulation
of Incompressible Viscous Flows . 37
Souleymane Kadri Harouna and Valérie Perrier

An Immersed Boundary Method on Cartesian Adaptive Grids
for the Simulation of Compressible Flows . 67
S. Péron, T. Renaud, C. Benoit, and I. Mary

Magnetohydrodynamics Adaptive Solvers in the AMROC
Framework for Space Plasma Applications . 93
Müller Moreira Lopes, Margarete Oliveira Domingues, Ralf Deiterding,
and Odim Mendes

Verification of the WALE Large Eddy Simulation Model
for Adaptive Lattice Boltzmann Methods Implemented
in the AMROC Framework . 123
Christos Gkoudesnes and Ralf Deiterding

vii

About the Editors

Ralf Deiterding is currently Associate Professor in Fluid Dynamics at the Uni-
versity of Southampton. He graduated with a Master’s in Technomathematics
from the Technical University of Clausthal and has obtained a PhD in Applied
Mathematics and CFD from the Technical University Cottbus. His research focuses
on the development and application of innovative high-resolution and multi-scale
simulation methods for CFD. He is the main author of the simulation frameworks
AMROC and Virtual Test Facility.

Margarete Oliveira Domingues is senior researcher at the National Institute for
Space Research (INPE), Brazil. She obtained her Master’s in Meteorology at
INPE, and PhD degree in Applied Mathematics from the University of Campinas
(UNICAMP), Brazil. Her research activities are focused on nonlinear analysis,
multi-scale techniques and wavelets for scientific computing and their application
to space flows and data, including space magnetohydrodynamic developments and
multi-dimensional signal processing.

Kai Schneider is Professor of Mechanics and Applied Mathematics at the Aix-
Marseille University, Marseille, France. He obtained his Master’s and PhD degree
from the University of Kaiserslautern, Germany, and his habilitation from the
University Strasbourg, France. His research activities are focused on multi-scale
techniques and wavelets for scientific computing and their application to turbulent
flows, including fluid–structure interaction, e.g. for insect flight, and magnetohydro-
dynamic turbulence.

ix

AMR Enabled Quadtree Discretization of
Incompressible Navier–Stokes Equations
with Moving Boundaries

Michel Bergmann, Antoine Fondanèche, and Angelo Iollo

Abstract We present a versatile finite-volume method for the simulation of incom-
pressible flows past moving bodies. The Navier–Stokes equations are discretized on
AMR enabled quadtree grids, where the dynamic in time refinement is adapted to
the evolution of the fluid–solid system. The immersed bodies are modeled through a
second-order volume penalization method, and the interface is tracked using a level-
set description. We highlight on two dimensional test cases that the uniform grids
accuracy can be recovered using quadtree grids with less degrees of freedom.

1 Introduction

Efficient numerical tools to simulate fluid–solid interactions are in interest in a wide
range of application fields, from engineering to medical applications. For instance,
the simulation of a flow around a wind turbine blade [1] or in cardiac support devices
[2] is an essential support to optimize the design of these new technologies.

To face this challenge, a large number of studies have been carried out to
precisely describe these interactions, especially when dealing with complex geome-
tries. These studies are based on two numerical approaches. The first approach
is based on the Arbitrary Lagrangian–Eulerian methodology for which flows are
calculated on a moving mesh in a time-varying area (see [3] for details). These
methods are generally very accurate, based on sophisticated numerical schemes,
but are difficult to implement, especially for the consideration of structures with
large deformations. The generation of a body-fitted mesh is expensive, and the use
of a dynamic mesh partitioner for parallel calculations is moreover necessary. The
second approach is based on fictitious domain methods, such as immersed boundary

M. Bergmann · A. Fondanèche (�) · A. Iollo
Equipe-Projet Memphis, INRIA Bordeaux-Sud Ouest, Talence, France

Université de Bordeaux, IMB, UMR 5251, Talence, France
e-mail: michel.bergmann@inria.fr; antoine.fondaneche@inria.fr; angelo.iollo@inria.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_1&domain=pdf
mailto:michel.bergmann@inria.fr
mailto:antoine.fondaneche@inria.fr
mailto:angelo.iollo@inria.fr
https://doi.org/10.1007/978-3-030-61761-5_1

2 M. Bergmann et al.

methods [4] or augmented Lagrangian approaches [5], which represent a balance
between precision and practicability of the simulation.

In this work, we use the Brinkman penalization method [6] that is an embedded
interface method such as the immersed boundary method (IBM, introduced by
Peskin [7, 8]) with discrete forcing. In the context of interface-capturing methods
for simulating multiphase flows, such as volume-of-fluid [9], phase field [10], or
level-set [11] descriptions, the whole system is strongly coupled as soon as both
materials are subject to the same constitutive equation. Here we consider a level-
set formulation with the sign distance function, where the fluid–solid interface
is defined by the zero isoline. Cartesian methods for incompressible flows [12–
14] need a very refined mesh to get accurate results because they need a good
representation of the body geometry. With respect to these methods, we propose a
quadtree-based method that provides an equivalent accuracy with a smaller number
of grid points. By refining the mesh in regions of interest, such as in the vicinity
of the interface or where the solution varies significantly and by coarsening where
the solution varies slightly, the computational time is significantly decreased with a
limited loss of accuracy.

2 The Penalized Navier–Stokes Model

The aim of this work is to study the interaction between an incompressible
Newtonian fluid and some rigid moving bodies. A square domain � ⊂ R

2 is
decomposed into two parts, namely � = �f ∪ �s , where �f and �s denote the
fluid and solid domains, respectively. The fluid–solid interface is �(t) = ∂�s(t).
The sketch of the flow configuration is presented in Fig. 1. The governing equations
are

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν�u in �f , (1a)

∇ · u = 0 in �f , (1b)

u = us on �(t), (1c)

u(t = 0, ·) = u0 in �f , (1d)

where u = (u, v)T is the velocity field, p is the pressure, ρ is the density, and ν is
the kinematic viscosity of the fluid. Finally, u0 is the initial condition and us is the
velocity of the body interface.

The volume penalization approach introduced in [6] is chosen. The main idea
of this method is to consider the whole system as porous media, with a variable
permeability ε. The solid structure is considered to have a very low permeability

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 3

Fig. 1 Sketch of the flow
setup

Ωf

Γs(t)

Γe(t)

Ωe

Ωs

ε � 1. The Navier–Stokes equations (1a), (1b), and (1c) can thus be solved in a
coupled way in � as

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν�u + χs

ε
(us − u) (2a)

∇ · u = 0, (2b)

where χs is the characteristic function of the solid, defined as

χs(x) =
{

1 if x ∈ �s

0 if x ∈ �f .

The position of the solid �s is tracked with a level-set function φ, chosen as the
signed distance to the interface �(t) with a negative sign inside the solid and a
positive sign inside the fluid. The interface is then defined as the zero isoline of φ,
namely, �(t) = {x ∈ R

2 : φ(x) = 0}. As a consequence, the characteristic function
χs may be defined using the level-set function as χs(x) = 1−H(φ(x)), where H is
the Heaviside function. Using this method, both solid and fluid equations are solved,
with no distinction. The solution of the system (2) converges towards the solution of
the decoupled system (1) (see [6]) as

√
ε tends to zero [15]. In practice, the choice

ε = 10−10 is suitable for all our simulations.

3 Discretization of the Governing Equations

3.1 Time Integration

We denote by �t the time step such that tn+1 = tn + �t and ϕn := ϕ(tn) the
discrete value of a function ϕ at the time tn. For the sake of simplicity, the time

4 M. Bergmann et al.

step is assumed to be fixed here, but the generalization to an adaptative time step is
straightforward.

We consider the fractional time step method introduced by Chorin [16] and
Temam [17]. First, a prediction step is performed to get a preliminary estimate u∗
of the velocity starting from a guess for the pressure field q . This is done using a
second-order Gear scheme as

3u∗ − 4un + un−1

2�t
+ (2∇ · (u ⊗ u)n −∇ · (u ⊗ u)n−1)

= 1

ρ

(
−∇q + μ�u∗ + χn+1

s

ε
(un+1

s − u∗)
)
.

(3)

We use here the incremental version of the projection method proposed by Goda
[18] for which q := pn. A second-order accurate volume penalization method
is employed as in [12], for which the velocity inside the body us is artificially
imposed by image point correction (IPC). As long as the interface does not fit the
grid points, this technique ensures that the velocity of the interface u|∂�s is enforced,
and therefore, the velocity gradient in the first layer of fluid is consistent.

Since the predicted velocity field is not divergence free, a projection step in a
solenoidal subspace is performed

un+1 − u∗

�t
= − 1

ρ

(∇pn+1 −∇q) in �. (4)

Since we want to recover a divergence-free velocity, i.e., ∇ · un+1 = 0, by applying
the divergence operator to Eq. (4), we get

�p
′ = ∇ · u∗ in �, (5)

where we denote by p′ := �t
ρ
(pn+1 − q) the pressure increment. Homogenous

Neumann boundary conditions are imposed in order to ensure that there is no
perturbation at the boundaries for the normal velocity.

As soon as the increment of pressure p′ is determined by solving the Poisson
equation (5), the pressure pn+1 can be updated and the velocity field is corrected as
follows:

pn+1 = q + ρ

�t
p′, (6a)

un+1 = u∗ − ∇p′. (6b)

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 5

L3

L2

L1

L0

Fig. 2 Graded quadtree grid with the global Z-ordering. The different colors depicts the balancing
between processors

3.2 Spatial Discretizations

The computational domain � is discretized with a quadtree grid. As depicted
in Fig. 2, a quadtree grid is composed of square cells with different levels of
refinement. Here, the hierarchical grid is graded, which means that the difference
of level between a cell and all its adjacent cells (called neighbors) is at most one.
Thanks to the library PABLO, as a part of Bitpit library,1 we get use of an efficient
tool for storing the data structure. Following the linear Z-ordering proposed by
Morton in 1966 [19], we can get access to data coming from neighboring cells in an
optimized way from computational cost and memory aspects. Moreover, Adaptative
Mesh Refinement (AMR) is used to adapt the mesh dynamically to the flow
configuration by refining in the areas of interest, such as wakes of bodies, vortices, or
around the structures, which is even more interesting when the structures can move
or be deformed. For the domain decomposition, the number of communications
between processors is limited to only one layer of ghost cells. While this constraint
guarantees a very high scalability of the parallelism, the discretizations of the
operators are built with compact stencils limiting the order of numerical scheme.

In this section, we detail the finite-volume discretizations of the operators
involved. To describe these discretizations, let ϕ be a scalar function and v a
vector field. The square domain � is decomposed into a quadtree partition of Ncells

square cells �i of level Li (being the leaves of the tree) such that � =
·⋃
i�i .

By convention, the grid configuration is identified by its minimum and maximum
levels of refinement Lmin and Lmax . In other words, for a Lmin − Lmax grid, the
characteristic length hi of �i is between hmin = mink hk and hmax = maxk hk .
A two dimensional uniform L
 grid is hence composed of 22
 cells. We denote by
xi the center of the cell �i , |�i | its area, and ϕi := ϕ(xi) the discrete value of a
quantity ϕ evaluated at the cell center xi .

For a finite-volume method, the discrete operators are computed as face contri-
butions called fluxes. Let f be the intersecting face of �out and �in. The length of

1https://optimad.github.io/bitpit.

https://optimad.github.io/bitpit

6 M. Bergmann et al.

f is denoted by |f |. As a convention, the normal vector nf of f is pointing from
�in to �out . The discrete values of ϕ in �in and �out are denoted by ϕin and ϕout ,
respectively.

3.2.1 Discretization of the Divergence Operator

The divergence operator is integrated over each cell �i . Using the Stokes theorem,
the volume integral is transformed into a surface integral as

∇ · v
∣∣
�i

= 1

|�i|
∫
�i

∇ · v dx = 1

|�i |
∮
∂�i

v · n ds, (7)

where n is the outward normal vector of the boundary ∂�i . By decomposing the
whole boundary into separate faces, the discrete value of ∇·v on�i can be computed
as

(∇ · v)i = 1

|�i |
∑

f⊂∂�i

vf c · nf |f |, (8)

where subscript f c refers to the center position of the face f . Using the relation
∇ϕ = ∇ · (ϕI), the discrete cell-center gradient (∇ϕ)i is estimated similarly.

If the collocated cell-center velocity u∗ is used to compute ∇ ·u∗ in Eq. (5), some
spurious grid-to-grid oscillations may appear due to odd–even decoupling between
velocity and pressure. This is one of the main drawbacks for non-staggered grids.
As a consequence, this decoupling causes large variations of pressure that are even
more critical for quadtree grids, and this problem can lead to numerical instabilities
at the level jumps. As shown by Ferziger and Peric [20], traditional collocated
methods cannot guarantee the pressure smoothness and the mass conservation
simultaneously. One way to overcome this problem has been proposed by Patankar
[21] and consists in a fully staggered arrangement of the variables (u, p). For this
kind of methods, the prediction step (3) and the Poisson equation (5) are solved
at different locations, which leads to different spatial discretizations. In this sense,
staggered arrangements become more challenging for Cartesian methods.

In order to stabilize the method, the collocated approach introduced by Rhie and
Chow [22] for steady flows, and Zang et al. [23] for unsteady flows, is considered.
A face-center velocity called U∗

f c is defined in � (see [13]) as

ũ = u∗ + �t

ρ
(∇pn)cc (9a)

Ũf c = F (ũ) (9b)

U∗
f c = Ũf c − �t

ρ
(∇pn)f c, (9c)

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 7

Fig. 3 Pattern of the
arrangement of the cell-center
(red squares) and face-center
(blue dots) velocities on
quadtree grids

ui =
ux(xi)
uy(xi)

(ux)fc

(uy)fc

(ux)fc

(ux)fc

(uy)fc
(uy)fc

where subscripts cc and f c refer to cell-center and face-center locations, respec-
tively, and F is the operator used for the interpolation of the normal face-center
velocity, using the cell-center velocity. The operator F is detailed at the end of the
section. This velocity arrangement is illustrated in Fig. 3.
The face-center velocity U∗

f c is now used in the Poisson equation (5) that becomes

�p
′ = ∇ · U∗

f c. (10)

Once the pressure increment p
′

is obtained, both cell-center and face-center
velocities are finally corrected as follows:

un+1 = u∗ − (∇p′
)cc (11a)

Un+1
f c = U∗

f c − (∇p′
)f c. (11b)

If the face-center velocity Un+1
f c satisfies the discrete mass conservation within the

limit of the Poisson solver tolerance ε, i.e.,∑
f⊂∂�i

Un+1
f c |f | = O(ε) � 1, ∀�i ⊂ �,

F (un+1) does not. As a consequence, the use of Un+1
f c is hence necessary for the

computation of the convective term, see Sect. 3.2.3.

8 M. Bergmann et al.

Both cell-center u and face-centerUf c velocities need thus to be stored to ensure
mass conservation. Only one component of the face-center velocity is needed, being
Ufc · ef , where ef ∈ {ex, ey} is the positive unitary normal vector of the face f .

In order to compute a face-center quantity ϕfc, we adopt a second-order cell-
center to face-center interpolator I. Figure 4 illustrates the stencil used for this
interpolation. If the configuration is uniform, which means that the two cells sharing
this face have the same level of refinement, ϕfc is basically chosen as the average
of ϕout and ϕin. Instead, for a level-jump configuration, a bilinear interpolation
is performed. Since only one layer of ghost cells is available because of the
parallelization, higher order interpolations are unsuitable. The stencil considered
for this interpolation includes all the cells neighboring the face. Since the size of
the stencil is 5, we use a Gaussian Radial Basis Function (RBF) interpolation that
allows any number of interpolating points.

To reconstruct the normal face-center velocity Ũf c, it is appropriate to choose
F := I for uniform configurations (see Fig. 4, left). However, close to level jumps
(see Fig. 4, right), this direct interpolation introduces spurious oscillations due to an
inaccurate computation of ∇ · U∗

f c. To limit this loss of accuracy, the face-center
velocity is calculated using Un

fc as

Ũf c = Un
fc + I(ũ − un). (12)

This stabilization ensures that the solution remains smooth near level jumps.

outin

selected nodes for the discretization

in

out

B

T

interpolate
boundary node
selected node
for interpolations

Fig. 4 Pattern of the diamond FV method. The red quadrilateral represents the dual cell used to
interpolate (∇ϕ)f c, and the black dots refer to the stencil used for the interpolation of ϕfc. Left:
uniform configuration, right: level-jump configuration

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 9

3.2.2 Discretization of the Laplacian Operator

The Laplacian operator is discretized using a diamond finite-volume method [24,
25]. Integrating �ϕ on a cell �i and applying Stokes theorem yield

(�ϕ)i = 1

|�i |
∫
�i

�ϕ dx = 1

|�i |
∫
∂�i

∇ϕ · n ds (13)

where n is the normal vector of ∂�i . The diffusion term is then approximated as

(�ϕ)i = 1

|�i |
∑

f⊂∂�i

(∇ϕ)f c · nf |f |. (14)

We denote the endpoints of each face f by T for top and B for bottom, as depicted
in Fig. 4. The normal velocity gradient on this face is computed as the solution of
the following system:

∇ϕ · η = ϕout − ϕin (15a)

∇ϕ · τ = ϕT − ϕB (15b)

with

η = xout − xin and τ = xT − xB.

The simplest case occurs when �out and �in have the same level of refinement,
namely, |�out | = |�in|. Here, η = n; thus, Eq. (15a) is a classical second-order
centered difference approximation of the normal gradient. If �in and �out have
different levels of refinement, ϕT and ϕB have to be interpolated. According to
the configuration, a P1 (3-point linear) or Q1 (4-point bilinear) interpolation is
considered, depending on the number of grid cells that the node belongs to.
Let us describe the Q1 interpolation. The value of ϕ at the point x can be described
through a bilinear basis as

ϕ(x) = c1 + c2x + c3y + c4xy, (16)

where the coefficients ci have to be determined. They are calculated by solving the
linear system

⎛
⎜⎜⎝

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

⎞
⎟⎟⎠
⎛
⎜⎜⎝
c1

c2

c3

c4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
ϕ(x1)

ϕ(x2)

ϕ(x3)

ϕ(x4),

⎞
⎟⎟⎠ (17)

10 M. Bergmann et al.

which comes from the evaluation of Eq. (16), at the 4 points previously defined.
Finally, using the coefficients ci = ci

(
ϕ(x1), ϕ(x2), ϕ(x3), ϕ(x4)

)
, the values ϕ(xT)

and ϕ(xB) are then recovered by assessment of Eq. (16) at the points xT and xB .
Since the normal vector nf can be expressed as a linear combination of the two
previously defined vectors η and τ , i.e.,

∃cτ , cη ∈ R : nf = cττ + cηη,

the normal gradient at the face f is approximated as a linear combination with the
whole compact stencil of the face named Nf as

∇ϕ · nf = cτ (ϕT − ϕB)+ cη(ϕout − ϕin) ≡
∑
i∈Nf

ωiϕi. (18)

3.2.3 Discretization of the Convective Term

The numerical computation of the convective term on each cell �i

Ci = 1

|�i |
∫
�i

∇·(u⊗u) dx = 1

|�i |
∫
�i

u·∇u dx = 1

|�i |
∫
∂�i

u(u·n) ds (19)

is performed using an upwind scheme. Since we use the fact that the velocity is
divergence-free in (19), the normal face-center velocity Ufc introduced previously
in Sect. 3.2.1 is used. The convective term is approximated as

Ci = 1

|�i |
∑

f⊂∂�i

uf c(Uf c · nf)|f |. (20)

More generally, we describe hereafter the computation of the numerical fluxF(ϕ) =
Ufcϕ for any scalar function ϕ.

A linear piecewise polynomial reconstruction is performed as an interpolation ϕ̃
of ϕ. In cell �i , the polynomial is defined as

ϕ̃i(x) := (ϕ̃)�i (x) = ϕi + (x − xi)T (∇ϕ)i, (21)

where ϕi = ϕ(xi) and (∇ϕ)i is the discrete value of its gradient, computed as
the finite-volume approximation introduced in Sect. 3.2.1. For any point x ∈ f ,
in particular for its center xf c, the quantity ϕ can be interpolated from both sides
of the face, namely, ϕ− = ϕ̃in(xf c) and ϕ+ = ϕ̃out (xf c). To guarantee that the
discretization is upwind, the Rusanov numerical flux [26] is used:

F̃(ϕf c) := FLLF (ϕ−, ϕ+) = 1

2

(
F(ϕ+)+ F(ϕ−)

)
− α

2
|Uf c|(ϕ+ − ϕ−), (22)

where the parameter of stabilization α is set to 1.
Special treatments are used on the domain boundaries where ghost cells are created.

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 11

4 Numerical Validations

Both static and dynamic quadtree grids are used.The dynamic grids give the ability
to ensure a better precision by refining in the areas of interest following a well-
defined AMR criterion. To this end, it is possible to make use of different kinds of
refinement criteria based for instance on the vorticity, the Q-criterion, or the velocity
gradient. In this work, a criterion C based on the Hessian H of the velocity is used:

C = ||H(u)||F
maxk ||uk||2 , (23)

where || · ||F and || · ||2 refer to the Frobenius and Euclidian norms, respectively.
For a Lmin − Lmax grid, an appropriate level of refinement is thus determined

between Lmin and Lmax using some thresholds denoted by Cmin and Cmax .
According to the computed value of Ci , the optimal level of a cell �i is maximum
(resp., minimum) if Ci > Cmax (resp., Ci < Cmin). In practice, these thresholds
Cmin and Cmax are fixed to 0.5 and 5, respectively. The mesh adaptation is only
performed every n time step, where n is user-defined and depends on the test case
considered, or if the interface gets too close to a coarse cell.

In the context of level-set methods, a Lagrangian computation of forces becomes
unachievable since the position of the interface is not precisely tracked in time. To
deal with this problem, we use the Eulerian approach proposed by Noca [27], known
as the control volume method. We introduce a fictive domain �̃s surrounding the
solid domain �s , being a rectangular domain that fits exactly the grid cells (the
whole volume is hence exactly known). The force can be written as

F = − d

dt

∫
�̃s

ρu dx +
∫
∂�̃s

(
T(u, p) − ρu(u − us)

)
.n ds, (24)

where T(u, p) = −pI + μ(∇u + ∇uT) is the stress tensor. The forces are hence
approximated using a second-order least-square interpolation.

4.1 Flow Past a Cylinder

In a two dimensional context, a steady cylinder with a diameter D = 1, centered at
(0, 0), is immersed in a fluid at constant velocity U∞ = 1. The inflow is imposed
with Dirichlet boundary conditions u = U∞ex . At the outflow, a homogeneous
Neumann condition is applied. Finally, streamline boundary conditions, v = 0
and ∂u

∂n
= 0, are chosen on the other boundaries. The computational domain

� = [−8D, 16D]×[−12D, 12D] is quite large to reduce the effect of the boundary
conditions. We use here the dimensionless version of the Navier–Stokes equations.

12 M. Bergmann et al.

4.1.1 Re = 200

We focus on a long time integration at Re = 200. The simulations are run over
static quadtree grids, based on a refinement by boxes, as depicted in Fig. 5 (left).
The most refined box is chosen in order to obtain a high mesh resolution around
the cylinder as well as in the wake direction. After reaching the asymptotic regime,
the vortices are well preserved, even in the region where the grid is coarsened, see
Fig. 5 (right). The temporal evolution of the drag CD and lift CL coefficients is
plotted in Fig. 6. To compare with the literature results, we compute the mean drag
coefficient and Strouhal number St = fD/U∞, where f is the frequency of the
vortex shedding. On uniform grids, these quantities, which are reported in Table 1,
are in good agreement with the literature.

We now pay attention on the effect of coarsening on the overall accuracy of
the method. Starting from a uniform grid, the computation is also performed on
three intermediate quadtree grids with one, two, and three levels of coarsening,
respectively. For the four computations, the meshes are locally identical close to the
cylinder. As a comparison, the aerodynamic coefficients and the Strouhal number

Fig. 5 Simulation on the L8 − L11 static quadtree grids for the flow past a cylinder test at Re =
200. Left: quadtree grid employed, right: z-component of the vorticity at t = 150 s

1

Fig. 6 Aerodynamic coefficient for the flow past a cylinder at Re = 200. Results obtained with
the L8–L11 quadtree grid

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 13

Table 1 Comparison of the
mean drag coefficient and the
Strouhal number with the
previous studies for the flow
past a cylinder at Re = 200
on uniform grids

Authors CD St

Braza et al. [28] 1.4000 0.2000

Henderson [29] 1.3412 0.1971

He et al. [30] 1.3560 0.1978

Bergmann [31] 1.3900 0.1999

Taymans [32] 1.3951 0.2039

Present work 1.3920 0.2013

Table 2 Influence of grid coarsening on the aerodynamic coefficients and Strouhal number for
the flow past a cylinder at Re = 200. The maximum level refinement is Lmax = 11

Minimum grid level Number of grid points CD CL St

11 4,194,304 1.392 ± 0.061 0± 0.704 0.2013

10 1,081,600 1.392 ± 0.062 0± 0.702 0.2012

9 312,832 1.391 ± 0.061 0± 0.694 0.2006

8 125,824 1.369 ± 0.054 0± 0.626 0.1956

are given in Table 2. For one or two levels of coarsening, the overall results are
really close to those obtained with the uniform one. More precisely, the relative
differences on St and the amplitude of oscillations are less than 0.4 and 1.4%,
respectively, if compared to the uniform grid configuration. With three levels of
coarsening, the difference is amplified but is still acceptable. However, the number
of grid cells Ncells is divided by 13 providing to a good balance between accuracy
and computational costs.

4.1.2 Re = 550

We then examine a short time integration t ∈ [0, 5] for Re = 550. The
drag coefficient is computed over time and compared to the results provided by
Ploumhans [33]. This test case is run over two different flow simulations, namely:

• a steady cylinder is immersed in an infinite flow (us = 0, U∞ = 1),
• an impulsively started cylinder moving with a constant velocity 1 is immersed in

a fluid at rest (us = −ex , U∞ = 0).

In these two flow configurations, the forces applied on the body are identical, which
leads theoretically to the same drag coefficients. Figure 7 depicts the time evolution
of the drag coefficient for both flow configurations.

For the steady cylinder test, the results obtained on static quadtree grids are in
good agreement with the literature. From the L8 − L11 configuration, the solution
has already converged and is as accurate as in [12] for which the grid is uniform, for
similar mesh refinement around the cylinder (�x ≈ 0.01).

14 M. Bergmann et al.

time t

D
ra

g
co

ef
fic

ie
nt

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ploumhans
L7 to L10
L8 to L11
L9 to L12

time t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
ra

g
co

ef
fic

ie
nt

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Ploumhans
Present work:
on static grid
on dynamic grid

Fig. 7 Drag coefficients for the flow past a cylinder test at Re = 550 for both flow configurations.
On the left: steady cylinder on different quadtree grids, on the right: impulsively started cylinder
on static and dynamic L8 − L11 grids

For the impulsively started cylinder configuration, the simulations are run on
static quadtree grids and on dynamic AMR grids. For the static quadtree grid, the
most refined box is chosen such that the cylinder remains inside this box during
the whole simulation. The dynamic adaptation of the grid is performed at each
n iteration satisfying n�t = 0.1. The time evolution of the drag coefficient CD
for both static and dynamic grids is also in good agreement with the results of
Ploumhans [33]. The drag coefficient is oscillating because of the cylinder motion,
but the amplitude of oscillations is decreasing in a consistent way when refining
the grid. Moreover, a peak appears periodically when using dynamic grids, each
time a mesh adaptation is performed. These spurious oscillations are due to the
perturbation introduced between two consecutive time steps when the mesh is
updated, i.e., all quantities are defined on the new mesh by interpolation of the
quantities defined on the old mesh. More precisely, when four children merge into
one parent (coarsening), an arithmetic average is performed to define data on the
new coarse cell; when a parent is split into four children (refinement), the new four
children all receive the data of the parent cell.

A snapshot of the vorticity at t = 5 is presented in Fig. 8. The adaptive grid
is displayed in the background. The number of cells is considerably lower (about
4 times less) using this dynamic grid, which has a significant effect on the total
calculation time. Using these AMR parameters, a simulation on the dynamic grid
is about 65% less expensive than a simulation on the corresponding static quadtree
grid. This loss of speed-up can be explained by the cost of each AMR process. As
an indication, the computational cost of an AMR process is between 70 and 80% of
the cost of a time iteration of the predictor–corrector scheme.

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 15

Fig. 8 Z-component of the vorticity ω at t = 5 for the impulsively started cylinder at Re =
550. The L9 − L12 grid is depicted in background. The contours are drawn for |ω(x)| =
0.1, 0.5, 1, 2, 3, 4, 5

4.2 Sedimentation of a Cylinder

We are now focusing on the sedimentation of a cylinder, subject to gravity. A narrow
cavity � = [0, 2] × [0, 6] is filled by a fluid of density ρf = 1 and viscosity
μf = 0.01. Inside, a cylinder of radius r = 1/8 and center xc(t = 0) = (1, 4)
is initially at rest. Its density is set to ρs = 1.5. The gravitational acceleration is
g = 980.

Since the channel is narrow, the computational domain under consideration
� = [−2, 4] × [−0.1, 5.9] is mainly composed of penalized areas, and the grid is
consequently coarsened as much as possible outside the cavity. No-slip boundary
conditions are naturally imposed by penalization on the left, right, and bottom
boundaries. Moreover, homogeneous Neumann conditions are prescribed at the top
boundary.
Dynamic AMR grids are used. Next results, obtained on dynamic grids, are nearly
identical to those obtained on uniform grids. The AMR process is performed at least
every 0.005 s.

The time evolution of the velocity and position of the center of mass xc(t)
is described by the Newton–Euler equations. For simplicity, the velocity us (t) is
defined as the translation velocity of the center of mass. Therefore, the xc(t) and
us(t) are determined by solving

ρs |�s|dus
dt

= Fhydro + (ρf − ρs)|�s |g
dxc
dt

= us,

(25)

16 M. Bergmann et al.

Fig. 9 Snapshots of the z-component of the vorticity during the sedimentation of a cylinder.
From left to right, t ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. The dynamic L8 − L10 AMR grid is depicted
in background

Fig. 10 Results obtained for the sedimentation of a cylinder test. Time evolution of the Y-
component of the center of mass xc (on the left) and vertical velocity profile along y-axis y = yc
at time t = 0.1 (on the right). Comparison with the studies of Bergmann [12] and Coquerelle [34]

where Fhydro is the hydrodynamical force acting on the cylinder, |�s | is the area of
the cylinder, and g = (0, g) is the gravitational force. These ODEs are solved using
the classical second-order Runge–Kutta scheme. No collision models are used in
this solver. In this simulation, the CFL number is set to 0.1.

We compare the results obtained with the study of Bergmann [12] and Coquerelle
[34]. Snapshots of the vorticity are presented in Fig. 9. The results presented in
Fig. 10 are in good agreement with the results of the literature.

5 Conclusion

We have presented a versatile finite-volume method to simulate incompressible
flows with rigid bodies. This immersed boundary approach is particularly dedicated
to the consideration of arbitrary geometries that can move over time. The behavior

AMR Enabled Quadtree Discretization of INS Equations with Moving Boundaries 17

of the bodies is imposed through a volume penalization term, and the interface is
followed implicitly using a level-set function.

This work is based on finite-volume discretizations on quadtree grids, with com-
pact stencils. For this purpose, the Bitpit library is an efficient tool for the generation
of hierarchical adaptive grids, dedicated to massively parallel computations. The use
of hierarchical meshes is particularly interesting because the adaptation of the mesh
is algorithmically and computationally efficient. We use a criterion based on the
Hessian of the velocity, which is a good indicator to estimate the regularity of the
solution.

The validation of the model is performed on different test cases, including static
or moving structures. The results obtained are in agreement with the previous
studies, for both fixed and dynamic meshes. By adapting the mesh to the numerical
solution, we can speed up greatly the computations if compared to fully uniform
Cartesian methods, while ensuring an equivalent accuracy.

References

1. Johansen, J., Sørensen, N.N., Michelsen, J.A., Schreck, S.: Detached-eddy simulation of flow
around the NREL Phase VI blade. Wind Energy Int. J. Progr. Appl. Wind Power Convers.
Technol. 5(2–3), 185–197 (2002)

2. Poullis, M.: Computational fluid dynamic analysis to prevent aortic root and valve clots during
left ventricular assist device support. J. Extra-Corporeal Technol. 44(4), 210 (2012)

3. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid-solid systems using
the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

4. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261
(2005)

5. Glowinski, R., Pan, T. W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach
to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:
application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

6. Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in
incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

7. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252
(1977)

8. Peskin, C.S.: The fluid dynamics of heart valves: experimental, theoretical, and computational
methods. Annu. Rev. Fluid Mech. 14(1), 235–259 (1982)

9. Pilliod, J.E., Jr., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking
material interfaces. J. Comput. Phys. 199(2), 465–502 (2004)

10. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase
incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3),
1159–1179 (2010)

11. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

12. Bergmann, M., Hovnanian, J., Iollo, A.: An accurate Cartesian method for incompressible
flows with moving boundaries. Commun. Comput. Phys. 15(5), 1266–1290 (2014)

13. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., Von Loebbecke, A.: A versatile
sharp interface immersed boundary method for incompressible flows with complex boundaries.
J. Comput. Phys. 227(10), 4825–4852 (2008)

18 M. Bergmann et al.

14. Marella, S., Krishnan, Liu, H., Udaykumar, H.S.: Sharp interface Cartesian grid method I: an
easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210(1),
1–31 (2005)

15. Kadoch, B., Kolomenskiy, D., Angot, P., Schneider, K.: A volume penalization method for
incompressible flows and scalar advection–diffusion with moving obstacles. J. Comput. Phys.
231(12), 4365–4383 (2012)

16. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–
762 (1968)

17. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode
des pas fractionnaires (II). Archive for Rational Mechanics and Analysis 33(5), 377–385 (1969)

18. Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-
dimensional cavity flows. J. Comput. Phys. 30(1), 76–95 (1979)

19. Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing. International Business Machines Company, Armonk (1966)

20. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, vol. 3, pp. 196–200.
Springer, Berlin (2002)

21. Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (2018)
22. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing

edge separation. AIAA J. 21(11), 1525–1532 (1983)
23. Zang, Y., Street, R.L., Koseff, J.R.: A non-staggered grid, fractional step method for time-

dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comput.
Phys. 114(1), 18–33 (1994)

24. Coudière, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two
dimensional convection-diffusion problem. ESAIM: Math. Model. Numer. Anal. 33(3), 493–
516 (1999)

25. Delcourte, S., Domelevo, K., Omnes, P.: Discrete duality finite volume method for second
order elliptic problems. pp. 447–458. Hermes Science Publishing, Stanmore (2005)

26. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1(2), 267–279 (1961)

27. Noca, F.: On the evaluation of time-dependent fluid-dynamic forces on bluff bodies. Doctoral
dissertation, California Institute of Technology (1997)

28. Braza, M., Chassaing, P., Minh, H.H.: Numerical study and physical analysis of the pressure
and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)

29. Henderson, R.D.: Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7(9),
2102–2104 (1995)

30. He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A., Periaux, J.: Active control and drag
optimization for flow past a circular cylinder: I. Oscillatory cylinder rotation. J. Comput. Phys.
163(1), 83–117 (2000)

31. Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal:
application au sillage laminaire d’un cylindre circulaire. Doctoral dissertation, Vandoeuvre-les-
Nancy, INPL (2004)

32. Taymans, C.: Solving Incompressible Navier-Stokes Equations on Octree grids: towards
Application to Wind Turbine Blade Modelling. Doctoral dissertation, Bordeaux (2018)

33. Ploumhans, P., Winckelmans, G.S.: Vortex methods for high-resolution simulations of viscous
flow past bluff bodies of general geometry. J. Comput. Phys. 165(2), 354–406 (2000)

34. Coquerelle, M., Cottet, G.H.: A vortex level set method for the two-way coupling of an
incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227(21), 9121–9137 (2008)

Fluid–Structure Interaction Using
Volume Penalization and Mass-Spring
Models with Application to Flapping
Bumblebee Flight

Hung Truong, Thomas Engels, Dmitry Kolomenskiy, and Kai Schneider

Abstract Wing flexibility plays an essential role in the aerodynamic performance
of insects due to the considerable deformation of their wings during flight under
the impact of inertial and aerodynamic forces. These forces come from the complex
wing kinematics of insects. In this study, both wing structural dynamics and flapping
wing motion are taken into account to investigate the effect of wing deformation
on the aerodynamic efficiency of a bumblebee in tethered flight. A fluid–structure
interaction solver, coupling a mass-spring model for the flexible wing with a pseudo-
spectral code solving the incompressible Navier–Stokes equations, is implemented
for this purpose. We first consider a tethered bumblebee flying in laminar flow
with flexible wings. Compared to the rigid model, flexible wings generate smaller
aerodynamic forces but require much less power. Finally, the bumblebee model
is put into a turbulent flow to investigate its influence on the force production of
flexible wings.

1 Introduction

In recent years, the effect of wing flexibility on aerodynamic performance of
flapping wings has drawn attention of researchers, scientists, and engineers. Com-
pared to conventional airplanes with fixed wings, flapping wings have several
aerodynamic advantages with the ability to create lift even at high angles of attack

H. Truong (�) · K. Schneider
Aix-Marseille Université, CNRS, Centrale Marseille, Marseille, France
e-mail: dinh-hung.truong@univ-amu.fr; kai.schneider@univ-amu.fr

T. Engels
LMD-IPSL, Ecole Normale Supérieure-PSL, Paris, France
e-mail: thomas.engels@ens.fr

D. Kolomenskiy
Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo,
Japan
e-mail: dmitry@gsic.titech.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_2&domain=pdf
mailto:dinh-hung.truong@univ-amu.fr
mailto:kai.schneider@univ-amu.fr
mailto:thomas.engels@ens.fr
mailto:dmitry@gsic.titech.ac.jp
https://doi.org/10.1007/978-3-030-61761-5_2

20 H. Truong et al.

due to the delayed stall of the leading edge vortex (LEV) [1]. These extraordinary
capabilities of hovering and maneuverability have made bio-inspired flapping wings
a strong candidate for developing human-engineered micro-air-vehicles (MAVs)
with possible applications in environmental monitoring, surveillance, and security.
However, in previous studies, the wings were usually considered as rigid to simplify
the problem. The sophisticated interaction between the anisotropic wing structures
and the surrounding unsteady flow makes the analysis of flapping flexible wings
challenging, but at the same time intriguing. In the last two decades, with the
dramatic improvement of measuring equipment as well as computing power, many
experimental and numerical studies have investigated the effect of wing flexibility
and drawn contradictory conclusions. Mountcastle and Combes [2] showed that
passive deformations enhance lift production in bumblebees by artificially stiffening
their wings using a micro-splint. Campos et al. [3] and Fu et al. [4] used
experimental methods and found that highly flexible wings show significant tip-root
lag that weakened vortices and reduce the force production. Du and Sun [5] solved
the Navier–Stokes equations coupled with measured wing deformation data and
compared with the rigid counterparts. They obtained a 10% increase in lift caused
by the camber deformation and a 5% reduction in required power.

In our previous work [6], we considered a flexible bumblebee wing rotating
around a hinge point at the angle of attack equal to 45◦. The stiffness of the wing was
varied to get two cases: flexible and highly flexible. We found that the flexible wing
produces less lift than the rigid wing, but it has a better lift-to-drag ratio. On the other
hand, the highly flexible wing experienced a strong tip-root lag caused by twisting
and behaves poorly in term of aerodynamic performance with a much smaller
lift and lift-to-drag ratio. Although the study provided us some ideas about the
influence of wing flexibility on the force generation, the revolving motion remains
too simple to fully represent the complicated dynamics of a flapping wing. After a
short transition period, the revolving wing attains its steady state and its dynamic
deformation hardly plays a role in the force production. The wing kinematics of
insects is in reality more intricate with many characteristic features such as flapping
amplitude, wingbeat frequency, angle of attack, etc. These features have strong
impact on the ability of generating force of the wings. Kang and Shyy [7] showed
that the ratio between the flapping frequency and the first natural frequency of a
flexible wing can yield advanced, symmetric, or delayed rotation modes, which
in turn alter the resulting lift. Zhao et al. [8] conducted experiments of simple
isotropic flapping wings with varied stiffness values at different angles of attack.
They found that at low angles of attack (20◦ to 60◦), flexible wings have essentially
the same aerodynamic performance as rigid wings, but they outperformed their rigid
counterparts at high angles of attack (up to 90◦).

Consequently, in this work, we will investigate the aerodynamic efficiency of the
flexible bumblebee wing model [6] within a tethered flight context where the wing
motion is prescribed using real bumblebee wing kinematics measured by the work
of Dudley and Ellington [9]. The resulting force and power are compared with those
of a rigid flat wing computed by Engels et al. [10]. The comparison shows the effects
of the wing deformation on the aerodynamic forces of a flapping flight insect.

Fluid–Structure Interaction: Application to Bumblebee Flight 21

The remainder of the manuscript presents in Sect. 2 the numerical methods
used for solving the governing equations of the flexible wing, the fluid flow, and
its coupling. The numerical setup and the bumblebee model are given in Sect. 3,
and the results of the numerical simulations are discussed in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.

2 Numerical Methods and Governing Equations

Modeling insect flight is a delicate topic due to the fact that one needs to model both
the mechanical behavior of the wings by a solid solver and the surrounding flow by
a fluid solver. The two solvers must then be coupled to study their interaction. This
section presents how these three aspects can be handled numerically.

2.1 Solid Solver Using Mass-Spring System

Insect wings are sophisticated structures consisting of membranes and veins. The
wings get their nonlinear anisotropic properties from a truss framework composed
of horizontal and vertical veins connected by membranes [11]. This along with their
small wing lengths (from mm to cm) makes it extremely challenging to model the
mechanical behavior of insect wings. In our work, a mass-spring system is employed
to mimic the dynamics of the complicated membrane–vein network by taking the
different mechanical properties between veins and membranes into account [6].
While veins can be considered as rods that resist mainly the torsion and bending
deformation, a membrane is fabric-like and behaves like a piece of cloth that resists
against the extension deformation.

The mass-spring system has been around since the end of the twentieth century,
and it is well known for its computational efficiency and ability of handling large
deformation [12]. The wing is discretized using mass points mi (i = 1, . . . , n)
connected by springs. Among the different types of springs, our model is built only
on extension and bending springs. The dynamic behavior of the mass-spring system,
at a given time t , is defined by the position xi and the velocity vi of the mass point
i, and they are governed by the equations given below:

Fint
i + Fext

i = miai for i = 1 . . .n

vi (t = 0) = v0,i

xi (t = 0) = x0,i,

(1)

where n is the number of mass points, Fint
i is the internal force and Fext

i is the external
force acting on the ith mass point, and mi and ai are mass and acceleration of the
ith mass point, respectively.

22 H. Truong et al.

The system (1) is then advanced numerically in time by applying a second-order
backward differentiation scheme with variable time steps [13]:

qn+1
i − (1 + ξ)2

1 + 2ξ
qni +

ξ2

1 + 2ξ
qn−1
i = 1 + ξ

1 + 2ξ
�tnf(qn+1

i), (2)

where q = [xi , vi
]T is the phase vector containing positions and velocities of all

mass points, f(q) = [vi , m−1
i (Fint

i + Fext
i)
]T is the right-hand side function, and

ξ = �tn/�tn−1 is the ratio between the current time step �tn and the previous
one �tn−1. The phase vector of the system at the current time step qn+1 is found
by solving Eq. (2) using the Newton–Raphson method. All details of this solver are
explained in [6].

2.2 Fluid Solver and Volume Penalization Method

Due to their small sizes and elevated flapping frequencies, insect flight is normally
categorized in the Reynolds number regime between O(101) and O(104). For
example, for hawkmoth, we have Re = 6000, bumblebee Re = 2000, fruit fly
Re = 100, or thripsRe = 10 [14, 15]. The flow can be considered as incompressible
and governed by

∂tu + ω × u = −∇�+ ν∇2u − χ

Cη
(u − us)︸ ︷︷ ︸

penalization term

− 1

Csp
∇ × (χspω)

∇2︸ ︷︷ ︸
sponge term

(3)

∇ · u = 0 (4)

u(x, t = 0) = u0(x) x ∈ �, t > 0. (5)

The above equations (3–5) are called the penalized Navier–Stokes equations [16],
where u is the fluid velocity, ω = ∇ × u is the vorticity, � = p+ 1

2 u · u is the total
pressure, and ν is the kinematic viscosity. In addition to all the terms found in the
classical incompressible Navier–Stokes equations, there appear two more terms that
are called the sponge and the penalization terms. The former is added to remove
the periodicity of the Fourier discretization that affects the upstream inflow. The
penalization term is used to impose the no-slip boundary conditions on the fluid–
solid interface in [17]. All geometrical information of the solid is encoded in the
mask function χ given by

χ(δ) =

⎧⎪⎪⎨
⎪⎪⎩

1 δ ≤ d − h

1
2

(
1 + cosπ (δ−d+h)

2h

)
d − h < δ < d + h

0 δ ≥ d + h,

(6)

Fluid–Structure Interaction: Application to Bumblebee Flight 23

where δ is the signed distance field of the bumblebee “skeleton” and d represents
here the distance from the “skeleton” to the outer surface, i.e., the fluid–solid
interface. The “skeleton” of the bumblebee is a curvilinear centerline along which
we sweep an elliptical section of variable size to draw the insect’s body, legs, and
antennae [18]. However, to avoid the force oscillation when dealing with moving
solid body, a smoothing layer with a thickness 2h is added right at the fluid–solid
interface to prevent the discontinuity of the mask function [19].

For solving the fluid equations (3–5), a Fourier pseudo-spectral discretization
with semi-implicit time stepping is employed, implemented in the FLUSI1 code
[17]. The general idea consists of representing quantities q (velocity, pressure, and
vorticity) as truncated Fourier series,

q(x, t) =
Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

q̂(k, t) exp(ik · x), (7)

where k = [kx, ky, kz]T is the wavevector, i = √−1, and q̂ are the discrete complex
Fourier coefficients of q . The Fourier coefficients can be computed with the fast
Fourier transform (FFT) using the P3DFFT library. The main motivation of using
a Fourier discretization is the simplicity of inverting a diagonal Laplace operator
and the high numerical precision reflected in the absence of numerical diffusion
and dissipation in the discretization. The gradient of a scalar can, for instance, be
obtained by multiplying with the wavevector and the complex unit, ∇̂q = ikq̂. The
Laplace operator becomes a simple multiplication by −|k|2, and it is thus diagonal
in Fourier space. For further details, we refer the reader to the reference article on
the FLUSI solver [17].

2.3 Fluid–Structure Interaction

For time-stepping, the coupled fluid–solid system is advanced by employing a semi-
implicit staggered scheme, as proposed in [18]. On the one hand, we advance
the fluid by using the Adam–Bashforth second-order (AB2) scheme with exact
integration of the viscous term. On the other hand, the backward differentiation
formula of second order (BDF2) is used for the time discretization of the solid
solver. The two modules are then coupled by the algorithm presented in the
flowchart shown in Fig. 1. For the range of Reynolds numbers (75–4000), Dickinson
et al. [20–22] showed that pressure forces dominate the shear viscous forces.
Hence, for calculating the solid deformation, the viscous fluid tension is considered
negligible compared to the static pressure. Moreover, the scheme is called a weak

1FLUSI: freely available for noncommercial use from GitHub (https://github.com/
pseudospectators/FLUSI).

https://github.com/pseudospectators/FLUSI
https://github.com/pseudospectators/FLUSI

24 H. Truong et al.

Initialize flow field and insect model
 at time

Fluid velocity field
and insect state at time

Construct mask function
solid velocity field from insect state

Advance fluid to new time level using AB2 scheme

Compute static pressure
from

Compute external pressure force acting on

the insect using delta interpolation

Advance solid to new time level using BDF2 scheme

End

Yes

No

Advance to new time level

Fig. 1 Flowchart: semi-implicit staggered scheme of the time advancement for the fluid–structure
interaction problem

coupling method since the static pressure is computed from the previous state of
the solid model. This makes the system conditionally stable only if the structure
is heavy enough with respect to the fluid density. However, the scheme is efficient
because the fluid and the solid need to be advanced only one time at the current
time level. Full details of the fluid–structure interaction (FSI) framework as well as
detailed validation of the results can be found in our previous work [6].

Fluid–Structure Interaction: Application to Bumblebee Flight 25

3 Numerical Setup and Bumblebee Model

To study the influence of wing flexibility on the aerodynamic forces, we compare
the flexible wings with rigid ones using the same numerical setup as in the previous
work [10].

3.1 Flow Configuration

The computational domain, shown in Fig. 2, is 6R × 4R × 4R large, where R is
the bumblebee wing length, discretized by 1152 × 768 × 768 grid points. The
bumblebee is tethered (both translational and rotational motions of the body are
constrained) at xcntr = (2R, 2R, 2R)T and exposed to a head wind with a mean
flow accounting for the insect’s forward velocity u∞ = (1.246Rf, 0, 0)T , where f
is the wingbeat frequency. Due to the periodicity inherent to the spectral method,
a thin vorticity sponge outlet, covering the last 4 grid points in x-direction, is
used to minimize the upstream influence of the computational domain. The sponge

umeanflow

periodic boundary

periodic boundary

inlet regiong

vorticity sponge
 outlet

Fig. 2 Illustration of the computational domain of size 6R × 4R × 4R used in all simulations. A
bumblebee model with flexible wings is tethered at xcntr = (2R, 2R, 2R)T in a flow with the mean
flow velocity u∞ = (1.246Rf, 0, 0)T . The blue inlet region is used to impose a precomputed HIT
velocity field that is constantly advected downstream by the mean flow. Another vorticity sponge
region is placed at the outlet to damp out vortices. Periodic boundary conditions are set for the four
other sides of the domain

26 H. Truong et al.

penalization parameter Csp is usually set to a value larger than the permeability
Cη, normally Csp = 10−1. By construction, the sponge term is divergence-free to
avoid the influence on the pressure field, which in turn would be modified even in
regions far away from the sponge due to its nonlocality. A detailed discussion on
the influence of the vorticity sponge can be found in [17].

In nature, insects do not always fly in a calm, quiescent environment. Instead,
they face, most of the time, many kinds of aerial perturbations such as gusty
wind, vortices, or turbulent flow generated by surrounding obstacles. Taking this
into account, both laminar and turbulent flows are investigated here to study the
role of wing flexibility under these two circumstances. For the laminar case, in
the entire computational domain, a mean flow u∞ is imposed by simply setting
the zeroth Fourier mode of the velocity u [18]. On the other hand, information
on turbulent flow conditions, which are experienced by flying insects in nature,
remains an open question with limited data [23]. However, for indoor wind tunnel
experiments, isotropic or near-isotropic turbulence generated by a grid has been used
as inflow condition to study the impact of turbulence on insect flight performance.
Consequently, homogeneous isotropic turbulence (HIT) is chosen as turbulent
inflow in our present work in order to compare with the results obtained for rigid
wings in [10, 15]. For this purpose, in the inlet region containing the first 48 grid
points along the axial direction, a precomputed HIT velocity field u′ is added to the
mean flow as velocity fluctuations uin = u∞ + u′. The HIT field is then transported
downstream by the mean flow and evolves dynamically like grid turbulence. In order
to compare with the results from [10], we use here a HIT field characterized by
the same parameters that are the turbulent intensity T u = u′RMS/u∞ = 0.33,
the integral length scale � = 0.77R, and the turbulent Reynolds number Reλ =
uRMSλ/ν = 129, based on the Taylor microscale λ = 0.18. More technical details
on this approach can be found in [10, 15, 18].

3.2 Bumblebee Model

The bumblebee model here is the same as the one used in [15] and derived from
case BB01 in [9], except for the wings which will be introduced later in Sect. 3.3.

The animal’s body mass, M , is 175 mg, the gravitational acceleration is g =
9.81 m/s2, and wing length, R, amounts to 15 mm. The bumblebee is composed
of linked rigid bodies including the head, the thorax, the abdomen, all legs, the
proboscis, and the antennae. These parts are circular elliptical or cylindrical sections
joined by spheres, and the bilateral symmetry of the insect is assumed. The Reynolds
number isRe = Utipcm/νair = 2685, whereUtip = 2�Rf = 9.15 m/s is the mean
wingtip velocity, cm = 4.6 mm is the mean chord length, νair = 1.568 · 10−5m2/s
is the kinematic viscosity of air, f = 152 Hz (T = 1/f = 6.6 ms) is the wingbeat
frequency (T is duration), and φ = 115◦ is the wingbeat amplitude. The wingbeat
kinematics is prescribed based on the work of Dudley and Ellington [9].

Fluid–Structure Interaction: Application to Bumblebee Flight 27

Fig. 3 Illustration of the mass-spring model that is meshed based on measured data of real
bumblebee wings [24]. The blue and white marker represents the mass center. Color codes (red,
green, and blue) are used for identifying the veins, and the membranes are represented by gray
circles

3.3 Flexible Wing Model

The two flexible wings of the insect are modeled using the mass-spring system
as detailed in [6]. In the following, we describe the venation pattern, the mass
distribution, and the flexural rigidity of the veins.

3.3.1 Venation Pattern

The venation architecture is claimed to be responsible for the anisotropy of the wing,
and it plays a crucial role on the wing dynamics during flight. Consequently, the
functional approach is used to take into account the venation pattern in our model.
The wing contour and the vein network are adapted from [24] and encoded into
the mass-spring system. The wing is then discretized by a triangular mesh with
1065 mass points, as shown in Fig. 3, using SALOME,2 an open-source integration
platform for mesh generation. A mesh convergence study comparing between two
wings, discretized by 465 and 1065 mass points, was performed in [6] for the
revolving motion. Looking at the aerodynamic forces generated, the coarse-mesh
wing showed no major difference with respect to the fine-mesh wing. However, for
the flapping motion, the pressure field is expected to be more unstable and a fine-
mesh wing is needed for the pressure interpolation in this case.

2https://www.salome-platform.org/.

https://www.salome-platform.org/

28 H. Truong et al.

3.3.2 Mass Distribution

The mass distribution represents the inertia of the system, and the position of the
mass center has a connection with the wing dynamics during flight. The mass
distribution is calculated based on the measured wing mass data from [24] and the
vein pattern. For our numerical simulations, the total wing mass is chosen as the
same used by Kolomenskiy et al. [24],mw = 0.791 mg. The mass is then distributed
into vein and membrane parts based on their geometry and material.

For the vein structure, each vein is considered as a rod composed of cuticle,
ρc = 1300 kg/m3 [24], with a circular cross section of constant diameter dv
[24] and length lv , calculated directly from the model. The mass of each vein is
then calculated and shown in Table 1. Both diameter and mass are dimensionless
quantities, normalized by wing length R and its combination with the air density
ρairR

3, respectively.
For the mass distribution of the membrane, the same optimization method as in

[6] is applied, where the objective function is the difference between the mass center
of the wing measured in the experiment [24] and the one calculated from the mass-

Table 1 Dimensionless vein diameter dv data (adapted from [24]) and the corresponding dimen-
sionless mass mv data

Forewing Hindwing

Nominal diameter Nominal mass # Nominal diameter Nominal mass

1 0.0070 0.0209 1 0.0065 0.0180

2 0.0074 0.0237 2 0.0043 0.0071

3 0.0055 0.0076 3 0.0046 0.0024

4 0.0070 0.0063 4 0.0011 0.0001

5 0.0040 0.0031 5 0.0038 0.0043

6 0.0048 0.0094 6 0.0037 0.0005

7 0.0040 0.0019 7 0.0020 0.0012

8 0.0038 0.0009

9 0.0041 0.0023

10 0.0048 0.0064

11 0.0045 0.0017

12 0.0038 0.0018

13 0.0042 0.0010

14 0.0038 0.0020

15 0.0034 0.0008

16 0.0032 0.0005

17 0.0032 0.0004

18 0.0044 0.0009

19 0.0015 0.0001

20 0.0018 0.0001

21 0.0020 0.0009

Fluid–Structure Interaction: Application to Bumblebee Flight 29

spring model. For a mass point mi belonging to the membrane at position [xi, yi],
we obtain

mi = 9.14 · 10−5 − 3.48 · 10−5xi + 2.48 · 10−4yi. (8)

Differences, between two mass centers, of 3.85 · 10−3[R] in the x-direction and
0.93 · 10−3[R] in the y-direction are obtained. These are negligible compared to the
reference wing length R.

3.3.3 Flexural Rigidity of Veins

Because the bending stiffness of the membrane is neglected, the flexural rigidity
of the wing comes solely from the flexural rigidity EI of veins, which is calculated
based on their material and geometry. While the estimation of their second moments
of inertia I is straightforward using the diameter data from Table 1, determining the
Young’s modulus is not trivial. In our present work, the veins are considered to be
made of cuticle, which is reported to have a Young’s modulus in the range of 1 kPa
to 50 MPa [25]. The wing needs to be flexible enough to reveal the influence of wing
flexibility to the aerodynamic performance of insects, but it cannot be too flexible
to show unrealistic mechanical behaviors. For the purpose of our study, the value
E = 700 kPa is chosen.

4 Results and Discussion

The forces generated by the bumblebee model with flexible wings as well as the
required aerodynamic power will be presented in this section. Furthermore, they will
be compared with the results obtained in [10], where the same bumblebee with rigid
wings was considered. This allows us to have some insight into the wing flexibility
influence on the insect aerodynamic performance.

4.1 Tethered Flight in Laminar Flow

The vertical and horizontal forces produced by the flapping motion of the flexible
wings are shown by red curves in Fig. 4a and b, while blue curves are those
generated by rigid wings. The forces are normalized by F = ρairR

4f 2. Here,
the sideways force is small and not presented, since the animal is modeled with
the assumption of symmetry. The simulation is computed for 4 strokes with 28,776
time steps using 32 processors on Intel Xeon Gold 6142 (Sky Lake) 2.6 GHz and
consumed 8128 CPU hours. For each cycle, the cycle-averaged values are calculated
and presented in Table 2. While the wing flexibility has minor effect on the average

30 H. Truong et al.

downstrokeupstroke

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

-5

0

5

10
N

or
m

al
is

ed
 v

er
tic

al
 fo

rc
e

Rigid
Flexible
Flexible in Tu=0.33

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

-4

-2

0

2

4

6

8

N
or

m
al

is
ed

 h
or

iz
on

ta
l f

or
ce

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

-5

0

5

10

15

20

25

30

N
or

m
al

is
ed

 a
er

od
yn

am
ic

 p
ow

er

Fig. 4 Normalized vertical force, horizontal force, and aerodynamic power generated by a
bumblebee with rigid wings (black) [15] and flexible wings in laminar flow (red) and turbulent
flow (blue). Circles represent the cycle-averaged value of forces and power

thrust with a decline of 11%, it accounts for a 28% drop of the average lift. These
losses can be explained as a result from the decrease of the effective angle of
attack caused by wing deformation. The shape adaptation of the wing during the
flapping motion alters the instantaneous angle of attack, which is claimed to play
a significant role in the force generation [4]. However, these negative impacts do
not necessarily mean that the rigid wings outperform aerodynamically their flexible
counterparts. Although the flexible wings generate smaller forces, they consume
much less energy, with almost 36% required aerodynamic power is reduced. The

Fluid–Structure Interaction: Application to Bumblebee Flight 31

Table 2 Cycle-averaged forces and power in the laminar case

Thrust Lift Aerodynamic power

Flow Rigid Flexible Rigid Flexible Rigid Flexible

Laminar 0.17 0.15 2.09 1.51 8.84 5.67

cycle-averaged lift-to-power ratio of flexible wing is 0.026, 35% larger than that of
rigid wing which is 0.019.

Nevertheless, regarding the time evolution of the forces during one wingbeat,
the instant surges of the forces at the ends of upstroke and downstroke, observed in
the rigid case, are significantly weakened. The sudden rotation of the rigid wings
at the middle and the end of strokes is the reason for these large force peaks [26].
This effect has now little impact due to the fact that the wing inertia is now taken
into account. The inertial force makes the wing deform and streamline its shape to
the airflow. This shape adaptation helps to mitigate the large pressure jump between
upper and lower surfaces, especially at the trailing edge [7], and provides a smoother
flight [27, 28]. This finding has more advantages in term of stabilizing generated
forces, rather than lift-enhancement effect.

4.2 Tethered Flight in Turbulent Flow

We then study the influence of isotropic turbulence on the aerodynamic performance
of a bumblebee by putting it into a turbulent flow. The simulation is computed for
4 strokes with 29,000 time steps using 32 processors on Intel Xeon Gold 6142 (Sky
Lake) 2.6 GHz and consumed 9000 CPU hours. Figure 5 presents the flow structure
of the bumblebee flying in a turbulent flow visualized by the normalized vorticity
isosurfaces at two levels, ‖ω‖ = 15 and ‖ω‖ = 100. The aerodynamic forces
and the corresponding power for this turbulent flow condition are shown in Fig. 4.
The results demonstrate insignificant differences between turbulent and laminar
flow conditions. The aerodynamic forces generated by the bumblebee are almost
identical to those derived during unperturbed, laminar inflow, with the same required
energetic cost. For Re > 100, the aerodynamic forces are mainly produced by the
differential dynamics pressure across the wing [26]. Figure 6 shows the normalized
pressure distribution on top and bottom wing surfaces of the two cases just before
the stroke reversal t = 0.45 T. The effect of turbulence can hardly be seen here,
which explains the negligible change of aerodynamic forces. The outcome here is
consistent with the one observed in the rigid case in [10].

32 H. Truong et al.

s

Fig. 5 Visualization of flow generated by a tethered flapping bumblebee with flexible wings in
turbulence with turbulent intensity T u = 0.33 showing normalized absolute vorticity isosurfaces
at two levels, ||ω|| = 15 (light blue) and ||ω|| = 100 (dark blue). The flow fields are plotted at time
t = 0.45/T , and the weaker vortices are only shown in the region 3.7R ≤ y ≤ 4R

Fig. 6 Normalized pressure distribution on the wing for top and bottom surfaces, plotted at time
t = 0.45/T just before the stroke reversal, for the laminar (top) and turbulent cases (bottom)

Fluid–Structure Interaction: Application to Bumblebee Flight 33

5 Conclusions and Perspectives

Following our previous work on revolving flexible wings [6], the impact of wing
flexibility was now studied in the context of tethered flight using flapping wing
kinematics measured in experiments by Dudley and Ellington [9]. High-resolution
numerical simulations on massively parallel machines were carried out to solve the
fluid–structure interaction problem between the fluid solver FLUSI and the solid
solver based on a mass-spring system. Both laminar and turbulent inflows were
considered to investigate diverse flight conditions of insects. The preliminary results
obtained in this work allow us to have some understanding about the role of wing
flexibility in flapping flight.

In laminar flow, the aerodynamic forces and the required power have been
calculated and compared with the ones obtained for rigid wings. We found that wing
flexibility hardly contributed to lift or thrust enhancement. However, the significant
reduction of the required power suggested that wing flexibility plays an important
role in saving flight energetic cost. Moreover, the wing inertia also helped to damp
out the fluctuation of the aerodynamic force and thus helped the insect to stabilize
during flight.

In turbulent flow, although the ability of shape adaptation of flexible wings
makes them more sensitive to fluctuation of the flow structure than their rigid
counterparts, the impact of turbulence is still negligible under the considered flight
conditions. Nevertheless, due to costly computational time, the statistical property
of the turbulent flow is not considered because only one simulation is done to obtain
the results for the turbulent case. Moreover, due to the expensive computational cost,
especially in the turbulent case, the mesh convergence study was not performed in
this paper, and we refer readers to [6].

Despite of these findings, we have to keep in mind that the wing kinematics has
an essential effect on the aerodynamic performance of wings, and we have consid-
ered only one set of wing motion in this study. In perspective, these limitations can
be overcome by examining other species with different wing kinematics or including
flight control in our model. This is planned for our work in the future where we will
study Calliphora with its wing kinematics measured from experiments.

Finally, although the wing flexibility was calculated based on the geometrical
property of the veins, the estimation of veins’ Young’s modulus remains somewhat
limited due to the vast range of known cuticle properties. This can be improved by
using mathematical optimization for determining the right elastic properties of the
wing model. To this end, the equilibrium state of the wing model under external
static force as a function of wing stiffness will be calculated and compared with
data measured from experiments done by our team.

Acknowledgments The authors gratefully acknowledge financial support from the Agence
Nationale de la Recherche (ANR Grant No. 15-CE40-0019) and Deutsche Forschungsgemein-
schaft (DFG Grant No. SE 824/26-1), project AIFIT. The authors were granted access to the HPC
resources of IDRIS under the Allocation No. 2018-91664 attributed by GENCI (Grand Équipement
National de Calcul Intensif). For this work, Centre de Calcul Intensif d’Aix-Marseille is acknowl-

34 H. Truong et al.

edged for granting access to its high performance computing resources financed by the project
Equip@Meso (No. ANR-10-EQPX- 29-01). The authors thankfully acknowledge financial support
granted by the ministères des Affaires étrangères et du développement international (MAEDI) et de
l’Education nationale et l’enseignement supérieur, de la recherche et de l’innovation (MENESRI),
and the Deutscher Akademischer Austauschdienst (DAAD) within the French–German Procope
project FIFIT.

D.K. gratefully acknowledges financial support from the JSPS KAKENHI Grant No.
JP18K13693.

References

1. Ellington, C.P., van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in
insect flight. Nature 384, 626–630 (1996)

2. Mountcastle, A.M., Combes, S.A.: Wing flexibility enhances load-lifting capacity in bumble-
bees. Proc. R. Soc. B. 280(1759) (2016)

3. Campos, D., Ukeiley, L., Bernal, L.: Flow around flapping flexible flat plate wings. In:
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition (2012). https://doi.org/10.2514/6.2012--1211

4. Fu, J., Liu, X., Shyy, W., Qiu, H.: Effects of flexibility and aspect ratio on the aerodynamic
performance of flapping wings. Bioinspir. Biomim. 13(3), 036001 (2018)

5. Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J.
Exp. Biol. 213(13), 2273–2283 (2010)

6. Truong, H., Engels, T., Kolomenskiy, D., Schneider, K.: A mass-spring fluid-structure interac-
tion solver: application to flexible revolving wings. Comput. Fluid. 200, 104426 (2020)

7. Kang, C.-K., Shyy, W.: Scaling law and enhancement of lift generation of an insect-size
hovering flexible wing. J. R. Soc. Inter. 10(85), 20130361 (2013)

8. Zhao, L., Huang, Q., Deng, X., Sane, S.P.: Aerodynamic effects of flexibility in flapping wings.
J. R. Soc. Inter. 7(44), 485–497 (2010)

9. Dudley, R., Ellington, C.P.: Mechanics of forward flight in bumblebees I. kinematics and
morphology. J. Exp. Biol. 148, 19–52 (1990)

10. Engels, T., Kolomenskiy, D., Schneider, K, Lehmann, F.O., Sesterhenn, J.: Bumblebee flight in
heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)

11. Shyy, W., Aono, H., Kang, C., Liu, H.: An Introduction to Flapping Wing Aerodynamics.
Cambridge University Press, New York (2013)

12. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable
models in computer graphics. Comput. Graph. Forum 25, 809–836 (2006)

13. Berger, J.: A second order backward difference method with variable steps for a parabolic
problem. BIT Numer. Math. 38, 644–662 (1998)

14. Shyy, W., Kang, C.K., Chirarattananon, P., Ravi, S., Liu, H.: Aerodynamics, sensing and
control of insect-scale flapping-wing flight. Proc. Math. Phys. Eng. Sci. 472(2186), 20150712
(2016)

15. Engels, T., Kolomenskiy, D., Schneider, K., Farge, M., Lehmann, F.O., Sesterhenn, J.:
Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical
experiments. Phys. Rev. Fluid. 4, 013103 (2019)

16. Angot, P., Bruneau, C., Fabrie, P.: A penalization method to take into account obstacles in
incompressible viscous flows. Numer. Math. 81, 497–520 (1999)

17. Engels, T., Kolomenskiy, D., Schneider, K., Sesterhenn, J.: Flusi: a novel parallel simulation
tool for flapping insect flight using a Fourier method with volume penalization. SIAM J. Sci.
Comp. 38, S03–S24 (2016)

https://doi.org/10.2514/6.2012--1211

Fluid–Structure Interaction: Application to Bumblebee Flight 35

18. Engels, T.: Numerical modeling of fluid-structure interaction in bioinspired propulsion. Ph.D.
Thesis at Aix-Marseille Université and TU Berlin (2015). https://hal.archives-ouvertes.fr/tel-
01298968

19. Kolomenskiy, D., Schneider, K.: A Fourier spectral method for the Navier-Stokes equations
with volume penalization for moving solid obstacles. J. Comput. Phys. 228, 5687–5709 (2009)

20. Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of
insect flight. Science 284(5422), 1954–1960 (1999)

21. Dickinson, M.H., Götz, K.: Unsteady aerodynamic performance of model wings at low
Reynolds numbers. J. Exp. Biol. 174, 45–64 (1993)

22. Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T.: Modified unsteady vortex-lattice
method to study flapping wings in hover flight. AIAA J. 51(11), 2628–2642 (2013)

23. Crall, J.D., Chang, J.J., Oppenheimer, R.L., Combes, S.A.: Foraging in an unsteady world:
bumblebee flight performance in field-realistic turbulence. Inter. Focus 7, 20160086 (2017)

24. Kolomenskiy, D., Ravi, S., Xu, R., Ueyama, K., Jakobi, T., Engels, T., Nakata, T., Sesterhenn,
J., Schneider, K., Onishi, R., Liu, H.: The dynamics of passive feathering rotation in hovering
flight of bumblebees. J. Fluids. Struct. 91, 102628 (2019)

25. Vincent, J.F.V., Wegst, U.G.K.: Design and mechanical properties of insect cuticle. Arthropod
Struct. Dev. 33, 187–199 (2004)

26. Sane, S.P.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)
27. Ifju, P.G., Jenkins, A.D., Ettingers, S., Lian, Y., Shyy, W.: Flexible-wing-based micro air

vehicles. In: 40th AIAA Aerospace Sciences Meeting and Exhibit. Reno, January 14–17 (2002)
28. Ifju, P.G., Peter, G., Stanford, B., Sytsma, M.: Analysis of a flexible wing micro air vehicle.

In: Proceedings of 25th AIAA Aerodynamic Measurement Technology and Ground Testing
Conference. San Francisco, June 5–8 (2006)

https://hal.archives-ouvertes.fr/tel-01298968
https://hal.archives-ouvertes.fr/tel-01298968

No-Slip and Free-Slip Divergence-Free
Wavelets for the Simulation
of Incompressible Viscous Flows

Souleymane Kadri Harouna and Valérie Perrier

Abstract This work concerns divergence-free wavelet-based methods for the
numerical resolution of Navier–Stokes equations. It generalizes to higher dimension
the approach of Kadri-Harouna and Perrier (Multiscale Model. Simul. 13:399–
422; 2015) that reformulates the projection method using the Helmholtz–Hodge
decomposition in wavelet domain. The solution is searched in a finite dimensional
free-slip divergence-free wavelet space, with time-dependent wavelet coefficients.
We prove and verify the convergence of a first-order time numerical scheme for
the Helmholtz–Hodge-based projection method. Numerical simulations on the 3D
lid-driven cavity flow show the accuracy and efficiency of the method.

1 Introduction

The numerical resolution of the time-dependent Navier–Stokes equations for an
incompressible viscous fluid still remains a complex problem. The direct numerical
simulation where all the flows of eddies are simulated is very costly in terms
of computational time and memory storage resources. One reason of such a
difficulty is that, commonly, the velocity field and the pressure are coupled in the
numerical discretization due to the incompressibility constraint of the velocity field
[16, 34]. Moreover, the numerical methods for the resolution of mixed problems
(Stokes problem) require an inf–sup condition to be satisfied for the velocity and
pressure discretization spaces [16, 35]. In practice, it is difficult to manage both
discretizations to obtain this inf–sup condition. Thus, the conditional number of the
arising system is very high, which increases the numerical cost of the global method.

S. K. Harouna (�)
Laboratoire de Mathématiques Image et Applications, La Rochelle, France
e-mail: souleymane.kadri_harouna@univ-lr.fr

V. Perrier
Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
e-mail: Valerie.Perrier@univ-grenoble-alpes.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_3&domain=pdf
mailto:souleymane.kadri_harouna@univ-lr.fr
mailto:Valerie.Perrier@univ-grenoble-alpes.fr
https://doi.org/10.1007/978-3-030-61761-5_3

38 S. K. Harouna and V. Perrier

By their property of data sparse representation, wavelet-based methods have been
introduced in the numerical resolution of the Stokes problem to get robust and
effective numerical schemes, with lower data storage. Principally, wavelet bases
linked by differentiation and integration allow to stabilize the spatial discretizations
and get the inf–sup condition [2, 31]; another interest lies in the ability to provide
adaptive strategies to reduce the algorithm complexity [3, 6, 7, 13–15, 30, 31, 35].

The projection method initialized by Chorin and Temam [4, 33] is an approach
that avoids the difficulties of the Stokes problem: it is based on a time-splitting
method that uncouples the computation of the velocity field from the pressure. An
intermediate velocity is computed, and then this predicted velocity is projected
onto the space of divergence-free vector fields. The simplicity of the method
lies in the fact that the prediction and the correction steps are elliptic problems,
namely Poisson equations. However, the projection method introduces an additional
numerical splitting error, which must be at worst of the same order as the time
discretization error. In addition, the corrected velocity field does not satisfy the
desired boundary condition, and the projection step imposes an artificial boundary
condition on the pressure [38].

A reformulation of the projection method was proposed in [22] consisting in a
change of variable like in the Gauge method [26, 37]. The main idea of [22] is to
replace the classical correction step by a Helmholtz–Hodge decomposition of the
intermediate predicted velocity field, using a divergence-free wavelet basis. This
allows to encode boundary conditions into the divergence-free wavelet basis and
avoids the use of non-physical boundary conditions for the pressure. The numerical
complexity of the divergence-free wavelet-based Helmholtz–Hodge decomposition
does not exceed the numerical complexity of the resolution of a Poisson equation,
see [20].

The achievements of the present paper are to propose an extension of [22]
to the three-dimensional case, to provide a convergence result and 3D numerical
simulations. First, we describe a recent construction of divergence-free wavelets,
more easy to handle, satisfying no-slip and free-slip boundary conditions on the
hypercube in dimension 3, borrowed from [23]. Then, following the approach of
[22] for the 2D case, we use these divergence-free wavelets to design a numerical
method for the resolution of Navier–Stokes equations in 3D. As done for the 2D
(linear) Stokes equations in [22], we study here the convergence of the method for
the (nonlinear) 3D Navier–Stokes equations, using a first-order time-discretization
scheme. Then, a standard error analysis allows us to prove the convergence of the
numerical scheme, under a CFL type condition. Numerical experiments conducted
on benchmark flows confirm these theoretical results.

This paper is organized as follows. Section 2 summarizes the principle of the
construction of divergence-free wavelet bases. We recall in Sect. 2.1 the construction
of the one-dimensional biorthogonal multiresolution analyses linked by differenti-
ation and integration that we used to construct divergence-free wavelets satisfying
physical boundary conditions in Sect. 2.2. Section 3 presents the numerical method,
and we investigate the convergence of the time-discretization scheme in the
energy norm. Section 4 describes our fully discrete scheme and presents numerical
simulation results on benchmark flow, particularly the 3D lid-driven cavity flow.

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 39

2 Free-Slip Divergence-Free Wavelet Bases on [0, 1]d

Since the seminal works of Lemarié-Rieusset and collaborators [19, 25], several
constructions of divergence-free (and curl-free) wavelet bases on [0, 1]d have been
provided in the literature [8, 21, 31, 32, 35, 36]. The free-slip boundary condition
case was treated by several methods in [21, 31, 32]. In this section, we follow the
construction principle of [21, 23], which we extend to general dimension. We begin
with our construction of biorthogonal multiresolution analyses of L2(0, 1) linked
by differentiation and integration.

2.1 Multiresolution Analyses Linked by Differentiation
and Integration

Divergence-free wavelet constructions on the hypercube require the use of multires-
olution analyses on the interval linked by differentiation and integration [19, 21, 31].
Specifically, we would like to have at hand two biorthogonal multiresolution
analyses of L2(0, 1), denoted by (V 1

j , Ṽ
1
j) and (V 0

j , Ṽ
0
j) satisfying

d

dx
V 1
j = V 0

j . (1)

The construction of the biorthogonal spaces Ṽ 1
j and Ṽ 0

j is of the utmost importance.
A suitable choice would provide the commutation of the multi-scale projectors with
the derivation operator. Such a choice was suggested in [19, 21]:

Ṽ 0
j =
{∫ x

0
f (t)dt : f ∈ Ṽ 1

j

}
∩H 1

0 (0, 1)⇒ d

dx
Ṽ 0
j ⊂ V 0

j . (2)

In this case, we have

d

dx
◦ P1

j = P0
j ◦

d

dx
, (3)

where P1
j is biorthogonal projector onto V 1

j and P0
j the biorthogonal projector onto

V 0
j . A significant property of such a construction is that the spaces Ṽ 0

j provide a

multiresolution analysis for H 1
0 (0, 1) (and not for L2(0, 1)). However, the edge

wavelets of [21] do not satisfy a diagonal differentiation relation. A remedy to
this was proposed in [31, 32], where the commutation property of the multi-scale
projectors and the derivation operator is lost. Another construction proposed in [23]

40 S. K. Harouna and V. Perrier

consists in setting

d

dx
Ṽ 0
j = Ṽ d

j , (4)

where Ṽ d
j is the biorthogonal space of the space satisfying homogeneous Dirichlet

boundary conditions V d
j = V 1

j ∩H 1
0 (0, 1) and Ṽ d

j �H
1
0 (0, 1). This choice preserves

the commutation property and leads to a diagonal differentiation relation for the
wavelet bases even for edge wavelets.

The constructions of [19, 21] are based on multiresolution analyses of L2(0, 1)
reproducing polynomials at boundaries [5, 27, 28]. Each space is spanned by a
scaling functions basis

V 1
j = span{ϕ1

j,k ; 0 ≤ k ≤ Nj − 1} and Ṽ 1
j = span{ϕ̃1

j,k ; 0 ≤ k ≤ Nj − 1},

and

V 0
j = span{ϕ0

j,k ; 0 ≤ k ≤ Nj − 2} and Ṽ 0
j = span{ϕ̃0

j,k ; 0 ≤ k ≤ Nj − 2},

with dimension parameter Nj = 2j + c, for c ∈ Z. For ε = 0, 1, the scaling
functions ϕεj,k can be written as ϕεj,k = 2j/2ϕε(2jx − k) inside the interval [0, 1],
where ϕε is a compactly supported scaling function on R, but this is no more true
near the boundaries 0 and 1 (idem for ϕ̃εj,k). In practice, the scale index j must be
greater than some index jmin, to avoid boundary effects [28]. The biorthogonality
between bases writes

〈ϕεj,k, ϕ̃εj,k′ 〉 = δk,k′ .

The advantage of using multiresolution analyses reproducing polynomials at
boundaries is that homogeneous boundary conditions can be easily incorporated.
It suffices to remove the scaling functions that do not satisfy the desired condition
at edges 0 and 1, prior to biorthogonalization [27, 28]. This writes

V d
j = V 1

j ∩H 1
0 (0, 1) = span{ϕ1

j,k ; 1 ≤ k ≤ Nj − 2}, (5)

and

V dd
j = V 1

j ∩H 2
0 (0, 1) = span{ϕ1

j,k ; 2 ≤ k ≤ Nj − 3}. (6)

Again, for the construction of the biorthogonal spaces Ṽ d
j and Ṽ dd

j , we proceed
similarly by removing edge scaling functions, to ensure the equality of dimensions
and this leads to (V d

j , Ṽ
d
j) and (V dd

j , Ṽ dd
j), biorthogonal multiresolution analyses

of H 1
0 (0, 1) and H 2

0 (0, 1), respectively [27]. Notice that the spaces Ṽ d
j and Ṽ dd

j

provide multiresolution analyses of L2(0, 1), see [23, 27].

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 41

Following the standard constructions [5, 17], the wavelets in the biorthogonal
multiresolution analysis (V 1

j , Ṽ
1
j) are defined as the bases of the biorthogonal

spaces:

W 1
j = V 1

j+1 ∩ (Ṽ 1
j)

⊥ and W̃ 1
j = Ṽ 1

j+1 ∩ (V 1
j)

⊥.

These spaces are finite dimensional [5]:

W 1
j = span{ψ1

j,k ; 0 ≤ k ≤ 2j − 1} and W̃ 1
j = span{ψ̃1

j,k ; 0 ≤ k ≤ 2j − 1},

with

〈ψ1
j,k, ψ̃

1
j ′,k′ 〉 = δj,j ′δk,k′ and 〈ψ1

j,k , ϕ̃
1
j ′,k′ 〉 = 0.

Then, working in H 1
0 (0, 1), the first possibility is to construct the wavelet spaces as

in [27, 28]:

Wd
j = V d

j+1 ∩ (Ṽ d
j)

⊥ and W̃d
j = Ṽ d

j+1 ∩ (V d
j)

⊥.

This possibility was at the origin of the construction [21]. But unfortunately, the
diagonal relation with the derivation is lost for edge wavelets. To overcome this
difficulty, another approach was proposed by Kadri-Harouna and Perrier [23] and
consists in first using a standard construction for the wavelet bases of W 0

j =
V 0
j+1 ∩ (Ṽ 0

j)
⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j)
⊥[5, 17, 27, 28], denoted by {ψ0

j,k}j≥jmin
and {ψ̃0

j,k}j≥jmin . In the second step, the wavelets of Wd
j and W̃d

j are defined by

ψd
j,k = 2j

∫ x

0
ψ0
j,k and 2−j (ψ̃0

j,k)
′ = −ψ̃d

j,k. (7)

As remarked before, this definition is different from that of [19, 21], where the
wavelets ψd

j,k and ψ̃d
j,k were defined first and second one set: ψ0

j,k = 2−j (ψd
j,k)

′

and ψ̃d
j,k = −2j

∫ x
0 ψ̃d

j,k .

Now, due to the vanishing moments of ψ0
j,k , it is easy to see that definition (7)

implies ψd
j,k ∈ H 1

0 (0, 1), and for any j > jmin,

V d
j = V d

jmin
⊕Wd

jmin
⊕ · · · ⊕Wd

j−1. (8)

Decomposition (8) is stable in H 1
0 (0, 1), i.e., the system {ψd

j,k}j≥jmin ∪ {ϕdjmin,k} is

a Riesz basis for H 1
0 (0, 1), see [23].

For each basis, a fast wavelet transform algorithm exists with a linear complexity
and the approximation order of each multiresolution analysis space is linked to
the number of vanishing moments of its biorthogonal wavelets [5, 21, 27, 28].

42 S. K. Harouna and V. Perrier

Precisely, if ϕ1 allows reproduction of polynomials up to degree r − 1 in V 1
j , then

the biorthogonal wavelet ψ̃1 has r vanishing moments:

∫ +∞

−∞
x
ψ̃1(x)dx = 0 for 0 ≤
 ≤ r − 1.

Then, due to the differentiation and integration relations (1) and (4), the wavelet ψ̃0

has (r − 1) vanishing moments and ψ0 has (r̃ + 1) vanishing moments.

2.2 Free-Slip and No-Slip Divergence-Free Wavelet
Construction

In this section, we recall the construction of free-slip divergence-free wavelets on
the hypercube [0, 1]3 as proposed in [20, 23]. Then, we outline the construction of
no-slip divergence-free wavelets. The next section will sketch the general form of
no-slip divergence-free wavelets to higher space dimension d > 3.

The divergence-free function space with free-slip boundary conditions is

Hdiv(�) = {u ∈ (L2(�))3 : ∇ · u = 0 and u · n|∂� = 0}, (9)

where � = [0, 1]3 and n denotes the unit outward normal to boundary ∂�. Then,
following [20], there are three kinds of divergence-free scaling functions in Hdiv(�)

defined by

�
div,1
j,k := curl

⎡
⎢⎣ 0

0
ϕdj,k1

⊗ ϕdj,k2
⊗ ϕ0

j,k3

⎤
⎥⎦ =
⎡
⎢⎣ ϕdj,k1

⊗ (ϕdj,k2
)′ ⊗ ϕ0

j,k3

−(ϕdj,k1
)′ ⊗ ϕdj,k2

⊗ ϕ0
j,k3

0

⎤
⎥⎦ , (10)

�
div,2
j,k := curl

⎡
⎢⎣ϕ

0
j,k1

⊗ ϕdj,k2
⊗ ϕdj,k3

0
0

⎤
⎥⎦ =
⎡
⎢⎣ 0
ϕ0
j,k1

⊗ ϕdj,k2
⊗ (ϕdj,k3

)′

−ϕ0
j,k1

⊗ (ϕdj,k2
)′ ⊗ ϕdj,k3

⎤
⎥⎦ , (11)

�
div,3
j,k := curl

⎡
⎢⎣ 0
ϕdj,k1

⊗ ϕ0
j,k2

⊗ ϕdj,k3

0

⎤
⎥⎦ =
⎡
⎢⎣−ϕ

d
j,k1

⊗ ϕ0
j,k2

⊗ (ϕdj,k3
)′

0
(ϕdj,k1

)′ ⊗ ϕ0
j,k2

⊗ ϕdj,k3

⎤
⎥⎦ . (12)

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 43

By construction, these scaling functions are in Hdiv(�) and the space Vdiv
j that they

spanned is included in the multiresolution analysis of (L2(�))3 given by

Vdiv
j ⊂ Vd

j =
(
V d
j ⊗ V 0

j ⊗ V 0
j

)
×
(
V 0
j ⊗ V d

j ⊗ V 0
j

)
×
(
V 0
j ⊗ V 0

j ⊗ V d
j

)
.

(13)
Moreover, let Pj be the biorthogonal multiscale projector onto Vd

j :

Pj =
(
Pd
j ⊗ P0

j ⊗ P0
j

)
×
(
P0
j ⊗ Pd

j ⊗ P0
j

)
×
(
P0
j ⊗ P0

j ⊗ Pd
j

)
,

and

P0
j = P0

j ⊗ P0
j ⊗ P0

j ,

the biorthogonal multiscale projector onto V0
j = V 0

j ⊗ V 0
j ⊗ V 0

j . Due to the
commutation property (3), we have

∀ u ∈ Hdiv(�), ∇ · Pj (u) = P0
j (∇ · u) = 0.

In terms of spaces, this rewrites Pj (Hdiv(�)) = Vj ∩ Hdiv(�). Therefore, the
spaces Vdiv

j = Vj ∩Hdiv(�) provide a multiresolution analysis of Hdiv(�), and a

basis of Vdiv
j is generated by choosing two of the scaling function generators listed

above [23]. Besides, from each scaling function generator, one can construct 7 types
of anisotropic divergence-free wavelets [8, 23, 25]. We denote by {�div,1

j ,k
,�

div,2
j ,k

} the

wavelets corresponding to {�div,1
j,k

,�
div,2
j,k

} and Wdiv
j the space they span:

Wdiv
j = span

{
�
div,1
j ,k ,�

div,2
j ,k

}
jmin≤|j |≤j−1

, (14)

where the index k = (k1, k2 , k3) varies depending on the corresponding function: if one
coordinate of k corresponds to a wavelet ψd

j,k or ψ0
j,k , we take 1 ≤ k ≤ 2j ; if it

corresponds to a scaling function ϕdj,k , we take 1 ≤ k ≤ Nj−2; and if it corresponds

to a scaling function ϕ0
j,k , we take 0 ≤ k ≤ Nj − 2. In the sequel, we will use this

convention for all the summation over the index k.
According to (14), the anisotropic multiscale decomposition of Vdiv

j corre-
sponds to

Vdiv
j = Vdiv

jmin

⊕
jmin≤|j |≤j−1

Wdiv
j , (15)

and since the spaces Vdiv
j provide a multiresolution analysis of Hdiv(�), decompo-

sition (15) is stable for this space. Specifically, we have the following proposition
[23]:

44 S. K. Harouna and V. Perrier

Proposition 1 For every function u ∈ Hdiv(�), there are coefficients cdiv,εk
and d

div,ε

j ,k

such that

u =
2∑

ε=1

⎛
⎝∑

k

c
div,ε
k �

div,ε
jmin,k

+
∑

|j |≥jmin

∑
k

d
div,ε
j ,k �

div,ε
j ,k

⎞
⎠ , (16)

and for two positive constants C1 and C2 independent of u, we have

C1‖u‖L2 ≤
⎛
⎝ 2∑
ε=1

∑
k

|cdiv,εk |2 +
2∑

ε=1

∑
|j |≥jmin

∑
k

|ddiv,εj ,k |2
⎞
⎠

1/2

≤ C2‖u‖L2 .

(17)

Proposition 1 is immediate using Lemma 2 borrowed from [19, 25] and reported in
the Appendix section. Precisely, the constructed divergence-free wavelets and their
duals satisfy the hypothesis of this lemma, see [23].

The approximation error provided by the divergence-free wavelet basis is linked
to the approximation order of the spaces V 1

j . If the spaces V 1
j contain polynomials

up to degree r − 1, then V 0
j contain polynomials up to degree r − 2 and for all

u ∈ (H s(�))3 ∩ Hdiv(�) with 0 ≤ s ≤ r − 1, and the following Jackson type
estimation holds:

‖u − P
div
j (u)‖L2 ≤ C2−js‖u‖Hs , (18)

where Pdivj is the biorthogonal multiscale projector onto Vdiv
j :

P
div
j (u) =

2∑
ε=1

⎛
⎝∑

k

c
div,ε
k �

div,ε
jmin,k

+
∑

jmin≤|j |≤j−1

∑
k

d
div,ε
j ,k �

div,ε
j ,k

⎞
⎠ . (19)

For homogeneous Dirichlet boundary conditions, the divergence-free function
space is slightly different and will be denoted by

Hdiv,0(�) =
{
u ∈ (H 1

0 (�))
3 : ∇ · u = 0

}
= (H 1

0 (�))
3 ∩Hdiv(�).

The space Hdiv,0(�) is a closed subspace of (H 1
0 (�))

3, then we have the following
decomposition:

(H 1
0 (�))

3 = Hdiv,0(�)⊕Hdiv,0(�)
⊥,

which is an orthogonal decomposition with respect to the inner product of
(H 1

0 (�))
3: (u, v)(H 1

0 (�))
2 = (∇u,∇v)(L2(�))3 , see [16] for details.

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 45

Since Hdiv,0(�) ⊂ Hdiv(�), a multiresolution analysis of Hdiv,0(�) is then
provided by the spaces:

Vdiv,0
j = Vdd

j ∩Hdiv,0(�),

where

Vdd
j =

(
V dd
j ⊗ V 00

j ⊗ V 00
j

)
×
(
V 00
j ⊗ V dd

j ⊗ V 00
j

)
×
(
V 00
j ⊗ V 00

j ⊗ V dd
j

)
,

(20)
and V 00

j = V 0
j ∩H 1

0 (0, 1). A scaling function basis of Vdiv,0
j is then given by

�
div,0,1
j,k := curl

⎡
⎢⎣ 0

0
ϕddj,k1

⊗ ϕddj,k2
⊗ ϕ00

j,k3

⎤
⎥⎦ =
⎡
⎢⎣ ϕddj,k1

⊗ (ϕddj,k2
)′ ⊗ ϕ00

j,k3

−(ϕddj,k1
)′ ⊗ ϕddj,k2

⊗ ϕ00
j,k3

0

⎤
⎥⎦ ,

(21)

�
div,0,2
j,k := curl

⎡
⎢⎣ϕ

00
j,k1

⊗ ϕddj,k2
⊗ ϕddj,k3

0
0

⎤
⎥⎦ =
⎡
⎢⎣ 0
ϕ00
j,k1

⊗ ϕddj,k2
⊗ (ϕddj,k3

)′

−ϕ00
j,k1

⊗ (ϕddj,k2
)′ ⊗ ϕddj,k3

⎤
⎥⎦ ,

(22)

�
div,0,3
j,k := curl

⎡
⎢⎣ 0
ϕddj,k1

⊗ ϕ00
j,k2

⊗ ϕddj,k3

0

⎤
⎥⎦ =
⎡
⎢⎣−ϕ

dd
j,k1

⊗ ϕ00
j,k2

⊗ (ϕddj,k3
)′

0
(ϕddj,k1

)′ ⊗ ϕ00
j,k2

⊗ ϕddj,k3

⎤
⎥⎦ ,

(23)
where {ϕ00

j,k}1≤k≤Nj−3 = {ϕ0
j,k}1≤k≤Nj−3 is the scaling function basis of V 00

j [28].

Similarly, to construct no-slip divergence-free wavelets associated with Vdiv,0
j , it

suffices to replace the wavelets of Wd
j by those of Wdd

j = V dd
j+1 ∩ (Ṽ dd

j)⊥ in the

formula that defines the functions {�div,ε
j ,k

}ε=1,2,3, see [21, 32]. Let now P
div,0
j be the

L2-orthogonal projector from (H 1
0 (�))

3 onto Vdiv,0
j . Again, for all u ∈ (H s(�))3

with 1 ≤ s ≤ r − 1, the following Jackson type estimation holds, for some C > 0:

‖u − P
div,0
j (u)‖H 1

0
≤ C 2−j (s−1)‖u‖Hs . (24)

2.3 Extension to Higher Dimension d > 3

The divergence-free wavelet basis construction is not limited to dimension 3 only.
Several applications, such as image warping [29], optimal transportation [18], or
magnetohydrodynamic turbulence [12], involve divergence-free vector fields living
in spaces of dimension d greater than 3. This divergence-free constraint for the
solution leads in general to solve a Poisson equation difficult to handle. Therefore,

46 S. K. Harouna and V. Perrier

it would be of great interest to have at hand divergence-free bases that enable to
encode such solution.

The construction of previous section extends to larger dimensions d > 3 readily.
As in [10, 25], we obtain in this case (d−1) types of linear independent divergence-
free wavelet functions. For 1 ≤ i ≤ d − 1, the general formula of these wavelets is
given by

�
div,i
j ,k :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
2ji+1ψ0

j1,k1
⊗ · · · ⊗ ψ0

ji−1,ki−1
⊗ ψd

ji ,ki
⊗ ψ0

ji+1,ki+1
⊗ · · · ⊗ ψ0

jd ,kd

−2jiψ0
j1,k1

⊗ · · · ⊗ ψ0
ji ,ki

⊗ ψd
ji+1,ki+1

⊗ ψ0
ji+1,ki+2

⊗ · · · ⊗ ψ0
jd ,kd

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(25)
where only the row i and row i + 1 are not zeros.

Recalling that (ψd
ji ,ki

)′ = 2jiψ0
ji ,ki

, we easily verify that ∇ ·�div,i
j ,k

= 0, and that �
div,i

j ,k

satisfy the boundary condition �
div,i
j ,k · n = 0. The space Wdiv

j spanned by these

wavelets is included in the following standard BMRA of (L2(�))d :

Vj = V1
j × · · · × Vd

j with Vi
j = V

δ1,i
j ⊗ · · · ⊗ V

δd,i
j , 1 ≤ i ≤ d, (26)

where δi,j denotes the Kronecker symbol. To satisfy the free-slip boundary condi-
tion, we must replace V 1

j by V d
j in (26). We also emphasized that the corresponding

spaces Vdiv
j = Vj ∩ Hdiv(�) = Pj (Hdiv(�)) provide a multiresolution analysis

of Hdiv(�). Following a similar approach as for d = 3, and taking (d − 1) scaling
functions, we obtain a divergence-free basis of Vdiv

j .

3 Divergence-Free Wavelet Schemes for the Navier–Stokes
Equations

The motions of incompressible homogeneous viscous flows, confined in an open
domain � ⊂ R

d with smooth boundary � = ∂�, are governed by the time-
depending Navier–Stokes equations:

⎧⎨
⎩
∂tv − ν�v + (v · ∇)v +∇p = f ,

∇ · v = 0,
(27)

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 47

where v ∈ R
d denotes the velocity vector field, p ∈ R is the pressure, ν > 0 is

the kinematic viscosity, and f is the external force. Without loss of generality, we
will assume that f = 0. System (27) is supplemented by boundary conditions, and
throughout this section, we will assume the no-slip boundary condition v = 0 on �.
Non-homogeneous Dirichlet boundary condition v = g on � will be handled in the
numerical experiments.

The objective in this section is to study the numerical approximation of (27)
using divergence-free wavelet-based methods. These schemes use the divergence-
free wavelet Leray projector to decouple the computation of the velocity and the
pressure, as in the case of the Fourier spectral method [8, 9, 22]; thus, they avoid
the resolution of a Stokes problem. In this section, we propose to investigate
the generalization of the method of [22] to the three-dimensional Navier–Stokes
equations. We begin with the description and the study of the temporal and spatial
discretizations.

3.1 Temporal Discretization

Let δt > 0 be a time step. For 0 ≤ n ≤ N , we set tn = nδt such that 0 =
t0 < t1 < · · · < tN = T is a uniform partition of the computational time interval.
We denote by vn and pn the approximations of v(tn, x) and p(tn, x), where (v, p)
is a smooth solution of (27). To compute (vn, pn), the approach of [22] consists
in replacing the classical correction step of the projection method [4, 24, 33] by
a divergence-free wavelet Leray–Hodje projector. Specifically, since (H 1

0 (�))
d =

Hdiv,0(�)⊕Hdiv,0(�)
⊥, there exists �n+1, a scalar potential in L2(�) such that

ṽn+1 = vn+1 +∇�n+1, with ṽn+1 ∈ (H 1
0 (�))

d . (28)

Then, substituting this change of variable in the Navier–Stokes equations (27) and
using a projection method time step, with an implicit Euler scheme in time for the
diffusion term, we get

• Prediction step:

⎧⎪⎨
⎪⎩

ṽn+1−vn

δt
+ (vn · ∇)vn = ν�ṽn+1,

ṽn+1 = 0, on ∂�.

(29)

48 S. K. Harouna and V. Perrier

• Correction step:

⎧⎪⎪⎨
⎪⎪⎩

vn+1 = P
div,0(ṽn+1),

pn+1 = 1
δt
�n+1 − ν��n+1,

(30)

where the correction step of the standard projection method has been modified by
introducing P

div,0, the L2-orthogonal projector from (H 1
0 (�))

2 onto Hdiv,0(�).
Remark that the Navier–Stokes formulation (29) and (30) is no more than a change
of variables, whereas the classical projection method is an operator splitting, which
implies a loss of precision in time.

The problem defined by (29) and (30) is well posed, in the sense that the
numerical solution ṽn+1 exists for given smooth initial data. Indeed, let us define
the bilinear form a(., .):

a(u, v) =
∫
�

u · v + νδt

∫
�

∇u : ∇v, ∀ u, v ∈ H 1
0 (�)

d, (31)

and the linear form L:

L(v) =
∫
�

vn · v − δt

∫
�

(vn · ∇)vn · v,∀ v ∈ H 1
0 (�)

d. (32)

Formal computations lead to

a(v, v) =
∫
�

v · v + νδt

∫
�

|∇v|2 ≥ min{1, νδt} ‖v‖2
H 1 , ∀v ∈ H 1

0 (�)
d,

and

|L(v)| ≤ (‖vn‖H 1 + δt ‖vn‖L∞‖vn‖H 1
) ‖v‖H 1 , ∀ v ∈ H 1

0 (�)
d.

By the Lax–Milgram theorem [16, 34], there exists a unique ṽn+1 ∈ H 1
0 (�)

d ,
solution of (29) and vn+1 = P

div,0(ṽn+1). The spatial approximation of these
solutions is detailed in next subsection.

3.2 Spatial Discretization

For simplicity, this part takes place in dimension d = 3 but can be generalized in
general dimension. At a fixed spatial resolution j ≥ jmin, the numerical solutions

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 49

ṽn and vn of (29-30) are searched as the following linear combination of wavelets:

ṽn
j =

3∑
ε=1

⎛
⎜⎝ ∑
jmin−1≤|j |<j

∑
k

d̃
n,ε

j ,k
�ε
j ,k

⎞
⎟⎠ and vn

j
=

2∑
ε=1

⎛
⎜⎝ ∑
jmin−1≤|j |<j

∑
k

d
div,n,ε

j ,k
�
div,0,ε
j ,k

⎞
⎟⎠ ,

where for ε = 1, 2, 3, �ε
j ,k

denote the usual tensor product wavelets of the space

Vdd
j introduced in (20), whose (vector) scaling functions �ε

j,k
are recalled below:

�1
j,k =

⎡
⎢⎢⎣
ϕdj,k1

⊗ ϕ00
j,k2

⊗ ϕ00
j,k3

0

0

⎤
⎥⎥⎦ , �2

j,k =

⎡
⎢⎢⎣

0

ϕ00
j,k1

⊗ ϕdj,k2
⊗ ϕ00

j,k3

0

⎤
⎥⎥⎦ ,�3

j,k =

⎡
⎢⎢⎣

0

0

ϕ00
j,k1

⊗ ϕ00
j,k2

⊗ ϕdj,k3

⎤
⎥⎥⎦ .

For the wavelet basis �ε
j ,k

, we adopted the convention that at index jmin − 1, the
wavelets have to be replaced by scaling functions:

�ε
jmin−1,k = �ε

jmin,k
and �

div,0,ε
jmin−1,k = �

div,0,ε
jmin,k

.

We use a Galerkin method to compute the set of coefficients (d̃
n+1,ε
j ,k

) and (d
div,n+1,ε
j ,k

) on
these wavelet bases. The numerical resolution of (29-30) thus yields to the resolution
of two linear systems:

Mj (d̃
n+1,ε
j,k) = Aj

(
(d

n,ε
j,k)+ δt (h

n,ε
j ,k)
)
, (33)

and

M
div
j (d

div,n+1,ε
j ,k) =

(
(〈ṽn+1

j ,�
div,0,ε
j ,k 〉)

)
, (34)

where d
n,ε

j ,k
and h

n,ε

j ,k
are, respectively, the coefficients of the projection of vn and

(vn · ∇)vn onto the basis {�ε
j ,k

}. The nonlinear term (vn · ∇)vn is computed at grid
collocation points before its projection onto the wavelet space, where the gradient
operator ∇ is approximated using a finite difference method of the same order as
the scaling function ϕ1 polynomial approximation order [22]. Likewise, Aj and Mj

correspond, respectively, to the matrices of the projection of the identity operator
and 1− δt� onto this wavelet space, and M

div
j denotes the divergence-free wavelet

basis Gramian matrix. In practice, one can take advantage of the tensor product
construction of the above wavelet bases, thus reducing the storage and the numerical
complexity of vector-matrix multiplication in (33) and (34). For the numerical
computation and properties of these matrices and projections, the reader is referred
to [1, 20, 22].

The numerical schemes (29–30) and (33–34) are stable and consistent with
the Navier–Stokes equations (27). This can be deduced from the numerical error
estimations.

50 S. K. Harouna and V. Perrier

3.3 Numerical Error Estimations

Let vnj be the numerical solution of (33) and (34). If the initial condition v0 is regular
enough, the following lemma is verified:

Lemma 1 For vnj an approximated solution of (30) given by (33) and (34), with an
appropriated time step δt , we have

‖vnj‖2
L2 ≤ C(v0, ν) (35)

and

νδt

n∑
k=1

‖∇vkj‖2
L2 ≤ C(v0, ν), (36)

where C(v0, ν) is a positive constant depending only on the initial data.

Proof. To prove the lemma, it suffices to show that

‖vnj‖2
L2 + νδtC

n∑
k=1

‖∇vkj‖2
L2 ≤ C(v0, ν), (37)

and this is done by induction with similar arguments as in the proof of Lemma 5.9
of [34]. Let us introduce a constant C(v0, ν) such that

C(v0, ν) = ‖v0‖2
L2 + δt22jd‖v0‖2

L2‖∇v0‖2
L2 . (38)

Now, we assume that (37) holds for some n ≥ 0. Then, using (31) and (32), the
variational formulation for the solution ṽn+1

j reads

a(ṽn+1
j , v) = L(v), ∀ v ∈ Vd

j , for j > jmin. (39)

Since ∇ · vn+1
j = 0, taking 2vn+1

j as a test function in (39) and replacing ṽn+1
j by

its exact expression in (28) leads to

‖vn+1
j ‖2

L2 −‖vnj‖2
L2 +‖vn+1

j −vnj‖2
L2 +2νδt‖∇vn+1

j ‖2
L2 = −2δt〈(vnj ·∇)vnj , vn+1

j 〉.
(40)

Otherwise, we have

δt〈(vnj · ∇)vnj , vn+1
j

〉 = δt〈(vnj · ∇)vnj , vn+1
j

− vnj 〉 ≤ δt‖vnj ‖L∞‖∇vnj‖L2‖vn+1
j

− vnj ‖L2

≤ δt2

2
‖vnj ‖2

L∞‖∇vnj‖2
L2 + 1

2
‖vn+1

j
− vnj‖2

L2 .

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 51

Thus, collecting these estimations together, we deduce that

‖vn+1
j ‖2

L2 − ‖vnj‖2
L2 + 2νδt‖∇vn+1

j ‖2
L2 ≤ δt2‖vnj‖2

L∞‖∇vnj‖2
L2 . (41)

We recall that vnj ∈ Vd
j for j > jmin. As we are in finite space dimension, we have

‖vnj‖2
L∞ ≤ 2jd‖vnj‖2

L2, (42)

and Eq. (41) becomes

‖vn+1
j ‖2

L2 − ‖vnj‖2
L2 + 2νδt‖∇vn+1

j ‖2
L2 ≤ δt22jd‖vnj‖2

L2‖∇vnj‖2
L2 . (43)

For n = 1, (41) reads

‖v1
j‖2

L2 + 2νδt‖∇v1
j‖2

L2 ≤ ‖v0
j‖2

L2 + δt22jd‖v0
j‖2

L2‖∇v0
j‖2

L2 . (44)

This is the statement of the lemma with

C(v0, ν) ≥ ‖v0
j‖2

L2 + δt22jd‖v0
j‖2

L2‖∇v0
j‖2

L2 . (45)

Summation over n in (41) leads to

‖vn+1
j ‖2

L2 − ‖v0
j‖2

L2 + 2νδt
n∑

k=0

‖∇vk+1
j ‖2

L2 ≤ δt22jd
n∑

k=0

‖vkj‖2
L2‖∇vkj‖2

L2 ,(46)

and rewritten this, we get

‖vn+1
j ‖2

L2 + 2νδt‖∇vn+1
j ‖2

L2 + 2νδt
n∑

k=1

‖∇vkj ‖2
L2 ≤ C(v0, ν) + δt22jdC(v0, ν)

n∑
k=1

‖∇vkj‖2
L2 ,

which implies

‖vn+1
j ‖2

L2 + 2νδt‖∇vn+1
j ‖2

L2 + δt[2ν − δt2jdC(v0, ν)]
n∑

k=1

‖∇vkj‖2
L2 ≤ C(v0, ν).

(47)
From (47), to end the proof of the lemma, we take δt small enough such that

δt2jdC(v0, ν) < 2ν. (48)

��
Now, we will analyze the behavior of the local error en = v(tn) − vn, where v is
a smooth solution of the exact Navier–Stokes equations (27) and vn the numerical
solution of and (30). With the help of the Lemma 1, we get

52 S. K. Harouna and V. Perrier

Proposition 2 Let v ∈ H 2(0, T ;L2(�)d) ∩ C0(0, T ;W 1,+∞(�)d ∩ H 1
0 (�)

d) be
a solution of (27) and vn a solution of (29 -30). Denoting by en = v(tn) − vn the
local error, we have

max
n

‖en‖2
L2(�)d

−−−→
δt→0

0. (49)

Proof. According to (29) and (30), we see that

v(tn+1)− v(tn)− δtν�v(tn+1)+ δt (v(tn) · ∇)v(tn) = δtεn+1 − δt∇p(tn),
(50)

where εn denotes the consistency error. Since ∇ · en+1 = 0, taking 2en+1 as test
function in the variational formulations and using similar arguments as in the proof
of Lemma 1 allow to get

‖en+1‖2
L2 − ‖en‖2

L2 + ‖en+1 − en‖2
L2 + 2δtν‖∇en+1‖2

L2

≤ 2δt‖vn‖L∞‖∇en‖L2‖en+1 − en‖L2 + 2δt‖en‖L2‖∇v(tn)‖L∞‖en+1‖L2

+ 2δt〈εn+1, en+1〉. (51)

Poincaré and Young’s inequalities lead to

‖en+1‖2
L2 − ‖en‖2

L2 + δtν‖∇en+1‖2
L2 ≤ δt2‖vn‖2

L∞‖∇en‖2
L2 (52)

+ C(�)2δt

ν
‖en‖2

L2‖∇v(tn)‖2
L∞ + 2δt〈εn+1, en+1〉.

Since ∇ · en = 0, using (50), we have

δt〈εn+1, en+1〉 = 〈v(tn+1)− v(tn)− δtν�v(tn+1)+ δt (v(tn) · ∇)v(tn), en+1〉,
(53)

and replacing −�v(tn+1) by

− ν�v(tn+1) = −∂tv(tn+1)− (v(tn+1) · ∇)v(tn+1)− ∇p(tn+1), (54)

we obtain

δt〈εn+1, en+1〉
= 〈v(tn+1)− v(tn)− δt∂tv(tn+1)+ δt[(v(tn) · ∇)v(tn)− (v(tn+1) · ∇)v(tn+1)], en+1〉

= δt〈 1

δt

∫ tn+1

tn

(tn − t)∂t tv(t)dt −
∫ tn+1

tn

∂t [(v(t) · ∇)v(t)]dt, en+1〉

≤
(
δt3/2
√

3
‖∂ttv‖L2(tn,tn+1;L2) + δt3/2‖∂t [(v · ∇)v]‖L2(tn,tn+1;L2)

)
‖en+1‖L2 (55)

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 53

Again, using Young’s inequality, we have

2δt〈εn+1, en+1〉 ≤ 4C(�)2δt2

3ν
‖∂ttv‖2

L2(tn,tn+1;L2)
+ 4C(�)2δt2

ν
‖∂t [(v · ∇)v]‖2

L2(tn,tn+1;L2)

+νδt

2
‖∇en+1‖2

L2 ,

and from the maximum principle and regularity of the solution of elliptic problem,
we infer that

‖vn‖L∞ � ‖vnj‖L∞ .

Thus, (52) becomes

‖en+1‖2
L2 − ‖en‖2

L2 + δtν

2
‖∇en+1‖2

L2 ≤ δt22jd‖vnj‖2
L2‖∇en‖2

L2 + C(�)2δt

ν
‖en‖2

L2‖∇v(tn)‖2
L∞

+ 4C(�)2δt2

3ν
‖∂ttv‖2

L2(tn,tn+1;L2)

+ 4C(�)2δt2

ν
‖∂t [(v · ∇)v]‖2

L2(tn,tn+1;L2)
.

Summation over n in (52) shows that

‖en+1‖2
L2 − ‖e0‖2

L2 + δtν

2

n+1∑
k=1

‖∇ek‖2
L2 ≤ δt22jd

n∑
k=0

‖vkj‖2
L2‖∇ek‖2

L2

+C1δt

n∑
k=0

‖ek‖2
L2 + C2δt

2,

with

C1 = C(�)2

ν
‖∇v‖2

L∞(0,T ,L∞), C2 = 4C(�)2

3ν
‖∂ttv‖2

L2(0,T ;L2)
+ 4C(�)2

ν
‖∂t [(v ·∇)v]‖2

L2(0,T ;L2)
.

Since ‖vkj‖2
L2 ≤ C(v0, ν) according to Lemma 1, we have

‖en+1‖2
L2 + δtν

2
‖∇en+1‖2

L2 + (
δtν

2
− δt22jdC(v0, ν))

n∑
k=1

‖∇ek‖2
L2

≤ λ0 + C1δt

n∑
k=0

‖ek‖2
L2 + C2δt

2,

where

λ0 = ‖e0‖2
L2 + δt22jdC(v0, ν)‖∇e0‖2

L2 .

54 S. K. Harouna and V. Perrier

Then, choosing δt small enough such that

ν

2
− δt2jdC(v0, ν) > 0, (56)

by the discrete Gronwall lemma, see [34, 37], we deduce that

‖en‖2
L2 ≤

(
λ0 + C2δt

2
)

exp(C1T) (57)

��
For the numerical error enj = v(tn)− vnj , we can write

‖enj‖2
L2 ≤ 2

(
‖v(tn)− vn‖2

L2 + ‖vn − vnj‖2
L2

)
,

and

‖vn − vnj‖2
L2 ≤ C‖vn − P

div,0
j (vn)‖2

L2 .

Thus, due to the Jackson estimation (24) and Proposition 2, we obtain the following
convergence result:

‖enj‖2
L2(�)d

−−−−−−−→
δt→0,δx→0

0. (58)

4 Numerical Results

We present in this section numerical results on the simulation of the Navier–Stokes
equations, obtained using the time and spatial discretization (29-30) and (33-34).
These results will be compared to those of the literature for method validation.

4.1 Divergence Free Wavelet Illustration

We start by presenting the wavelet bases generators introduced in Sect. 2.1, used in
all the numerical experiments that follow. We chose as scaling function generators
(ϕ1, ϕ̃1), the biorthogonal splines of order 4: r = r̃ = 4. This corresponds to four
vanishing moments for each wavelet generator ψ1 and ψ̃1. We plot in Fig. 1 the
graph of ϕ1 and its derivative that satisfies (ϕ1(x))′ = ϕ0(x) − ϕ0(x − 1). Thus,
the scaling function ϕ0 can reproduce polynomials up to order 3 (or equivalently

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 55

0 2 4 6 8 10 0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Fig. 1 Primal biorthogonal spline scaling function generator ϕ1 (left) and its derivative (ϕ1(x))′ =
ϕ0(x) − ϕ0(x − 1) (right) with order parameters r = r̃ = 4. (a) ϕ1. (b) (ϕ1)′

-1

-0.5

0

0.5

1

1.5

2

(a)

0 2 4 6 8 10 0 2 4 6 8 10
-6

-4

-2

0

2

4

6

(b)

Fig. 2 Primal biorthogonal spline wavelet generator ψ1 (left) and its derivative (ψ1(x))′ =
4ψ0(x) (right) with order parameters r = r̃ = 4. (a) ψ1. (b) 4ψ0

of degree up to 2). Figure 2 shows the graph of the wavelet generators ψ1 and
(ψ1)′ = 4ψ0. The biorthogonal functions (ϕ̃1, ψ̃1) are plotted in Fig. 3.

As mentioned in Sect. 2.2, the above scaling functions allow to construct, in
dimension 3, three divergence-free scaling function generators, defined by (10–12).

We plot in Fig. 4 the isosurface of the magnitude of some internal scaling
functions �

div,1
j,k

, �
div,2
j,k

, and �
div,3
j,k

, where for a vector function v = (v1, v2, v3),

the magnitude is defined as |v| =
√
v2

1 + v2
2 + v2

3 . Likewise, the corresponding
divergence-free wavelet generators magnitude isosurfaces are shown in Fig. 5.

56 S. K. Harouna and V. Perrier

20 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)
0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Fig. 3 Dual biorthogonal spline scaling function generator ϕ̃1 (left) and the dual wavelet generator
ψ̃1 (right) with order parameters r = r̃ = 4. (a) ϕ̃1. (b) ψ̃1

Fig. 4 Divergence-free scaling functions magnitude isosurface for biorthogonal spline generators
(ϕ1, ϕ̃1) of order 4. (a) |�div,1

j,k
| = 0.2. (b) |�div,2

j,k
| = 0.2. (c) |�div,3

j,k
| = 0.2

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 57

4.2 Analyses of Time and Space Convergence Rates

In this part, we study the time and space convergence rates provided by the
divergence-free wavelet-based projection method (29–30)–(33–34) introduced in
Sect. 3.

Fig. 5 Divergence-free wavelets magnitude isosurface or biorthogonal spline generators (ϕ1, ϕ̃1)

of order 4. (a) |�div,1
j ,k

| = 0.4. (b) |�div,2
j ,k

| = 0.4. (c) |�div,3
j ,k

| = 0.4

58 S. K. Harouna and V. Perrier

The spatial discretization of the divergence-free wavelet-based projection method
uses the scaling function and wavelet generators of Sect. 4.1. In practice, one time
iteration step (33–34) splits into the following steps:

Step 0: Start with an initial velocity v0(x) = v(x, 0) defined on dyadic grid points
at space resolution j > jjmin.

– Compute its wavelet coefficients [d0,ε
j ,k

].

– Compute the nonlinear term (v0 · ∇)v0 using a fourth-order finite
difference scheme, and its wavelet coefficients [h0,ε

j ,k
] in Vd

j .

For 1 ≤ n ≤ N , repeat

Step 1: Find [d̃n+1,ε
j ,k

] solution of (33).
Step 2: Find [ddiv,n+1,ε

j ,k
] solution of (34).

Step 3: Compute [dn+1,ε
j ,k

] from [ddiv,n+1,ε
j ,k] using a change of basis [21] and extrapolate

vn+1
j at grid points to compute the nonlinear term, and update.

Remark 1 An explicit optimal preconditioner is known for the matrices Mj and
M

div
j , see [6, 21] and references therein. Therefore, we use a preconditioned

conjugate gradient method to solve systems (33) and (34). Moreover, due to the
tensor product construction of wavelet bases, the matrix-vector product in (33) and
(34) only requires the use of one-dimensional basis stiffness matrices [20, 22].
Therefore, the numerical complexity to solve (33) and (34) is about O(N4

j), with

Nj the dimension of the one-dimensional space V 1
j .

The time discretization convergence rate of the proposed divergence-free
wavelet-based projection method is studied on a designed solution (v, p) defined
by

⎧⎪⎪⎨
⎪⎪⎩

v1(x, y, z, t) = 2e−t (x4 + x2 − 2x3)(2y + 4y3 − 6y2)(2z+ 4z3 − 6z2),

v2(x, y, z, t) = −e−t (2x + 4x3 − 6x2)(y4 + y2 − 2y3)(2z+ 4z3 − 6z2),

v3(x, y, z, t) = −e−t (2x + 4x3 − 6x2)(2y + 4y3 − 6y2)(z4 + z2 − 2z3),

p(x, y, t) = cos(t)[(x2 − x)(y2 − y)(z2 − z)]2.
(59)

This solution satisfies Dirichlet homogeneous boundary conditions v|∂� = 0, where
� = [0, 1]3 and appropriate forcing terms f are added to ensure that (59) is an exact
solution of (27). Since the quadrature formula for the projection onto Vd

j is exact
up to order 3, which is the polynomial reproduction order of the scaling function
ϕ0, the spatial discretization error for the solution (59) is negligible compared to
the time discretization error for δt < 0.1. Table 1 shows different errors between
the exact solution projected onto Vd

j (with a space resolution fixed at j = 7 and

viscosity ν = 2−j), and the numerical solution of (29–30)–(33–34), in terms of
the discretization time step δt . For each norm considered, the expected first-order
convergence rate is obtained.

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 59

Table 1 Time discretization
relative errors according to
the time step δt , for the
solution (59) at final time
T = 1, j = 7, and ν = 2−j

Backward-Euler

δt 0.05 0.025 0.0166 Order

L∞-error 7.2549E−5 3.6427E−5 2.4318E−5 0.99159

L2-error 2.9129E−5 1.4626E−5 9.7643E−6 0.99157

H 1-error 2.9031E−4 1.4576E−4 9.7312E−5 0.99159

Table 2 Time discretization
relative errors according to
the time step δt , for the
solution (59) at final time
T = 1, j = 7, and ν = 2−j

Crank–Nicolson

δt 0.05 0.025 0.0166 Order

L∞-error 6.1014E−7 1.5292E−7 6.8247E−8 1.98770

L2-error 2.4478E−7 6.1226E−7 2.7271E−8 1.99124

H 1-error 2.4476E−6 6.3177E−6 3.1354E−7 1.87311

Table 3 Spatial
discretization errors
according to the resolution j ,
for final time T = 1

Backward-Euler

j 5 6 7 Order

L2-error 1.40145E−3 6.2469E−5 3.2643E−6 4.3729

L∞-error 5.4952E−3 2.7106E−4 1.42890E−5 4.2935

H 1-error 9.2027E−2 7.7476E−3 6.5306E−4 3.5693

Going further, we also analyzed the convergence rate of a second-order numerical
scheme: Crank–Nicolson for the diffusion part and Adams–Bashforth for the
nonlinear term [22]. The results of this experiment are given in Table 2, where again
the expected order is achieved.

Similarly, we investigate the spatial projection error convergence rate of the pro-
posed divergence-free wavelet-based projection, using the following exact solution:

⎧⎪⎪⎨
⎪⎪⎩

v1(x, y, z, t) = 2e−t sin2(2πx) sin(4πy) sin(4πz),
v2(x, y, z, t) = −e−t sin(4πx) sin2(2πy) sin(4πz),
v3(x, y, z, t) = −e−t sin(4πx) sin(4πy) sin2(2πz),
p(x, y, t) = cos(t)[(x2 − x)(y2 − y)(z2 − z)]2.

(60)

The simulation time step is δt = 0.0001, which is very small compared to the
maximal spatial resolution j = 7 (δx = 2−7 = 0.0078125) and the used kinematic
viscosity ν = 2−3j . Table 3 shows the spatial error for the final time T = 1, using
the first-order accurate backward-Euler time scheme: as the solution is C∞, the
convergence rate given by Table 3 saturates due to the number of vanishing moments
of our wavelet family (equal to 3 in our spline approximation), and we lose one order
for the H 1-error. Remark that the use of divergence-free wavelet basis induces no
divergence error on the solution vnj in Vd

j .

60 S. K. Harouna and V. Perrier

4.3 Simulation of 3D Lid-Driven Flows

In addition to these preliminary studies, the present method was tested on the
numerical simulation of 3D lid-driven flows in a cubic cavity � = [0, 1]3, with
Reynolds numbers Re = 100 and Re = 1000. These flows have been extensively
studied in the literature, and there are a lot of reference results and solutions, mainly
for the two-dimensional flows, see [11]. The simulations used a Matlab code, and
the discretization parameters are δt = 0.005 and δx = 2−j , where j = 6 or j = 7
is the considered spatial resolution.

The validation is done by analyzing the flow’s steady state. Specifically, we
compare our simulation horizontal velocity vx and vertical velocity vz profiles in
the middle of the cavity to the results of [11]. For j = 6, Figs. 6 and 7 show
the plot of these profiles, respectively, for the Reynolds numbers Re = 100 and
Re = 1000. As observed, despite of some small discrepancies for z ∈ [0, 0.2] in the
velocity component vz, our results are in agreement with those of [11]. Moreover, as
illustration, we plot in Fig. 8 the velocity magnitude for the simulations performed
at resolution j = 7. As expected, this highlights the presence of a cavity central
vortex.

We also analyze the divergence-free wavelet representation of the solution. For
a 3D array A = [Aijk] of scalars, we define its magnitude as |A| = [|Aijk|], the
array of coefficients modulus |Aijk|. Figures 9 and 10 show the map of divergence-
free wavelet coefficient magnitude of the solutions, respectively, for the Reynolds

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Present
Ding et al

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Present
Ding et al

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 6 Steady-state velocity profile in the middle of the cavity: vx(0.5, 0.5, z) (left) and
vz(x, 0.5, 0.5) (right). Solid line (present work) and circle (reference [11]) for the Reynolds number
Re = 100 and the spatial resolution j = 6

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 61

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Present
Ding et al

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Present
Ding et al

Fig. 7 Steady-state velocity profile in the middle of the cavity: vx(0.5, 0.5, z) (left) and
vz(x, 0.5, 0.5) (right). Solid line (present work) and circle (reference [11]) for the Reynolds number
Re = 1000 and the spatial resolution j = 6

0

0

23

23

64
X

Z 46

69

69

23921
921

23

64
Y

64Y

69

00
69

23

23

64

Z

64
X

69

69

921
921

129
921

0.0e+00 1.0e+011 2 3 4 5 6 7 8 9

0

0

32

23

64
X

Z 46

69

69

23921
921

23

64
Y

64Y

69

00
69

23

23

64

Z

64
X

69

69

921
921

921
921

0.0e+00 1.0e+011 2 3 4 5 6 7 8 9

Fig. 8 Isosurface of the steady-state velocity magnitude |v| for the Reynolds number Re = 100
(left) and Re = 1000 (right), at the spatial resolution j = 7

number Re = 100 and Re = 1000. Clearly, these figures emphasize the quality
and the sparsity of such a solution approximation. This suggests the development of
adaptive methods with these wavelet bases to improve the numerical complexity. As
mentioned before, the actual theoretical complexity of one iteration in the method
is about O(N4

j).

62 S. K. Harouna and V. Perrier

Fig. 9 Isosurface of the steady-state velocity divergence-free wavelets coefficients magnitude
|ddiv,1

j ,k
| (left) and |ddiv,2

j ,k
| (right), for the Reynolds number Re = 100 and 4 = jmin ≤ j1, j2, j3 ≤

j = 7

Fig. 10 Isosurface of the steady-state velocity divergence-free wavelets coefficients magnitude
|ddiv,1

j ,k
| (left) and |ddiv,2

j ,k
| (right), for the Reynolds number Re = 1000 and 4 = jmin ≤ j1, j2, j3 ≤

j = 7

5 Conclusion

We presented a construction of wavelets linked by differentiation and integration
that allows to construct free-slip and no-slip divergence-free wavelets on the
hypercube. These divergence-free wavelets are used to provide the Helmholtz–
Hodge decomposition and a change of variables in a first-order accurate time
integration for the resolution of Navier–Stokes, similar to the Gauge method. This
scheme avoids the use of the projection method Poisson solver that imposes non-
physical boundary conditions on the pressure. Our method was tested and validated
on the simulation of the well-known 3D lid-driven cavity flow for the moderate
Reynolds numbers Re = 100 and Re = 1000. From the simplicity and precision
of this method, we claim that adaptive algorithms can be developed within this
approach: mainly for the simulation of turbulent flows at high Reynolds number,
including sub-grid models near walls.

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 63

Appendix

Lemma 2 [19, 25] Let θ ∈ L2(R) be a compactly supported function, Cα-
differentiable, α > 0, and with at least one vanishing moment

∫
R
θ = 0. Then,

there is a positive constant C(θ) such that

∀ (λj,k) ∈
2(Z2), ‖
∑
j,k∈Z

λj,kθj,k‖L2(R) ≤ C(θ)

⎛
⎝∑
j,k∈Z

|λj,k|2
⎞
⎠

1/2

, (A.1)

with θj,k = 2j/2θ(2j .− k).

Proof. The Cα assumption on θ leads to |〈θj,k, θj ′,k′ 〉| ≤ C2−|j−j ′|(1/2+α). As θ is
compactly supported, for fixed indices j , k, and j ′, we have 〈θj,k, θj ′,k′ 〉 = 0 except
for some k′: k′ ≤ M if j ′ ≤ j and k′ ≤ M2(j

′−j) if j ′ ≥ j , where M is a positive
constant independent of j , j ′, and k. Then,

sup
j,k

∑
j ′,k′

|〈θj,k, θj ′,k′ 〉|2(j−j ′)/2 < +∞,

and since

‖
∑
j,k∈Z

λj,kθj,k‖2
L2(R)

≤
⎛
⎝∑
j ′,k′

∑
j,k∈Z

|λj,k |2|〈θj,k, θj ′,k′ 〉|2(j−j ′)/2

⎞
⎠

1/2

·
⎛
⎝∑
j ′,k′

∑
j,k∈Z

|λj,′k′ |2|〈θj,k, θj ′,k′ 〉|2(j ′−j)/2

⎞
⎠

1/2

,

��
the lemma is proved.

References

1. Beylkin, G.: On the representation of operator in bases of compactly supported wavelets. SIAM
J. Numer. Anal. 6, 1716–1740 (1992)

2. Canuto, C., Masson, R.: Stabilized wavelet approximations of the Stokes problem. Math.
Comp. 70, 1397–1416 (2001)

3. Charton, P., Perrier, V.: A pseudo-wavelet scheme for the two-dimensional Navier-Stokes
equations. Comp. Appl. Math. 15, 137–157 (1996)

4. Chorin, A.J.: Numerical simulation of the Navier-Stokes equation. Math. Comp. 22, 745–762
(1968)

64 S. K. Harouna and V. Perrier

5. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl.
Comput. Harmon. Anal. 1, 54–81 (1993)

6. Cohen, A., Masson, R.: Wavelet methods for second order elliptic problems – preconditioning
and adaptivity. SIAM J. Sci. Comp. 21, 1006–1026 (1999)

7. Dahmen, W., Urban, K., Vorloeper, J.: Adaptive wavelet methods-basic concepts and
applications to the Stokes problem. In: Zhou, D.-X. (ed.) Wavelet Analysis–Twenty Years
Developments, pp. 39–80. World Scientific, New Jersey, (2002)

8. Deriaz, E., Perrier, V.: Divergence-free and curl-free wavelets in 2D and 3D, application to
turbulent flows. J. Turbu. 7, 1–37 (2006)

9. Deriaz, E., Perrier, V.: Direct numerical simulation of turbulence using divergence-free
wavelets. SIAM Multis. Model. Simul. 7, 1101–1129 (2008)

10. Deriaz, E., Perrier, V.: Orthogonal Helmholtz decomposition in arbitrary dimension using
divergence-free and curl-free wavelets. Appl. Comput. Harmon. Anal. 26, 249–269 (2009)

11. Ding, H., Shu, C., Yeo, K.S., Xub, D.: Numerical computation of three-dimensional incom-
pressible viscous flows in the primitive variable form by local multiquadric differential
quadrature method. Comput. Methods Appl. Mech. Eng. 195, 516–533 (2006)

12. Elsasser, W.M.: The hydromagnetic equations. Phy. Rev. 79, 183–183 (1950)
13. Farge, M.: Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 24,

395–457 (1992)
14. Farge, M., Kevlahan, N., Perrier, V., Goirand, E.: Wavelets and turbulence. Proc. IEEE 84,

639–669 (1996)
15. Frohlich, J., Schneider, K.: Numerical simulation of decaying turbulence in an adaptive wavelet

basis. Appl. Comput. Harm. Anal. 3, 393–397 (1996)
16. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. Springer, Berlin

(1986)
17. Grivet-Talocia, S., Tabacco, A.: Wavelets on the interval with optimal localization. Math.

Models. Meth. Appl. Sci. 10, 441–462 (2000)
18. Henry, M., Maitre, E., Perrier, V.: Optimal Transport Using HelmHoltz-Hodge Decomposition

and First Order Primal-Dual Algorithm. IEEE ICIP, Piscataway, pp. 4748–4752 (2015)
19. Jouini, A., Lemarié-Rieusset, P.G.: Analyse multirésolution biorthogonale sur l’intervalle et

applications. Ann. Inst. Henri Poincaré Sect. C 10, 453–476 (1993)
20. Kadri-Harouna, S., Perrier, V.: Helmholtz-Hodge decomposition on [0, 1]d by divergence-

free and curl-free wavelets. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T.,
Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces, Proceedings of the 7th International
Conference, Avignon, June 24–30, 2010. Lecture Notes in Computer Science Series, vol. 6920,
pp. 311–329. Springer, Berlin (2012)

21. Kadri-Harouna, S., Perrier, V.: Effective construction of divergence-free wavelets on the
square. J. Comput. Appl. Math. 240, 74–86 (2013)

22. Kadri-Harouna, S., Perrier, V.: Divergence-free wavelet projection method for incompressible
viscous flow on the square. Multiscale Model. Simul. 13, 399–422 (2015)

23. Kadri-Harouna, S., Perrier, V.: Homogeneous Dirichlet wavelets on the interval diagonalizing
the derivative operator, and related applications. Preprint hal-01568431v2 (2018)

24. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes
equations. J. Comp. Phys. 59, 308–323 (1985)

25. Lemarié-Rieusset, P.G.: Analyses multi-résolutions non orthogonales, commutation entre
projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Rev. Mat. Iberoamericana 8,
221–236 (1992)

26. Liu, J.-G., Liu, J., Pego, R.: Stable and accurate pressure approximation for unsteady
incompressible viscous flow. J. Comput. Phys. 229, 3428–3453 (2010)

27. Masson, R.: Biorthogonal spline wavelets on the interval for the resolution of boundary
problems. Math. Models Methods Appl. Sci. 6, 749–791 (1996)

28. Monasse, P., Perrier, V.: Orthogonal wavelet bases adapted for partial differential equations
with boundary conditions. SIAM J. Math. Anal. 29, 1040–1065 (1998)

Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows 65

29. Sass-Hansen, M., Larsen, R., Christensen, N.-V.: Curl-gradient image warping-introducing
deformation potentials for medical image registration using Helmholtz decomposition. In:
International Conference on Computer Vision Theory and Applications, vol. 1, pp. 79–185
(2009)

30. Schneider, K., Vasilyev, O.: Wavelet methods in computational fluid dynamics. Ann. Rev. Fluid
Mech. 42, 473–503 (2010)

31. Stevenson, R.: Divergence-free wavelet bases on the hypercube: free-slip boundary conditions,
and applications for solving the instationary Stokes equations. Math. Comp. 80, 1499–1523
(2011)

32. Stevenson, R.: Divergence-free wavelets on the hypercube: general boundary conditions.
Const. Approx. 44, 233–267 (2016)

33. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode
des pas fractionnaires II. Arch. Rational Mech. Anal. 33, 377–385 (1969)

34. Temam, R.: Navier Stokes Equations. North Holland, New York (1977)
35. Urban, K.: Using divergence-free wavelets for the numerical solution of the Stokes problem.

In: AMLI’96: Proceedings of the Conference on Algebraic Multilevel Iteration Methods with
Applications University of Nijmegen, vol. 2, pp. 261–277 (1996)

36. Urban, K.: Wavelet bases in H(div) and H(curl). Math. Comput. 70, 739–766 (2000)
37. Wang, C., Liu, J-G.: Convergence of Gauge method for incompressible flow. Math. Comput.

69, 1385–1407 (2000)
38. Weinan, E., Guo-Liu , J.: Projection method I: convergence and numerical boundary layers.

SIAM J. Numer. Anal. 32, 1017–1057 (1995)

An Immersed Boundary Method
on Cartesian Adaptive Grids
for the Simulation of Compressible Flows

S. Péron, T. Renaud, C. Benoit, and I. Mary

Abstract In this article, we present an immersed boundary method (IBM) for
the simulation of compressible flows encountered in aerodynamics. The immersed
boundary methods allow the mesh not to conform to obstacles, whose influence
is taken into account by modifying the governing equations locally (either by a
source term within the equation or by imposing the flow variables or fluxes locally,
similarly to a boundary condition).

A main feature of the approach we propose is that it relies on structured Cartesian
grids in combination with a dedicated HPC Cartesian solver, taking advantage of
not only their low memory and CPU time requirements but also the automation
of the mesh generation and adaptation. Turbulent flow simulations are performed
with Reynolds-Averaged Navier–Stokes equations or with Large-Eddy Simulation
approach, in combination with a wall function at high Reynolds number, in order to
mitigate the cell count resulting from the isotropic nature of Cartesian cells.

The objective of this paper is to demonstrate the capability of the present
immersed boundary method on Cartesian adaptive grids to capture compressible
flow features. Results obtained are in good agreement with classical body-fitted
approaches but with a significant reduction of the time of the whole process, that
is, a day for RANS simulations, including the mesh generation.

1 Introduction

The rise of Computational Fluid Dynamics (CFD) in aerospace sciences in the
past decades is due to the growth of the computational power in combination
with the increase of robustness and accuracy of CFD solvers. Today, Reynolds-
Averaged Navier–Stokes (RANS) simulations on body-fitted meshes are commonly

S. Péron (�) · T. Renaud · C. Benoit · I. Mary
ONERA, Université Paris Saclay, Châtillon, France
e-mail: stephanie.peron@onera.fr; thomas.renaud@onera.fr; christophe.benoit@onera.fr;
ivan.mary@onera.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_4&domain=pdf
mailto:stephanie.peron@onera.fr
mailto:thomas.renaud@onera.fr
mailto:christophe.benoit@onera.fr
mailto:ivan.mary@onera.fr
https://doi.org/10.1007/978-3-030-61761-5_4

68 S. Péron et al.

performed by the aeronautical industry in the design phase. The geometrical com-
plexity of the configurations has increased too, taking into account for more details,
such as track fairings on an aircraft or rotor head components for a helicopter.
Consequently, the mesh generation, which requires usually manual interaction and
expertise, has become a major bottleneck of the CFD workflow. This means that
efficient tools are required to perform parametric studies and evaluate quickly the
impact of a modification of a shape or some details onto the performances of an
aircraft. High-fidelity CFD tools are generally not necessary at this stage; lifting-
line tools can be used to get trends quickly, but models are often limited to certain
flow assumptions. Low-fidelity CFD (e.g., Euler solutions) could be appropriate,
but automatic mesh generation is the barrier to override. The immersed boundary
methods (IBMs) can be seen as a good compromise between the quality of the
solution and how quickly it can be obtained. This concept refers initially to the work
of Peskin [32, 33], which employed a novel approach many decades ago to simulate
biological flows onto Cartesian grids which did not conform to the geometry. The
obstacles lying in the flow are taken into account by introducing a forcing term into
the momentum equations. Since then, many variants of this approach have been
developed, as quoted by Mittal and Iaccarino [25]. A first approach consists in
introducing a continuous source term and is well suited for flows with immersed
elastic boundaries [6, 32]. In this context, the source term represents the exchange
of momentum between the fluid and solid through a law based on the theory of
elasticity. However, in the limit of rigid boundaries, this problem is stiff, leading to a
lack of stability and accuracy. Several discrete forcing methods have been developed
for flow simulations around solid bodies, among which the ghost-cell direct forcing
approach, as developed by Mittal et al. [26], Fadlun et al. [16], and Tseng et al. [41].
The IBM can be used on the whole geometry [29, 41] or locally [27, 43] to capture
the potential effects of geometrical details. A similar approach consists in cutting
cells that intersect the geometry, which has proven efficient and robust for inviscid
flow simulations and low Reynolds flows around complex geometries (see Coirier
and Powell [12] and Berger and Aftosmis [4]).

The use of Cartesian grids with local grid refinement in combination with
embedded obstacles (either with immersed boundary or with cut-cell methods)
seems to be well suited for a high level of automation and computational efficiency
[4, 8, 29]. Although the use of adaptive Cartesian grids around arbitrary immersed
obstacles is conceptually attractive, the resolution of high Reynolds number flows
requires wall models [5, 9] to restrict the number of points within the boundary
layer.

This paper proposes an efficient, fast, and robust immersed boundary method on
adaptive structured Cartesian grids to perform CFD simulations of compressible
flows. The method relies on a second-order accurate finite-volume HPC solver
dedicated to Cartesian grids, enabling to deal with a wide range of flow regimes,
from subsonic to supersonic flows, for steady RANS simulations or Large-Eddy
Simulations (LES). Musker’s algebraic wall function [28] is applied within the IBM
approach on Cartesian grids in order to solve high Reynolds number flows.

An Immersed Boundary Method for Compressible Flows 69

This paper is organized as follows: in Sect. 2, the ghost-cell direct forcing
IBM approach used here is described. The way the different immersed boundary
conditions are reconstructed at each iteration is detailed. Section 3 describes how
this approach is meaningful when applied on Cartesian adaptive grids: an automatic
workflow starting from input surfaces describing immersed boundaries has been
developed, in combination with a dedicated HPC Cartesian solver, providing results
within a short timeline. Section 4 presents two IBM simulations: the first test-
case that is considered is the supersonic flow around a blunt body, which is a
geometrically simple obstacle but demonstrates the capability of the present method
to adapt the mesh during the simulation without any effort while increasing the
accuracy of the simulation. The second simulation is a Large-Eddy Simulation
of the flow around a three-dimensional high-lift airfoil. Results are compared to
experimental data and a reference body-fitted solution.

2 Description of the Immersed Boundary Method

2.1 Governing Equations

The Navier–Stokes equations for a compressible flow can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂

∂xj

(
ρuj
) = 0

∂ρui

∂t
+ ∂

∂xj

(
ρuiuj

) = − ∂p

∂xi
+ ∂

∂xj

(
σij
)

i = 1, 2, 3

∂ρE

∂t
+ ∂

∂xj

(
(ρE + p) uj

) = − ∂

∂xj

(
Qj

)+ ∂

∂xj

(
σij ui
)
,

(1)

where ρ denotes the fluid density, u the velocity vector, p the pressure, ρE the
total energy per unit mass, σ the viscous stress tensor, and Q the heat flux vector.
In our approach, the system (1) is solved for interior cells using a cell-centered
finite-volume method of second order of accuracy. W will denote the conservative
variables W = (ρ, ρu, ρv, ρw, ρE) in the following. The Reynolds-Averaged
Navier–Stokes (RANS) equations are solved with the Spalart–Allmaras turbulence
model [39].

2.2 The Immersed Boundary Method

The immersed boundary method described in this paper relies on a ghost-cell direct
forcing formulation, derived from the approaches of Fadlun et al. [16] and Tseng
and Ferziger [41]. This approach consists in imposing the flow variables W at some

70 S. Péron et al.

Fig. 1 Spatial stencil involving IB target points for a viscous simulation: with interior (a) and
exterior (b) IB target points. Note that target points can be located either inside or outside the
obstacle

particular points, which will be called IB or target points, close to the obstacles to
mimic a boundary condition.

First, solid and fluid regions are identified geometrically, by a hole-cutting
algorithm [3, 24]. Solid points are marked by squares in Fig. 1. At the fringe of
solid region, two layers of IB target points are marked, to be compliant with the
numerical scheme, relying on two ghost cells. The solution W is reconstructed at
these IB target points using information in the fluid close enough to the wall, at
image points. Figure 2 displays the case where target IB point A (green dot) is
inside the obstacle S. For a sake of simplicity, the image point B (in red dot) can
be represented as the symmetrical point of target IB point A with respect to the
solid boundary. For that purpose, the distance to the obstacles and also the gradient
of the distance to get the normals n are required. As depicted in Fig. 2, the image
points do not usually match fluid points; thus, the solution W at point B is obtained
by a second-order interpolation using donor points D1, D2, D3, and D4. Point N

Fig. 2 Sketch describing the present direct forcing IBM approach. Solution W at IB target point
A is built up using the corresponding interpolated value of W at its image point B

An Immersed Boundary Method for Compressible Flows 71

is the resulting point on the obstacle for which the physical boundary condition
shall be recovered implicitly. This point N is obtained by a projection following the
normals n.

The update of the solution W at time iteration n + 1 using an explicit time
integration scheme can be summarized as follows:

• Computation of the flow primitive variables W = (ρ, u, v,w, T) (where ρ is
the fluid density, u, v, and w are the velocity vector components in the Cartesian
frame, and T is the temperature) for fluid points: Wn+1

i,j = f (Wn
k,l), (k, l) being

the indices of the points in the spatial stencil centered on point of index (i, j)
• Computation of Ŵn+1 by interpolation of its neighboring values Wn+1 (super-

script .̂ denotes an interpolated value)
• Reconstruction of the flow variables at IB target points W̃n+1, according to the

interpolated value Ŵn+1.
• Update of ghost cell values at the borders of abutting grids.

2.3 Types of Immersed Boundary Conditions

The reconstruction at IB target points depends on the type of the immersed boundary
condition (IBC) defined locally by the input surface.

2.3.1 Wall Slip and No-Slip IBCs

As displayed in Fig. 2, the image point is not necessarily the mirror point of the
IB target point with respect to the wall. Thus, slip and no-slip boundary conditions
can be implicitly recovered at the wall by a linear reconstruction of the normal
component of the velocity, un = 0 and u = 0, respectively.

In the case of a no-slip boundary condition where ‖u‖=0 at the wall, a one-
dimensional linear interpolation is applied given u(B) as follows:

u(A) = �A,N

�B,N

u(B) ,

where �A,N and �B,N are the signed distance of IB target point A and IB image
point B to the wall point N , respectively.

In the case of a slip boundary condition, the velocity vector u can be decomposed
in a normal vector and a tangential vector as

u = ut + un .

The normal velocity vector is obtained by a linear reconstruction, similar to the one
applied on u for the no-slip boundary condition. The tangential velocity vector is
then obtained by ut (A) = u(B) − ‖un(B)‖n, where ‖un(B)‖ is the magnitude of

72 S. Péron et al.

the normal velocity at IB image point B and n is the normal vector to the wall
defined at point A.

Pressure and density gradients are assumed equal to zero in the normal direction
to the wall in the close vicinity to the wall, and hence p(A)=p(B) and ρ(A)=ρ(B).
The pseudo-viscosity ν̃ of Spalart–Allmaras one-equation turbulence model is
recovered by the same linear interpolation such that ν̃ is implicitly zero at the wall.

2.3.2 Wall Function for High Reynolds Flow Simulations

Our approach relies on an IBM approach on adaptive Cartesian grids, leading to
prohibitive cell counts to resolve the viscous stress in the boundary layer until the
wall. Moreover, this method is devoted to aeronautical configurations where high
Reynolds numbers are often considered. This issue is a key point addressed by many
researchers in the field of IBMs, using a wall function to represent the wall shear
stress in the case of viscous flow simulations at high Reynolds numbers [5, 9, 10].
In our approach, Musker’s algebraic wall function [28] is used to reconstruct the
velocity at IB target points, enabling to place first Cartesian cells near the walls at
y+ ≈ 100. Details on the wall function are provided in [31]. Figure 3 displays the
IB target point A and its image point B, for which the variablesWB are interpolated
from the computed cells. Instead of a linear reconstruction to recover u = 0 at the
wall, a wall function is applied between the image point B and the wall. Similarly
to the slip boundary condition, the velocity vector is decomposed into a tangential
vector and a normal vector. The tangential velocity vector at point A is obtained as
follows:

ut (A) = UA

UB

ut (B) ,

where UP = ‖ut (P)‖ denotes the magnitude of the tangential velocity at any
point P .

Fig. 3 Wall function for
IBM: IB target point is A and
corresponding image point is
B. In red dots are IB target
points around the obstacle; in
blue dots, their image points

An Immersed Boundary Method for Compressible Flows 73

The velocity vector at point B is obtained by interpolation from its neighboring
points. Knowing the modulus of the tangential velocity at image point B, the friction
velocity uτ is obtained by a Newton–Raphson’s method on Musker’s algebraic

wall function. Then, y+ at point A is computed by y+ = �A,Nuτ

ν
. The algebraic

function (2) provides the modulus of the tangential velocity vector at point A.

u+ = 5.424 arctan

[
2y+ − 8.15

16.7

]
+ log

[(
y+ + 10.6

)9.6(
y+2 − 8.15 y+ + 86

)2
]
− 3.52 .

(2)

The normal velocity at image point B is obtained by a simple projection:

un(B) = (u(B) · n)n ,

where n denotes the unit normal vector at the wall passing through points A and B.
The tangential velocity at IB image point B can be expressed by

ut (B) = (u(B) · t)t .

We could have imposed the flow to be locally parallel to the wall, which means
un = 0, but this tends in practice to delay the separation on massively separated
flows. Thus, a 1D linear interpolation is performed to compute the normal velocity:

un(A) = �A,N

�B,N

un(B) .

The resulting three components of the velocity vector u at point A are then
obtained by summing the corresponding normal and tangential vector components.
In the case of a RANS modeling using Spalart–Allmaras model [39], the pseudo-
viscosity ν̃ must also be estimated at IB target point A. Under the assumption of an
equilibrium boundary layer, ν̃ can be defined as

ν̃ = 1

fv1
κ uτ y ,

where fv1 is the damping function of Spalart–Allmaras model, which is a nonlinear
function of ν̃, and thus ν̃ is also obtained by finding explicitly the root of the
resulting quartic equation.

2.3.3 Use of Several Types of Immersed Boundary Conditions for a Given
Configuration

Several types of immersed boundary conditions can be defined in a single com-
putation, typically to perform a simulation around a model set in a wind tunnel.

74 S. Péron et al.

In that case, a wall function is applied at the boundary of the model, a slip boundary
condition at wind tunnel walls, and an inflow and an outflow boundary conditions
at inlet and outlet, respectively. The nature of the immersed boundary condition to
be applied is determined by the nature of the input surface on which the IB target
pointA is projected. If the projection pointN lies on a surface tagged as an injection
immersed boundary, then the injection immersed boundary condition is flagged for
IB point A.

3 IBM on Adaptive Cartesian Grids

3.1 Motivation

Most immersed boundary methods available in the literature rely on adaptive
Cartesian grids: Cartesian embedded methods remove the bottleneck of the mesh
generation, since the adaptive Cartesian mesh generation can be easily automated
even for arbitrary complex geometries. In order to preserve the simplicity of a pure
Cartesian approach, the Cartesian mesh is defined down to the wall, relying on the
IBM approach to take into account for obstacles. Cartesian cells cannot be refined
down to the wall in general (except those cases where the wall is aligned with an
axis), so a wall function is mandatory to compute high Reynolds number flows with
a reasonable cell count. The strength of the IBM approach on adaptive Cartesian
grids used in combination with a Cartesian CFD solver provides an automated and
efficient tool for the simulation of flows around complex geometries, provided the
IBM preprocessing is robust and fast.

3.2 Automatic IBM Preprocessing for Complex Geometries

3.2.1 Description of the Workflow

The IBM preprocessing can be separated into the following steps:

• The automatic Cartesian mesh generation from a discretized CAD.
• The computation of information required for the IBC reconstruction at each time

step of the flow simulation.

First, a Cartesian mesh is generated automatically. This mesh is made of a set
of structured uniform grids. The different refinement levels are managed thanks to
an octree structure in 3D and quadtree in 2D [30], enabling to prescribe the mesh
resolution near each boundary and within the fluid, in order to avoid coarsening in
the wake for instance. Ghost cells are explicitly built, such that an overlapping exists
between neighboring grids, with a minimum overlap. An example of a Cartesian
mesh generated around a 2D profile is displayed in Fig. 4. To generate that case,

An Immersed Boundary Method for Compressible Flows 75

Fig. 4 Example of a mesh around a NACA0012 profile, profile in green. (a) Quadtree skeleton
mesh in blue around the NACA0012 profile. (b) Resulting Cartesian mesh (Cartesian patches fully
inside the solid are removed). (c) Same Cartesian mesh after blanking of interior cells

the input data are a 1D discretization of the profile and the cell size required in its
vicinity (equal to 0.1% of the chord length here). The Cartesian mesh skeleton is
a quadtree (i.e., an octree in 2D) mesh, as displayed in Fig. 4a. Each element of
the quadtree is then filled with a Cartesian grid of a constant number of cells per
direction (specified by the user), resulting in an adaptive Cartesian mesh displayed
in Fig. 4b. As shown in this figure, some grids that are entirely inside the solid
are removed, to reduce memory requirements. The IBM preprocessing is then
achieved, based on several geometrical algorithms initially developed for overset
grids [3]. Some of the steps are illustrated by the IBM preprocessing of the previous
NACA0012 configuration.

– Interior cells are marked using a blanking technique, either using the X-ray
technique introduced by Meakin[24] or using a line-of-sight algorithm [3].
Figure 4b and c represents the same mesh, but blanked-out points are not
displayed on the latter.

– The signed distance field is then computed in the whole computational domain
(as it is required for the turbulence model later).

– IB target points are marked at the fringe of blanked points (green dots in Fig. 2).

76 S. Péron et al.

– Normal vectors at IB target points are computed as the local gradient of the
signed distance.

– IB target points are then projected onto the immersed boundaries following the
normal vectors, resulting in boundary points (yellow dots in Fig. 2).

– The location of image points is determined inside the fluid region (red dots in
Fig. 2).

– The interpolation data for image points are computed (donor cell indices and
weights, with donor points marked in blue dots in Fig. 2).

More details can be found in [31], especially on the location of image points, for
which a special care is required to ensure the robustness of the preprocessing and
the simulation.

3.2.2 Evaluation of Performance of the Preprocessing

A performance study has been achieved in [31] that demonstrates the capability
of the method to generate a mesh and prepare a CFD simulations within less than
20 min even for a 1.5 billion point resulting mesh around a landing gear geometry.
This is depicted in Fig. 5, which represents the execution time versus the number of
cores with a fixed number of points per core (five million points). Another fact is
that the distance field computation on the whole domain represents a large part of the
execution time. Future work will consist in improving this, using a Fast Marching
Method [38] for instance, as the distance field must be accurate in the vicinity of
the obstacles. As the current distance field computation relies on an orthogonal
projection on the triangular surfaces, preconditioned with a k-d tree, further points

Fig. 5 Weak scaling study: five million nodes distributed per core

An Immersed Boundary Method for Compressible Flows 77

are the most time-consuming as the number of candidate triangles for the projection
is bigger than for close points to the obstacles.

IBM preprocessing is achieved by an assembly of Cassiopee functions available
in several modules (see reference [3] for a general description of Cassiopee or the
website [1]).

3.3 IBM Simulations Using a Dedicated Cartesian CFD Solver

3.3.1 FastS HPC Solver

The ONERA HPC FastS solver [2, 22] is used to solve the compressible Navier–
Stokes equations using a finite-volume method. It contains a structured multiblock
solver that can solve RANS, LES, DNS, steady, and unsteady simulations. Its
main feature is its efficiency in dealing with unsteady simulations (see [13]) as it
enables to update ten million cells per second per core on a single Intel Broadwell
core; in other words, 300 million cells can be updated per second on a 28-core
node. FastS contains a solver dedicated to Cartesian grids that is used to perform
IBM simulations on Cartesian grids. Despite the relatively high cell count obtained
by the block-structured Cartesian mesh generation in comparison with a classical
body-fitted unstructured approach, a dedicated Cartesian solver requires much less
memory and CPU time than a structured curvilinear solver and also an unstructured
solver. Here, the Cartesian solver is 2.5 times more efficient in terms of CPU
time and memory than the structured curvilinear solver using the same numerical
methods.

FastS solver relies on a hybrid MPI/OpenMP framework, where the memory
is distributed (by distributing CFD grids) on the processors at high level, i.e.,
between nodes, whereas multithreading is managed via OpenMP within a given
node. For our purpose, where Cartesian grids are uniform and containing few cells in
comparison with grids resolving boundary layers accurately, the N Cartesian grids
are distributed between the NT cores using OpenMP.

3.3.2 Numerical Methods

For RANS computations, two spatial schemes are considered, depending on the flow
regime: the Roe–MUSCL scheme [36] or an AUSM scheme [23], which is based
on a modification of the AUSM+(P) scheme (see Edwards and Liou [15]), which
is second-order accurate. Jacobian approximations are those proposed by Jameson
and Yoon [18] and Coakley [11], whereas the linear system is solved by the LU-SGS
method [18]. The steady and unsteady RANS equations are solved using Spalart–
Allmaras one-equation turbulence model [39].

78 S. Péron et al.

For LES computations, a hybrid centered/upwind scheme [23] is retained to
manage a good compromise between robustness and accurate simulation of the
turbulent small eddies [19], whereas the temporal integration is achieved by a three-
step Runge–Kutta explicit scheme, or by a second-order implicit Gear scheme with
local Newton sub-iterations [14].

For Large-Eddy Simulations (LES), the filtered equations are obtained using the
formalism developed by Vreman [42]. A Monotone Integrated LES approach (or
MILES [7, 17]) is performed, that is, no subgrid-scale model is used as the numerical
dissipation of the scheme acts as a subgrid scale model.

3.3.3 Update of IBM Points During the CFD Simulation

The IBM target points must be updated at each sub-step of the time integration.
FastS solver updates first fluid cells on each Cartesian grid at time sub-step n,
then IB target cells are updated, and finally, transfers between neighboring grids are
performed to update the ghost cells. For RANS and LES IBM simulations, Musker’s
wall model is currently applied at IB target cells only.

MPI transfers between nodes are achieved in a single step: a global transfer
to update all the target points and the ghost cells. This is possible because the
IBM preprocessing prevents from IB image points to be interpolated by ghost cells
(which are explicitly defined in the Cartesian mesh).

In practice, only fluid points are computed by FastS CFD solver, and transfers
between abutting grids and IBM updates are performed by a library of Connector
module of Cassiopee package [3]. Both FastS and Cassiopee modules handle the
same CGNS/Python tree in memory [34, 37]; in other words, arrays defining
the CFD simulation (metrics, flow fields) are shared in memory without copy.
This is made possible by the fact that ghost cells are explicitly built during the
mesh generation, justifying the use of an overset Cartesian mesh, with minimum
overlapping.

3.4 Adaptation of the Mesh During the IBM Simulation

The Cartesian mesh adaptation developed for IBM simulations derives from the one
developed within an overset grid framework [30], where the near-body regions are
defined by a set of structured body-fitted grids close to the obstacles. Similarly,
an octree is generated, representing the skeleton of the Cartesian mesh. Finest
refinement levels are first defined close to the obstacles, depending on the mesh
spacing imposed in the vicinity of them. Similarly to the original approach, where
bodies are represented by overset body-fitted grids, the adaptation consists in

An Immersed Boundary Method for Compressible Flows 79

adapting the skeleton octree according to a refinement indicator, and the set of
Cartesian grids is then regenerated. The algorithm is the following:

Step 1 Building of the skeleton octree Oi and generation of the Cartesian set
of overlapping grids Mi , where i denotes the adaptation cycle (i = 0
initially).

Step 2 IBM preprocessing.
Step 3 N iterations of a CFD simulation (N being big enough to pass the transient

phase and to stabilize a mean flow (for unsteady computations) or to
converge the solution (for steady computations)).

Step 4 Computation of the physical sensor for adaptation and stored at cell
centers. This sensor depends on the physical problem (it can be the
vorticity for the wake capture); for unsteady simulations, the maximum
value of the sensor during the period is registered, whereas the last value
of the sensor is registered for steady simulations.

Step 5 The sensor is then used to compute the indicator on the skeleton octree
Oi used to generate the Cartesian mesh Oi+1 that has been computed. As
explained in [30], the number of points after adaptation is controlled (e.g.,
the increase of the number of points must not exceed 20% of the previous
mesh), which provides an automatic values of thresholds of the sensor
above and under which octree elements have to be refined or coarsened.

Step 6 Once this indicator is computed, the octree skeleton mesh is adapted,
denoted Oi+1. A new set of Cartesian grids, denoted Mi+1, is then
automatically generated.

Step 7 Interpolation of the previous solution defined on mesh Mi onto the new
mesh Mi+1.

Step 8 i = i + 1, then restart to Step 2 until the criterion that finalizes the
adaptation is satisfied. For steady-state simulations, the solution is then
converged on the final mesh

For steady flow simulations, the sensor is computed once at convergence and several
convergence cycles are performed, whereas for unsteady flows with a stable mean
flow, we assume that the mean flow does not vary much during a given period and
that the maximum of the sensor for each point is used for the adaptation.

The whole process is automatic, and several adaptations are required to adapt the
mesh to the flow features as the number of cells is controlled at each remeshing
step and does not exceed 20% more in terms of cell count than the previous
mesh. In our approach, the number of adaptation cycles does not exceed generally
5, and no specific criteria based on error estimator for instance are computed
to stop the adaptation: as the number of points is increased by 20% at each
adaptation (roughly), then 5 adaptations would multiply the number of points by
2.5, which means that during a simulation, one should expect having 2.5 times more
computational resources than expected at the first cycle.

80 S. Péron et al.

Note that the refinement level imposed near each obstacle can be set unchanged
during the adaptations even if new refinement levels are created elsewhere.

Adaptation of the octree mesh can also be performed a priori: refinement zones
can be prescribed in addition to the triangular surfaces describing the obstacles.
These refinement zones are closed surfaces. The initial skeleton octree O0 is then
adapted before generating the Cartesian mesh: in that case, the indicator consists in
marking octree leaves for refinement if they intersect or lie within the refinement
zone and if the cell spacing prescribed for that refinement zone is not reached yet.
This approach has been performed on the second test-case in Section 4.2.

4 Numerical Results

A wide range of validations and applications can be found in [35], from Euler to LES
simulations, from subsonic to supersonic flows either for two-dimensional academic
configurations or for geometrically complex configurations.

Here, we focus on two applications: the first application consists of a simulation
of a supersonic flow around a blunt body, in order to demonstrate the capability
of the present immersed boundary method to be combined with Cartesian mesh
adaptation that occurs periodically during the simulation.

The second test-case is an unsteady three-dimensional simulation around a three-
element airfoil, for which the physics is complex. Our objectives are not only
to assess first that aerodynamics features on such a case can be captured by a
Cartesian method (despite some improvements to be done and further work to be
achieved to obtain satisfactory results for aeroacoustics) but also to enhance the
HPC capabilities of the whole workflow and especially of the flow solver.

4.1 Validation of the Adaptive Cartesian IBM
on a Two-Dimensional Supersonic Case

The bow shock test-case is one of the cases of the International Workshop on High-
Order CFD Methods. In this workshop, this case is designed to isolate testing of
the shock-capturing properties of schemes using the detached bow shock upstream
of a two-dimensional blunt body in supersonic flow. This case is computationally
expedient, being steady, two-dimensional, and inviscid, with well-defined boundary
conditions. In [21], the author shows that high-order schemes on unstructured grids
are able to capture the shock location with very low pressure and enthalpy errors.

The geometry is a flat center section, with two constant radius sections, top and
bottom. The flat section is one unit length, and each radius is half the unit length.
While the flow is symmetric top and bottom, a full domain is computed to support

An Immersed Boundary Method for Compressible Flows 81

potentially spurious behavior. The aft section of the body is not included to avoid
developing an unsteady wake. The Mach number is M∞ = 4.

Here, our first objective is to validate the IBM approach for supersonic flows. The
Cartesian grid is automatically generated around the obstacle. The finest refinement
level is imposed not only in the vicinity of the obstacle but also within a refinement
zone, which is prescribed prior to the preprocessing. This zone is defined by a circle
of radius 3.5 L, where L is the unit length around the blunt body, with a uniform
cell size of 0.01 L.

In order to capture the detached shock accurately, an adaptation of the Cartesian
mesh is performed periodically during the CFD simulation, as described in Sect. 3.4.
The sensor is computed after N iterations (where N is 1000), and it is chosen here
as the maximum difference of the Mach number for all the directions of the mesh
between the current cell and its direct neighboring cells.

The whole process is automatic and three adaptations are required to adapt the
mesh to the shock as the number of cells is controlled at each remeshing step.
Figure 6 represents the initial mesh with the refinement zone located at 3.5 times
the radius to the center of the blunt body. It is made by 730,000 points over 47
Cartesian grids. The final adapted mesh is made by 1.27 million points over 190
grids, obtained after the three adaptation cycles. In the present adaptation method,
new refinement levels can be added; here, the finest refinement level located in the

Fig. 6 Bow shock test-case: Cartesian mesh. (a) Initial mesh. (b) Adapted mesh

82 S. Péron et al.

Fig. 7 Bow shock test-case: isocontours of Mach number. (a) Initial mesh. (b) Adapted mesh

vicinity of the detached shock is equal to 5.10−4 L. It can be noticed that some
regions have been coarsened, but the initial spacing near the wall is preserved here.

The CFD simulation has been performed using second-order accurate Roe
scheme (with minmod limiter). Figure 7 displays the flow field characteristics
through the isocontours of the Mach number: it can be noticed that the shock is
better captured after adaptation, which is located around it. Some small oscillations
can be noticed near the shock, due to the spatial scheme. A slip immersed boundary
condition is applied to model the blunt body.

For a steady inviscid flow, the total enthalpy, H = ρE + p

ρ
, is constant, where

ρE is the total energy, ρ the density, and p the total pressure. The error in this
quantity provides a first quantifiable measure of the quality of the computed solution
of the general Euler equations (as opposed to schemes that specifically optimize
for steady, inviscid flow and enforce H to a constant value). Along the stagnation
streamline, the stagnation pressure on the cylinder surface is predicted by the
Rayleigh–Pitot formula,

p02

p1
= 1 − γ + 2γMa2

1

γ + 1

(
(γ + 1)2Ma2

1

4γMa2
1 − 2(γ − 1)

) γ
γ−1

,

An Immersed Boundary Method for Compressible Flows 83

Table 1 Comparison of pressure ratios

Theory Initial mesh Adapted mesh
p02

p1
21.068081 21.042294 21.065672

Relative error to theory 0 0.00122398 0.000114344

where p02 is the total pressure at stagnation point, p1 is the static pressure upstream
of the shock, Ma is the Mach number, and γ is the specific heat ratio. Subscript
1 refers to conditions upstream of the shock and 2 to the stagnation point. Table 1
provides a comparison of the wall pressure ratio, showing that the adapted mesh
improves this value, by dividing by 10 the relative error with respect to the theory.

4.2 Unsteady Flow Simulation Around a High-Lift Airfoil

The test-case is an extruded three-element high-lift airfoil with deployed slat and
flap. This kind of configuration is of major interest for acoustics since high-lift
devices deployed on aircraft to increase lift at low speed are responsible for a
significant part for the airframe noise during the approach phase. An experimental
campaign has been conducted in the framework of the joint ONERA/DLR LEISA2
project; experimental data are also provided within the AIAA BANC workshops to
validate the numerical methods applied for aerodynamics and acoustics analyses. A
reference study is the LES simulation of Terracol and Manoha [40] on a 2.6 billion
body-fitted meshes. Six million hours of CPU were required on 4096 processors to
perform this simulation. This simulation has also been performed by LBM solvers
using an IBM approach on Cartesian grids [20].

The aim of the simulation presented here is to focus only on the aerodynamics
phenomena and not on the acoustics, since the way the information is transferred
from a grid of a level l to a grid of a different level (twice as coarse) leads to small
perturbations that are a major issue for a far-field acoustics analysis.

4.2.1 Description of the Test-Case

The reduced geometry configuration is used here (F16). The retracted wing chord
length c is 300 mm. The slat and flap are deployed, respectively, of 27.834◦ and
35,011◦. The flow conditions are M∞ = 0.178, α = 6.15◦ and a Reynolds number
of Re = 1.23 million, based on the chord. The wing span is chosen the same as the
reference CFD study, that is, 0.25 c.

84 S. Péron et al.

Fig. 8 Views of the IBM Cartesian mesh around the high-lift airfoil. (a) General view around the
three-element airfoil. (b) Close-up view near the slat cove. (c) Close-up view near the trailing edge
of the main element. (d) Close-up view near the trailing edge of the flap

An IBM simulation with FastS solver is performed on a set of Cartesian grids
using Musker’s wall function applied at IB target points. The mesh is composed
by 660 million points, with an adapted spatial resolution in the vicinity of the flap
and the slat and in their cavity and wake regions, with a smallest cell size equal to
1.5 10−4 c. The external border of the computational domain is located at 50 c. The
mesh is represented on different views displayed in Fig. 8.

The LES simulation has been initialized by a RANS simulation in order to get
rid of transient phenomena. The spatial scheme is the modified AUSM scheme [23],
to manage a good compromise between robustness and accurate simulation of the
turbulent small eddies [19], whereas the temporal integration is an explicit three-
step Runge–Kutta scheme, with a global time step, �t = 0,16 μs. The simulation
has been performed on 224 Intel Broadwell cores of ONERA SATOR cluster, for a
CPU cost of 0.4 μs per point per iteration. The flow quantities have been averaged
on a period of 80 ms.

An Immersed Boundary Method for Compressible Flows 85

Fig. 9 Instant views of the flow represented by the density gradient: comparison between the wall-
resolved LES (a) and the IBM simulations (b, c, and d)

4.2.2 Results

Figure 9 displays the density gradient resulting from the LES simulation using the
wall-modeled IBM. The comparison with the reference simulation of Terracol and
Manoha shows that the IBM approach enables to capture the main features of this
flow: recirculation bubble in slat and flap cavities, turbulent boundary layers, and
wakes. This is also assessed by the comparison of the averaged velocity between
the reference LES and the IBM simulation and experimental data, displayed in
Fig. 10. The location of recirculation bubble in cavities is well captured. Besides,
the simulated flows in the vicinity of the suction side of the flap differ from the
experiments, where a strong separation occurs unlike the LES simulations. Other
wind tunnel tests did not reveal that separation, and Terracol [40] demonstrated that
this difference was due to the influence of the wind tunnel walls.

Two rakes of probes are defined in the fluid, as displayed in Fig. 11. At these
locations, the velocity and velocity fluctuation profiles are compared against the
experiment and the reference LES body-fitted simulation, as displayed in Fig. 12,
showing a good agreement between both simulations and also with the experimental
results.

86 S. Péron et al.

Fig. 10 Views of the averaged flow: isocontours of the velocity amplitude and streamlines;
comparison between experiments (left-hand side), the reference wall-resolved LES simulation
(center), and the IBM LES simulation (right-hand side). (a) Experiments: slat cove. (b) Body-fitted
LES: slat cove. (c) Wall-modeled IBM: slat cove. (d) Experiments: main element trailing edge. (e)
Body-fitted LES: main element trailing edge. (f) Wall-modeled IBM: main element trailing edge.
(g) Experiments: flap. (h) Body-fitted LES: flap. (i) Wall-modeled IBM: flap

An Immersed Boundary Method for Compressible Flows 87

Fig. 11 Probe locations: (a) 04-2 in the slat cove and (b) 18-3 in the trailing edge cove of the main
wing

Fig. 12 Comparison of velocity profiles at probe 04-2 (a) and at probe 18-3 (b); velocity
fluctuations at probe 04-2 (c) and 18-3 (d). IBM simulation is compared against the reference
LES simulation, PIV, and LDV data

88 S. Péron et al.

5 Conclusions

In this chapter, we have presented an immersed boundary method (IBM) on adaptive
Cartesian grids for the simulation of compressible flows. As the IBM enables the
mesh not to conform to the obstacles, Cartesian meshes are attractive for that
purpose as their generation and adaptation are usually fast and easy to perform.
Using both approaches together enables to get rid of the mesh generation, which
is a tedious task for engineers as the configurations that are simulated become
more and more complex geometrically. CFD simulations are then performed by
a dedicated HPC Cartesian solver, taking advantage of the low memory and CPU
time requirements for Cartesian grids (since metrics do not need to be stored, flux
balances are simplified).

The approach that has been developed relies on a workflow that needs to be
automatic, robust, and fast, starting from a triangulation of the immersed obstacles
only. For that purpose, an automatic preprocessing has been developed, which
enables to generate the Cartesian mesh and compute the data required for the
reconstruction of the solution in the vicinity of the immersed boundaries. As an
example, it is possible to prepare a CFD simulation of an IBM Cartesian mesh of
1.5 billion points around a landing gear within less than 20 min, requiring less than
360 GBytes of memory.

Several types of immersed boundaries have been developed such that not only
inviscid or viscous wall boundaries can be reconstructed but also injection and outlet
boundaries can be defined as immersed boundaries, provided the corresponding
triangulated surface is defined as input. Turbulent flow simulations are performed
with Reynolds-Averaged Navier–Stokes equations using Spalart–Allmaras model
or with a Large-Eddy Simulation approach, in combination with an algebraic wall
function in order to mitigate the cell count resulting from the isotropic nature of
Cartesian cells.

Initially, the mesh is refined in the vicinity of the obstacles, with different
refinement levels possible for different parts of the obstacles (a leading or trailing
edge of a wing can be better resolved than the rest of the wing). It is possible
to prescribe refinement zones a priori if the flow physics is known; otherwise,
Cartesian mesh adaptation can be performed during the simulation to capture the
main features of the flow. The adaptation is performed periodically, after passing
the transient phase, and is valid for steady flows or for unsteady flows but with a
stable mean flow.

To validate that approach, the first test-case has been considered, which is the
simulation of the inviscid and supersonic flow around a blunt body. This test-
case demonstrates the capability of the present approach to perform automatically
immersed boundary simulations in combination with Cartesian mesh adaptation,
performed periodically during the simulation to improve the capture of the flow
characteristics without knowing it a priori.

The second application is an unsteady simulation of the flow around a high-lift
airfoil. For that case, refinement zones are prescribed in regions where the wakes are

An Immersed Boundary Method for Compressible Flows 89

developed. Aerodynamics results are evaluated here and compared with experiments
and a reference LES simulation on a structured body-fitted mesh by Terracol [40].
Some works have to be achieved to be able to evaluate the acoustics, as no specific
treatment is achieved yet when crossing an interface from a fine grid to a coarser
grid (twice as coarse here), leading to reflections of unsupported structures back
into the finer grid. This is one topic on which we will focus in the future.

Future work will also concern the improvement of the wall modeling using wall
functions, especially to improve the skin friction, which is a major concern for
compressible aerodynamics applications, especially for aircrafts. Adaptation of the
mesh within the boundary layer is a topic of interest, as the cell spacing close to the
wall is currently determined by the user, usually considering the Reynolds number
and a y+ value of 100 roughly computed for a flat plate, which is not really relevant
for any configuration.

Adapted wall models for Large-Eddy Simulations will also be considered.
Another topic is to extend the method to bodies in relative motion, aiming at
simulating flows around configurations such as control surfaces on wings or VTOLs.

References

1. http://elsa.onera.fr/Cassiopee/Userguide.html
2. https://w3.onera.fr/FAST
3. Benoit, C., Péron, S., Landier, S.: Cassiopee: a CFD pre- and post-processing tool. Aerospace

Sci. Technol. 45, 272–283 (2015)
4. Berger, M.J., Aftosmis, M.J.: Progress towards a Cartesian cut-cell method for viscous

compressible flow. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, pp. 2012–1301 (2012)

5. Berger, M.J., Aftosmis, M.J.: An ODE-based wall model for turbulent flow simulations. AIAA
J., 1–15 (2017)

6. Beyer, R.P., LeVeque, R.J.: Analysis of a one-dimensional model for the immersed boundary
method. SIAM J. Numer. Anal. 29(2), 332–364 (1992)

7. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation.
Fluid Dyn. Res. 10(4-6), 199–228 (1992)

8. Brehm, C., Barad, M.F., Kiris, C.C.: Open rotor computational aeroacoustic analysis with an
immersed boundary method. In: 54th AIAA Aerospace Sciences Meeting, p. 0815 (2016)

9. Capizzano, F.: Turbulent wall model for immersed boundary methods. AIAA J. 49(11), 2367–
2381 (2011)

10. Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-
eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28(1), 1–21
(2014)

11. Coakley, T.J.: Implicit upwind methods for the compressible Navier-Stokes equations. AIAA
J. 23(3), 374–380 (1985)

12. Coirier, W.J., Powell, K.G.: Solution-adaptive Cartesian cell approach for viscous and inviscid
flows. AIAA J. 34(5), 938–945 (1996)

13. Dandois, J., Mary, I., Brion, V.: Large-eddy simulation of laminar transonic buffet. J. Fluid
Mech. 850, 156–178 (2018)

14. Daude, F., Mary, I., Comte, P.: Self-adaptive Newton-based iteration strategy for the les of
turbulent multi-scale flows. Comput. Fluid. 100, 278–290 (2014)

http://elsa.onera.fr/Cassiopee/Userguide.html
https://w3.onera.fr/FAST

90 S. Péron et al.

15. Edwards, J.R., Liou, M.-S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA
J. 36(9), 1610–1617 (1998)

16. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-
difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1),
35–60 (2000)

17. Garnier, E., Mossi, M., Sagaut, P., Comte, P., Deville, M.: On the use of shock-capturing
schemes for large-eddy simulation. J. Comput. Phys. 153(2), 273–311 (1999)

18. Jameson, A., Yoon, S.: Lower-upper implicit schemes with multiple grids for the Euler
equations. AIAA J. 25(7), 929–935 (1987)

19. Laurent, C., Mary, I., Gleize, V., Lerat, A., Arnal, D.: DNS database of a transitional separation
bubble on a flat plate and application to RANS modeling validation. Comput. Fluids 61, 21–30
(2012)

20. Le Garrec, T., Mincu, D.C., Terracol, M., Casalino, D., Ribeiro, A.: Aeroacoustic prediction
of the LEISA2 high-lift airfoil: Lattice Boltzmann method vs. Navier-Stokes Finite Volume
method and experiments. In: Turbulence and Interactions Conference (2015)

21. Le Gouez, J.M.: A finite volume method for high Mach number flows on high-order grids. In:
7th European Conference on Computational Fluid Dynamics (ECFD 7) (2018)

22. Mary, I.: Flexible Aerodynamic Solver Technology in an HPC environment. Maison de la Sim-
ulation Seminars (2016). http://www.maisondelasimulation.fr/seminar/data/201611_slides_1.
ppt

23. Mary, I., Sagaut, P.: Large Eddy simulation of flow around an airfoil near stall. AIAA J. 40(6),
1139–1145 (2002)

24. Meakin, R.L.: Object X-Rays for cutting holes in composite overset structured grids. In: 15th
AIAA Computational Fluid Dynamics Conference, pp. 2001–2537 (2001)

25. Mittal, R., Iaccarino, G.: Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–261
(2005)

26. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile
sharp interface immersed boundary method for incompressible flows with complex boundaries.
J. Comput. Phys. 227(10), 4825–4852 (2008)

27. Mochel, L., Weiss, P.-E., Deck, S.: Zonal immersed boundary conditions: application to a high-
Reynolds-number afterbody flow. AIAA J. 52(12), 2782–2794 (2014)

28. Musker, A.J.: Explicit expression for the smooth wall velocity distribution in a turbulent
boundary layer. AIAA J. 17(6), 655–657 (1979)

29. Nakahashi, K.: Immersed boundary method for compressible Euler equations in the Building-
Cube Method. AIAA Paper, pp. 2011–3386 (2011)

30. Péron, S., Benoit, C.: Automatic off-body overset adaptive Cartesian mesh method based on
an octree approach. J. Comput. Phys. 232(1), 153–173 (2013)

31. Péron, S., Benoit, C., Renaud, T., Mary, I.: An immersed boundary method on Cartesian
adaptive grids for the simulation of compressible flows around arbitrary geometries. Eng.
Comput. 1–19 (2020)

32. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2),
252–271 (1972)

33. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)
34. Poinot, M.: Five good reasons to use the hierarchical data format. Comput. Sci. Eng. 12(5),

84–90 (2010)
35. Renaud, T., Benoit, C., Péron, S., Mary, I., Alferez, N.: Validation of an immersed boundary

method for compressible flows. In: AIAA Scitech 2019 Forum. AIAA Paper, pp. 2019–2179
(2019)

36. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J.
Comput. Phys. 43(2), 357–372 (1981)

37. Rumsey, C.L., Wedan, B., Hauser, T., Poinot, M.: Recent updates to the CFD general notation
system (CGNS). In: 50th AIAA Aerospace Sciences Meeting, vol. 10, pp. 6–2012 (2012)

38. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

http://www.maisondelasimulation.fr/seminar/data/201611_slides_1.ppt
http://www.maisondelasimulation.fr/seminar/data/201611_slides_1.ppt

An Immersed Boundary Method for Compressible Flows 91

39. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA
J. 94 (1992)

40. Terracol, M., Manoha, E.: Wall-resolved large eddy simulation of a high-lift airfoil: detailed
flow analysis and noise generation study. In: 20th AIAA/CEAS Aeroacoustics Conference.
AIAA Paper, pp. 2014-3050 (2014)

41. Tseng, Y.-H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex
geometry. J. Comput. Phys. 192(2), 593–623 (2003)

42. Vreman, A.W.: Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing
Layer. Universiteit Twente, Enschede (1995)

43. Zhu, W.J., Behrens, T., Shen, W.Z., Sørensen, J.N.: Hybrid immersed boundary method for
airfoils with a trailing-edge flap. AIAA J. 51(1), 30–41 (2012)

Magnetohydrodynamics Adaptive Solvers
in the AMROC Framework for Space
Plasma Applications

Müller Moreira Lopes, Margarete Oliveira Domingues, Ralf Deiterding,
and Odim Mendes

Abstract Plasma disturbances affect satellites and spacecraft and can cause serious
problems to telecommunications and sensitive sensor systems on Earth. Considering
the huge scale of the plasma phenomena, data collection at individual locations is
not sufficient to cover this entire relevant environment. Therefore, computational
plasma modelling has become a significant issue for space sciences, particularly
for the near-Earth magnetosphere. However, the simulations of these disturbances
present many physical as well as numerical and computational challenges. In this
work, we discuss our recent magnetohydrodynamic solver, realised within the MPI-
parallel AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework,
in which particular physical models and automatic mesh generation procedures have
been implemented. A performance analysis using a selection of significant space
applications validates the solvers capabilities and confirms the technical importance
of our approach.

1 Introduction

The number of studies on space plasmas has increased during the last decades,
driven by the significant effects that space plasma can have on sensitive electro-
electronic technologies. The road map for 2015–2025 commissioned by the Com-
mittee on Space Research (COSPAR) and the International Living With a Star

M. M. Lopes (�)
National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil
e-mail: muller.lopes@inpe.br

M. O. Domingues · O. Mendes
National Institute for Space Research (INPE), São José dos Campos, Brazil
e-mail: margarete.domingues@inpe.br; odim.mendes@inpe.br

R. Deiterding
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Southampton,
UK
e-mail: r.deiterding@soton.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_5&domain=pdf
mailto:muller.lopes@inpe.br
mailto:margarete.domingues@inpe.br
mailto:odim.mendes@inpe.br
mailto:r.deiterding@soton.ac.uk
https://doi.org/10.1007/978-3-030-61761-5_5

94 M. M. Lopes et al.

working group (ILWS) [43] describes damaging influences of space phenomena on
current technologies and infrastructure, implying a high economic cost that—albeit
not completely measurable—has a significant impact on the world economy [21].

There are significant international efforts to produce space weather forecasting
systems in order to anticipate when very intense solar events can occur and how
they can interact with the Earth or human-built space equipment. The global
simulations of the magnetohydrodynamics (MHD) model are a fundamental part
of such forecasting systems, especially to clarify processes, quantify, and even in
the next years predict a complete phenomenology of the interaction of plasmas with
the Earth’s magnetised and ionised atmosphere, as described, for instance, in [47].

In recent years, our research group has been contributing to such efforts by
developing a high performance numerical MHD solver to simulate the near-Earth
environment using the solar wind data as boundary conditions. This solver is being
developed under the AMROC (Adaptive Mesh Refinement in Object-oriented C++)
framework [17], which implements a patch-Structured Adaptive Mesh Refinement
(SAMR) method [4] with the parallel strategy proposed in [14] using the Message
Passing Interface (MPI) protocol.

Snapshots of these developments are given in [36], which introduces our solver
by presenting the results of classical ideal MHD benchmarks using the adaptive and
parallel strategies for both two-dimensional and three-dimensional formulations,
and in [19], where we presented some improvements concerning the adaptive
criteria of the SAMR method by using wavelet-based techniques. A core finding of
these publications is that the multiresolution (MR) approach, as it is mathematically
more rigorous, leads to an adaptive mesh well fitted to the structures of solutions
in the MHD context and to an improvement in the overall computational time.
Furthermore, this approach is more suitable for the numerical approaches to solve
the magnetic field divergence problem presented in MHD simulations.

In recent years, the number of studies in computational plasma modelling has
been increasing; many other MHD codes were developed for a variety of appli-
cations. For instance, [22] presents an extensive review of global magnetosphere
models, codes and numerical methods. In particular, the RAMSES code [23] was
developed in Saclay to study large-scale structure and galaxy formation; however,
it is now a rather flexible package to be used for general purpose simulations
in self-gravitating fluid dynamics. It is written in Fortran 90 with extensive use
of the MPI library and built on a grid-based hydro solver with adaptive mesh
refinement. The underlying data structure is the so-called fully threaded tree.
As opposed to patch-based SAMR, cells are refined on a cell-by-cell basis; it
is therefore called a tree-based AMR as described in [23]. A comparison of
advantages and disadvantages of patch-based and tree-based AMR is presented in
[24], stating that the patch-based SAMR codes provide a better memory layout
and a simpler geometry at the cost of the refinement of unnecessary cells and
the extra memory consumption due to the patch manager. Another widely used
MHD solver is the ATHENA code [44]. It is a grid-based code for astrophysical
magnetohydrodynamics. It was developed primarily for studies of the interstellar
medium, star formation and accretion flows. Athena has been made freely available

MHD Solvers in AMROC 95

to the community in the hope that others may find it useful. It uses Static Mesh
Refinement (SMR), as described in [44]. This approach consists of using a fixed
mesh that is more refined in some regions of the domain. Besides being faster,
this approach is not as flexible as the full SAMR algorithm in the sense that, for
many problems, the structures of interest may be formed dynamically or transported
through the domain.

This paper aims to present the new milestones reached in the development of
our MHD solver. In particular, this work develops the resistive formulation of the
MHD equations using a set of physical benchmark problems that occur due to
the resistive effects. Furthermore, we introduce an early two-dimensional MHD
formulation for the Earth magnetosphere based on [38–40]. After the simulated
magnetosphere converges to steady-state conditions, the model is implemented such
that the boundary condition containing typical values for the solar wind proceeds
with an evolution using actual interplanetary measurements, for instance, data
collected from the OMNI web service, NASA.1

The outline of this work briefly presents the AMROC framework in Sect. 2,
explaining the numerical, computational and design decisions of the software
development process that are contributing to the success of our ideal MHD solver, as
discussed in [19, 36]. Then, the numerical and implementation aspects of the ideal
and resistive MHD solvers are presented in Sect. 3. In Sect. 4, the content refers to
some fundamental experiments related to physical phenomena that occur in space
weather. At last, in Sect. 5, we discuss the lessons learned and the next development
steps.

2 AMROC

The compressible MHD equations are a system of nonlinear hyperbolic partial
differential equations. Considering the vector of conservative physical quantities
q, these equations can be written as a conservation law, i.e.

∂q
∂t

+∇ · F (q) = S(q) , (1)

where F and S are the flux function and the source term, respectively. A suitable
approach to simulate this type of model is the finite volume scheme [33]. This
method consists of discretising the physical domain of the problem into cells or
control volumes, so that each cell contains an average value for its coverage. Then,
each cell average is evolved in time according to the flux between its adjacent
cells. Note that in here, simulations are always performed inside rectangular
physical domains. This choice allows particular optimisations in comparison with

1OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/.

https://omniweb.gsfc.nasa.gov/

96 M. M. Lopes et al.

the algorithms required for unstructured meshes, such as the implementation of a
single numerical scheme routine, independent of the refinement.

During the discretisation process, the choices of proper refinements are challeng-
ing. An overly coarse mesh may cause the solution to be not adequately represented,
especially in cases that contain localised structures or steep gradients, causing loss
of information. On the other hand, an exaggerated refinement leads to a considerable
amount of unnecessary computations, wasting a lot of computational time and
memory. In this context, the use of adaptive techniques proposes to overcome these
limitations. These techniques maximise the efficiency of the simulation by using an
adaptive mesh, which is more refined in the regions where the localised structures
are present and is coarser in the smooth solution regions.

2.1 Adaptive Meshes

The MHD solver developed for this work uses an SAMR method to construct the
adaptive meshes. The work of Berger and Oliger [3, 5] was the first to introduce
this method. Subsequently, Berger and Colella [3, 4] proposed a simpler version, in
which every mesh of the hierarchy must be aligned with cells of the next coarser
level, allowing simpler interpolation operations. Bell, Berger and Saltzman [2]
demonstrated that this version can be more efficient, especially with vector and
super-scalar computers.

The strategy of the SAMR methods to construct adaptive meshes is based on
refinement criteria that measure the local smoothness of the solution in every mesh
element. If the result of the criteria exceeds a predetermined value ε, the mesh
element is flagged for refinement. After that, the flagged elements are overlaid by
submeshes, i.e. patches, of finer cells that are refined by a factor of r . Note that
the presently implemented multiresolution criterion only uses a refinement factor
of r = 2; however, AMROC principally permits arbitrary integer values for other
refinement criteria.

The process of overlaying more refined submeshes over coarser meshes produces
a hierarchy of embedded level domains, i.e. the domain covered by a finer
refinement level is also covered by the next coarser level. This hierarchy can be
expressed as the sequence of meshes M
, where
 is associated with the refinement
levels
 = 0, 1, . . . ,L. Each mesh M
 has its spatial mesh widths denoted as
�x
, �y
 and �z
 so that they present a constant ratio r between adjacent levels.
Considering that the meshes in this hierarchy are embedded, the physical domain
covered by each mesh M
 follows the property ML ⊂ ML−1 ⊂ · · · ⊂ M0 = �,

where the base mesh M0 covers the entire physical domain �. Each one of these
meshes is divided into a set of non-overlapping rectangular submeshes M

m so that
M
 := ∪M

m=1M

m with M

m1
∩ M

m2
= ∅, m1 = m2, where M
 is the number of

submeshes, or patches, used to represent the mesh M
.

MHD Solvers in AMROC 97

One of the advantages of this mesh hierarchy is allowing a single implementation
of the numerical scheme to be executed on each patch, independent of the refinement
level. Thereby, the time evolution process can be performed for every patch
individually. However, to compute fluxes along the boundaries of every patch
requires a solution of the cells in adjacent patches. This restriction compromises
the patch independence to perform the time evolution. In order to overcome this
limitation, the patch structure is complemented with extra auxiliary cells, called
ghost cells, at their boundaries, allowing the boundary values to be stored in the
same data structure as the submesh.

The values in the ghost cells must be set or updated before and during the
time evolution. For that, the ghost cells are divided into three cases regarding
their position. At the physical boundary, the ghost cells are updated according to
the problem boundary conditions. If there exists an adjacent patch on the same
level, the ghost cells are updated by copying the solution from the neighbour. If
the adjacent patch is, however, coarser, the ghost cells are interpolated from the
solution in the coarser level using a multi-linear interpolation. In order to ensure
discrete conservation in the fluxes between patches of different levels, the SAMR
approach eventually replaces the coarse-cell fluxes by averaged fine-mesh fluxes,
hence modifying the numerical stencil on the coarse mesh, cf. [14, 15] for AMROC-
specific implementation details.

Wavelet Coefficients as Refinement Indicator
Wavelet theory shows that the decay of the wavelet coefficients estimates the local
regularity of the solution [11]. Therefore, we can use such coefficients to predict
where we could not have an adequate local approximation, and consequently, we
need to improve the refinement. This can be used to determine dyadic refinement
(i.e. r = 2) as these coefficients indicate regions of steep gradients or discontinuities
[20, 37]. In this context, our proposed MHD solver implements ideas based on the
adaptive multiresolution method introduced by Harten [27] to use as the refinement
criteria. For that, the solver uses the multiresolution operations to predict the
expected solution at a finer scale based on the solution from a coarser scale. Then,
this prediction is compared with the actual solution. Besides this criterion, the MHD
solver also allows using the criteria discussed in [15, 19].

Our underlying idea of applying multiresolution techniques for mesh adaptation
is based on representing the numerical solution in two or more different resolution
levels. Compression of the number of mesh cells, corresponding to coarsening
the mesh locally, can be obtained by checking what happens between subsequent
mesh resolutions [18]. For instance, for a discrete solution of a finite volumes

discretisation, we consider as initial cell average data Q

+1

at level
 + 1. The

transformation of these data Q

+1

into an equivalent multiscale representation in
one decomposition level is

Q

+1 projection

�
prediction

Q

+1
MR = {Q
} ∪ {d
+1},

98 M. M. Lopes et al.

where the set d
+1 contains the information between the two consecutive levels

and
 + 1, and Q

stores a smoothed version of the original numerical solution

Q

+1

. The data at the highest resolution level are transformed into a set of coarser
scale approximations plus a series of prediction errors corresponding to wavelet
coefficients d
 in a multiresolution analysis. In order to perform the MR method
with finite volume data, operations for projection and prediction are required, where
the cell values are local averages.

Patch Creation
In SAMR methods, once the refinement criteria flag the coarser cells that require
refinement, these cells are clustered into blocks by using a dedicated algorithm.
Then, these blocks are used to construct patches of a finer refinement level. The
AMROC framework uses the clustering algorithm proposed in [2], which was
inspired by image detection techniques. This clustering algorithm is illustrated in
Fig. 1. Letϒi be the number of flagged cells, i.e. signatures, in the ith row or column
of cells on the current mesh M
. As the first step, this method splits the domain in
every row and column where ϒi = 0. In the second step, the cuts are placed where
the discrete second derivative � = ϒi+1 − 2ϒi + ϒi−1 crosses zero, starting from
the steepest zero crossing and then using the lowest ones recursively. This step is
repeated until the ratio among all cells and flagged ones in every new submesh is
above the prescribed clustering ratio ϑ . In principle, ϑ ∈ [0.00, 1.00]; however, in
practice, typically ϑ ∈ [0.80, 0.99].

Time Evolution Strategy
As the adaptive mesh is defined, the time evolution for simulations with adaptive
meshes presents minor challenges regarding stability and conservation. Obviously,
the time step parameter �t needs to satisfy the Courant–Friedrichs–Lewy (CFL)
condition in every patch. In this context, the time evolution process using adaptive
meshes may be performed with two different approaches [15]. One is based on
a global time stepping where the patches of every level are updated with a �t

that satisfies the CFL condition on the finest meshes. The other strategy is a
refinement-based recursive time stepping where �t
 varies between levels in the
same proportion as their spatial refinement. This latter strategy requires the solution
in patches of different refinement levels to be available at different time instants,
which is handled in the SAMR method by constructing time-interpolated coarse
level data as a boundary condition for interior fine level patches.

2.2 Implementation Aspects

AMROC is a freely available framework2 that uses object-oriented programming
concepts in the C++ language to support the numerical simulation of partial

2AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc.

http://www.vtf.website/asc/wiki/bin/view/Amroc

MHD Solvers in AMROC 99

Fig. 1 Cell clustering algorithm. The value ϒi associated with each row and column is defined as
the number of flagged cells in that row or column, and �i = ϒi+1 − 2ϒi + ϒi−1. (a) 1st step:
mesh division where ϒ = 0. (b) 2nd step: division of the white mesh where the value �n presents
the highest variation between adjacent values with opposite signals. (c) Recursive execution of the
2nd step over the new subdivisions. (d) Stop criteria: percentage of flagged cells in the subdivision
surpass the predefined clustering ratio ϑ

differential equations using adaptive methods. In this framework, presented in [15],
the SAMR core contains about 46,000 lines of code C++ and around 6000 lines
of code for visualisation and data conversion routines. Besides being written in
the C++ language, the framework uses the FORTRAN language to perform mesh
operations, such as prolongation and restriction, due to its better performance in

100 M. M. Lopes et al.

mathematical computations. The AMROC framework uses a space-filling curve to
implement a dynamic re-partitioning algorithm and to redistribute the workload
among the processes in the adaptive cases. In here, this load balancing operation is
carried out after each time step on level 0. AMROC is pursuing a rigorous domain
decomposition strategy, in which the increased computational expense on higher
refinement levels in the patch-based AMR algorithm is considered when evaluating
parallel workload. However, only units of the smallest resolution corresponding to a
cell on level 0 can be considered [14]. This approach simplifies the implementation
and reduces the expense of the partitioning algorithm but can lead to slight load
imbalances on deep hierarchies. The algorithm used for partitioning is always a
multi-dimensional space-filling curve [13, 15].

3 MHD Modelling

The study of MHD phenomena presents a series of demands concerning their
physics, such as the formation of instabilities, discontinuities and shocks in the
physical quantities and the diversity of scales with which these behaviours may
occur [6, 32]. MHD modelling describes the behaviour of a single, non-viscous,
compressible and conducting fluid under a magnetic field. This model is applied
in problems in which the plasma has macroscopic force balance, equilibrium
and dynamics. In the scope of space sciences, the MHD formulation describes
phenomena such as the Earth magnetosphere, the solar wind, the heliosphere and
many instabilities in plasma that occur in those regions.

The MHD model describes the plasma dynamo using the variables ρ, u, B, p,
E and η, corresponding to density, velocity, magnetic flux, pressure, total energy
and resistivity, respectively. These variables are modelled by combining the Euler
equations and the Maxwell equations [32], obtaining a set of eight nonlinear partial
differential equations. In order to simplify the representation of these equations for
the modelling purpose, they are rewritten in a non-dimensional form so that the
magnetic permeability yields the identity μ = 1 [25], obtaining

∂ρ

∂t
+ ∇ · (ρu) = 0, (2a)

∂ (ρu)
∂t

+∇ ·
[
ρuu +

(
p + B · B

2

)
I− BB

]
= 0, (2b)

∂E
∂t

+∇ ·
[(

E+ p + B · B
2

)
u − (u · B)B + [η (∇ × B)] × B

]
= 0, (2c)

∂B
∂t

+∇ ·
[
uB − Bu + η

(
(∇B)T −∇B

)]
= 0. (2d)

MHD Solvers in AMROC 101

This system is completed by the definition of total energy, which is the combination
of the hydrodynamic and magnetic energies, i.e.

E = p

γ − 1
+ ρ

u · u
2

+ B · B
2

, (3)

where γ is the adiabatic index. Furthermore, the plasma must satisfy the Gauss’s law
for the magnetism ∇ · B = 0, i.e. the divergence over the magnetic field is constant
and zero over time, not allowing the formation of magnetic monopoles (since it is a
nonphysical behaviour).

Numerical Aspects
The numerical simulation of the MHD equations presents several inherent
challenges, for instance, the operator ∇ · (∇ × ·) over a vector quantity is zero,
which implies, in our study, that ∂t (∇ · B) = 0. So, ∇ · B is a constant value, but
as earlier mentioned, magnetic monopoles can not be formed. However, in many
numerical methods, due to numerical approximation errors, the term containing
∇ · (∇ × ·) does not indeed result in zero. Hence, ∇ · B = 0, so that the MHD
system does not satisfy Gauss’s law as expected. The loss of this constraint causes
spurious behaviours in the numerical solution, creating magnetic monopoles. This
phenomenon leads to numerical instabilities as discussed, for instance, in [7, 46],
and more recently in [29].

To deal with this problem, the AMROC-MHD module implements the
Generalised Lagrangian Multiplier (GLM) formulation for the MHD equations
[12]. In general, GLM methods are used to maximise or minimise a function
under some constraints. In this context, the GLM method is used to maximise the
induction equation while imposing ∇ ·B = 0. This is done by coupling a differential
operator D to the Gauss’s law so that D(ψ) + ∇ · B = 0. Then, the solution ψ is
coupled to the induction equation, obtaining

∂B
∂t

+∇ ·
[
uBT − BuT + η

(
(∇B)T − ∇B

)
+ ψI

]
= 0. (4)

In particular, the MHD simulations in this work use the parabolic–hyperbolic
divergence cleaning approach as proposed in [12] and updated in [34]. This
correction is characterised by the operator D(ψ) = 1

c2
p
ψ + 1

c2
h

∂ψ
∂t

, with cp and

ch ∈ (0,∞), where the parameter ch = max
[
σ �h
�t
, max

(|ui | ± cf
)]
, with �h

being the minimal value of the mesh sizes in each direction, σ the Courant number,
ui the velocity of the ith component, cf the fast magneto-acoustic wave velocity of
the MHD model, and the cp value is defined in terms of the parameter αp = �h ch

c2
p

for αp ∈ [0, 1]. Applying this operator into the modified Gauss’s law, the equation
that describes the evolution of ψ is obtained as

∂ψ

∂t
+ c2

h∇ · B = − c2
h

c2
p

ψ. (5)

102 M. M. Lopes et al.

The choice of this operator results in a method that transports and diffuses
the components of ∇ · B to the boundaries [12]. Besides not eliminating these
components completely, this method is capable of maintaining the accuracy and the
stability of the solution at a very low computational cost.

Moreover, the AMROC-MHD module also implements the Extended GLM-
MHD formulation (EGLM-MHD), as described in [12], that includes Powell’s
source terms into the GLM-MHD model. However, we will not discuss EGLM
experiments herein as the GLM approach presents solutions that are mathematically
more rigorous in the sense of conservation laws.

The discussed GLM-MHD system is completed by suitable initial and boundary
conditions as presented in the numerical experiments section. Note that the variable
ψ is always initialised as zero for the entire domain.

The AMROC-MHD solver implements the HLL [28] and HLLD [35] fluxes
using a two-stage second-order accurate Runge–Kutta method to perform the flux
computations of the MHD equations. Furthermore, the AMROC-MHD module uses
MUSCL (Monotone Upstream-Centered Scheme for Conservation Laws) [50] as
a high-resolution scheme. This approach is based on the usage of a slope limiter
that consists of piece-wise linear reconstructions to extrapolate each variable q of
the solution to the left and right boundaries of the cell. These extrapolations are
performed as presented in [45].

Besides the GLM formulation, in order to ensure that the solution does not
develop spurious oscillations around discontinuities or shocks, the AMROC-MHD
module implements the following slope limiter functions to be used in a MUSCL
scheme: Minmod [41], Monotonized Central (MC) [49], Superbee [41], van Albada
[51], van Leer [48] and Koren [31].

4 Experiments and Discussions

This section presents the results of the adaptive simulations of two benchmark cases
for a three-dimensional ideal MHD and a two-dimensional resistive MHD model,
respectively. These benchmarks represent significant phenomena that appear in the
physics of the space environment involving the Earth magnetosphere model. The
experiments aim to quantify the scheme accuracy in the L1-norm, the memory
compression and the CPU-time gain concerning a non-adaptive mesh with the same
refinement as the finest level, as discussed in [16, 18]. Finally, a more complex
configuration setup involving the Earth magnetosphere is discussed.

All experiments are conducted using a Cartesian mesh, the HLLD numerical flux
introduced in [35], and the MinMod limiter as discussed, for instance, in [45]. The
computations were run in parallel using nodes of a recent GNU/LINUX computer
cluster that provides 20 cores with shared memory per node.

MHD Solvers in AMROC 103

4.1 Magnetic Shock-Cloud (MSC)

The magnetic shock-cloud problem is a benchmark test that verifies the performance
of the numerical scheme when dealing with super-fast flows [46]. It describes the
disruption of a high-density magnetic cloud by a strong shock wave. For that, an
advancing plasma is considered, which causes a shock with a stationary state that
contains a high-density cloud. This is a conceptual problem, not yet computationally
exploited in the space science literature. These simulations are performed inside
the computational domain [0, 1]3 with outlet boundaries, using the GLM factor
αp = 0.4 and η = 0 (ideal MHD case). The time steps are performed under the
Courant number σ = 0.4 until the final time t = 0.06. The initial states of both
the advancing (delimited by x < 0.05) and steady (x > 0.05) plasma regions
are described in Table 1 for the adiabatic constant γ = 5

3 , with non-dimensional
quantities compatible with the defined MHD model. The density solution in the
steady plasma ρ0 is given by value ρ0 = 10 if the coordinates are inside the cloud
with centre in (0.25, 0.5, 0.5) and radius r = 0.15. Otherwise, this density is set
as ρ0 = 1. Figure 2 shows a slice representation of the density initial condition
configuration and the solutions at the instants t = 0.03 and t = 0.06 alongside with
the respective adaptive meshes and the mesh distribution among the 48 processors
used for these simulations.

The figure containing the refinement of the adaptive mesh is interpreted such
that the blue regions of the domain represent the coarsest scale, while the red
regions represent the most refined scale. The adaptive mesh localises structures
in the solution, such as the bow shock, the centre of the explosion area and the
tail. The visualisation of the mesh distribution per processor is a complicated
task in this three-dimensional case. However, we can roughly estimate the form
of this distribution using planar cuts, cf. right graphic of Fig. 2, so that each
colour represents the sub-domain evolved by each processor. The workload balance
algorithm is expected to create small sub-domains in the most refined regions, while
the coarser regions are evolved using less processors. This can be observed in
the initial condition, where the refinement concentrates in the shock wave and in
the sphere borders, and hence, more processors are being used in these regions,
in contrast with the region with x > 0, which is predominantly being evolved
by the same processor. In the instant t = 0.03, the processors maintained their
concentration around the cloud region and the yz-plane, where the shock wave is
located, while the region x > 0 is still evolved by few processors. At the final instant
t = 0.06, the processors are more spread into the domain, but a concentration is still
visible in the cloud and tail regions. These graphics indicate an excellent distribution
in the regions where more refinement is desired.

Table 1 MSC: initial conditions. This IC is complemented by the values uy = uz = Bx = 0

ρ p ux By Bz

x < 0.05 3.86859 167.34500 11.25360 2.1826182 −2.1826182

x > 0.05 ρ0 1 0 0.56418958 0.56418958

104 M. M. Lopes et al.

Fig. 2 MSC: Results for density ρ, the adaptive mesh refinement and distribution per processors.
This simulation is performed using L = 4 refinement levels with a base mesh size of 1283 cells,
MinMod limiter, threshold value ε = 0.025 and 48 processors until tend = 0.06

Table 2 presents the results of the AMR simulations using a refinement threshold
value ε = 0.025 with a number L of extra refinement levels, so that the finest
level allowed corresponds to a uniform mesh size of 5123 cells. This table also
presents the L

1-norm error for pressure, the CPU time, the number of cells used
in the discretisation at the final instant and the number of patches used in the grid
hierarchy for each case. For these parameters, the simulation with L = 3 refinement
levels presented a better structure localisation than the one with L = 2, due to the
number of cells and patches required. This resulted in a significative reduction in the
CPU time (around 13%) with a small increase in the overall L1-error in the order
of 10−4. Moreover, the simulations with L = 3 and 4 refinement levels presented

MHD Solvers in AMROC 105

Table 2 MSC: errors in pressure p, memory consumption (number of cells and patches used)
and CPU time obtained by using several refinement levels L using MinMod limiter at tend = 0.06
with a threshold value ε = 0.025

Mesh Accuracy (p) Cells Patches CPU time

Size Base L L1-error (×10−3) # % # Min %

5123 643 4 2.481 34,032,848 25 10,812 442.8 32

5123 1283 3 2.4176 33,967,120 25 11,548 458.9 33

5123 2563 2 2.1898 40,190,312 30 22,420 636.4 46

Table 3 MSC on uniform and MR adaptive mesh computations using MinMod limiter

Uniform mesh Adaptive mesh, ε = 0.025, ϑ = 0.80

CPU Base mesh CPU

Mesh (size) # Cells time (s) (size) # Patches # Cells time (s)

2563 16,777,216 4563.6 323 148 5,917,288 1468.5

5123 134,217,728 74,185.5 323 894 27,444,592 11,350.3

10243 1,073,741,824 − 323 847 28,714,656 117,731.4

similar number of cells and patches in their adaptive meshes. Consequently, these
cases presented similar CPU time. This indicates that the fourth refinement level
has barely been used, causing the number of cells and patches to be similar.
Nevertheless, the small reduction in the CPU time by 1% obtained by the L = 4
simulation, in relation to the L = 3 simulation, increased the overall L1-error by
the order of 10−5. Therefore, the result with L = 4 is considered to present the best
gain considering precision and CPU time.

In Table 3, we present a comparison between the uniform and an adaptive
computation with a refinement threshold value ε = 0.025 and a clustering ratio
ϑ = 0.80 for meshes with different finest refinements and using the same base mesh
323. The gain of the adaptive computations sharply increases with the enlargement
of the mesh. In particular, for the adaptive computation, we use less than 3% of
the number of cells for computation related to a uniform mesh 10243 and spend
a CPU time close to the computation of the uniform mesh 5123. Moreover, in the
highest resolved computation, the uniform mesh exceeds our cluster memory, and
we therefore cannot provide the CPU time for this computation. The numbers of
patches are almost similar among the two refined meshes; however, the most refined
mesh presents a slightly smaller number of patches, which seems to indicate a better
localisation of the structures.

Considering the finest adaptive mesh 10243, Table 4 shows the comparison with
different cluster parameters and base meshes taking into account the number of
cells and the CPU time. In both cases, the clustering ratio ϑ = 0.99 presented the
largest number of patches, which is expected. In contrast to what we observed in
the two-dimensional case [19] that these results produced less computational effort
and number of cells. This could be related to the localisation of the structures in
the solution in this three-dimensional case. Therefore, in this case, a clustering ratio
ϑ = 0.99 presented better results.

106 M. M. Lopes et al.

Table 4 MSC: cell-cluster
comparison for MR adaptive
computations considering
different clustering ratios ϑ
and base meshes, with
ε = 0.025 and MinMod
limiter

Mesh CPU

Size Base ϑ # Patches # Cells time (s)

10243 163 0.99 392 28,730,312 158,152.4

10243 163 0.80 351 28,991,200 180,701.6

10243 323 0.99 868 28,476,728 116,871.8

10243 323 0.80 847 28,714,656 117,731.4

4.2 Magnetic Reconnection (REC)

As a relevant question of space science, the magnetic reconnection problem is
described in [30] as the merging of the magnetic field lines from two predomi-
nantly opposing magnetic fields, liberating a considerable amount of energy and
redirecting the direction of particle flows. This type of phenomenon is common in
solar physics and is highly studied due to the effects of the interaction between the
Earth’s magnetic field and the interplanetary magnetic field that creates complicated
space environment processes. This test aims to verify the implementation of the
resistive terms in MHD, once the resulting effects can be connected with the process
responsible for the morphological transition of the magnetic field lines and changing
in the plasma’s flux, as presented in [42].

The problem is initialised considering two different states, divided at x = 0, with
a small transition gap between them. The two states have magnetic fields that present
opposing orientation over direction, and the reconnection occurs inside a small
region inside the transition gap where there is a small resistivity. The computational

domain for this problem is
[
− 1

2 ,
1
2

]
× [−2, 2] with Dirichlet boundary conditions.

Inside this domain, the resistivity is defined as

η (x, y) = η0

4
[1 + cos(10πx)] [1 + cos(2.5πy)]

if (x, y) is inside the sub-domain [−Lr ,Lr] ×
[
− 1

5 ,
1
5

]
, and is zero elsewhere

with the parameters η0 = 6 · 10−4 and Lr = 0.05. The initial conditions of the
physical quantities are ρ = 1, p = 0.1 and u = 0. The components of the initial
magnetic field are given according to its corresponding state, as presented in Table 5,
with non-dimensional quantities compatible with the defined MHD model. The
simulations of this problem are performed using the adiabatic constant γ = 5

3 and
the HLLD Riemann solver combined with the MC limiter. The parabolic–hyperbolic
correction uses the factor αp = 0.4. All simulations are performed under Courant
number σ = 0.4 until the final time t = 2.5.

Table 6 presents the error in pressure p using the L1-norm, the CPU time and
the number of cells and patches used in the adaptive mesh for simulations with
several refinement levels. These simulations are performed using the threshold
value of ε = 0.001 for the MR refinement criteria. The number of levels used

MHD Solvers in AMROC 107

Table 5 REC: magnetic field
initial condition

Region Bx By Bz

x < −Lr 0 −1 0

x > Lr 0 1 0

Transition zone 0 sin

(
π

2Lr
x

)
cos

(
π

2Lr
x

)

Table 6 REC: errors in pressure p, memory consumption and CPU time with refinement levels
L

Mesh Accuracy (p) Cells Patches CPU time

Size Base L L1-error # % # Min %

1024 × 2048 128 × 256 4 0.0231 928,932 44 852 27.7 29

1024 × 2048 256 × 512 3 0.0226 895,292 42 809 48.1 51

1024 × 2048 512 × 1024 2 0.0050 856,968 40 466 48.3 51

in each simulation is configured such that the most refined scale corresponds to
a 1024 × 2048 mesh. The simulation that presented the best results is obtained
with L = 2, which corresponds to a reduction of 49% of the CPU time, while
maintaining an error in the order of 5 · 10−3. In that case, the gain is roughly four
times concerning the simulation with L = 4. Besides, this case presented the lowest
number of cells concerning the uniform mesh simulation and also the lowest number
of patches. Furthermore, these adaptive cases required only around 40% of the cells
of the uniform mesh simulation.

Figure 3 presents the solution for p, and the adaptive mesh for the simulation
with 4 levels. Showing the adaptive mesh refinement, the figure can be interpreted
such that the brightest regions of the domain represent the coarsest scales, while
the darkest regions correspond to the most refined scales. Physically, this figure
represents a snapshot of the magnetic reconnection process. One can identify the
interface between the domains of opposing orientation connected to the field line
merging processes. Furthermore, there is a convergence of plasma in one direction
and divergence in a perpendicular direction, as can be seen in the velocity plot.
These adaptive results are in agreement with the MHD solutions presented in
[30], and the modelling results are in agreement with the underlying physics, as
considered in [42].

Table 7 presents a breakdown of the most computationally costly tasks of the
adaptive REC simulations with different number of refinement levels. In comparison
with the uniform mesh simulation, the Integration costs of the adaptive simulations
exhibit a significant reduction, as expected from the lower number of integrated
cells. Moreover, the Boundary costs also show a reduction for three and four
refinement levels, while costs for not explicitly timed operations (Misc) reduce as
more levels are included. The Output production cost is generally insignificant, and
however, it also decreases for larger level number. Besides these cost reductions,

108 M. M. Lopes et al.

Uniform mesh simulation
B with field lines

Adaptive simulations (with four levels)
B with field lines

v hsemevitpadAdlefirotcevhtiw

Fig. 3 REC solution for uniform mesh (p, and ‖B‖), and the respective adaptive simulations for
(p, ‖B‖, and ‖v‖) with their adaptive meshes. This simulation is performed using four refinement
levels with threshold value ε = 0.001 and 24 processors. These figures are presented using the
y-axis in the horizontal direction

Table 7 REC: breakdown
of the CPU time, in seconds,
spent in main computation
tasks for different numbers of
refinement levels L using
ε = 0.001

Refinement levels

Main task One Two Three Four

Integration 3756.8 931.5 747.2 737.9

Boundary 796.1 852.9 591.0 503.5

Memory restart 142.0 29.5 11.0 5.7

Recomposition – 500.7 1141.0 228.2

Remeshing – 24.1 21.4 21.4

Misc 518.6 359.8 203.0 116.6

Output 3.8 6.4 5.4 1.2

the Recomposition and Remeshing tasks associated with the adaptive simulations
present a significant cost, especially for the three-level simulation. Nevertheless,
even considering these costs, the adaptive simulations require less CPU time than
the uniform mesh simulations.

MHD Solvers in AMROC 109

4.3 Magnetosphere (MAG)

Initially as conceived from the incidence of electrically charged solar particles,
the Chapman–Ferraro model proposed that the close Earth’s space environment
was an empty region that avoids the presence of those particles [8, 9]. Nowadays,
governed primarily by the geomagnetic field, a much more complicated electrody-
namics region develops surrounding the planet, designated as magnetosphere [42],
populated by plasmas.

As application cases for the solver, the first analysis deals with a predominantly
northward-oriented interplanetary magnetic field (IMF) causing—in principle—a
geomagnetically closed frontal magnetosphere, while the second case takes into
account the southward-oriented IMF, which causes a geomagnetically open frontal
magnetosphere. The main modelling ideas are described in details in [39, 40] and
references therein. For these studies, the close Earth’s environment is considered
basically as a sphere with density and pressure constant in time and containing a
magnetic dipole. This region is connected to an outer region where the geomagnetic
field is compressed or stretched by the solar wind, defining a region where the well-
known phenomenon of magnetic reconnection can occur.

The physical model of this problem requires changes in the resistive MHD
formulation presented in Eqs. 2. These changes consist of the inclusion of an
external gravity field, an artificial viscosity over the density and pressure field to
reduce the MHD fluctuation that arises from the unbalanced forces in the initial
condition, and a modification in the Ampère’s law so that J = ∇× (B − Bd), where
Bd is the intrinsic dipole magnetic field of the Earth [42, p. 223]. The reason to
subtract the dipole field from the Ampère’s law is supported to the expectation of
a significant electric current to be generated in the frontal interface layer between
the two media, i.e. the interplanetary space and the outer terrestrial region [38–40].
These modifications imply the inclusion of the source terms D∇2ρ in the continuity
equation 2a, ρg+�+ uD∇2ρ+B× (∇ × Bd) in the momentum equation 2b, and

ρu ·g+ Dp∇2p

γ−1 + ‖u‖2

2 D∇2ρ+u ·�+η‖∇ ×Bd‖2 + (∇×Bd) · (u × B − η∇ × B)
in the total energy equation 2c. The diffusive terms in this model are given in [39] as
D = Dp = μ

ρSW
= 0.02 and � = μ∇2u, where ρSW = 5.00 · 10−4 corresponds to

the typical value (5 n/cc) for the solar wind density. Moreover, we use the following
induction equation for the magnetic field:

∂B
∂t

+∇ ·
[
uB − Bu + η

(
(∇B)T − ∇B − (∇Bd)

T +∇Bd

)
+ ψI

]
= 0. (6)

Physical Quantities
The physical quantities included in the model are described by a function related
to the distance to the centre of Earth, represented by ξ (= √x2 + y2) defined
with the Earth located in the xy-plane origin. This two-dimensional formulation
considers the x-axis in the Sun–Earth direction crossing the Earth Equator, while
the y-axis is orthogonal to the x-axis so that it contains the Earth north and south

110 M. M. Lopes et al.

poles. This reference axis orientation is used for computational convenience in the
code. Nevertheless, to be clear, in the domains of the space scientists that use
an own reference coordinate system representation, this axis is considered to be
the z-axis. Besides the initial conditions, the distance ξ is used to determine the
external fields used in these simulations, such as the external gravity g, defined
by the vector field g(x, y) = − g0

ξ2 [x, y, 0] , where g0 = 1.35 × 10−6; the line

dipole magnetic field Bd, given by Bd(x, y) = [−2xyξ−4, ξ−4
(
x2 − y2

)
, 0
]
,

and the resistivity function η(x, y) = η0
w

w+1 , where the weight value reads w =
30(max

[
(ξ/16)2 − 1, 0

]
)2, as defined in Ogino’s implementation.

Those non-dimensional quantities are obtained from a physical system of units in
which the distance, magnetic induction and time are established based on the Earth’s
radius (RE = 6.37 · 106 m). We provide some fundamental physical information
used in this context. The Earth magnetic field at the equator is 3.12 ·10−5 T, and the
Alfvén transit time, a time required by the Alfvén wave to go through the equivalent
of the Earth radius, is taken as 0.937 s. Based on those quantities, the pressure unit
corresponds to 7.75 · 10−4 N/m2, the velocity unit to 6.80 · 106 m/s, the acceleration
unit to 7.26 · 106 m/s2 and the current density unit to 3.90 · 10−6 A/m2.

Initial and Boundary Conditions
The initial configuration for this problem consists in an approximation of the
ionosphere, which describes the plasma in the Earth’s neighbourhood, based on
the initial condition proposed in [38–40]. This ionosphere is constructed so that its
pressure and density are proportional to ξ . The initial magnetic field in this work
agrees with the one proposed in the works [38, 39] by including an imaginary
dipole at the coordinate x = 2xm so that B0(x, y) = Bd(x, y) + Bd(2xm, y),
where xm is the equilibrium point on the x-axis where the solar wind kinetic
energy counterbalances the dipole’s magnetic energy, i.e. the coordinate at which
ρSWu

2
SW = Bd

2 for y = 0. This imaginary dipole, known as the image method in
electrodynamics [42, p. 225-227], aids to produce an initial magnetic field that has
its field lines compressed, and not crossing the line x = xm. Its initial structures are
constrained to the domain of the Earth (where x ≥ xm). This magnetic configuration
is done to accelerate the convergence into a steady-state magnetosphere so that
the Earth magnetic field does not cross the position immediately beyond the
magnetopause, formed around x = xm. In the domain of the interplanetary medium
(where x < xm), the initial magnetic field is set to be equal to the typical
interplanetary magnetic field. This problem is simulated inside the physical domain
[−150, 450] × [−150, 150] RE, which is complemented with Neumann boundary
conditions so that the derivatives of the physical quantities are zero at the boundaries
xe = 450, ys = −150 and ye = 150. The boundary at xs = −150 is used to
prescribe the solar wind parameters.

The entire ionosphere initial condition and the typical solar wind parameters,
used as boundary conditions, are given in Table 8, where p00 = g0(γ − 1)/γ =
5.40 · 10−7 for γ = 2, p0 = 3.56 · 10−8 (corresponding to a temperature of TSW =
2 · 105 K), uSW = 4.41 · 10−2 (300 Km/s) and BSW = ±1.5 · 10−4 (5 nT), in which

MHD Solvers in AMROC 111

Table 8 Initial conditions and typical solar wind parameters

ρ p ux uy uz Bx By Bz

q0(x > xm, y) max

(
1

ξ2 , 10−4
)

max

(
p00

ξ
, p0

)
0 0 0 B0

x B0
y 0

q0(x ≤ xm, y) max

(
1

ξ2
, 10−4

)
max

(
p00

ξ
, p0

)
0 0 0 0 BSW 0

qSW (xs , y, t) ρSW p0 uSW 0 0 0 BSW 0

the positive (negative) signal of BSW is associated with the northward (southward)
orientation of the magnetic field of the solar wind.

Furthermore, the physical domain also presents an internal boundary correspond-
ing to a near-Earth region, i.e. a region defined indeed by the ionosphere and the
plasmasphere (details can be seen in [26, p. 208–222, and p. 164–173, respectively]).
Considering the Earth positioned at the origin, this internal boundary removes the
points with ξ < 16 from the computational domain. In order to dampen out all
perturbations near the ionosphere, the near-Earth neighbourhood is smoothed in
relation with the initial condition after every time step by the operation qn+1 =
f qn+1∗ + (1 − f) q0, where qn+1∗ is the solution obtained after the time evolution
and q0 is the ionospheric initial condition. The weight value f is computed as

f = f̄ 2

f̄ 2 + 1
, where f̄ = 100

(
max

[(
ξ
16

)2 − 1, 0

])2

. As proposed, this function

guarantees a smooth transition of quantities in a thin layer immediately surrounding
the ionosphere boundary, which presents constant values. This approach avoids the
MHD solver run stopping due to numerical instabilities.

Configuration of the Magnetosphere
The initial condition presented earlier describes the initial state of the ionosphere,
without contemplating an initial state for the magnetosphere. Thus, before intro-
ducing inputs composed of realistic data from the interplanetary environment, an
approximate configuration for the magnetosphere should be realised. The initial
ionospheric configuration is simulated using the typical solar wind parameters qSW ,
presented in Table 8, in order to obtain an initial state for a magnetosphere in
equilibrium. Figure 4 presents the density and, in white, the magnetic field lines.
The panels in the figure contain the initial condition and intermediary states of the
magnetosphere configuration before a stationary state is obtained using southward
IMF. These configurations are presented alongside with its corresponding adaptive
grids. An IMF orientation choice is made to match the orientation of the magnetic
field at the beginning of the dataset. This choice is due to the Earth magnetic
field, under typical northward and southward IMF, converging to different states, as
presented in Fig. 5. In the lower panel in the figure, there is a frontal reconnection,
and in the upper panel, reconnection does not occur in this position. The errors,
CPU time and number of cells and patches of the adaptive simulations using two
and three refinement levels are presented in Table 9 for both northern- and southern-
oriented solar wind. The simulations with southern-oriented solar wind presented

112 M. M. Lopes et al.

with magnetic field lines Adaptive mesh

Fig. 4 Density solution (left) at various time instants during the southern solar wind steady-
state magnetosphere construction with its correspondent adaptive mesh (right) with finest level
corresponding to a 512× 256 mesh and threshold value ε = 0.05. Magnetic field lines represented
in white evolving from a southward orientation

better performance due to its simpler mesh configuration, as illustrated in Fig. 5.
Besides the dipole, which is being compressed on the solar wind side while being
elongated downstream for both cases, these steady-state magnetospheres differ by
potential locations of the magnetic reconnection process. These simulations with
typical solar wind parameters are assumed to have converged to steady state at
the instant t = 172,799.666 s, which corresponds to around 2 days of simulated
time. Both steady stationary states reached are in agreement with the space physics
conditions. After that, the solar wind dataset input starts and the evolution of the
solar wind-magnetosphere coupling process is simulated.

This problem is simulated using the HLLD Riemann solver [35] combined with
the MinMod limiter under the Courant number σ = 0.4. The GLM formulation uses
the factor αp = 0.4.

MHD Solvers in AMROC 113

Adaptive meshSteady-state

Northward oriented

Southward oriented

Fig. 5 Steady-state magnetosphere predictions obtained, respectively, from northward- (top) and
southward-oriented (bottom) interplanetary magnetic field using an adaptive mesh with finest level
corresponding to a 512×256 mesh. Left: density solution (in n/cc) with magnetic field lines. Right:
adaptive mesh using the threshold value ε = 0.05

Table 9 MAG: errors in pressure p, memory consumption (number of cells and patches used)
and CPU time obtained by using several refinement levels L using MinMod limiter at tend =
184396 with a threshold value ε = 0.05. The experiments were performed using magnetic field
orientation in both north and south directions until the stationary state is obtained

Solar wind Mesh Accuracy (p) Cells Patches CPU time

orientation Size Base L L1-error (×10−3) # % # Min %

North 512 × 256 128 × 64 3 3.4158 84,468 65 313 161 74

512 × 256 256 × 128 2 2.6703 81,784 62 323 159 67

1024 × 512 256 × 128 3 2.0036 191,176 36 505 849 74

South 512 × 256 128 × 64 3 1.4590 78,556 60 266 93 66

512 × 256 256 × 128 2 1.1366 74,624 57 257 84 60

1024 × 512 256 × 128 3 1.1953 167,228 32 416 621 36

1024 × 512 512 × 256 2 0.9073 189,490 36 293 740 43

Solar Wind Experiments in the Inflow
After the establishment of the bow shock and the magnetosphere at the stationary
state, we introduce the interplanetary parameters obtained from the OMNI web
service, NASA, corresponding to the period from January 16th to 18th of 2018.
By the examination of the geomagnetic disturbance indices (using, for instance,

114 M. M. Lopes et al.

planetary indexKp, auroral electrojet indexAE and low latitude geomagnetic index
Dst) from the information of the World Data Center for Geomagnetism, Kyoto,3

this interval corresponds to a typical period of geomagnetically quiet conditions
(details in the Appendix). Nevertheless, it still represents a situation of interesting
variation in the IMF orientation, which challenges the actual MHD modelling. We
use a smoothed version of the data that preserves the primary realistic features,
plotted in Fig. 6, to avoid unnecessary oscillations in the simulation. In detail, the
filtering process is built with an orthogonal wavelet transform reconstruction with
Daubechies family 8 removing the first 6 levels of the wavelet coefficients.

These datasets, displayed in Fig. 6, consist of interplanetary magnetic field
components (in Geocentric Solar Magnetospheric reference system, GSM [42, p.
536]) Bx and Bz in nanotesla, the plasma flow speed in kilometre per second,
the numerical density in particle per cubic centimetre and solar wind temperature
in Kelvin. All these quantities are given in a function of the time in day of year
(DOY). Also, the pressure value is obtained using the particle density data n and the
temperature T as p = nkT , where k = 1.38064852 · 10−23 m2kg s−2K−1 is the
Boltzmann constant.

Furthermore, due to our computational formulation of considering the y-axis as
the axis that the dataset considers as being the z-axis, the component Bz of the
dataset is inputted as the By component of the solar wind.

These smoothed time series are introduced as an inflow boundary condition of the
northward orientated steady-state magnetosphere, that is used as an approximation
of the Earth magnetosphere on Jan 16th 00 : 00h-UT (shown at the top-left panel
in Fig. 5). Selected from the numerical evolution as an example, Fig. 7 presents the
configuration of the Earth magnetosphere on the instants Jan 17th at 07 : 04h-UT,
Jan 17th at 08 : 00h-UT and Jan 17th at 10 : 04h-UT, which, respectively, refer
to the effect of the IMF orientation. The upper panel in the figure corresponds
to the northward-oriented Bz interval (letter A in Fig. 6), the intermediate one
corresponds to the start of negative value (letter B) and the lower panel corresponds
to the peak of the southward-oriented interval (letter C). As expected, reconnection
processes are noticed in a remarkable way, at the lower panel, in the frontal face
and inside the tail of the magnetosphere. The analysis of the dynamic evolution
represented in the plots can justify the importance of these kinds of simulation
even for geomagnetically quiet conditions on the ground. Interestingly, related to
letter C, a time-coincident small intensity effect was noted in the auroral index,
and no effect stands out in the other equatorial index (condition reported in the
Fig. A.1 in Appendix). A more complete physical investigation is out of the scope
of this work. In the simulation figure, the grey pattern used for the density allows
clear identification of the interplanetary region, the bow shock, the interplanetary
magnetosheath and the own magnetosphere.

3World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

MHD Solvers in AMROC 115

Fig. 6 MAG solar wind inflow conditions corresponding to the period between January 16th and
18th of 2018. The dataset is presented in grey, while the smoother version effectively used on the
simulation is presented in black

116 M. M. Lopes et al.

January 17th: 07 :0h-UT (A)

January 17th: 08 :00h-UT (B)

January 17th: 10 :04h-UT (C)

Fig. 7 MAG plot of density (in n/cc) with representative magnetic field lines for the scenarios
after the inclusion of the smoothed solar wind inflow satellite data

MHD Solvers in AMROC 117

5 Conclusion

The framework AMROC with its implemented SAMR algorithm, MPI paralleli-
sation, multiresolution criterion and clustering structure was the base of the pre-
sented ideal and resistive GLM-MHD solvers with parabolic–hyperbolic magnetic
divergence-free correction. These solvers achieved a milestone in the development
of an Earth’s magnetosphere model. In this work, three physical and numerical
challenging tests demonstrate the computational efficiency and memory utilisation
of the framework for these new solvers with parallel mesh adaptation, compared to
the correspondent solvers using a uniform mesh.

As expected, the performance gain of the MR adaptive MHD simulations
depends on the local regularity of the solution in all physical quantities. For
instance, excellent adaptive performance can be observed when the solution requires
a high-resolution discretisation and has few localised disturbances relative to its
domain size. Furthermore, we successfully have validated the proposed solver for a
real-world magnetosphere scenario of space plasma, performing a challenging two-
dimensional test for the Earth magnetosphere, and additionally, a three-dimensional
implementation is also already a work in progress. Nevertheless, from our analyses,
further performance enhancements also seem feasible through better parameter
choices. In summary, our MHD solvers can deal with complex problems in space
research; for instance, as it is, we already have a potentially straightforward
numerical space weather forecast model that forthcoming projects will complete.

This work contributes to the rapidly developing area of space weather forecast
and is concerned with the inherent computational challenges of reducing memory
and CPU time, which—in the three-dimensional case—is still urgent work in
process, even for supercomputers.

Acknowledgments The authors thank the FAPESP (grants: 2018/03039-9, 2015/ 25624-2), CNPq
(grants: 424352/2018-4, 302226/2018-4, 307083/2017-9, 306038/2015-3) and FINEP (grant:
0112052700) for financial support of this research. MML thanks CNPq (grant: 140626/2014-0)
for his doctorate and CAPES (grant: 88882.463276/2019-01) for his post-doctorate scholarship.
We are indebted to Eng. V. E. Menconi for his invaluable computational assistance, to M. Sierra-
Lorenzo and A. K. F. Gomes for the fruitful discussions, and to Prof. Ogino for the MHD code and
scientific discussions that inspired our magnetosphere implementation. We also thank the teams of
World Data Center for Geomagnetism, Kyoto, for the geomagnetic indices dataset, and the OMNI
web service, NASA, for access to the interplanetary dataset.

We also thank the anonymous reviewers for their comments and suggestions that have improved
the final version of this manuscript.

118 M. M. Lopes et al.

Appendix

Code Organisation
In the context of this work, the AMROC framework, as described in [15] and
published online1 is divided into two main folders: the implementation and compi-
lation folders. The folder vtf/amroc/amr contains the base algorithm for a numerical
simulation using SAMR methods for a generic system of hyperbolic equations.
The files contained in this folder specify the data structures and routines outside
the scope of the simulated equations, such as mesh adaptation, mesh distribution
per processor, boundary conditions, restriction and prolongation operators, etc. In
particular, the function IntegrateLevel() in the file AMRSolver.h calls the numerical
scheme associated with the simulated equation, implemented in the base module,
using the mpass counter. For each iteration of this counter, the scheme defined
in the base is computed and then the ghost cells are updated. Considering the
implemented MHD solver, this counter performs three iterations, corresponding to
the first Runge–Kutta (RK) step, the second RK step and the divergence cleaning
step, respectively. The GLM implementation files are located in the mhd directory
of the implementation folder. They contain the base virtual functions to perform a
generic simulation of the MHD equations for two and three dimensions.

In special, these files contain the time evolution function Step(), called from the
Generic SAMR solver, and the virtual functions called from this function. The use
of virtual functions allows the definition of base functions that may be used for most
of the experiments, while allowing the redefinition of these functions in the specific
MHD module, if required by the studied problem. In general, the functions from the
base module implement numerical operations that are independent from the problem
simulated, such as flux computations, limiters and divergence cleaning routines.
The problem-specific file located in the respective source directory src implements
functions that are particular to each experiment. In general, this file contains
initial conditions and resistivity and gravity fields. However, if necessary for the
experiment, this file may contain redefinitions of virtual functions implemented in
the base module. We also have for each simulation an input parameter namelist
called solver.in.

Finally, the MHD module in AMROC runs scripts that already contain the
commands to convert the output HDF (Hierarchical Data Format) files into binary
VTK (Visualization ToolKit) files used for data visualisation in tools such as
VisIt2[10] and ParaView3[1].

Geomagnetic Disturbances
To attend the interests of the geophysical community, devices to measure the
geomagnetic field, designated in a general sense as magnetometers, have been

1AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc.
2Visit webpage: https://wci.llnl.gov/simulation/computer-codes/visit/downloads.
3Paraview webpage: https://www.paraview.org/download/.

http://www.vtf.website/asc/wiki/bin/view/Amroc
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
https://www.paraview.org/download/

MHD Solvers in AMROC 119

Fig. A.1 MAG: Geomagnetic disturbances shown by the geomagnetic indices: Auroral Electroject
(AE) and Symmetric Equatorial ring current effect (Sym-H) corresponding to the period between
January 16th and 18th of 2018. Indicated in the interplanetary magnetic field Bz. Letter A indicates
northward-oriented field interval, B a transition value and C southward-oriented interval

installed on the ground, nowadays composing a large net spread around the world.
One can find more information and specific documentation in the World Data
Center for Geomagnetism, Kyoto.4 Also, related fundamentals on space physics
are available in [42]. To quantify the level of geomagnetic disturbance occurring
upon the Earth, the interested reader can survey and examine some geomagnetic
disturbance indices, for instance, the index Kp for an estimated planetary dis-
turbance behaviour, the index AE for auroral electrojet disturbance effects and
the index Dst for a low latitude magnetic disturbance. In our case, we choose
and present in Fig. A.1 the interplanetary magnetic field Bz, the index AE and
the index Sym-H. This information can be collected effortlessly from the OMNI
web service, NASA.5 Bz is the primary variable responsible for triggering of the
magnetic reconnection process (merging of the interplanetary magnetic field lines
with the geomagnetic field lines), when this IMF component is a predominantly
southward-oriented field (i.e. in opposition to the geomagnetic field orientation), in
the frontal side, i.e. towards to the Sun, of the Earth’s magnetosphere. AE is the
geomagnetic index concerning the modification of the auroral electrojet currents
that produce magnetic disturbances in the higher latitudes. Sym-H is the index
concerning the intensification of an equatorial, symmetrical ring electrical current
(at a distance about 6–7 Earth radii) that produces magnetic disturbances in the
lower latitudes. Recorded by geomagnetic indices, any geomagnetic variations link

4World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.
5OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/form/omni_min.html.

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
https://omniweb.gsfc.nasa.gov/form/omni_min.html

120 M. M. Lopes et al.

intrinsically to the electrodynamical coupling between the solar plasma and the
Earth’s magnetosphere.

From the figure, indicated in the interplanetary magnetic field Bz, the letter
A identifies a corresponding maximum-value time in the northward-oriented field
interval, B a time under a transition value (close to zero) and C a corresponding
minimum-value time in the southward-oriented interval. There are two reasons to
select this dataset region: to pick up distinct interplanetary behaviours and to be far
from the simulation beginning. This procedure allows for exemplifying evolution
consistency related to record inputs and tangible results. As shown in the plot, a
time-coincident small intensity effect was noted in the auroral index, AE, and no
effect stands out in the equatorial index, Sym-H. Shown in Fig. 7, the simulation
results for the Earth’s magnetic field configuration are in physical agreement with
the magnetic effects on the ground, as the physics presented and discussed, for
instance, by Russell et al. [42]. The current code features provide the means for
evolution analysis of the Earth’s magnetosphere in complicated scenarios, such as
investigations for geomagnetically quiet conditions.

References

1. Ahrens, J., Geveci, B., Law, C.: ParaView. Los Alamos National Laboratory, Los Alamos
(2005)

2. Bell, J., Berger, M.J., Saltzmann, J., Welcome, M.: Three-dimensional adaptive mesh refine-
ment for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)

3. Berger, M.J.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D.
Thesis, Stanford University, Stanford (1982)

4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys. 82(1), 64–84 (1989)

5. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.
J. Comput. Phys. 53, 484–512 (1984)

6. Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)
7. Brackbill, J.U., Barnes, D.C.: The effect of nonzero ∇ · B on the numerical solution of the

magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)
8. Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Nature 126(3169), 129–130

(1930)
9. Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Terr. Magn. Atmos. Electr.

36, 171–186 (1931)
10. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,

M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for
visualizing and analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High
Performance Visualization–Enabling Extreme-Scale Scientific Insight, 1st edn., Chapter 16,
pp. 357–372. Chapman and Hall/CRC, New York (2012)

11. Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.),
Handbook of Numerical Analysis, vol. VII. Elsevier, Amsterdam (2000)

12. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic
divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)

13. Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D.
Thesis, Brandenburgische Technische Universität Cottbus (2003)

MHD Solvers in AMROC 121

14. Deiterding, R.: Construction and application of an AMR algorithm for distributed memory
computers. In: Plewa, T., Linde, T., Weirs, V.G. (eds.), Adaptive Mesh Refinement – Theory
and Applications, pp. 361–372. Springer, Berlin (2005)

15. Deiterding, R.: Block-structured adaptive mesh refinement – theory, implementation and
application. ESAIM: Proc. 34, 97–150 (2011)

16. Deiterding, R., Domingues, M.O.: Evaluation of multiresolution mesh adaptation criteria in
the AMROC framework. In: Proceedings of the Fifth International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, vol. 111. Civil Comp Press (2017)

17. Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive
multiresolution or adaptive mesh refinement: a case study for 2D Euler equations. ESAIM
Proc. 29, 28–42 (2009)

18. Deiterding, R., Domingues, M.O., Schneider, K.: Multiresolution analysis as a criterion for
effective dynamic mesh adaptation – a case study for Euler equations in the SAMR framework
AMROC. Comput. Fluids 205, 104583 (2020)

19. Domingues, M.O., Deiterding, R., Moreira Lopes, M., Gomes, A.K.F., Mendes, O., Schneider,
K.: Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the
AMROC framework. Comput. Fluids 190, 374–381 (2019)

20. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution meth-
ods. ESAIM Proc. 34, 1–96 (2011)

21. Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R.,
McKinnell, L.A., Gibbs, M., Burnett, C.: The economic impact of space weather: where do we
stand? Risk Anal. 37(2) (2017)

22. Feng, X.: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Springer,
Singapore (2020)

23. Fromang, S., Hennebelle, P., Teyssier, R.: A high order Godunov scheme with constrained
transport and adaptive mesh refinement for astrophysical MHD. Astron. Astrophys. 457(2),
371–384 (2006)

24. Gheller, C.: ENZO and RAMSES codes for computational astrophysics. Technical Report,
Swiss National Supercomputing Centre (2017). Available online in https://hpc-forge.cineca.
it/files/CoursesDev/public/2017/HPC_methods_for_Computational_Fluid_Dynamics_and_
Astrophysics/Bologna/ASTR02-ENZO_and_RAMSES_Codes-Gheller.pdf

25. Goedbloed, P., Keppens, R.: Lecture notes in magnetohydrodynamics of astrophysical plasmas.
Chapter 4: The MHD model. Technical report, Utrecht University, Sep-2004/Jan-2005.
Available online in https://perswww.kuleuven.be/~u0016541/MHD_sheets_pdf/nsap430m.06.
4.pdf

26. Hargreaves, J.K.: The Solar-Terrestrial Environment. Cambridge University Press, Cambridge
(1992)

27. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation
laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

28. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for
hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

29. Hopkins, P.F.: A constrained-gradient method to control divergence errors in numerical MHD.
Mon. Not. R. Astron. Soc. 462, 576–587 (2016)

30. Jiang, R.-L., Fang, C., Chen, P.-F.: A new MHD code with adaptive mesh refinement and
parallelization for astrophysics. Comput. Phys. Commun. 183(8), 1617–1633 (2012)

31. Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In:
Vreugdenhil, C.B., Koren, B. (eds.), Numerical Methods for Advection-Diffusion Problems.
Notes on Numerical Fluid Mechanics, pp. 117–138. Vieweg, Germany (1993)

32. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, vol. 8.
Course of Theoretical Physics S, Pergamon, 2nd edn. (2004)

33. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1990)
34. Mignone, A., Tzeferacos, P., Bodo, G.: High-order conservative finite difference GLM–MHD

schemes for cell-centered MHD. J. Comput. Phys. 229(17), 5896–5920 (2010)

https://hpc-forge.cineca.it/files/CoursesDev/public/2017/HPC_methods_for_Computational_Fluid_Dynamics_and_Astrophysics/Bologna/ASTR02-ENZO_and_RAMSES_Codes-Gheller.pdf
https://hpc-forge.cineca.it/files/CoursesDev/public/2017/HPC_methods_for_Computational_Fluid_Dynamics_and_Astrophysics/Bologna/ASTR02-ENZO_and_RAMSES_Codes-Gheller.pdf
https://hpc-forge.cineca.it/files/CoursesDev/public/2017/HPC_methods_for_Computational_Fluid_Dynamics_and_Astrophysics/Bologna/ASTR02-ENZO_and_RAMSES_Codes-Gheller.pdf
https://perswww.kuleuven.be/~u0016541/MHD_sheets_pdf/nsap430m.06.4.pdf
https://perswww.kuleuven.be/~u0016541/MHD_sheets_pdf/nsap430m.06.4.pdf

122 M. M. Lopes et al.

35. Miyoshi, T., Kusano, K.A.: A multi-state HLL approximate Riemann solver for ideal magne-
tohydrodynamics. J. Comput. Phys. 208, 315–344 (2005)

36. Moreira Lopes, M., Deiterding, R., Gomes, A.K.F., Mendes, O., Domingues, M.: An ideal
compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh
refinement. Comput. Fluids 173, 293–298 (2018)

37. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, vol. 27. Lecture Notes in
Computational Science and Engineering. Springer, Heidelberg (2003)

38. Ogino, T.: A Three-Dimensional MHD simulation of the interaction of the Solar Wind with
the Earth’s Magnetosphere: the generation of field-aligned currents. J. Geophys. Res. 91(A6),
6791–6806 (1986)

39. Ogino, T.: Two-dimensional MHD code. In: Omura, Y., Matsumoto, H. (ed.), Computer Space
Plasma Physics: Simulations and Software, pp. 161–191. Terra Scientific Publishing, Tokyo
(1993)

40. Ogino, T., Walker, R.J., Ashour-Abdalla, M.: A global magnetohydrodynamic simulation of
the magnetosheath and magnetosphere when the interplanetary magnetic field is northward.
IEEE Trans. Plasma Sci. 20(6), 817–828 (1992)

41. Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18(1),
337–365 (1986)

42. Russell, C.T., Luhmann, J.G., Strangeway, R.J.: Space Physics: An Introduction. Cambridge
University Press, Cambridge (2016)

43. Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A.,
Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V.,
Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D.,
Obara, T., O’Brien, T.P., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E.,
Vilmer, N.: Understanding space weather to shield society: A global road map for 2015–2025
commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745–2807 (2015)

44. Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for
astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008)

45. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. Springer, Berlin (1999)

46. Tóth, G.: The ∇ · B constraint in shock-capturing magnetohydrodynamics codes. J. Comput.
Phys. 161, 605–652 (2000)

47. Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester,
W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.:
Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903
(2012)

48. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and
conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

49. van Leer, B.: Towards the ultimate conservative difference scheme III. Upstream-centered
finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23(3), 263–275 (1977)

50. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

51. van Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods
in cosmic gas dynamics. In: Hussaini, M.Y., van Leer, B., van Rosendale, J. (eds.), Upwind and
High-Resolution Schemes, pp. 95–103. Springer, Berlin (1997)

Verification of the WALE Large Eddy
Simulation Model for Adaptive Lattice
Boltzmann Methods Implemented
in the AMROC Framework

Christos Gkoudesnes and Ralf Deiterding

Abstract We detail the verification of the WALE large eddy simulation turbulence
model for application in cell-based lattice Boltzmann methods, as implemented in
our generic Cartesian structured adaptive mesh refinement framework AMROC.
We demonstrate how to effectively apply the test case of decaying homogeneous
isotropic turbulence to verify the core WALE implementation against higher
resolved direct numerical simulations and the constant-coefficient Smagorinsky
turbulence model. Both standard and regularised single relaxation collision models
are analysed systematically. While our results confirm the established observation
that the standard collision model yields less dissipative energy spectra, novel quan-
titative evidence is given that this positive behaviour comes at the cost of unphysical
perturbations in high wavenumbers. In order to allow unaltered application of
the finite-difference stencils intrinsic to the WALE approach in real-world flow
situations, a new method is presented for ensuring consistent boundary conditions in
microscopic distribution functions as well as in macroscopic variables. The benefit
of the proposed technique is shown for dynamically adaptive simulations of flow
around a sphere at Reynolds number 1000 and compared to a large eddy simulation
using the constant-coefficient Smagorinsky model.

1 Introduction

In recent years, the lattice Boltzmann method (LBM) [19, 31] has achieved stupen-
dous success in a variety of scientific fields. Application examples can be found
for instance in [1, 15, 22, 29, 33–35]. Its computationally inexpensive numerical
scheme, straightforward parallelisation and close to linear parallel scalability make
it a powerful alternative for subsonic flow simulations compared to the mainstream
computational fluid dynamics solvers that discretise the Navier–Stokes equations

C. Gkoudesnes (�) and R. Deiterding
Aerodynamics and Flight Mechanics Research Group, School of Engineering, University
of Southampton, Southampton, UK
e-mail: C.Gkoudesnes@soton.ac.uk; R.Deiterding@soton.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Deiterding et al. (eds.), Cartesian CFD Methods for Complex Applications,
SEMA SIMAI Springer Series 3, https://doi.org/10.1007/978-3-030-61761-5_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61761-5_6&domain=pdf
mailto:C.Gkoudesnes@soton.ac.uk
mailto:R.Deiterding@soton.ac.uk
https://doi.org/10.1007/978-3-030-61761-5_6

124 C. Gkoudesnes and R. Deiterding

and usually employ finite volume schemes. Thanks to a time-explicit numerical
update and intrinsically low numerical dissipation, the LBM lends itself particu-
larly to large eddy simulations (LES) of engineering applications involving high
Reynolds number flows. The employment of Cartesian meshes, and characteristic
for the LBM, in addition, allows easy and automatic mesh generation and, hence,
has the potential of reducing the time for setting up a simulation considerably,
particularly with complex geometries. However, the drawback of the Cartesian
approach is that a significant number of cells usually need to be deployed in the
vicinity of the body in order to accurately approximate its shape. In the case
of uniform grids, this can lead to prohibitively large meshes. A possibility to
mitigate this issue is the extension of the LBM to body-fitted structured [28] or
hybrid meshes [9]. The other—more common—approach is the use of levels of
Cartesian refinement. This approach can be further optimised by the implementation
of solution adaptive mesh refinement (AMR).

The AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework
[6] implements patch-based, structured adaptive mesh refinement (SAMR) gener-
ically for time-explicit finite volume methods. The LBM has been incorporated
into AMROC by formulating it on cell-based data structures; treatment of embed-
ded boundaries with a level-set-based ghost-fluid-type approach allows for an
effective handling of moving solid bodies. Examples of successful AMROC-LBM
simulations, primarily in the laminar flow regime, can be found for instance in
[7, 8, 10, 11, 18, 20]. The present paper reports on verification and validation
of a variety of new developments in the AMROC-LBM solver, in particular, the
wall-adapting local eddy viscosity (WALE) turbulence model [25] and the newly
implemented regularised single relaxation time (SRT) collision operator [21]. In
the procedure of applying LES models that are based on finite-difference stencils,
a new algorithm for imposing macroscopic variables in ghost cells, after the
application of “bounce-back” boundary conditions, is presented and tested here for
the very first time. Two validation tests are discussed in detail, namely, the decaying
homogeneous isotropic turbulence in a periodic box benchmark and turbulent
flow around a sphere at Reynolds number 1000. Comparing the spectra from the
STAndard (STA) and REGularised (REG) SRT operators in the former case, useful
information will be extracted. The efficiency and performance of the WALE model
will also be cross-verified against the Constant SMAgorinsky (CSMA) model.

The paper is organised as follows: In Sect. 2, we present the LBM equations both
for the STA and REG SRT operators, the formulas for the CSMA and WALE models
and the SAMR strategy as implemented in AMROC. Section 3 details the improved
boundary condition implementation in AMROC-LBM, both for the domain and the
embedded non-Cartesian surface boundaries, and the new algorithm for imposing
microscopic as well as macroscopic variables in ghost cells will be reported. The
results of the two validation test cases and their discussion can be found in Sect. 4.
Finally, the conclusions are drawn in Sect. 5.

Verification of the WALE LES Model for LBM in AMROC 125

2 Methodology

In this section, we review the lattice Boltzmann method and the newly implemented
REG SRT collision model. Moreover, the formulas describing the two LES models,
employed in this paper, are introduced. Finally, we summarise the SAMR strategy
that is applied in the AMROC-LBM solver.

2.1 Lattice Boltzmann Method

The discrete lattice Boltzmann equation, describing the evolution of the distribution
functions fα with the SRT collision model and without an external force, reads

∂t fα + eα · ∇fα = τ−1(f
eq
α − fα), (1)

where τ is the discrete relaxation time. We chose the standard discretisation in space
and time based on a finite-difference scheme and a two-step procedure. The first
operation that is applied during the time step update is the streaming

f̌α(x + eα�t, t) = fα(x, t), (2)

where f̌α is the intermediate value of the distribution function between the two
steps. The second operation is the collision. For the STA SRT model, it is defined as

fα(x, t +�t) = f̌α(x, t)+ �t

τ
(f

eq
α (x, t)− f̌α(x, t)). (3)

The discrete relaxation time τ in LBM is given as

τ = ν +�tc2
s /2

c2
s

, (4)

where ν is the kinematic viscosity and cs is the physical speed of sound of the fluid.
The number of the lattice velocities eα depends on the employed LBM model. In
the current research work, the D3Q19 model was used, with the 19 lattice directions
defined as

eα =
⎧⎨
⎩

0, wα = 12
36 , α = 0,

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, wα = 2
36 , α = 1, . . . , 6,

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, wα = 1
36 , α = 7, . . . , 18.

(5)

126 C. Gkoudesnes and R. Deiterding

The notation c is the ratio�x/�t . The Maxwellian equilibrium distribution function
is truncated to second order, yielding

f
eq
α (x, t) = wα ρ

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (6)

with the user option in AMROC-LBM to increase the latter approximation to
third order for slightly improved accuracy and stability. The macroscopic variables,
density ρ, velocity vector u and pressure p, can be evaluated through the first two
moments of the distribution functions fα as

ρ(x, t) =
∑
α

fα(x, t), (7a)

ρ(x, t)ui(x, t) =
∑
α

eαifα(x, t), (7b)

p(x, t) = ρ(x, t) c2
s . (7c)

At this point, it is helpful to introduce the non-equilibrium part of the distribution
functions, f neq

α (x, t) = fα(x, t) − f
eq
α (x, t), and, by utilisation of the second

moment, to obtain the momentum flux tensor �neq
ij as

�
neq
ij =

∑
α

eαieαjf
neq
α (x, t). (8)

This tensor is analogous to the strain rate in the Navier–Stokes equations and will
be useful for the subsequent discussion.

2.1.1 Regularised Single Relaxation Time Collision Model

To further improve the stability of the AMROC-LBM solver for high Reynolds
number flows, a second collision model, namely REG SRT, proposed by Latt and
Chopard [21], has been recently implemented. The idea is to regularise the non-
equilibrium part of the distribution functions before one applies the collision step.
This procedure reads

f (1)
α (x, t) = wα

2c4
s

Qαij�
neq
ij , (9)

where Qαij = eαieαj − c2
s δij and �neq

ij is estimated from Eq. (8). In this way, the
non-equilibrium part retains the symmetry that is imposed by its relation with the

Verification of the WALE LES Model for LBM in AMROC 127

viscous stress tensor and the strain rate. This extra step transforms the computation
of the collision operation, Eq. (3), to

f
reg
α (x, t +�t) = f

eq
α (x, t)+ (1 − �t

τ
)f̌ (1)α (x, t). (10)

2.2 Large Eddy Simulation

In AMROC-LBM, the integration of the LES models in the solver is based on the
eddy viscosity approach [16]. In the case of a direct numerical simulation (DNS)
with the LBM, the discrete relaxation time Eq. (4) is a global variable depending
only on the physical speed of sound, the viscosity of the gas and the time step.
The idea is that altering the relaxation time is analogous to changing the mean free
path of the particles. Invoking the mixing length theory of Prandtl, one can argue
that altering the mean free path is equivalent to changing the viscosity, leading to
the idea of a turbulent eddy viscosity νt . The general formula to calculate the eddy
viscosity is

νt = (C�x)2OPLES, (11)

where C is a constant and OPLES is a time scale estimated differently by each LES
model. Therefore, in the case of an LBM LES, the physical viscosity is replaced by
an effective viscosity ν! = ν + νt . This alteration also affects the calculation of the
discrete relaxation time τ that is replaced by an effective value τ !.

2.2.1 Constant Smagorinsky Model

For the case of the CSMA model [30], the eddy viscosity is computed as

νt = (CS�x)
2|S|, (12)

where |S| =
√

2Sij Sij is the intensity of the filtered strain rate. The constant CS is
a user parameter, with a usual value between 0.1 and 0.2. As already mentioned in
Sect. 2.1.1, the non-equilibrium part of the distribution function f neq

α can be used to
estimate the strain rate locally per cell as

Sij = − 1

2ρc2
s τ

!
�

neq
ij . (13)

128 C. Gkoudesnes and R. Deiterding

One can substitute Eq. (13) in Eq. (12), and after some algebra, an explicit equation
for the effective discrete relaxation time τ ! in each cell is retrieved:

τ ! = τ

2
+
√
τ 2

4
+ C2

S�x
2|�neq

ij |
2ρc4

s

, (14)

with τ computed by Eq. (4).

2.2.2 Wall-Adapting Local Eddy Viscosity Model

The idea of the WALE model is to employ a more advanced operator for the
characteristic time scale OPLES that can effectively reduce the eddy viscosity to zero
at the wall, thereby reproducing the proper scaling νt ∼ y+3

without the need for a
damping function or any other location-dependent strategy [25]. The new operator
is a function of both the strain rate Sij and the rotation rate �ij . It reads

OPWALE = (JijJij)
3
2

(Sij Sij)
5
2 + (JijJij)

5
4

, (15)

where Jij is

Jij = SikSkj +�ik�kj − 1

3
δij (SmnSmn −�mn�mn). (16)

Therefore, in this case, the eddy viscosity is calculated as

νt = (Cw�x)
2OPWALE, (17)

where Cw is the constant of the model and is equal to 0.5.
Compared to the CSMA model, which retains the locality of the collision step,

the WALE model is based on central finite differences for estimating the rotation
and strain rates. This stencil operation destroys the locality of the WALE collision
operation, adds extra computational burden and, as we will present below, requires
special attention in the application of some boundary conditions.

2.3 Structured Dynamic Mesh Adaptation

The AMROC framework provides the capability of dynamic mesh adaptation,
utilising user-defined refinement indicators on fully parallelised meshes. Its AMR
strategy is based on the block-structured and recursive adaptive mesh refinement

Verification of the WALE LES Model for LBM in AMROC 129

method for hyperbolic conservation laws after Berger and Collela [2]. By for-
mulating the LBM on cell-based data structures, the method can be made to fit
smoothly into the SAMR execution procedure. A positive side effect of the cell-
based formulation is that the scheme becomes conservative in ρ and ρu.

In the SAMR approach, finite volume cells are clustered with a special algorithm
into non-overlapping rectangular grids. The grids have a suitable layer of halo
cells for synchronisation and applying inter-level and physical boundary conditions.
Refinement levels are integrated recursively and by updating the sequence of grids
on each level in a for loop using the same numerical update routine. The spatial mesh
width �xl and the time step �tl on level l are refined by the same factor rl , where
we assume rl ≥ 2 for l > 0 and r0 = 1. In order to ensure that the same gas, with
identical speed of sound and kinematic viscosity, is approximated on all levels of
the SAMR hierarchy, with the alteration of �xl and thus �tl , the discrete relaxation
time τ cannot be constant but needs to be adjusted according to Eq. (4) for the
update on each level. In addition to this, the interface region requires a specialised
treatment. Distinguishing between the streaming S, Eq. (2), and collision C, Eq. (3),
the crucial steps of our method are as follows:

1. Use coarse grid distributions f Cα,in that propagate into the fine grid, cf. Fig. 1a, to

construct initial fine grid halo values f f
α,in by interpolation (Fig. 1b, top).

2. Stream f̌
f
α := S(f f

α) on entire fine mesh. Collision f
f
α := C(f̌ f

α) is applied
only in the interior cells (yellow in Fig. 1b, top). Repeat rl − 1 times.

(a)

in

(b)

in

out

(c)

S−1(out)

Fig. 1 Visualisation of distributions involved in necessary data exchange at a coarse-fine bound-
ary. The thick black lines indicate a physical boundary. (a) Coarse distributions going into fine
grid; (b) ingoing interpolated fine distributions in halos (top), outgoing distributions in halos after
two fine-level transport steps (bottom); (c) averaged distributions replacing coarse values before
update is repeated in cells next to boundary

130 C. Gkoudesnes and R. Deiterding

3. Average outgoing distributions from fine grid halos (Fig. 1b, bottom) to obtain
f̌ C
α,out.

4. Reverse streaming for averaged outgoing distributions, f̄ C
α,out := S−1(f̌ Cα,out),

and overwrite those in the previous coarse grid time step, cf. Fig. 1c.
5. Repeat LBM update on coarse grid cells next to coarse-fine boundary only.

This algorithm is computationally equivalent to the method by Chen et al. [4] but
tailored to the SAMR recursion that updates coarse grids in their entirety before
fine grids are computed. Because of the nonlinearity of the collision operator C, it
becomes necessary under this paradigm to repeat the LBM update for those coarse
grid cells that share a face or corner with a fine grid. A comprehensive verification
of the adaptive method in AMROC-LBM can be found in [11].

3 Boundary Conditions in AMROC-LBM

The utilisation of halo or ghost cells is intrinsic to the SAMR approach. In order
to achieve an efficient and parallel update of the subgrids on each level of the
hierarchy, it is of crucial importance to synchronise and apply boundary conditions
in ghost cells before the execution of the numerical update routine. Similarly, the
modification of internal cells in order to realise geometrically complex embedded
wall boundary conditions is in AMROC-LBM equally carried out immediately
before the LBM update. While the routines for synchronisation and first-order
accurate inter-level boundary conditions in AMROC are generic, cf. [6], special
attention is necessary to implement high-quality physical boundary conditions for
the LBM.

3.1 Domain Boundaries

Two types of domain boundaries are used in the current paper. Both are based on the
idea of [36] and are similar to the strategy applied in [32] for domain boundaries.
The basic idea is the reconstruction of the distribution functions in the ghost cells
through the extrapolation of the macroscopic variables and the non-equilibrium part
from the neighbouring interior cell in the normal direction.

3.1.1 Inlet

In the case of an inlet boundary, the vector of velocities is imposed and the density
ρ(xBC) in the boundary ghost cell is unknown. Assuming a zero gradient, the density
of the first neighbouring normal interior fluid cell ρ(xF) is extrapolated as

ρ(xBC) = ρ(xF). (18)

Verification of the WALE LES Model for LBM in AMROC 131

Having obtained the density, one can proceed with estimating the equilibrium part
f

eq
α (xBC) of the distribution function by applying Eq. (6). The same extrapolation

can be used to estimate a value for the non-equilibrium part as

f
neq
α (xBC) = fα(xF)− f

eq
α (xF). (19)

With these two values, one can now reconstruct the distribution function in the
boundary ghost cell as

fα(xBC) = f
eq
α (xBC)+ f

neq
α (xBC). (20)

3.1.2 Outlet

In the case of the outlet boundary, the density ρ(xBC) is imposed and the velocity
field needs to be extrapolated from the normal neighbouring interior fluid cell.
Following the same methodology as in case of the inlet boundary, the extrapolation
formula is

u(xBC) = u(xF). (21)

Having obtained both density and velocity in the ghost cell location, the equilibrium
functions, Eq. (6), can be calculated. The non-equilibrium part is also extrapolated
following Eq. (19). Finally, the reconstruction of fα(xBC) is according to Eq. (20).

3.2 Embedded Wall Boundaries

In the AMROC software, non-Cartesian boundaries are represented implicitly on
the adaptive Cartesian grid by utilising a scalar level set function ϕ that stores the
distance to the boundary surface. The boundary surface is located exactly at ϕ =
0, and the boundary outer normal in every mesh point can be evaluated as n =
−∇ϕ/|∇ϕ| [5]. A fluid cell is treated as an embedded ghost cell if its midpoint
satisfies ϕ < 0.

Real-world geometries are considered in AMROC as triangular surface meshes,
cf. [6]. The computation of the level set distance information in every Cartesian cell
midpoint could principally be accomplished by simply iterating over the entire sur-
face mesh; yet, this would lead to detrimental performance for increasing problem
size. Instead, we employ a specially developed algorithm based on characteristic
reconstruction and scan conversion by Mauch [23] that is used to compute the
distance exactly only in a small band around the embedded structure.

For imposing no-slip wall boundaries on the LBM, we choose in this paper
the bounce-back algorithm of [3]. The idea of this methodology is to enhance
the standard half-way bounce-back scheme with a spatial interpolation of first- or

132 C. Gkoudesnes and R. Deiterding

second-order accuracy to handle curved boundaries. The interpolation weight q is
the ratio between the distance to the wall from the first fluid cell to the grid spacing.
Based on the value of q and in case of the first-order accurate interpolation, there
are two possibilities:

fopp(α)(xBC) = 2qfα(xF1)+ (1 − 2q)fα(xF2), q < 0.5, (22a)

fopp(α)(xBC) = 1

2q
fα(xF1)+ (2q − 1)

2q
fopp(α)(xF1), q ≥ 0.5. (22b)

In the above equations, opp(α) is the lattice direction opposite to α, fα(xF1) is the
distribution function located in the first neighbour cell in the lattice direction α,
while fα(xF2) is located in the second neighbour fluid cell in the same direction.

The difference between our implementation and the original approach is that
the estimated distribution function is originally imposed at fopp(α)(xF1, t +�t), in
contrast to our case, which applies it to fopp(α)(xBC, t). The subsequent streaming
operation of the time step will transport it to the right fluid cell before the collision.

3.3 Imposing Macroscopic Variables in Ghost Cells

For the WALE model, central finite differences of the velocity field are needed
to estimate the strain and rotation rates. In the case of the described inlet and
outlet boundary conditions, applying Eq. (7) yields suitable macroscopic variables
in the ghost cells. However, a bounce-back boundary condition, such as in Sect. 3.2,
imposes only some of the distribution functions. Directly applying Eq. (7) would
create questionable moment values that could dramatically affect the estimation of
the eddy viscosity in the vicinity of the wall, resulting in inaccurate results.

To deal with this issue, we propose a new algorithm that is employed after
the boundary condition and allows imposing the macroscopic variables without
affecting the distribution functions that will be streamed to fluid cells and have
been imposed by the boundary conditions in microscopic distribution functions. The
idea is to alter the rest, i.e., the outward streaming distribution functions such that
the evaluation of Eq. (7) will yield reasonable values. During this procedure, the
algorithm checks the lattice directions in order to decide which of them point to
interior fluid cells and are needed to impose the microscopic boundary conditions.
These directions, denoted as i, are marked as non-free. Simultaneously, one can
estimate partial density and velocity field as

δρ =
∑
i

fi , i ∈ non-free directions, (23a)

δρu =
∑
i

eifi , i ∈ non-free directions. (23b)

Verification of the WALE LES Model for LBM in AMROC 133

We index the group of the free directions with j . Assuming that the groups of non-
free and free directions have I and J elements, respectively, we have n = I + J ,
with n = 19 for instance for the D3Q19 model. The idea is to use the free directions
to impose the four macroscopic variables, namely density ρ0 and the three velocity
components u0. In order for this algorithm to be functional, one needs to ensure that
J ≥ 4 for the ghost cell in question. Moreover, in order for the three components
of the velocity to be specified, it must be ensured that for

∑
j ej = (α1, α2, α3)

the relations α1, α2, α3 > 0 hold true. In most scenarios, these two restrictions are
satisfied and we also have J > 4, which results in the over-determined system

ρ0 − δρ =
∑
j

fj , j ∈ free directions, (24a)

ρ0u0 − δρu =
∑
j

ej fj , j ∈ free directions. (24b)

An efficient way to resolve this issue is the use of the equilibrium function Eq. (6)
estimated by the imposed macroscopic quantities, ρ0 and u0. In this way, we can
reduce the number of unknowns to four. At this point, we ignore the distribution
function of the zero lattice direction f0, which will be used to satisfy the density
ρ0. The next step is to loop over the rest of the free directions, starting from the
direction with the smaller α, and impose the equilibrium values until we have only
three unknown distributions. We index the group of K equilibrium distributions by
k, and obviously n = I + K + 4. In this way, we end up with a system of four
equations with four unknowns.

Initially, we have to solve the linear system of the three equations, indexed m,
originating from the first moment:

ρ0u0 − δρu −
∑
k

ekf
eq
k =

∑
m

emfm #⇒ b = Af. (25)

In the current implementation, an LU-decomposition is employed to solve the above
linear system. The last step is the evaluation of f0 as

ρ0 − δρ −
∑
k

f
eq
k −

∑
m

fm = f0. (26)

It is important to mention that the ascending order during the step of the equilibrium
functions is vital for the stability of the algorithm. In case that at least one of
the members of the m group belongs to α ∈ [1, 6], the matrix A will be singular
resulting in no available solution for the system of Eq. (25).

The proposed algorithm can also be applied straightforwardly to the D3Q27
stencil and can also be used in 2D with the D2Q9 stencil. As for the imposed
velocity u0, as a first attempt and following a ghost-fluid approach, we use in this
paper the interpolated velocity at the point xBC + 2ϕn. However, one could increase

134 C. Gkoudesnes and R. Deiterding

the accuracy, particularly in a turbulent boundary layer, by assuming the law of the
wall in the normal direction and thus estimating the velocity components.

4 Results

To illustrate the capabilities of the new implementations in the AMROC-LBM
solver, we present two benchmark cases, namely decaying homogeneous isotropic
turbulence in a periodic box and the flow around a sphere at Reynolds number Re =
1000. The first test case serves the purpose of verifying the core LES models and
investigating their interplay with the two available collision operators. The second
test, on the other hand, verifies their integration with various boundary conditions,
particularly embedded complex walls, and the AMR algorithm. Moreover, the
proposed algorithm for imposing macroscopic variables in ghost cells will also be
tested and evaluated.

4.1 Decaying Homogeneous Isotropic Turbulence

The numerical domain for the decaying homogeneous isotropic turbulence test case
is a cube with a side length L = 2π . Periodic boundary conditions are applied at all
sides. Assuming a uniform grid, this setup provides a unique and convenient way to
test LES models without disturbances arising from physical boundary conditions or
the resolution interfaces between levels of AMR.

Our initialisation of the flow field is based on the final saved iteration of a forced
homogeneous isotropic turbulence case presented previously in [12, 13]. In this
scenario, we restart the simulation in the AMROC-LBM solver but deactivate the
force. Suitable local volume averaging is applied when creating the initial solutions
for the lower resolutions. To ensure a fair comparison, all simulations in this chapter
have been initialised based on a DNS with a resolution of 5123 running with the
REG SRT collision model. The reason for this choice is that the force has created
slightly different Reynolds number flows for the case of STA and REG SRT, and
thus a direct comparison of the curves would be difficult. The initial Reynolds
number based on the integral length scale λ is 80. Moreover, a field arising from
the regularised model can safely be assumed to be more accurate, and it can be
expected that the effect of the initial solution will fade away over time. We have
also restarted the STA SRT simulations from the non-regularised DNS of 5123, and
the results were found to be identical to the ones presented below.

In the plots in this chapter, we will compare two resolutions, namely 1283

and 323 cells, for two turbulence models currently available in the AMROC-LBM
solver. The first one is the WALE, which we want to verify and evaluate, and the
second is the CSMA with CS = 0.1. Simultaneously, we will compare the two
aforementioned collision models, STA and REG SRT. Additionally, a DNS with the

Verification of the WALE LES Model for LBM in AMROC 135

10-2

10-1

100

101 102 103

n = -1.40

k(
t)

/ k
0

t

CSMA (C=0.10) 1283 STA

WALE 1283 STA

CSMA (C=0.10) 1283 REG

WALE 1283 REG

DNS 5123 REG

10-3

10-2

10-1

100

101 102 103

n = -2.40

ε
(t)

 /
ε 0

t

CSMA (C=0.10) 1283 STA

WALE 1283 STA

CSMA (C=0.10) 1283 REG

WALE 1283 REG

DNS 5123 REG

Fig. 2 Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right) for CSMA
with CS = 0.1 and WALE at a resolution of 1283 cells for both STA and REG SRT. The DNS of
5123 resolution with REG SRT has been added as a reference

REG SRT collision model with 5123 cells will be shown as a reference solution. All
simulations have run for a final time of 1000 time units.

Figure 2 presents the evolution of the turbulent kinetic energy k and dissipation
rate ε for the resolution of 1283 cells normalised by the initial data of the DNS of
5123. The collapse of the LES curves with the reference DNS for the whole time
in the case of the kinetic energy and for most of the time for the dissipation rate is
imminent. The discrepancies appearing in the initial part for the dissipation rate are
the effect of the local volume averaging resulting in fewer small eddies and thus a
smaller initial value for ε. Therefore, examining these two plots, we cannot identify
any differences between the two LES and the two collision models.

From the theory of decaying homogeneous isotropic turbulence, we expect that
power laws of the type k ∼ (t + t0)

−n and ε ∼ (t + t0)
−n−1 can describe the slopes

in the current plots. In Fig. 2, we have also estimated the exponent n = 1.4, a value
in the expected range in agreement with the literature [17].

Instantaneous 3D energy spectra and pressure fluctuation spectra at t = 98.17
time units are given in Fig. 3. Examining the energy spectra, their collapse in the
energy-containing range is a strong proof that the LES models do not affect the
large eddies, which is anticipated. Moreover, CSMA with CS = 0.1 and WALE
have produced identical results in the case of the same collision model, providing
first evidence for the correctness of the WALE implementation. However, STA SRT
seems to produce less dissipative results in the high wavenumber region, as it returns
values closer to the DNS reference solution. This observation has also been recently
reported by Nathen et al. [24].

Inspecting the pressure fluctuation spectra, one can notice that using the STA
collision model the amount of small eddies has been considerably increased. It turns
out that the departure of the energy spectra in the dissipation range for the two
collision models coincides with this increase. Hence, we can speculate that the less
dissipative behaviour of the STA SRT model is not because the small eddies carry

136 C. Gkoudesnes and R. Deiterding

10-11

10-9

10-7

10-5

100 101 102

E(
κ)

κ

CSMA (C=0.10) 1283 STA

WALE 1283 STA

CSMA (C=0.10) 1283 REG

WALE 1283 REG

DNS 5123 REG 10-16

10-14

10-12

10-10

10-8

100 101 102

D
p(

κ)

κ

CSMA (C=0.10) 1283 STA

WALE 1283 STA

CSMA (C=0.10) 1283 REG

WALE 1283 REG

DNS 5123 REG

Fig. 3 Instantaneous energy spectra (left) and pressure fluctuation spectra (right) of the CSMA
with CS = 0.1 and the WALE for both STA and REG SRT for the resolution of 1283 cells at
t = 98.17 time units. The curves of the REG DNS on 5123 cells are shown as a reference

more energy but because of an artificial rise in their numbers. Contrarily, the REG
SRT model has estimated a solution much closer to the reference. We explain this
observation with the fact that the regularisation procedure is constructed to impose
the symmetries of the strain rate Sij in the non-equilibrium part of the distribution
function, Eq. (13), while reliably maintaining

∑
ef neq = ∑ f neq = 0. The latter

is not always guaranteed in the case of the STA SRT model [21], which can result
in conservation errors in density and momentum, i.e., non-physical behaviour in the
collision step. Such errors occur in particular for high Reynolds numbers or Mach
numbers close to the LBM stability threshold.

To challenge the models more, Fig. 4 shows the evolution of k and ε for the
case of the resolution of 323 cells. No combination of models is able to capture the
reference curve of the kinetic energy in the initial phase exactly, although there are

10-2

10-1

100

101 102 103

n = -1.40

k(
t)

/ k
0

t

CSMA (C=0.10) 323 STA

WALE 323 STA

CSMA (C=0.10) 323 REG

WALE 323 REG

DNS 5123 REG

10-3

10-2

10-1

100

101 102 103

n = -2.40

ε(
t)

/ ε
0

t

CSMA (C=0.10) 323 STA

WALE 323 STA

CSMA (C=0.10) 323 REG

WALE 323 REG

DNS 5123 REG

Fig. 4 Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right) for CSMA
with CS = 0.1 and WALE at a resolution of 323 cells for both STA and REG SRT. The DNS of
5123 with REG SRT has been added as a reference

Verification of the WALE LES Model for LBM in AMROC 137

10-8

10-6

10-4

100 101

E(
κ)

κ

CSMA (C=0.10) 323 STA

WALE 323 STA

CSMA (C=0.10) 323 REG

WALE 323 REG

DNS 5123 REG 10-14

10-12

10-10

10-8

100 101

D
p(

κ)

κ

CSMA (C=0.10) 323 STA

WALE 323 STA

CSMA (C=0.10) 323 REG

WALE 323 REG

DNS 5123 REG

Fig. 5 Instantaneous energy spectra (left) and pressure fluctuation spectra (right) of the CSMA
with CS = 0.1 and the WALE for both STA and REG SRT for the resolution of 323 cells at
t = 98.17. The curves of the REG DNS on 5123 cells are shown as a reference

no evident discrepancies among them. The deviation from the DNS result is even
larger for the dissipation rate, where only in the last time units there is a convergence
of all the curves. The most interesting feature of this plot is the deviation of the
curves of the STA and REG counterparts in the initial part of the simulation, with
the former to show an observably less dissipative behaviour.

Following the same procedure, Fig. 5 presents the instantaneous 3D energy and
pressure fluctuation spectra at t = 98.17. Due to the extreme coarsening of the
grid, the energy of the big eddies has been slightly overestimated by both LES
and collision models. Again, the STA SRT operator has returned less dissipative
spectra in high wavenumbers. On the other hand, examining the pressure fluctuation
spectra, the STA SRT model overestimates the small scales compared to the REG
SRT model and the DNS. However, it is capable of following the DNS trend for
more wavenumbers in contrast to the REG SRT that underpredicts the reference
solution in the small scales.

Another important observation from the pressure fluctuation plot is the deviation
of the WALE STA and CSMA STA models from the DNS in high wavenumbers.
This deviation does not appear for the case of the REG collision model where
the curves are identical. As mentioned previously, the CSMA estimates the strain
rate locally based on the non-equilibrium part of the distribution function, while
WALE applies finite differences. By reducing the resolution and thus increasing
�x and �t , we have reduced the value of τ . This reduction leads to a higher
value for the factor �t/τ in the collision step, amplifying any inaccuracies arising
from the imprecise evaluation of the non-equilibrium part in the case of the STA
SRT operator. The estimation of the first-order moments, and thus the velocity
components, is expected to be more accurate than the second-order moments,
leading to an improved prediction of the strain rate based on a finite-difference
stencil.

138 C. Gkoudesnes and R. Deiterding

Fig. 6 Contours of vorticity magnitude (|ω| = 0.25) at t = 98.17 time units, for the CSMA with
CS = 0.1 (left) STA (blue dotted) and REG (brown dashed) and for the WALE (right) STA (green
dotted) and REG (red dashed) at a resolution of 1283 cells. The black solid line is the DNS with a
resolution of 5123 given as a reference

Finally, Fig. 6 shows the instantaneous vorticity contours at t = 98.17 time
units of the aforementioned models for the case of 1283 cells. All combinations
of models are able to capture the majority of the large eddies appearing in the
reference solution of the DNS. Comparing the LES models, there are no apparent
discrepancies, although the CSMA has produced slightly more small eddies. On the
other hand, it is evident that the STA SRT model has predicted more small scales
compared to the REG SRT, confirming our previous expectation from the pressure
fluctuation plots.

4.2 Sphere at Reynolds Number 1000

To verify the coupling of the LES models with domain and embedded solid
boundaries, and also with the AMR algorithm, the benchmark of flow around a
sphere of diameterD at Reynolds number 1000 is selected. A computational domain
of dimensions [−2D, 6D]×[−2D, 2D]×[−2D, 2D] is used. The domain boundary
conditions from Sect. 3.1 are applied, where an inlet boundary condition is imposed
on the left side and outlet boundary conditions are applied at all other sides. The
no-slip wall boundary condition on the body is modelled with the Bouzidi bounce-
back condition, as sketched in Sect. 3.2. The mesh adaptation was set up to run
with five levels in total with a refinement factor rl = 2 for all levels. The mesh
width of the coarsest grid is �x = D/20. The scaled gradient [6] of the vorticity
magnitude was chosen as a refinement indicator with a threshold value of 100. For
the WALE model, we have also employed and tested the new algorithm for imposing

Verification of the WALE LES Model for LBM in AMROC 139

Fig. 7 Flow around a sphere at Re = 1000 simulated with CSMA with CS = 0.12. Left:
Isosurface of vorticity and planes coloured by velocity magnitude. Right: Computational mesh
and distribution to processors, indicated by shading

macroscopic variables in ghost cells discussed in Sect. 3.3. The flow field has been
initialised with the inlet velocity and an initial value for density.

Two simulations are discussed: one using the CSMA model with CS = 0.12 and
the other using the WALE model. Both computations use the REG SRT collision
model. This decision was based on the superior behaviour of the REG SRT operator
in the previous test case. The left plot of Fig. 7 visualises by colour the velocity
magnitude for the case of CSMA in two planes and on an isosurface of vorticity
magnitude for the value 100 at a time when the wake has been established. The
shading in the right plot presents the distribution of the numerical domain to the
employed processors and in addition the automatically refined mesh at the same
time. It is evident that the refinement follows the isosurface closely. Figure 8
displays the two corresponding plots for the case of the WALE model. Comparing

Fig. 8 Flow around a sphere at Re = 1000 simulated with WALE. Left: Isosurface of vorticity and
planes coloured by velocity magnitude. Right: Computational mesh and distribution to processors,
indicated by shading

140 C. Gkoudesnes and R. Deiterding

the results of the two turbulence models, there are no significant discrepancies, and
both computations exhibit a very similar 3D wake structure and according mesh
refinement. Minor differences in both figures are due to the different nature of the
two turbulence models. The CSMA tends to predict a more diffusive eddy viscosity
field with higher values in the whole domain. This behaviour will invariably reduce
the accuracy of the solution but simultaneously has the positive effect of stabilising
numerical fluctuations, e.g., from boundary conditions. On the other hand, WALE
tends to estimate lower eddy viscosity values in the majority of the domain but
predicts larger values in and around fluid features. This distinction is the reason for
any difference in the wakes and hence the dynamically adapted meshes.

To further enhance the comparison, Fig. 9 shows the vorticity magnitude for the
two LES models in the xz-plane in logarithmic scale. Again, there are no significant
differences between the shape and the shading for the two models. Examining the
wake, particularly far away from the body, one can see some minor perturbations
being emanated from the outlet boundary. The situation is slightly better for the
CSMA model. Finally, Fig. 10 shows the evolution of the drag coefficients obtained
during the last phase of the simulation for the two models. Both computations
predict an average value of 0.461 that perfectly matches the theoretical value of 0.46
calculated from the standard drag curve for a sphere, and the value 0.464 estimated
with a recently proposed formula [14]. The predicted value also matches the one
reported in [27] and is very close to the value of 0.48 reported in [26].

At this point, we evaluate the algorithm for imposing macroscopic variables in
ghost cells from Sect. 3.3. To do so, we have also run the simulation of WALE
without invoking the new treatment. Figure 11 presents the enlarged normalised
eddy viscosity fields, at the same time step, for the WALE simulations with and
without the use of the new algorithm. The normalisation of the eddy viscosity is
based on the value of the physical viscosity. Examining the magnitude, it is clear
that the LES model was not triggered considerably in the vicinity of the wall.
There are two reasons for this: First, the WALE model is constructed to reduce

Fig. 9 Comparison of the vorticity magnitude between CSMA (top) and WALE models (bottom)

Verification of the WALE LES Model for LBM in AMROC 141

0.00

0.50

1.00

1.50

 1.2 1.4 1.6 1.8 2

CD

t

CD CSMA (C=0.12)

mean value = 0.461

0.00

0.50

1.00

1.50

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

CD

t

CD WALE

mean value = 0.461

Fig. 10 Evolution of the drag coefficient CD for the CSMA model with CS = 0.12 (left) and the
WALE model (right). The dashed lines show the averaged values

Fig. 11 Comparison of the enlarged normalised eddy viscosity with the application of the new
algorithm for imposing macroscopic variables in ghost cells (left) and without (right)

the production of eddy viscosity close to the wall to represent the law of the wall
more accurately. Secondly, in this specific case, the wall-near resolution is very high
in order to approximate the curved geometry well and thus obtaining a very accurate
estimation of the drag coefficient. The results confirm the consistency of the model
in the case of a high-resolution mesh for a wall-resolved LES. Comparing the two
graphics, one can conclude that the use of the algorithm from Sect. 3.3 has reduced
the formation of a band of large eddy viscosity values close to the wall.

We close this section with a discussion of the performance of the AMROC-LBM
solver for the sphere test case. Both simulations ran for 120 h wall time using 64
cores of 2.6-GHz Intel Sandybridge processors. The initial size of the adaptive mesh
for both cases is ∼8.7 M cells, while the final size is between 16 and 17 M cells.
Application of the finest level with ∼5.3 M cells is restricted to the vicinity of the

142 C. Gkoudesnes and R. Deiterding

body. On average, the CSMA simulation required 27.65 s per iteration, while the
WALE simulation took 32.26 s, which corresponds to an added expense of only
17%. However, the final size of the mesh for the WALE simulation is also slightly
larger than in the CSMA case, which altogether confirms that incorporating the more
sophisticated WALE model into AMROC-LBM has resulted only in a moderate
increase in computational time.

5 Conclusions

The main aim of this paper was to present the verification procedure of the
WALE turbulence model recently implemented in our dynamically adaptive in-
house lattice Boltzmann solver AMROC-LBM. The first step was simulating the
test case of decaying homogeneous isotropic turbulence and comparing the energy
and pressure fluctuation spectra with DNS of higher resolution and CSMA LES of
the same resolution. Identical behaviour with the CSMA was confirmed, which—
given the isotropy of this test case—verifies the algorithmic implementation of the
core WALE model. The second step was to simulate the flow around a sphere at
Reynolds number 1000 for both WALE and CSMA. There were no significant
discrepancies between the two models in the case of the vorticity field, verifying
the interplay of the new WALE implementation with boundary conditions and
the AMR algorithm. The drag coefficients from both LES were confirmed to
be in excellent agreement with the literature. In this specific case, the adaptive
computation using the WALE model was found to be only 17% more expensive than
with CSMA, which demonstrates that the increase in computational costs, when
using the considerably more complex WALE model, can be kept modest.

For the simulation of the decaying homogeneous isotropic turbulence case, both
the standard and regularised collision models have been used. In agreement with
recent research studies, we have found that the energy spectra of the STA model
are less dissipative. To further enhance the comparison, we have also presented
pressure fluctuation spectra that highlight the fact that the STA collision model
produces a large amount of small-scale perturbations, not present in the REG results.
This behaviour of the STA collision model is unphysical and likely intrinsic to the
model’s handling of the non-equilibrium part of the distribution function. Moreover,
in the case of the lowest resolution and STA collision model, we have shown that the
CSMA model, which estimates the strain rate locally based on the non-equilibrium
part, tends to enhance these instabilities compared to the WALE model, which uses
finite-difference stencils of macroscopic variables.

Finally, a new LBM boundary condition construction algorithm for imposing
macroscopic variables in addition to inward-directed microscopic distributions has
been proposed. For instance, in the case of bounce-back wall boundary conditions,
the resulting macroscopic moments are not well defined. By imposing suitable
values, the finite-difference stencils can still be applied unaltered, hence yielding
a plausible estimate for the eddy viscosity in the vicinity of the wall or other domain

Verification of the WALE LES Model for LBM in AMROC 143

boundaries. A detailed analysis of the eddy viscosity from the WALE model close to
the embedded wall, with and without the new algorithm, has confirmed the increased
accuracy of our approach.

Acknowledgments This work was supported by UK Research and Innovation under grant
EP/N509747/1 with project number 1831845. The authors also acknowledge the use of the
IRIDIS High-Performance Computing Facility and associated support services at the University
of Southampton.

References

1. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid
Mech. 42(1), 439–472 (2010)

2. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys. 82, 64–84 (1988)

3. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid
with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)

4. Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., Zhang, R.: Grid
refinement in lattice Boltzmann methods based on volumetric formulation. Phys. A 362, 158–
167 (2006)

5. Deiterding, R.: A parallel adaptive method for simulating shock-induced combustion with
detailed chemical kinetics in complex domains. Comput. Struct. 87, 769–783 (2009)

6. Deiterding, R.: Block-structured adaptive mesh refinement - theory, implementation and
application. Eur. Ser. Appl. Ind. Math. Proc. 34, 97–150 (2011)

7. Deiterding, R., Wood, S.L.: An adaptive lattice Boltzmann method for predicting wake fields
behind wind turbines. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C.
(eds.) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, vol. 132, pp. 845–857. Springer, Berlin (2016)

8. Deiterding, R., Wood, S.L.: Predictive wind turbine simulation with an adaptive lattice
Boltzmann method for moving boundaries. J. Phys. Conf. Ser. 753, 082005 (2016)

9. Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., Succi, S.: Fluid flow around NACA 0012
airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids 166,
200–208 (2018)

10. Feaster, J., Battaglia, F., Deiterding, R., Bayandor, J.: Validation of an adaptive meshing
implementation of the lattice Boltzmann method for insect flight. In: Proceedings of the ASME
2016 Fluids Engineering Division Summer Meeting, pp. FEDSM2016–7782, V01AT12A007.
ASME, New York (2016)

11. Feldhusen, K., Deiterding, R., Wagner, C.: A dynamically adaptive lattice Boltzmann method
for thermal convection problems. J. Appl. Math. Comput. Sci. 26, 735–747 (2016)

12. Gkoudesnes, C., Deiterding, R.: Evaluating the lattice Boltzmann method for large eddy sim-
ulation with dynamic sub-grid scale models. In: 11th International Symposium on Turbulence
and Shear Flow Phenomena (2019)

13. Gkoudesnes, C., Deiterding, R.: Verification and validation of a lattice Boltzmann method
coupled with complex sub-grid scale turbulence models. In: VI International Conference on
Particle-based Methods - Fundamentals and Applications (2019)

14. Goossens, W.R.: Review of the empirical correlations for the drag coefficient of rigid spheres.
Powder Technol. 352, 350–359 (2019)

15. He, Y.L., Liu, Q., Li, Q., Tao, W.Q.: Lattice Boltzmann methods for single-phase and solid-
liquid phase-change heat transfer in porous media: a review. Int. J. Heat Mass Transf. 129,
160–197 (2019)

144 C. Gkoudesnes and R. Deiterding

16. Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann subgrid model for high
Reynolds number flows. In: Lawniczak, A.T., Kapral, R. (eds.) Pattern Formation and Lattice
Gas Automata. Fields Institute Communications, vol. 6, pp. 151–166. American Mathematical
Society, Providence (1996)

17. Huang, M., Leonard, A.: Power-law decay of homogeneous turbulence at low Reynolds
numbers. Phys. Fluids 6(11), 3765–3775 (1994)

18. Kin, N., Deiterding, R., Wagner, C.: High-resolution simulation of side flow past a generic
model of a high-speed train. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter,
C. (eds.) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, vol. 132, pp. 421–431. Springer, Berlin (2016)

19. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice
Boltzmann Method: Principles and Practice. Springer, Berlin (2016)

20. Laloglu, C., Deiterding, R.: Simulation of the flow around an oscillating cylinder with adaptive
lattice Boltzmann methods. In: Ivanyi, B.H.V., Topping, P., Varady, G. (eds.) Proceedings
of the 5th International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering. Civil-Comp Press (2017)

21. Latt, J., Chopard, B.: Lattice Boltzmann method with regularized pre-collision distribution
functions. Math. Comput. Simul. 72(2–6), 165–168 (2006)

22. Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase
flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)

23. Mauch, S.P.: Efficient algorithms for solving static Hamilton-Jacobi equations. Ph.D. Thesis,
California Institute of Technology (2003)

24. Nathen, P., Gaudlitz, D., Krause, M.J., Adams, N.A.: On the stability and accuracy of the BGK,
MRT and RLB Boltzmann schemes for the simulation of turbulent flows. Commun. Comput.
Phys. 23(3), 846–876 (2018)

25. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity
gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

26. Ploumhans, P., Winckelmans, G., Salmon, J., Leonard, A., Warren, M.: Vortex methods for
direct numerical simulation of three-dimensional bluff body flows: application to the sphere at
Re=300, 500, and 1000. J. Comput. Phys. 178(2), 427–463 (2002)

27. Poon, E.K.W., Iaccarino, G., Ooi, A.S.H., Giacobello, M.: Numerical studies of high Reynolds
number flow past a stationary and rotating sphere. In: Seventh International Conference on
CFD in the Minerals and Process Industries, p. 7 (2009)

28. Reyes Barraza, J.A., Deiterding, R.: A lattice Boltzmann method in generalized curvilinear
coordinates. In: VI International Conference on Particle-based Methods - Fundamentals and
Applications (2019)

29. Shao, W., Li, J.: Review of Lattice Boltzmann Method Applied to Computational Aeroacous-
tics. Archives Acoust. 44(2), 24 (2019)

30. Smagorinsky, J.: General circulation experiments with the primitive equations, I: The basic
experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

31. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. In: Numerical
Mathematics and Scientific Computation. OUP Oxford, Oxford (2001)

32. Tiwari, A., Vanka, S.P.: A ghost fluid lattice Boltzmann method for complex geometries. Int.
J. Numer. Meth. Fluids 69(2), 481–498 (2012)

33. Van den Akker, H.E.: Lattice Boltzmann simulations for multi-scale chemical engineering.
Curr. Opin. Chem. Eng. 21, 67–75 (2018)

34. Wang, J., Chen, L., Kang, Q., Rahman, S.S.: The lattice Boltzmann method for isothermal
micro-gaseous flow and its application in shale gas flow: a review. Int. J. Heat Mass Transf. 95,
94–108 (2016)

35. Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells
and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)

36. Zhao-Li, G., Chu-Guang, Z., Bao-Chang, S.: Non-equilibrium extrapolation method for
velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11(4),
366–374 (2002)

	Preface
	Contents
	About the Editors
	AMR Enabled Quadtree Discretization of Incompressible Navier–Stokes Equations with Moving Boundaries
	1 Introduction
	2 The Penalized Navier–Stokes Model
	3 Discretization of the Governing Equations
	3.1 Time Integration
	3.2 Spatial Discretizations
	3.2.1 Discretization of the Divergence Operator
	3.2.2 Discretization of the Laplacian Operator
	3.2.3 Discretization of the Convective Term

	4 Numerical Validations
	4.1 Flow Past a Cylinder
	4.1.1 Re = 200
	4.1.2 Re = 550

	4.2 Sedimentation of a Cylinder

	5 Conclusion
	References

	Fluid–Structure Interaction Using Volume Penalization and Mass-Spring Models with Application to FlappingBumblebee Flight
	1 Introduction
	2 Numerical Methods and Governing Equations
	2.1 Solid Solver Using Mass-Spring System
	2.2 Fluid Solver and Volume Penalization Method
	2.3 Fluid–Structure Interaction

	3 Numerical Setup and Bumblebee Model
	3.1 Flow Configuration
	3.2 Bumblebee Model
	3.3 Flexible Wing Model
	3.3.1 Venation Pattern
	3.3.2 Mass Distribution
	3.3.3 Flexural Rigidity of Veins

	4 Results and Discussion
	4.1 Tethered Flight in Laminar Flow
	4.2 Tethered Flight in Turbulent Flow

	5 Conclusions and Perspectives
	References

	No-Slip and Free-Slip Divergence-Free Wavelets for the Simulation of Incompressible Viscous Flows
	1 Introduction
	2 Free-Slip Divergence-Free Wavelet Bases on [0,1]d
	2.1 Multiresolution Analyses Linked by Differentiation and Integration
	2.2 Free-Slip and No-Slip Divergence-Free Wavelet Construction
	2.3 Extension to Higher Dimension d>3

	3 Divergence-Free Wavelet Schemes for the Navier–Stokes Equations
	3.1 Temporal Discretization
	3.2 Spatial Discretization
	3.3 Numerical Error Estimations

	4 Numerical Results
	4.1 Divergence Free Wavelet Illustration
	4.2 Analyses of Time and Space Convergence Rates
	4.3 Simulation of 3D Lid-Driven Flows

	5 Conclusion
	Appendix
	References

	An Immersed Boundary Method on Cartesian Adaptive Grids for the Simulation of Compressible Flows
	1 Introduction
	2 Description of the Immersed Boundary Method
	2.1 Governing Equations
	2.2 The Immersed Boundary Method
	2.3 Types of Immersed Boundary Conditions
	2.3.1 Wall Slip and No-Slip IBCs
	2.3.2 Wall Function for High Reynolds Flow Simulations
	2.3.3 Use of Several Types of Immersed Boundary Conditions for a Given Configuration

	3 IBM on Adaptive Cartesian Grids
	3.1 Motivation
	3.2 Automatic IBM Preprocessing for Complex Geometries
	3.2.1 Description of the Workflow
	3.2.2 Evaluation of Performance of the Preprocessing

	3.3 IBM Simulations Using a Dedicated Cartesian CFD Solver
	3.3.1 FastS HPC Solver
	3.3.2 Numerical Methods
	3.3.3 Update of IBM Points During the CFD Simulation

	3.4 Adaptation of the Mesh During the IBM Simulation

	4 Numerical Results
	4.1 Validation of the Adaptive Cartesian IBM on a Two-Dimensional Supersonic Case
	4.2 Unsteady Flow Simulation Around a High-Lift Airfoil
	4.2.1 Description of the Test-Case
	4.2.2 Results

	5 Conclusions
	References

	Magnetohydrodynamics Adaptive Solvers in the AMROC Framework for Space Plasma Applications
	1 Introduction
	2 AMROC
	2.1 Adaptive Meshes
	2.2 Implementation Aspects

	3 MHD Modelling
	4 Experiments and Discussions
	4.1 Magnetic Shock-Cloud (MSC)
	4.2 Magnetic Reconnection (REC)
	4.3 Magnetosphere (MAG)

	5 Conclusion
	Appendix
	References

	Verification of the WALE Large Eddy Simulation Model for Adaptive Lattice Boltzmann Methods Implemented in the AMROC Framework
	1 Introduction
	2 Methodology
	2.1 Lattice Boltzmann Method
	2.1.1 Regularised Single Relaxation Time Collision Model

	2.2 Large Eddy Simulation
	2.2.1 Constant Smagorinsky Model
	2.2.2 Wall-Adapting Local Eddy Viscosity Model

	2.3 Structured Dynamic Mesh Adaptation

	3 Boundary Conditions in AMROC-LBM
	3.1 Domain Boundaries
	3.1.1 Inlet
	3.1.2 Outlet

	3.2 Embedded Wall Boundaries
	3.3 Imposing Macroscopic Variables in Ghost Cells

	4 Results
	4.1 Decaying Homogeneous Isotropic Turbulence
	4.2 Sphere at Reynolds Number 1000

	5 Conclusions
	References

