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ABSTRACT

Magnetic fields and turbulence are ubiquitous in the interstellar medium and several
astrophysical processes. However, despite the importance of magnetized turbulence,
a full theoretical framework remains unavailable. Observations provide only limited
line-of-sight information on densities, temperatures, velocities and magnetic field
strengths and, therefore, understanding astrophysical turbulence is challenging. In
addition, based on the recent discovery of the use of intensity and synchrotron
polarization gradient vectors to obtain the morphology of the magnetic field, this
thesis presents a new way to acquire information: the level of magnetization in
different astrophysical environments. In order to perform that, we use magnetohy-
drodynamic, isothermal simulations of turbulence, with Alfvénic Mach numbers of
MA ∈ [0.2, 1.7]. From these numerical data, we generate synchrotron maps and two
methods, named Top-Base and circular statistics, were applied to the distributions of
polarization and intensity gradient angles. In addition, using an error analysis on the
synthetic data via Bayesian statistics, both methods were analyzed under different
conditions, such as: signal-to-noise ratio of the data, influence of the Faraday rota-
tion effect, different measurements of the projection in the line-of-sight with respect
to the magnetic field. The error analysis showed that the Top-Base method is not
suitable for signal-to-noise ratios S/R . 15. For the circular statistics method, the
determination of MA can be applied down to S/R ∼ 5. The Faraday rotation effect
was also considered for different frequencies, showing an efficiency of both methods
even for regions where the Faraday depolarization is intense. We also studied the
effect of the line-of-sight projection in different configurations and obtained that
MA can be successfully recovered. We conclude that the new techniques can suc-
cessfully reconstruct the magnetization level for different astronomical observations.
This work opens an avenue for applying our new techniques to synchrotron data
cubes and a large number of forthcoming data sets from diferent radiotelescopes,
such as: Low-Frequency Array for Radio astronomy (LOFAR), the Square Kilome-
ter Array (SKA) and the Five-hundred-meter Aperture Spherical radio Telescope
(FAST).

Keywords: MHD turbulence. Interstellar medium. Polarization. MHD simulation.
Statistics.
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TURBULÊNCIA E CAMPOS MAGNÉTICOS EM REGIÕES
INTERSTELARES

RESUMO

O efeito de turbulência e a existência de campos magnéticos são onipresentes no
meio interestelar e em diversos processos astrofísicos. Entretanto, apesar de sua im-
portância, uma teoria capaz de explicar as propriedades da turbulência magnetizada
continua inexistente. Além disso, as observações astronômicas fornecem apenas in-
formações limitadas sobre densidades, temperaturas, velocidades e intensidades do
campo magnético projetados na linha de visada, o que torna a compreensão de
turbulência magnetohidrodinâmica no contexto astrofísico ainda mais desafiadora.
Baseada na recente descoberta da utilização dos vetores gradiente de intensidade e
gradiente de polarização síncrotron para obter a morfologia do campo magnético,
esta tese apresenta um novo modo de determinar o nível de magnetização em difer-
entes ambientes astrofísicos. Para isso, nós utilizamos simulações numéricas magne-
tohidrodinâmicas tridimensionais, turbulentas, apresentando os casos sub e super-
Alfvénicos, com números Alfvénicos de MachMA ∈ [0.2, 1.7]. A partir dos resultados
númericos, nós construímos mapas sintéticos síncrotron e dois métodos conhecidos
como Top-Base e estatística circular foram aplicados às distribuições dos ângulos
dos gradientes de polarização e intensidade. Além disso, utizando uma análise de
erros via estatística bayesiana, ambos os métodos foram analisados em diferentes
condições observacionais, tais como: relação sinal/ruido dos dados, influência do
efeito de rotação Faraday, diferentes medidas de projeção da linha de visada com
respeito ao campo magnético. Em relação à análise de erros, o método de Top-Base
não é adequado para razões de sinal-ruído S/R . 15. Para o método de estatística
circular, a obtenção de MA é viável à razões sinal/ruído até S/R ∼ 5. Em nossa
análise, o efeito de rotação de Faraday foi considerado para diferentes frequências,
apresentando uma eficiência de ambos os métodos mesmo para regiões onde a depo-
larizações de Faraday é intensa. Também analisamos o efeito de diferentes linhas de
visadas com relação ao campo magnético médio e, para as diferentes configurações,
ambas técnicas foram bem sucedidas. A partir destes resultados, pode-se concluir as
novas técnicas propostas nesta tese podem reconstruir com sucesso o nível de mag-
netização para diferentes observações astronômicas. Este trabalho abre um caminho
para a aplicação de nossas novas técnicas a cubos de dados síncrotron provenientes
de diferentes facilidades observacionais, tais como: o Low-Frequency Array for Ra-
dio astronomy (LOFAR), o Square Kilometer Array (SKA), e o Five-hundred-meter
Aperture Spherical radio Telescope (FAST), entre outros.

Palavras-chave: Turbulência magnetohidrodinâmica. Meio Interestelar. Polarização.
Simulações numéricas. Estatística. Flutuações síncrontron.
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1 INTRODUCTION

Turbulence has been inferred as ubiquitous in the interstellar medium since the
1950’s (WEIZSÄCKER, 1951a). The presence of complex density structures observed
on different astrophysical environments resembles the same characteristics from
chaotic motions in turbulent flows (JACKSON et al., 2003). In addition, many spectro-
scopic measurements of velocity dispersion in the local Universe reveal the Alfvénic
nature of the turbulent motions (HOERNER, 1957). Thenceforward, turbulence is
considered the most common state for many astrophysical processes, such as: trans-
port of mass and angular momentum, star formation, fragmentation of molecu-
lar clouds, heat and cosmic ray transport, magnetic reconnection, accretion disks,
stellar winds, the interstellar medium and intercluster medium, among others (see
Elmegreen and Scalo (2004) for a review).

Turbulence is characterized by chaotic motions which lead to diffusion of matter
and dissipation of kinetic energy. Consequently, the long-term deterministic local
properties are modeled stochastically (LANDAU; LIFSHITZ, 1959). In addition, most
of the turbulence studies concerned with non-conductive fluids, can described by the
Navier-Stokes equations. Under the assumptions of homogeneity, isotropy, scale in-
variance and locality, Kolmogorov provided one of the fundamental theoretical bases
to study the dynamics of incompressible and unmagnetized fluids. That work opened
an avenue to characterize many properties of a turbulent fluid (KOLMOGOROV,
1941).

However, even with the advance with Kolmogorov’s model of incompressible tur-
bulence and its widespread applications, the complete comprehension of these phe-
nomena remains perhaps one of the greatest unsolved problems of classical physics.
Komolgorov’s assumptions are not strictly suitable for a number of astrophysical
fluids, given that most astronomical observations show that the Universe is com-
posed by compressible and magnetized plasmas, demanding a new understanding
of its physics. Different interstellar and star formation regions present highly com-
pressible flows, with magnetic fields embedded in them. For example, our Galaxy is
modeled as a superposition of regular and random magnetic field components. The
regular field follows a large-scale spiral structure in the plane of the galactic disk,
extending to higher latitudes out to the galactic halo. The random field is a complex
component of the locally disturbed field, commonly present in molecular clouds and
star forming regions. Overall, the magnetic field is considered a key ingredient to
characterize the dynamics of the gas in those regions (KLESSEN, 2011).
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Magnetized astrophysical flows are usually described as a magnetohydrodynami-
cal (MHD) plasma. This new scenario deeply changes the physics of the problem
and a robust theoretical model that fully describes magnetohydrodynamical tur-
bulence is still not available. This is because astrophysical MHD turbulence is a
complex nonlinear phenomenon that can occur in a multiphase medium with many
energy injection sources. In addition, the Reynolds numbers of the astrophysical
turbulence are typically very high, with a wide range of density and velocity, ow-
ing to astrophysical scales which are enormous compared to dissipative scales. For
example, the turbulence in warm diffuse interstellar medium is usually is transonic,
with nonthermal motions being ∼ 10 km.s−1, densities around 0.02− 0.4 cm−3 and
Re ∼ 500 − 1000 (HILL et al., 2008). While in molecular clouds, the turbulence is
highly supersonic, with Reynolds number reaching ∼ 107, nonthermal motions of
∼ 10 km.s−1 and densities around 102 − 104 cm−3 (ORKISZ et al., 2017). It can be
seen the huge difference on the turbulence properties in both regions. This is also
observed in others astrophysical environments, which shows the turbulence not only
difficult to be modeled, but also how its formation forms such different regions.

Conversely, even with the lack of information regarding this physical process, it is
well accepted nowadays that turbulence is one of the dominant dynamical processes
governing the structure and evolution of different phases of the interstellar medium
and and important ingredient for many astrophysical processes, such as: galaxy
evolution (e.g., Mo et al. (2010)); transport of mass and angular momentum, star
formation; fragmentation of molecular clouds (McKee and Ostriker (2007)); heat
and cosmic ray transport (e.g., Lazarian and Pogosyan (2006)), among others.

The best approach, which provided an outstanding progress in establishing an as-
trophysical turbulence framework, is the synergy combining theoretical knowledge,
numerical simulations, and observational data via statistical studies. These com-
bined provide important insights to such a complex scenario. It is important to
notice that even though numerical simulations have undertaken improvements in
terms of both resolution and ability to simulate the wide range of physics found in
the interstellar medium, they are still not able to describe the regimes of Reynolds
numbers and the dynamical range of the variables seen in such regions. However,
even with limitations, this approach is still one of the best avenues for researchers
to understand the nature of magnetized turbulence.

The main observational techniques used to study MHD turbulence are based on
column densities and line velocities. These quantities can give insights on the energy
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transport over different scales. However, despite the power spectrum being an useful
tool, it does not provide a full description of the turbulence properties and the use
of different statistical tools is necessary to obtain more information the complex
scenarios involved. This can be understood by the role of projection effects and the
lack of phase information, an important quantity for the complete description in
Fourier space (BURKHART; LAZARIAN, 2011).

The use of statistical tools applied to both observations and synthetic numerical
simulations helps to constrain appropriately the physical conditions of the problem.
For instance, it is well established that MHD turbulence can be separately studied
in terms of some physical parameters, such as: the sonic Mach number (MS), im-
portant parameter to understand compressibility, defined as the ratio between the
thermal velocity and turbulent velocity and the Alfvénic Mach number (MA), the
ratio of the thermal pressure to the magnetic pressure. Nowadays, the few available
analytical models for MHD turbulence can be applied only to particular cases or
ranges of these parameters. In this context, the numerical simulations help to un-
derstand which analytical model is suitable for the different astrophysical turbulence
conditions. Statistical tools can provide additional information on the properties of
the turbulent medium, such as the sonic and Alfvénic Mach numbers. They include
the Delta Variance Analysis (STUTZKI et al., 1998; OSSENKOPF et al., 2008), Princi-
pal Component Analysis (HEYER; SCHLOERB, 1997; HEYER et al., 2008; CORREIA et

al., 2016; ENSOR et al., 2017), Probability Density Functions (PDF), including the
Tsallis variant (FEDERRATH et al., 2008; BURKHART; LAZARIAN, 2012; GONZÁLEZ-

CASANOVA et al., 2018), the bispectrum (BURKHART et al., 2009), and topological
techniques, such as: Genus (CHEPURNOV et al., 2008), the Velocity Channel Analy-
sis (VCA), the Velocity Coordinates Spectrum (VCS) (LAZARIAN; POGOSYAN, 2004;
LAZARIAN; POGOSYAN, 2006; LAZARIAN; POGOSYAN, 2012), among others.

Another important aspect regarding interstellar turbulence is understanding how the
magnetic field can affect its properties. Measurements that can extract information
about this quantity are: the Stokes parameters of the diffuse polarized synchrotron
emission (e.g., Kothes et al. (2010) Wolleben et al. (2010) and Mao et al. (2014)), op-
tical starlight polarization (e.g., Heiles (1996), Girart et al. (2006), Hull and Zhang
(2019)), Zeeman splitting (e.g., Bel and Leroy (1989), Crutcher et al. (1996) and
Green et al. (2012)) and Faraday rotation towards background extragalactic polar-
ized sources (e.g, Eck et al. (2011), Mao et al. (2012) and Wu et al. (2015)).

In particular, synchrotron fluctuations have also been explored to provide informa-
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tion regarding the interstellar turbulence since this quantity presents robust statis-
tical behavior (see Lazarian and Pogosyan (2012), Burkhart and Lazarian (2012)
and Zhang et al. (2019)). Gaensler et al. (2011) also presented an outstanding work
which shows the advantages of using polarization gradients, applied to the polarized
galactic emission, to trace spatial patterns. Through comparisons made with nu-
merical simulations, they demonstrate that turbulence in the warm-ionized medium
has a relatively low sonic Mach number (MS < 2). Similar quantities and studies
were applied to infer conditions of the magneto-sonic turbulent medium, such as the
generalized polarization gradient, the polarization directional derivative, the polar-
ization directional curvature and the polarization wavelength derivative (HERRON

et al., 2018b; HERRON et al., 2018a).

Another important entity which helps the understanding of the properties of astro-
physical turbulence is the magnetic field structure. Techniques based on synchrotron
analyses also have been successfully proposed to trace magnetic field orientation.
These are based on the theoretical framework proposed by Lazarian and Pogosyan
(2016) which states that Alfvén and slow MHD turbulence wave modes cascade the
energy anisotropically. Consequently, synchrotron intensity and polarized intensity
present gradients correlated with the direction of the magnetic field. Lazarian et al.
(2017) tested numerically the efficiency of estimating the magnetic field direction
using synchrotron intensity gradients and synchrotron polarization gradients. Both
techniques are based on the same principle of the method introduced in González-
Casanova and Lazarian (2017) for the velocity centroid known as the Velocity Gra-
dient Technique (VGT).

VGT is a technique that can recover the magnetic field direction and strength in
cold neutral regions from emission lines such those of HI and CO (??GONZÁLEZ-

CASANOVA et al., 2019; HSIEH et al., 2019; HU et al., 2019c; HU et al., 2019b). Recently,
González-Casanova and Lazarian (2019) showed that there is a good correspondence
between the VGT technique and the dust polarization (from stellar polarimetry) in
mapping the magnetic field direction in the whole galaxy. Soler et al. (2013) proposed
the technique named as Histogram of Relative Orientations (HRO), which explores
how the statistics of the relative orientations of the intensity gradients and magnetic
fields change with column densities. The HRO technique is quite different from what
was proposed by the VGT method. The VGT tool explores the point-wise statistics
of the magnetic field and does not depend on additional polarization measurements,
but on elements of the MHD theory. Hu et al. (2019a) compared the differences and
advantages of using both techniques for different ISM conditions.
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Synchrotron intensity and polarization gradients represent a new way to obtain in-
formation about the magnetic field in the magneto-sonic turbulent medium. These
new techniques has been proved successful, providing information about the struc-
ture of the magnetic field. In particular, the use of these gradients produce estimates
of the magnetic field geometry and intensity without the effects of Faraday rotation.
Moreover, (LAZARIAN; YUEN, 2018) showed that considering Faraday depolarization,
they can obtain the 3D distribution of the magnetic field in the emitting volume.
By considering different observational frequencies, it was shown that synchrotron
polarization gradients are capable of probing the magnetic field orientation at dif-
ferent distances from the observer, opening a way of producing 3D maps of magnetic
fields in the Galaxy (see Ho et al. (2019)). In a comparison with other techniques
such as Faraday Tomography, the synchrotron polarization gradients can infer the
magnetic field properties using a smaller frequency range. This is due to the fact
that the gradients are not subject to Faraday rotation (see Ho et al. (2019)).

This PhD thesis aims to study the properties of synchrotron gradients in order to
find not only information about the magnetic fields, but also to explore correlations
with other quantities that can provide direct information regarding the magnetiza-
tion level in a magneto-ionic turbulent medium, such as the Alfénic Mach number.
This parameter is extremely important to constrain the physics of the turbulence in
the different scenarios on the interstellar medium. Several works have already pro-
duced results on estimating the Alfénic Mach number (see Tofflemire et al. (2011),
Burkhart and Lazarian (2011), Maguire et al. (2020)), but they are based on indi-
rect measurements. This stresses the improved sensitivity of the gradients statistical
approach. In an effort to characterize the relevant parameters, we used different sta-
tistical analyses that can be applied to real observations as well. Under this general
objective, we specifically intend to:

• Propose two methods (namely, the standard deviation method, and the
top-based method) which are applied to synchrotron polarization and in-
tensity measurements in order to retrieve the magnetization level of the
large-scale magnetic field.

• Investigate the reliability of these methods for a range of values of signal-
to-noise ratio, angular telescope resolution and magnetic field configuration
projected in the line-of-sight.

• Finally, describe the influence of Faraday rotation on the methods con-
sidering different frequencies and telescope resolutions. Our study attests
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that both techniques can be applied to the analysis of real observational
data.

To achieve these goals, we will make use of a set of 3D, high-resolution MHD simu-
lations for reconstruction of synthetic observable parameters. These techniques are
based on simplified radiative transfer models applied to the data cubes generated
in the simulations. Thus, in addition to a correlation study between the simulated
parameters, we explore a synergistic study of the observable properties of these re-
gions for comparison with real observational data. A more detailed description of
the numerical simulation method is presented in the following chapters.

In terms of chapters, this thesis is divided as follows. In Chapter 2 we provide a
general review on MHD theory and Alfvénic turbulence, presenting some funda-
mental concepts which provide a theoretical basis for the subjects explored later in
the thesis. Chapter 3 presents an overview of observational information regarding
interstellar magnetized turbulence and the advances in understanding its dynamics.
Chapter 4 presents a brief review about how the 3D numerical MHD grid-based
codes used in the thesis work, the initial setups and how the numerical quantities
obtained can be scaled to physical units. Chapter 5 presents how the gradients and
their orientation are numerically obtained, how the error bars on the analyses are
estimated and how both statistical methods are applied in practice. Chapter 6 will
present the correlation of the Top-Base and circular statistics with synchrotron in-
tensity and polarization angles distributions and explore how different interstellar
and physical conditions can influence in obtaining the Alfvénic Mach number for
different magnetized regimes. Chapter 7 contains a general discussion of the results
obtained and summarizes the main conclusions of this thesis and perspectives for
future research on this field.
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2 PLASMA PHYSICS AND TURBULENCE PHENOMENOLOGY

Plasma can be defined as a quasi-neutral gas with a large collection of charged
and neutral particles that exhibit collective behavior (BELLAN, 2006). Almost all
the different astrophysical environments that exist in the Universe are composed of
plasma, including: stellar interiors and atmospheres of accretion discs around black
holes, molecular clouds, supernovae, quasars, the interstellar medium, extragalactic
jets and the gas in galaxy clusters and intracluster medium (GOOSSENS, 2003).

Many of these regions present a turbulent fluid behavior, with a high electrical
conductivity and magnetic fields that pervade in different observed scales (BENZ,
2002). For such conditions, the MHD turbulence theory is essential to understand
the different electromagnetic processes and phenomena (SOMOV, 2006). Turbulence
can be defined as time-dependent, stochastic flow typically observed in fluids with
low viscosity (BERESNYAK; LAZARIAN, 2019). Despite its complexity, researchers
investigate turbulence because of its practical importance. The use of this theory
to investigate the distinct regions of the Universe has been extremely important to
obtain insights on their astrophysical properties (SCHEKOCHIHIN; COWLEY, 2007).

This chapter aims to present a general overview about MHD turbulence theory and
some recent theoretical models used in the astrophysical context. However, in order
to clarify the understanding of this subject, Section 2.1 will introduce a brief discus-
sion of non-magnetized turbulent fluids. Hence, the basic characteristics of plasma
physics and MHD theory will be presented on Section 2.2. Finally, Section 2.3 will
introduce the phenomenology of MHD turbulence and the main recent theoretical
frameworks used to comprehend the physics of astrophysical turbulence.

2.1 Non-magnetized fluids turbulence

Fluids can be defined as substances that when subjected to shear stress, defined as
an internal tangential force per unit area, suffer a continuous deformation (LANDAU;

LIFSHITZ, 1959). Their physical behavior differs from other states of matter, showing
some unique characteristics, such as: viscosity (internal resistance of the fluid due
to deformations caused by shear stress or tensile tension); thermal conductivity
(transfer of heat capacity), mass diffusivity (gradient in the concentration of matter)
(MCCOMB, 1990).

The mathematical description of macroscopic phenomena in a particular fluid is built
under a number of assumptions. The first one is known as continuum hypothesis,
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which considers the fluid as a continuous medium. Consequently, the local conserva-
tive properties of the fluid are volume-averaged, state functions, dependent on space
and time coordinates (LEAL, 1980). In addition, there are some fundamental laws
that can describe the dynamical state of these fluid quantities (TRITTON, 1988). For
example, the momentum equation for incompressible fluids, determines the velocity
field dynamics and the mass and transport properties, being expressed by:

∂u
∂t

+ (u · ∇) u = ∇P
ρ

+ ν∇2u + F, (2.1)

where u denotes the fluid velocity, ν represents the kinematic viscosity, P is the
pressure and F expresses the fluid acceleration.

One can observe the complexity of obtaining exact solutions for Equation (2.1).
This partial differential equation can be solved for suitable forms of the right hand
term, specially due to the nonlinear term (advection term). In order to extract
physical information from the Navier-Stokes equation additional assumptions must
be considered. Another useful approximation is to assume that the perturbations
are self-similar. Self-similarity implies that given the scaling transformation of flow
fluid physical variables, the governing equation remains invariant (MATHIEU; SCOTT,
2000). For that purpose, we introduce the following transformation:

r→ x
L0
, u→ u

U0
, ∇ → L0∇, t→ t

L0/U0
, P → P

ρU2
0
, F→ F

F0
. (2.2)

where r, u, ∇, t P and F are now the non-dimensionalized quantities for length,
flow velocity and pressure. Using this form, Navier-Stokes can be written as:

∂u
∂t

+ (u · ∇) u = ∇P
ρ

+ 1
Re
∇2u + F, (2.3)

It is relevant to notice that the Navier-Stokes equation is important not only to
describe how the flow circulation happens, since it presents terms that indicate the
rate of temporal variation of u, but also by expressing how some intrinsic properties
of the material can influence the phenomenon of transport of the fluid. The second
term on the left hand side is related to convection. Convection is a physical process
that occurs in a flow of gas in which some property is transported by the ordered
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motion of the flow. On the right hand side of the equation, the second term is
related to the diffusion process. Diffusion is a physical process that occurs in a flow
of gas in which some property is transported by the random motion of the molecules
(HILLEBRANDT; KUPKA, 2009). In addition, there is a dimensionless quantity in
Equation (2.3), known as the Reynolds number, expressed as:

Re = ρU0L0

ν
≡ | (u · ∇) u |

ν∇2u
. (2.4)

Equation (2.3) governs a general fluid, not specifying anything about turbulence and
it is natural one not understand the relationship between the Navier-Stokes equation
and this phenomenon. However, when we analyze the Reynolds number in terms of
diffusivity and conductivity which act on different regimes, the intrinsic nature of
the fluid is observed. A small value of Re corresponds to viscosity dominated flow,
where perturbations are damped and the fluid exhibits laminar behavior. On the
other hand, when the Reynolds number becomes sufficiently large (Re � 1), the
non-linear term becomes dominant and the nonlinear interplay between scales of
fluctuations occur faster than their decay resulting in more complicated structure
(SRINIVASAN, 1967). The fluid physical quantities exhibit fluctuations that depend
on the coordinates – position and time. These perturbations occur in both vector and
scalar quantities that describe the fluid dynamics. When the perturbation evolves,
the fluid becomes chaotic and unsteady and, consequently, turbulent regimes arise.
This is an extraordinarily complicated process, which is still not fully understood,
though many decades of intensive research made our knowledge on the field much
clearer (LESIEUR, 1987).

It may be noted that even the most simplified mathematical description of this equa-
tion is not of trivial solution. Equation (2.1) is a non-linear and non-local expression.
The incompressibility condition results in an infinite sound speed, and in an instan-
taneous propagation of any perturbation in the fluid. In addition, the nonlinear term
in the Navier-Stokes equation introduces intrinsic effect of the turbulence, as non-
linearity generates instabilities and energy exchange between scales. This fact indi-
cates the complexity of obtaining analytic solutions for the Navier-Stokes equations
(LANDAU; LIFSHITZ, 1959). Despite these difficulties, some intrinsic characteristics
of the fluid regime can be obtained when a statistical and stochastic approach is
taken. The most famous is known as Kolmogorov’s theory, which has been refined
over the years, based on a series of initial hypotheses of energy transfer and energy
cascade scales that dominate the fluid dynamic state and its physical properties,
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where the phenomenon of turbulence occurs. In the next discussion, we will present
a simplified idea of this famous theory.

Kolmogorov Turbulence

Kolmogorov (1941) described the Navier-Stokes equations considering u(x, t) a
stochastic distribution. Under the assumptions of homogeneity, isotropy, scale invari-
ance and locality, Kolmogorov stated that energy injected into a three-dimensional
(3D) turbulent flow, at a constant rate ε, would form eddies at large scale, L. These
eddies break up into smaller eddies, due to the nonlinear term of the Navier-Stokes
equation, thereby transferring their energy to smaller scales. This process continues
until a length scale η is reached at which viscous dissipation dominates (FRISCH,
1995). At the equilibrium state, the energy dissipation rate would be equal to the
injection one, therefore the transfer rate between scales must be constant, i.e. equal
to ε.

Kolmogorov assumed that the instabilities formed in turbulent regimes drive local
vorticities and large amplitude eddy fragments into smaller ones, creating a turbulent
pattern. This concept was initially imagined by Richardson (1922) and mathemat-
ically described by Kolmogorov. One of the key arguments in this interpretation is
the consideration that the energy transfer rate (ε) is constant and can be defined
as: ε =

(
δul

τl

)1/4
, where δul is the velocity fluctuation amplitude at lengthscale l, and

τl is the dynamical timescale for the energy transfer. Using this interpretation, the
physical properties of the turbulence can be modeled with scaling laws and a well
defined power spectrum (CHORIN, 1975). Kolmogorov derived the one-dimension
velocity field spectrum with the following expression:

Pu(k) ∝ ε2/3k−5/3, (2.5)

where k = 2π
λ

is the wavenumber, defined as the spatial frequency in the Fourier
space. The locality assumption is what ensures that these wave perturbations can
be defined at the local Fourier space. Also, the wavenumbers in Kolmogorov’s inter-
pretation, i.e, the wave interactions that generate the eddy cascade, should follow a
well defined selection rule in which the large scale eddy k1 decays into smaller eddies
k2, using the following form: k2 = 2k1.
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Figure 2.1 - Illustration of turbulence energy wavenumber power spectrum.

SOURCE: Frisch (1995).

The energy power spectrum proposed by Kolmogorov (1941) is shown in Figure 2.1.
It can be seen that the first scale range, named integral range, is related to the
largest scale that is the size of the domain of the problem, L. From this scale a
characteristic velocity (which is the mean velocity u, used to define the large-scale
Reynolds number) is derived. Furthermore, the largest motions (or eddies) produced
in turbulence contain most of the kinetic energy, whereas the smallest eddies are
responsible for the viscous dissipation of turbulent kinetic energy. The regime in
which the turbulence velocity perturbations present a constant energy transfer rate
is known as inertial range of scales, and is observed between the energy injection
and the viscous damping scales (DAVIDSON, 2004). In this intermediate range, since
the energy transfer is constant, the power spectrum can be expressed the same way
as presented in Equation 2.5. The lower limit scale in Kolmogorov’s spectrum is
defined as: η = (ν/ε)1/4, where ε is the kinetic energy dissipation rate by heat due
to the effects of the viscosity ν on the fluid.

In addition, the theory also predicts the scaling laws for the moments of velocity
spatial increments, known as velocity structure functions. They are consequence of
the small-scale homogeneity assumption and self- similarity assumption, which imply
that the physical properties do not change under a spatial translation operator and
the fact that the small scales are associated with lengthscales much smaller than
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the overall scale, often identified as the wavenumber corresponding to maximum
energy. Consequently, the velocity increments can be expressed in term of structure
functions. Kolmogorov also defined that this statistical function presents scaling laws
that depend on the spatial increment vector and the energy transfer dissipation:

Sp = 〈[u (x + r, t)− u (x, t)]
p
3 〉 ∝ (εl)

p
3 , (2.6)

with p being a positive integer. Also, due to homogeneity, the structure functions
depend only on the separation vector l, while isotropy can be used to further simplify
this dependence on the absolute value l = |l| (FRISCH, 1995).

The Kolmogorov theory of turbulence has been successful in reproducing many dif-
ferent instances and therefore presents a vast literature. In the astrophysical context,
this impressive work and its evolution refinement over the years presented several de-
velopments. For example, the density distribution of some molecular clouds studied
by Larson (1981) corroborated Kolmogorov’s density predictions. Also, Armstrong
et al. (1995) presented a density power spectrum with a single Kolmogorov slope
ranging for more than 6 orders of magnitude in lengthscale. Some observations of
the solar wind turbulence also corroborate the Kolmogorov scale in density and ve-
locity fluctuation in large scales ( i.e., Bruno and Carbone (2013), Shaikh and Zank
(2010), Ghosh and Matthaeus (1990) and Treumann et al. (2019).

Conversely, over the past decades, the improvement of observational techniques
showed that the turbulent nature of the interstellar medium is way more complex
than the basics assumptions of Kolmogorov. Initially, as it will be presented in
more details on the next chapter, the interstellar medium is essentially composed by
plasma and dust with a interstellar magnetic field pervading in many scales. In the
presence of the interstellar magnetic fields, the turbulence cascade is quite different
from that assumed by Kolmogorov (CRUTCHER et al., 1987; FALCETA-GONÇALVES

et al., 2014). In this scenario, the eddies are compressed by the field lines in the
perpendicular direction only. Consequently, turbulence in magnetized medium is
anisotropic, with the anisotropy being larger at smaller scales. Also, Kolmogorov’s
scalings fail for compressible turbulence as the shocks formed in this regime also
become responsible for energy exchange between scales, losing the locality condi-
tion. The specific energy transfer is not constant in a fluid element and depends not
exclusively on its velocity but also on its density (FALCETA-GONÇALVES, 2011).

The use of numerical simulations to reproduce the different complex scenarios con-
firms so far that the velocity and density distributions (and topology) in the in-
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terstellar medium can be understood, in almost all cases, as a result of supersonic
Alfvénic turbulence. Since this thesis is devoted to obtain statistical tools to con-
strain the properties of the interstellar turbulence, the next section will be devoted
to explain the basic characteristics of a plasma and therefore present an overview
of MHD turbulence. For more information regarding Kolmogorov’s theory, in which
this section was based, see Falceta-Gonçalves (2011) and Monin et al. (1977).

2.2 Magnetohydrodynamic theory

Due to the strong interaction with the electromagnetic radiation field, astrophysi-
cal plasmas display a complexity in structure and motion that far exceed what is
found in other states of matter. For the description of plasma phenomena, there
are three theoretical approaches with several different choices of approximations,
and the best description depends on what information is available. The first one is
known as kinetic theory and takes into account the individual motion of all particles.
One problem with this theoretical description is that the equations governing the
evolution of the individual particles distribution function are extremely difficult to
solve. In the kinetic theory, the statistical description is based on the momentum
distribution function for the particles under consideration. The problem consists in
solving the appropriate kinetic equations that govern the evolution of the distribu-
tion function in phase space. The second approach is called two-fluid (electrons and
ions) theory and treats the plasma as a mixture of two or more interpenetrating
fluids, depending on the number of different species considered. In addition to the
electrodynamic equations, there is a set of coupled hydrodynamic equations that are
considered, such as: conservation of mass, momentum, and energy for each particle
species in the plasma.

Finally, the last approach consists in treating the whole plasma as a single con-
ducting fluid, governed by fluid dynamics and Maxwell’s equations. This theory is
usually referred to as magnetohydrodynamics (MHD). The MHD equations are ap-
plicable to the study of very low frequency phenomena in highly conducting fluids
immersed in magnetic fields. Since magnetic fields are ubiquitous in space, and their
role affects almost all astrophysical processes, the description using the MHD the-
ory is usually well accepted to describe magnetized phenomena. This section will
introduce the main properties of the MHD approach, being important to understand
the application of this theory in the context of the cosmic fields, and how it affects
the dynamics and evolution of different interstellar media. For more comprehensive
introductions to astrophysical MHD, see Parker (1983), Kulsrud (2004).
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Magnetohydrodynamic equations

As mentioned previously, the MHD approach is based on the assumption that the
plasma is a conductive fluid, without considering the individual nature of each
species of particles. In this theory, the fluid approximation is also considered: the
local thermodynamic quantities can be meaningfully defined in the plasma, and vari-
ations in these quantities are slow compared with the time scale of the microscopic
processes in the plasma. This assumption involves the same approximation used in
deriving the equations of fluid mechanics and thermodynamics in statistical physics.
Also, the hydrodynamic equations obtained in the kinetic plasma theory are coupled
with Maxwell’s equations. In addition, MHD theory also assumes similar number of
electrons and ions, therefore it can be approximated by one fluid, which is a mixture
of these two. Hence, in order to provide the governing equations in MHD theory,
the physical quantities are approximated as macroscopical average values per unit
volume of the fluid.

Also, one important aspect in the MHD theory that should be highlighted is the vari-
ation in the dynamic properties of the fluid due to the presence of a magnetic field.
For steady-state situations, or slowly varying conditions, the dynamic MHD equa-
tions are very consistent and, in many cases, lead to important results that would
not be easily obtained from the individual equations for each particle species. Some
astrophysical properties related to magnetic fields can be explained only by MHD
approach, which again, emphasizes the importance of understanding this theory. In
addition, due to the number of variables in an astrophysical environment, several
simplifying approximations are usually considered, in order to eliminate some terms
in the MHD equations. Otherwise, there would be no mathematical closure to the
governing equations.

For this reason, the next discussion will present the equations for MHD theory in
the ideal case, where the effects of viscosity, resistivity and diffusion are disregarded.
The ideal MHD equations will also be considered on the numerical simulations used
in this thesis. The first equations that will be presented are the well-know equations
in electrodynamics: Maxwell’s equations.

Maxwell equations in the ideal MHD theory

In the electromagnetic theory, the spatial and temporal variations of either the
electromagnetic field or its source, the electric charge density and current density
are specified by Maxwell’s equations:
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∇ · E = ρm
ε0
, (2.7)

∇ ·B = 0, (2.8)

∇× E = −∂B
∂t
, (2.9)

∇×B = µ0J + 1
c2
∂E
∂t
, (2.10)

where E and B denote the electric and magnetic fields in a plasma; ρm denotes the
electric charge density; J is the electric current density and µ0 is the permissivity
of the material. The first Equation (2.7) is called electric Gauss law and states that
the electric flux through a closed surface is proportional to the total charge within
that surface. Equation 2.8 is known as Gauss’s law for magnetism and gives infor-
mation about the magnetic flux. It states that the total magnetic flux through any
closed surface is zero. This equation has a important geometrical meaning and can
be considered as an initial condition for subsequent equations. The third equation is
known as Faraday’s law, which describes the relationship between electric and mag-
netic fields variations. The fundamental concept behind this law is that changing
the magnetic flux through a surface induces an electromotive force trough the same.
The last equation is called Ampère’s law and states that the magnetic field induced
around a closed system is proportional to the electric current plus displacement
current (rate of change of electric field) that the system encloses.

2.2.1 Generalized Ohm’s law

In order to connect the electromagnetic quantities with the typical variables found
in a fluid, Ohm’s law is extremely important in the MHD theoretical formulation. In
the approximation of ideal plasma as a conducting fluid, the generalized expression
for Ohm’s law can be written as (BOYD; SANDERSO, 2003):

E + u×B− J
σ
− 1
σνC

∂J
∂t

= mi

Zeρ
(J×B−∇Pe) , (2.11)

where σ denotes the conductivity, νC represents the electron collision frequency, mi

and Ze are respectively the ionic mass and charge and ∇Pe denotes the electronic
pressure gradient.

In addition, our study via MHD simulations considers the simplest case, where the
ideal MHD approximation is used. Therefore, as explained in this section, resistivity
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effects are null and conductivity tends to infinity (σ → ∞). Considering also the
term related to null electronic pressure, one can rewrite Ohm’s law for the ideal
MHD case as:

E + u×B = 0 (2.12)

This Equation is called idealized Ohm’s law. Substituting the above expression in
Equation (2.9), we obtain:

∂B
∂t

= ∇× (v×B) , (2.13)

which is called induction equation.

Equation (2.13) describes how the magnetic field in a perfectly conducting fluid
changes with time under the influence of a velocity field v, evidencing the perfect
coupling between the two physical quantities. This equation, together with the single
transport fluid equations that will be presented in the next section, constitute the
complete set of ideal MHD equations.

2.2.2 MHD Fluid transport equations

Using the approximation of the plasma as a single fluid, one can rewrite the fluid
equations, considering the existent electromagnetic fields, in the following way:

• Ideal conservation of mass equation:

∂ρ

∂t
+∇ · (ρu) = 0, (2.14)

• Equation of motion describing the momentum evolution:

∂

∂t
(ρv) +∇ ·

[
ρvv− 1

µ0
BB−

(
P + 1

2
B2

µ0

)
I
]

= ρf . (2.15)

where I is Comparing the MHD fluid momentum equation with the momentum
equation of a non-conducting fluid, one can note that there are additional terms.
The first one is proportional to BB and describes a force due to the variation of
magnetic field strength in the direction of the field. It is often called the magnetic
curvature force, or tension. Also, the second term proportional to B2 is related to
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the magnetic pressure on the fluid. Equation (2.15), usually known as MHD Navier-
Stokes equation, gives important informations regarding the peculiar properties of
the magnetic field lines and magnetic pressure in the presence of a plasma fluid.
The magnetic field in a conducting fluid acts somewhat like a deformable, elastic
medium. Unlike an usual elastic medium, however, it is always under compression
in two directions (perpendicular to the field) and under tension in the third (along
the field lines), irrespective of the deformation. Also, using MHD Navier-Stokes
equation, one can obtain that the magnetic field on the MHD plasma presents a
tension that manifests itself more indirectly through the curvature of field lines.

• Ideal energy conservation equation

For the MHD, the energy conservation equation may be quite complicated
depending on the sources and energy loss processes that take place. A
possible approximation for most cases is the adiabatic approximation:

d

dt

(
p

ργ

)
= 0, (2.16)

where p is the plasma pressure and γ the effective polytropic index, which for the
case of mono-atomic gas, with no energy losses (or sources), resumes to the ratio of
specific heats for an adiabatic equation of state (γ = 5

3).

2.2.3 Linear waves in ideal MHD

It is crucial to examine the existence of wave modes in an ideal MHD fluid to
understand the corresponding dynamics and the nature of the response created by
the fluid after any external perturbations with respect to a steady state flow happen.
In fact, there are many kinds of wave modes in plasma physics which depend on
the frequency, species of oscillating particles, restoring force, boundary conditions,
inhomogeneities, propagation angle with respect to the magnetic field, etc.

We have previously mentioned that the magnetic field of the ideal MHD plasma
tangles the velocity field with the magnetic field lines, causing the plasma to be
confined under a tension. Consequently, one of the possible modes of perturbation
occurs when the plasma is slightly disturbed from the equilibrium conditions, caus-
ing the magnetic field lines to undergo transverse vibrations. This section gives a
general overview for the particular case when the fluid motion and magnetic field
line perturbations are perpendicular to the field lines. To study these conditions, we
assume stationary ideal homogeneous conditions as the initial state of the single-fluid
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plasma, with small perturbations in the mass density, thermal pressure, magnetic
field and velocity field expressed as:

ρ = ρ0 + ρ1, p = p0 + p1, B = B0 + B1, and u = u1, (2.17)

where the terms with subscript 0 denote the equilibrium quantities and those with
subscript 1 correspond to the linear perturbations.

In order to obtain linear wave solutions for the small perturbations, we start with a
linearization of the ideal MHD equations case using conditions (2.17) in Equations
(2.14), (2.15) and (2.16):

∂ρ1

∂t
+ ρ0 [∇ · u1] = 0, (2.18)

ρ0
∂u1

∂t
+∇p1 −

∇× (B1)×B0

µ0
= 0, (2.19)

∂B1

∂t
= ∇× (u1 ×B1) , (2.20)

∂

∂t

(
ρ1

ρ0
− γρ2

ρ0

)
= 0. (2.21)

Another important approximation introduced to obtain the above expressions stems
from the fact that since only low frequency perturbations were considered, the cross-
terms can be disregarded. Also, we can assume that all perturbed quantities vary
like exp (−iωk + ik · r). Then, operations can be rewritten as:

∂

∂t
→ −iω and ∇ → ik. (2.22)

Thus, by rewriting the operations as presented in (2.22), we obtain the following
relations:

− ωρ1 + ρ0k · v1 = 0, (2.23)
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− ωρ0u1 + kp1 −
(k×B0) B1

µ0
= 0, (2.24)

ωB1 + k× (u1 ×B0 + u0 ×B1) = 0, (2.25)

− ω
(
ρ1

ρ0
− γρ1

ρ0

)
= 0. (2.26)

Assuming that ω 6= 0, the above equations yield:

ρ1 = ρ0
k · u1

ω
, (2.27)

p1 = γp0
k · u1

ω
, (2.28)

B1 = (k · u1) B0 − (k ·B0) u1

ω
. (2.29)

The substitution of expressions (2.27), (2.28) and (2.29) into the linearized equation
of motion (2.24) results in the dispersion relation:

[
ω2 − k ·B0

µ0ρ0

]
u1 =

{[
γp0

ρ0
+ B2

0
µ0ρ0

]
k− (k ·B0) B0

µ0ρ0

}
(k · u1) . (2.30)

Without losing generality, if we choose the equilibrium magnetic field in the z-
direction component B0 = B0êz and the vector k = kxêx + kyêy lies in the x-z
plane, the relation (2.30) can be written in the following matrix form:

k2va − k2C2
s sin2 θ 0 −k2C2

s sin θ cos θ
0 ω2 − k2va cos2 θ 0

k2C2
s sin θ cos θ 0 ω2 − k2c2

s cos2 θ



ux

uy

uz

 = 0,

where cs =
√

γp0
ρ0

is the sound speed, θ is the angle between k AND B and vA

corresponds to the group velocity called Alfvén velocity, defined as:
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vA =

√√√√ B2
0

µ0ρ0
. (2.31)

In order to have non-trivial solutions for the equations, the determinant of the coef-
ficients matrix should vanish. We therefore obtain the following dispersion relation:

(
ω2 − k2vA cos θ

) [
ω4 − ω2k2

(
v2
A + c2

s

)
+ k4v2

Ac
2
s cos θ

]
= 0. (2.32)

The solution of this equation admits three independent roots, corresponding to the
different wave modes that can propagate through an MHD plasma:

ωA = ±kvA cos θ, (2.33)

ωF = ±
√
k2

2

[
(c2
s + v2

A) +
√

(v2
A + c2

s)
2 − 4v2

Ac
2
s cos θ

]
, (2.34)

ωS = ±
√
k2

2

[
(c2
s + v2

A)−
√

(v2
A + c2

s)
2 − 4v2

Ac
2
s cos θ

]
, (2.35)

corresponding to the Alfvén mode, and the fast and slow magnetosonic modes,
respectively.

The Alfvén mode is a transverse wave which involves movements in the plasma
perpendicular to the magnetic field (k ⊥ u1 and u1 ⊥ B0). The other possible wave
modes are known as fast and slow magnetoacoustic waves, occurring as velocity
fluctuations occur along the magnetic field lines, but not parallel exclusively.

Regarding Alfvén mode waves, the studies of the dispersion relation can reveal some
interesting properties: this type of plasma modes are incompressible in contrast with
the other modes; also, the magnetic field amplitudes and the velocities are perpen-
dicular to the direction of propagation, and all frequency perturbations propagate
at the same speed. The wave mode perturbations are important to understand the
phenomenology of the dynamics of the MHD turbulence, since highly non-linear
perturbations on a plasma present Alfvénic nature. Before giving more details, it is
important to introduce useful simplifications commonly used on MHD turbulence
description, which are based on transforming the incompressible MHD equations,
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by using variables which lead to a symmetrical form of these equations. The new
variables are called Elsässer variables and will be explained on the next subsection.

2.2.4 Elsässer variables

Initially proposed by Elsasser (1950), these quantities can be interpreted as Alfvén
wave perturbations propagating either in the direction (or opposite direction) of the
background magnetic field, being defined as:

z± = u± B√
4πρ (2.36)

As shown in several studies of MHD turbulence, the transformation introduced by
the use Elsässer fields provides a symmetrization of the MHD equations in terms
of the perturbation along the magnetic field, and also allows the study of Alfvén
perturbations, commonly found in the interstellar turbulence. The use of these vari-
ables on Elsasser (1950) was made by assuming incompressibility. However, it is
well established that interstellar turbulence is highly compressible and inhomoge-
neous. As will be detailed on the next section, the presence of compressibility in
MHD turbulence introduces new wave modes, i.e., magnetoacoustic modes, which
makes the study of MHD turbulence much more difficult, in comparison with the
incompressible counterpart. However, Marsch and Mangeney (1987) showed that
the compressible MHD equations (with a polytropic equation of state) can still be
written in terms of generalized Elsässer variables, with variable density. Using the
density and magnetic field in terms of Elsässer variables, the compressible MHD
equations can be rewritten in terms of Alfvén velocity (2.31):

∂lnρ

∂t
+ (v · ∇) lnρ = −∇ · v, (2.37)

∂v
∂t

+ (v · ∇) v− (vA · ∇) vA = −∇p
ρ
− vA (vA · ∇) , (2.38)

∂v
∂t

+ (v · ∇) vA − (vA · ∇) v = −1
2vA (∇ · v) (2.39)

d ( ln ρ)−γ

dt
= 0, (2.40)

vA (vA · ∇) ln ρ = −2 (∇ · vA) . (2.41)

The first equation corresponds to the continuity equation, the second and the third
are respectively the equation of force and Faraday’s. The fourth and the fifth rep-
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resent the polytropic energy equation and the expression of the solenoid magnetic
field. We can also combine all these equations in only two expressions, after some
algebra:

∂

∂t
lnρ+

(
z± · ∇

)
lnρ = −1

2∇ ·
(
3z± − z∓) , (2.42)

∂

∂t
z∓ +

(
z∓ · ∇

)
z∓ =± 1

4∇ ·
(
z+ − z−

) [ ∂
∂t

z∓ +
(
z∓ · ∇

)
z∓
]
lnρ

− 1
8∇

(
z+ − z−

)2
−
[
c2
s + 1

8
(
z+ − z−

)]
∇lnρ

(2.43)

The two last equations prove to be very useful in deriving the framework for the
study of compressible MHD turbulence which is of central interest in this thesis.
More details on the use of Elsässer variables in MHD turbulent plasmas and their
limitations when compressible turbulence is considered can be found in Magyar et
al. (2019), on which the writing of this subsection is based.

2.3 MHD turbulence

As mentioned before, magnetic fields are ubiquitous in the universe. The presence
of magnetic fields influences the properties of astrophysical turbulent fluids and the
effects related to this state that can be observed on scales ranging from kilometers
to megaparsecs. The presence of the magnetic field radically changes the properties
of the flows, and the MHD turbulence approximation presents a powerful applica-
bility to describe astrophysical fluids. In this section, we will briefly summarize the
main characteristics of the MHD Alfénic turbulence, a commonly accepted theo-
retical approach to describe the processes of turbulence in the interstellar medium.
In addition, we will present the main theories currently mentioned in the attempt
to describe astrophysical turbulence: Iroshnikov-Kraichnan and Goldrieich-Shidhar
theories. We also shall restrict our discussion to a general idea for compressible
MHD turbulence, since this subject is still under construction. The following text is
based on Tobias et al. (2011), Biskamp (2003), Galtier (2012) and Brandenburg and
Nordlund (2011). For more details about recent developments of theoretical models
for MHD turbulence and their applications in astrophysical context, the following
readings are recommended: Galtier (2016), Lazarian and Pogosyan (2006), Lazarian
(2005), Müller and Busse (2007), Kulsrud and Zweibel (2008), Bigot et al. (2008),
Sridhar (2010) and Brandenburg and Lazarian (2013).
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2.3.1 Alfvénic MHD turbulence

As mentioned in Section 2.1, the idea of a turbulent flow is related to a chaotic ve-
locity field in space and time. These random motions occur when the velocity field
evolution presents strong nonlinear perturbations. Differently from hydrodynamic
turbulence, the presence of a magnetic field introduces further complexity in the
plasma dynamics, since the isotropic assumption, used in many scenarios of hydro-
dynamic turbulence can not be considered anymore. In such systems, the Alfvénic
turbulence approximation is used to understand the properties of the medium. This
approach considers a mean magnetic field with a preferential direction, and any per-
turbation in the velocity field will be coupled to the magnetic field. The magnetic
tension/pressure results in a decrease of the non-linear growth of perturbations, but
only for motions perpendicular to the magnetic field lines. This is mathematically
expressed by the Elsässer variables, presented on Section 2.2.4. In that formalism,
the non-linear interaction takes place between two oppositely propagating Elsässer
fields, expressed by: z+ and z− and with respective Alfvénic velocities va and −va.

In this phenomenology, waves packets z± propagate without distortion until they
reach a region where z∓ become nonlinear and perpendicular to the magnetic
field. Nonlinear interactions are thus solely the result of collisions between counter-
propagating Alfvén wave packets. When the turbulence is imcompressible, the
Alfvénic MHD theory states that the non-linear interactions can be expressed in
terms of Alfvénic modes. As said before, for compressible turbulence, additional
complex wave modes including magnetosonic modes are considered. In other words,
MHD turbulence starts when there are non-linear interactions between two weakly
fluctuating linear modes propagating in opposite directions. The wave mode packets
are distorted and split into smaller ones, resulting in a cascade of nonlinear interac-
tions until the energy is converted into heat by dissipation.The end of the cascade
process marks the end of the inertial range in the Kolmogorov’s spectrum.

For the hydrodynamic case, the energy cascade occurs until a dissipation scale defines
the Reynolds number Re being unity. For MHD turbulence, a resistive dissipation
scale lη is defined, associated with magnetic Reynolds number Rm = lul/η (for ideal
MHD case, η is equal zero and Rm →∞). When the non-linear interaction between
the Alfvén wave packets is assumed to be weak, that is, a large number of collisions
is required for the energy of a single wave packet to be transferred to smaller scales,
the turbulence is called weak. In the opposite case, the turbulence is strong.

There is a parameter that measures the non-linearity of interactions, χ(l⊥), defined
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as the ratio of the collision crossing time of the wave packets τcross ∼ l‖/vA and
the eddy turnover time τeddy ∼ l⊥/ul⊥, where ‖ and ⊥ are the directions of the
physical quantities with respect the mean magnetic field B. The eddy turnover time
can be used to determine when the turbulence can be considered weak or strong.
Mathematically,

χ(l⊥) = l‖ul⊥
vAl⊥

(2.44)

The regimes for which χ(l⊥) < 1 (weak turbulence) and χ(l⊥) ≥ 1 (strong) are con-
sidered in the scenarios used to explain MHD turbulence by several authors: Elsasser
(1950), Dobrowolny et al. (1980), Iroshnikov (1964), Kraichnan (1965), Matthaeus
et al. (1999), Pezzi et al. (2017) and Velli et al. (1989). Our next discussion will
briefly introduce two theoretical models well accepted in MHD turbulence theory and
currently used to explain many astrophysical processes: the Iroshnikov-Kraichnan
and Goldreich-Sridhar models. Both cases consider incompressible turbulence, where
Alfvénic modes are dominant.

2.3.2 The Iroshnikov-Kraichnan model

Assuming that the transfer of energy in the cascading process is spatially isotropic
(l‖ = l⊥ = l), Iroshnikov (1964) and Kraichnan (1965) proposed an useful simplified
model for a weak Alfvénic turbulent regime. Considering Elsässer variables and
Equations 2.42 and 2.43, they found the interactions between the wave packets
occurs with a well defined scaling law:

ul ∝ l1/4. (2.45)

This scaling law results in a χ(l⊥) ∝ l1/4. In addition, the corresponding energy
power spectrum is

Pu (k) ∝ k−2. (2.46)

The Iroshnikov-Kraichnan model has been well accepted to understand the turbu-
lence existing both in the solar wind and in the interplanetary medium (see Bamert
et al. (2008) and Ng et al. (2010) for more details). However, many observations of
the solar wind turbulence suggest a more Kolmogorov-like turbulence, i.e., ∝ k−5/3

(MATTHAEUS; GOLDSTEIN, 1982; HELLINGER et al., 2013). Some authors proposed
two turbulence cascade regimes for the magnetic and velocity field fluctuations.
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Moreover, the data also reveal that the solar wind turbulence is highly anisotropic
with respect to the local magnetic field (HORBURY et al., 2008).

2.3.3 The Goldreich-Sridhar model

Goldreich and Sridhar (1995) proposed a model for strong turbulence, based on
anisotropic fluctuations and strong coupling between the wave modes. They assumed
that motions perpendicular to the magnetic field lines are mixed on a hydrodynamic
time scale. The cascade process occurs with a scaling law:

u⊥ ∝ l−1/3 (2.47)

The mixing motions couple to the wave-like motions parallel to the magnetic field,
reaching a critical balance condition when χ(l⊥) ∼ 1. The associated power spectrum
takes the form:

Pu (k) ∝ k−5/3, (2.48)

with anisotropy scale-dependence for the eddies:

l−1
‖ VA ≈ l−1

⊥ ul. (2.49)

The equations above imply that the smaller eddies have shapes more elongated in the
direction of the local mean magnetic field. For this reason, anisotropy is measured in
the reference frame of the local field. This theory is supported by several numerical
simulations ( see Cho and Vishniac (2000), Maron and Goldreich (2001), Cho and
Lazarian (2002), Beresnyak and Lazarian (2010), Beresnyak (2011), among others).
Actually, simulations show that both Iroshnikov-Kraichnan and Goldreich-Sridhar
theories can be used to describe MHD turbulence, depending on the dynamical
conditions of the fluctuations - which is basically dominated by the sonic Mach
number.

2.3.4 Compressible MHD turbulence

Compressible magnetized turbulence is a highly non-linear phenomenon and its com-
plexity arises with the formation of a hierarchy of density structures that are coupled
to velocity and the magnetic field. In this scenario, different types of perturbations
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or modes (Alfvén, slow and fast) are strongly coupled. The properties of compress-
ible MHD turbulence are studied separating supersonic or subsonic regimes, since
the generation of compressible modes is different in each case. There are still debate
on how the scaling laws can be expressed in these regimes. However, due to the im-
provements of high resolution numerical simulations, significant evolution has been
made in the understanding of compressible MHD turbulence.

Cho et al. (2003) showed that if the regime is subsonic, the turbulence can be decom-
posed in three modes: Alfvén, slow and fast modes. They found that the coupling of
compressible and incompressible modes is weak in such regime and the Alfvén modes
follow the Goldreich-Sridhar theory. In the supersonic regime, compressible modes
can also be produced in the plasma. The weak turbulence treatment of compress-
ible MHD for fast and Alfvén waves suggests that only a small amount of energy is
transferred from magnetosonic fast waves to Alfvén waves at large modes. In this
regime, Alfvén and slows modes follow Goldreich-Sridhar and Kolmogorov’s energy
spectra, when the gas-pressure is higher than the magnetic pressure (represented
by a a plasma parameter β > 1). For the case when magnetic pressure is dominant
(β < 1), the energy spectrum is steeper than the provided by Goldreich-Sridhar
theory. For the fast modes, the energy spectrum presents an isotropic cascade and
follows P (k) ∝ k−3/2.

The picture of Alfvén waves cascade to describe the incompressible MHD regime is
not expected to change when compressible modes are present. However, this is an
open physics problem and still debated. One thing that is clearly important in the
context of the MHD compressible turbulence theory is the use of different statistical
tools and high resolution numerical simulations to confront with analytical models
on the subject. The use of the comparative approach not only improves the knowl-
edge about the physics of the problem, but also has been fundamental to understand
how the compressible MHD turbulence can be related to other phenomena in the
interstellar medium. The study of statistical correlations among physical quantities
helps physicists and astrophysicists to better understand the complex phenomenol-
ogy. In the next chapter, the evolution in the understanding of turbulence in the
interstellar medium, as well as a general review of the observational characteristics
of the different phases of the ISM will be presented.
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3 INTERSTELLAR TURBULENCE AND MAGNETIC FIELDS

3.1 Interstellar medium

The interstellar medium (ISM) can be understood as a dynamic environment among
the stars, filled with charged particles, atoms, molecules and dust grains. The under-
standing of the properties observed in the ISM provides powerful insights regarding
several important physical processes in the Universe, such as: Galaxy formation
and evolution (e.g., Mo et al. (2010)), the formation of stars (e.g., McKee and Os-
triker (2007)), cosmic nucleosynthesis (e.g., Ryan (2002)), the origin of large com-
plex molecules (e.g., Seaton (1951)), prebiotic molecules (e.g., Puzzarini (2020)), the
abundance, structure and growth of dust grains (e.g., Whittet (1988)) which con-
stitute the fundamental ingredients of planetary systems formation, among others (
see Draine (2011) for more examples).

However, despite its importance, the ISM structure and evolution is still poorly un-
derstood. The existence of a wide range of temperatures and densities which span
different regions of the ISM indicates that characterizing the ISM is a multi-scale and
multi-physics problem (DYSON; WILLIAMS, 2020). In order to address these different
chemical and physical properties for each region observed, the ISM is typically stud-
ied as multi-phase medium. This idea was initially introduced by Field (1965) who
proposed a simple two phases-model consisting of a cold and a warm neutral phase
in static equilibrium. Nowadays, based on advances in observational techniques and
high-resolution telescopes, the thermal and chemical state of the ISM is far from be-
ing considered in equilibrium and conventionally described in terms of four phases
with similar properties (MCKEE; OSTRIKER, 1977). Each phase will be described on
the next subsections.

3.1.1 Dense molecular regions

This ISM phase consists of regions with substantial condensation of the interstellar
molecules where the star formation process occurs (TIELENS, 2005). Gravitationally
bounded molecular clouds are in this phase and present low temperature (T ∼ 10–
50 K), high values of columnar density (nH > 103 cm−2) and visual extinction
(AV > 3) are part of categories which constitute this ISM phase (DRAINE, 2011).
These regions are mainly composed of molecular hydrogen (H2) and a rich mixture
of other interstellar molecules (ROHLFS; WILSON, 2013). Even though H2 is the
most abundant element, its detection is not easy. There are several factors such
as low cloud temperatures, homonuclear and symmetric nature of this molecule;
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which make the probability of rotational/vibrational energy states extremely low
and the spectral line intensity weak (GLOVER; CLARK, 2012). Rotational transitions
for this molecule are also difficult to observe. Fortunately, the existence of other
molecules presenting different critical densities and different optical depth allows to
trace densities and temperature to varying scales in molecular clouds gas. Dust grains
are also fundamental constituents of a molecular cloud. These particles have sizes
varying between 0.05 – 0.25 µm and despite their low abundance compared to the
atomic and molecular gas, their presence affects both thermodynamics and chemistry
of molecular clouds (HOCUK et al., 2015). Besides, dust grains shield molecular clouds
from the ultraviolet radiation field ubiquitous in the interstellar medium, preventing
molecules from being photodissociated (ROBERGE et al., 1991).

3.1.2 The cold atomic and warm neutral phases

Most of the ISM neutral atomic gas is composed by hydrogen and the detection of
this gas presents both emission and absorption lines. Due to the temperature and
density conditions, the emission detection of this species occurs with a forbidden
transition in 21 cm wavelength. This line results from the hyperfine structure, caused
by the interaction of the magnetic moments of the electron and the proton within
the atom. The main applications of 21 cm observations are based on the estimation
of the mass, the distribution and the kinematics of cold and warm phases (CLARK,
1965).

Using HI emission and absorption analysis, it was found that neutral gas
presents two stable phases, that exist in pressure equilibrium: the cold neutral
medium (CNM) with moderate densities (nH ≈ 10-50 cm−3) and temperatures
(T ≈ 100-300 K), and the warm neutral medium (WNM) with low densities and
high temperatures (nH ≈ 0.1-0.3 cm−3 and T ≈ 10000K) (WOLFIRE et al., 2003).
The WNM is mostly responsible for what is observed in HI emission, while CNM
is detected in absorption against either continuum sources or in the background of
HI emission (KALBERLA et al., 2010). The theoretical model for the existence of
this two-phase neutral structure was investigated initially by Field et al. (1969) and
Wolfire and Cassinelli (1986).

CNM is primarily associated with diffuse cold external atomic layers in molecular
clouds which are result from the dissociation by UV photons in the external part
of dense clouds (FAISON; GOSS, 2000). This region can be observed in diffuse clouds
where the gas is not dense enough to significantly extinct the UV field over the size of
the cloud (HEILES; TROLAND, 2003). On the other hand, the WNM is most broadly
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defined as the neutral and dense component of ISM where penetrating far-ultraviolet
radiation dominates the gas heating and thermal balance, typically observed in the
external layers of denser clouds where the UV field has not yet been completely
absorbed.

3.1.3 The warm ionized medium (WIM):

The existence of this ISM phase was initially proposed by Hoyle and Ellis (1963) and
nowadays is well-established, being referred as the major component of the Galactic
interstellar medium (HILL et al., 2008), occupying 30-40 % in the local interstellar
medium (REYNOLDS et al., 1999). It consists of a plasma nearly fully ionized and
diffuse gas with low-density (≈ 0.1 cm3) and temperatures between 6000–10000 K
(MADSEN et al., 2006). The best tracer of the ionized medium (WIM) is Hα line
emission (FRISCH, 2001).

In addition, the WIM is associated with the photoionization radiation from hot
stars. There are two distinct gases that can be detected due to photoionization
process: a dense region called an HII region, and a lower density "intercloud" medium
which is the WIM. The HII regions have densities ranging from 102 − 105 cm−3 ,
whereas typical densities in the WIM are much lower (≈ 0.1 cm−3 ) (CHURCHWELL,
2002). How the ionization is maintained in this region is still not well understood
(GREENAWALT et al., 1997). The most likely source of ionizing photons are O and
B-type stars, but it is unclear yet how the radiation is able to propagate across
the kiloparsec size scales unabsorbed, given the distribution of the WIM (WOOD;

MATHIS, 2004).

3.2 Interstellar magnetic fields

The local interstellar magnetic field has been measured in-situ by spacecrafts (see
Wimmer-Schweingruber (2018) for more information) and on larger scales by elec-
tromagnetic radiation analysis of embedded charged particles, cosmic rays, gas, or
dust (see Crutcher (2000), as an example). In-depth analysis extends from Earth
(e.g., Finlay et al. (2010)), the Sun and their neighborhood (e.g., Babcock (1963)),
solar planets (e.g.,, Lada et al. (1997)) stars (e.g., Madsen et al. (2006)), molecular
clouds (e.g., Crutcher (2012)), pulsars (e.g., Kaspi and Beloborodov (2017)), the
Milky Way (e.g., Haverkorn (2015)), nearby galaxies, distant galaxies (e.g., Heald
and Braun (2009)), quasares (e.g., Furlanetto and Loeb (2001)), and even intergalac-
tic space in clusters of galaxies (e.g., Govoni and Feretti (2004)), among others.
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Alfvén (1942) was the first one to propose that the existence of magnetic field thread-
ing the interstellar space could explain the cosmic rays confinement in our Galaxy.
Nowadays, it is well established that interstellar magnetic fields pervade the Universe
in different orders of magnitudes, being responsible not only for the acceleration and
confinement of cosmic rays, but also the spatial distribution and energetic dynamics
of different astrophysical environments (ALVES; FERRIERE, 2018).

Combined with non-thermal effects and cosmic rays, the magnetic field contribute
significantly to the structure and evolution of the ISM (FERRIÈRE, 2005). There-
fore, the determination of its structure is crucial. In disk galaxies, for example, the
magnetic fields are modeled by two different superimposing field components. The
large-scale regular field component is measured around 3−10 µG, detected mainly in
the galactic disk plane (BECK, 2015). The second one is a locally disturbed magnetic
field component, related to molecular clouds and star formation regions, detected
in dimensions ∼ 10 − 100 pc (HAN, 2006). Recently, magnetic fields with similar
strengths and coherence were found in spiral galaxies and detected even in the hot
plasma filling clusters of galaxies. For galaxies other than spirals, the information
related to the geometry and topology of the magnetic field is poorly known.

With the development of astronomical instruments, estimating the magnetic field
has become increasingly robust for the different conditions of the interstellar medium
(GOODMAN, 1995). Nowadays, the main techniques used to estimate the magnetic
field properties are the polarization resulting from interstellar dust, synchrotron
polarization emission, Faraday rotation, dust polarization from the background stars
radiation, and Zeeman effect on spectral lines (HEILES; TROLAND, 2003). These
techniques are important due to the different conditions of temperature, density,
varieties of molecular species and the nature of the grains that make the interstellar
medium a complex region (CRUTCHER et al., 1993).

This section will address each of these techniques, their limitations and under what
conditions they can be used. Finally, we also discuss recent techniques presented in
the literature, known as velocity and synchrotron polarization gradients, and their
promising advantages, since they not only estimate the intensity and geometry of
the magnetic field, but also characterize other effects of the turbulent interstellar
medium. The information presented in this section are based on Draine (2011),
Crutcher (2012), Lequeux (2005), Falceta-Gonçalves et al. (2014), Falgarone and
Phillips (1990), Crutcher (2012), González-Casanova and Lazarian (2017) González-
Casanova and Lazarian (2017), Lazarian et al. (2017), Lazarian et al. ().
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3.2.1 Polarization maps by dust emission and absorption

The discovery that the optical linear polarization of starlight presents a preferential
direction was done by Hall (1949) and Hiltner (1949). Further investigations showed
that these preferential directions are related to interstellar grains which are aligned
with the Galactic magnetic field (see Andersson (2012), Lazarian and Prunet (2002)
and Goodman et al. (1990)). Figure 3.1, on the left side, presents the relationship
between the polarization degree in the optical and near infrared spectral ranges
and extinction that corresponds to the amount of dust along the line of sight. In
addition, the comparison between the dust (yellow color) and the synchrotron po-
larization emission (blue color) on the right side in Figure 3.1, shows that the angles
between these two vectors, yellow and blue, are fairly orthogonal. The synchrotron
polarization direction is well known to present the same direction of the magnetic
field projected on the line of sight. Therefore, this comparison shows that both
quantities are closely related.

Figure 3.1 - (a) The polarization fraction p as a function of extinction AV indicating a
correlation between polarization and dust contents. (b) The optical and near-
IR polarization vector (blue bars) and synchrotron polarization vector (yellow
bars). The map shows that both vectors are preferentially orthogonal.

SOURCE: Andersson (2012).

Since the discovery of dust grain alignment with the magnetic field, a substantial
progress has been made in order to understand the physics of this effect. The ex-
isting models agree that rotating non-spherical dust grains align with their shorter
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axis parallel to the magnetic field direction (e.g., Spitzer Lyman and Tukey (1951),
Purcell (1979), among others). The most accepted theory that can explain the mech-
anism of dust alignment is known as radiative torques, introduced by Dolginov and
Mitrofanov (1976) and reviewed in detail by Lazarian and Pogosyan (2006). In this
magneto-mechanical alignment theoretical model, the dust grain gains rotational
energy by a supersonic gas stream with the preferential direction of alignment re-
maining parallel to the magnetic field lines (see Andersson (2012) for more details).
This theory is scale independent and might explain the rotation alignment in super-
sonic environments in which the alignment is typically observed (RAO et al., 1998).

Therefore, the information about the magnetic field can be decoded by estimat-
ing the polarization mechanism produced by dust grains. This polarization can be
created by two different mechanisms. The first one occurs due to the dichroic ex-
tinction caused by dust grains in unpolarized radiation of background stars, which
present maximum attenuation in the parallel direction of the projected component
of then magnetic field in the plane of sky (B‖). Consequently, the polarization vec-
tor detected in such regions is perpendicular to the magnetic field component (B⊥).
Figure 3.2 presents an illustration of this effect. This polarization effect is observed
in the optical and near-IR wavelengths. Observations from the polarization maps in
optical indicate that when the extinction is high, the intensity of the polarized emis-
sion is low, making this method imprecise for dense regions. In addition, polarized
starlight provides an very good 2D spatial resolution, however, it depends on the
density of background stars. Hence, the morphology of B⊥ can be estimated with
the determination of the polarization vector, being a useful method for studying
the large-scale magnetic field structure in molecular clouds, where the dust grains
are abundant. However, the accuracy of this method depends strongly on the visual
extinction (AV ), being more effective for small values of AV .

A second mechanism which produces polarized radiation is the thermal emission
by grains when they are heated, being also perpendicular to B⊥. The polarized
emission is usually detected on millimeter and submillimeter wavelengths. The
estimation of the polarization vector with this method is advantageous for studying
magnetic field structure at larger values of AV (even larger than 20) and is used
to obtain information in denser regions of molecular clouds, such as clumps and
cores. Figure 3.3 shows an example of dust and starlight background polarization
extinction of molecular cores in the Orion giant molecular cloud. The observed
polarized emission vectors have been rotated by 90◦, to show the direction of the
magnetic field. Li et al. (2009) indicated that the mean magnetic field direction in
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Figure 3.2 - Illustration of the process of polarization of background star radiation due to
the extinction caused by grains.

SOURCE: Adapted by Lazarian and Prunet (2002).

Orion’s cores (except for OMC1 case) are well aligned with each other and with
the mean field direction traced by optical starlight polarization in the more diffuse
gas. These measurements are critical to understand the evolution of the large-
scale Orion magnetic field, as well as the smaller regions where star formation occurs.
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Figure 3.3 - Polarization map in the Orion molecular cloud region. Light blue vectors show
optical data of the extinguished radiation of background stars. Emission of
dust obtained in 350 µm measured with the Hertz Caltech Submillimeter
Observatory is shown in red vectors. The polarized emission vectors have
been rotated by 90◦.

SOURCE: Li et al. (2009).

In addition, the degree of polarization depends very weakly on the magnetic field
strength, so dust polarization vectors do not provide direct determination of the in-
tensity of the magnetic field. Therefore, a statistical indirect method is necessary to
estimate the strength of the field. Chandrasekhar and Fermi (1953) proposed a way
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to estimate the strength of the magnetic field in the spiral arms of our Galaxy, based
on the magnetic orientation of interstellar dust grains. The so-called Chandrasekhar-
Fermi (CF) method is based on an assumed balance between the fluctuations of the
gas density and the local magnetic field; assuming that interstellar turbulence is
incompressible and isotropic, and also that there is equipartition between turbulent
and magnetic energy. Chandrasekhar and Fermi derived an expression for the mag-
netic field strength in the plane of the sky as a function of the dispersion of magnetic
field direction and velocity dispersion, mathematically described as:

B⊥ =
√

4πρδv
δθ
, (3.1)

where B⊥ denotes the average magnetic field projected in the sky, ρ is the density
of the gas, δv is the velocity dispersion (obtained by spectroscopy) and δθ is the
dispersion in polarization position angles.

Despite the importance of the CF technique, there are a number of limitations that
can lead to an unrealistic estimation of the mean magnetic field. Several works at-
tempted to improve the accuracy of this method throughout the years (see Crutcher
(2012) for more details). For example, Ostriker (2003) attempted to calibrate the
fact that polarization measurements do not sample tangled magnetic fields along
the line of sight, using a smoothing method estimated via numerical simulations of
interstellar clouds. Heitsch et al. (2001) numerically showed how limited telescope
resolution can affect the estimation of δθ, and proposed a smooth pattern fitting to
correct this. Further, Falceta-Gonçalves et al. (2009) proposed a statistical method
to separate only the turbulent contribution to δθ using higher order statistical analy-
sis. Houde et al. (2009) added further refinements to the CF method with analytical
analysis including the effects related to large-scales structured fields and a turbulent
field, explicitly including integration over the telescope beam and along the line of
sight of both the magnetic field structure and the polarized emission structure.

There are still significant uncertainties in the application of the CF technique. For
example, the lack of information regarding B‖ reduces the value of δθ, causing an un-
derestimation of this quantity. Besides, the estimation of density using spectroscopy
as an additional technique increases the complexity of estimating mean magnetic
fields with the CF technique. In addition, the choice of spectral lines for density
estimation has to delimit specifically the sample region that represents the polar-
ized region to not introduce biases. Also, since the estimation of the nonthermal
and turbulent line widths is done along the line-of-sight, the retrieved values used
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for these parameters may be incorrect. The efficiency of the grains alignment affects
the determination of the magnetic field direction via polarization maps, since for
high optical depths, the grains alignment with the magnetic field is suppressed. The
theoretical assumptions of stationarity, homogeneity, and isotropy to derive the CF
expression are also clearly not observed in most of the ISM. Also, how the complex
thermodynamics and existence of self-gravity can affect the estimation of magnetic
field morphology using polarization maps is still uncertain, and more analysis on
the subject needs to be carried out.

3.2.2 Estimation of magnetic fields by Zeeman effect

The interaction between an atom or molecule with an external magnetic field splits
the energy levels into different frequency line components. This is called Zeeman
Effect, which is caused by the coupling between angular momentum L and the
magnetic moment (µ), resulting in a set of discrete transitions (ZEEMAN, 1897). The
magnitude of the energy splitting produced by Zeeman effect is directly proportional
to the strength of the magnetic field (HERZBERG; SPINKS, 1950). Mathematically, it
can expressed as

∆νZ = eh

4πmcBLOS ≡ ZBLOS, (3.2)

where e is the elementary charge, h is Planck’s constant, m is the particle mass, c
is the speed of light and, finally, BLOS is the magnetic field in the line of sight. Z is
known as the Bohr magneton, a parameter that depends on the atomic or molecular
species. The effect manifests itself in two forms, depending on the number of fre-
quency splits. The normal Zeeman effect occurs when the spectral line is split into
three components: a simple triplet pattern consisting of one component with the
energy level of the line in the absence of any external magnetic field and two other
components shifted from it. This normal Zeeman effect happens when there is no
spin magnetic moment on the molecule. The unsplit line is called the π component,
which has the unchanged frequency. The two other split components are referred
to as ±σ components. The σ components are generally elliptically polarized and
the π component is unpolarized. The second case is known as anomalous Zeeman
effect and occurs when the total spin is nonzero, resulting in double splitting. The
anomalous Zeeman effect is not commonly observed in molecules present in molecu-
lar clouds. The split lines are governed by the selection rules of quantum mechanics.
Also, in this case, the π component is linearly polarized, and the σ components
are generally elliptically polarized. The polarization effect is also a consequence of
the selection rules of quantum mechanics and the coupling of magnetic and angular
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momenta that produce the Zeeman effect. The magnetic quantum number variation
(µB) for the π component is 0 and ±1 for the σ components. Considering the exam-
ple of the solution of the Schrödinger equation for the hydrogen atom, in classical
terms, ∆µB = 0 corresponds to an angular radiation pattern of a dipole oscillating
parallel to the external magnetic field. Then, by a projection effect, the light emitted
perpendicular to the magnetic field is linearly polarized, whereby the E-vector os-
cillates in the direction of the dipole and parallel to the magnetic field. Conversely,
∆µB = ±1 corresponds to two parallel dipoles oscillating with phase difference of
90◦. The superimposition of the two dipoles produces a circulating current. Thus,
in the direction of the magnetic field, the emission is polarized (KASTLER, 1946).
More details on the physical processes related to this effect can be found in Schwabl
(2005) and Ramos and Bueno (2006).

The Zeeman effect has provided astrophysicists with an important technique for
obtaining information about the physics of the sun and stars (HALE, 1908). In addi-
tion, due to the fundamental nature of the Zeeman effect, the strength and direction
of the magnetic field (B‖) with respect to the line of sight provides a powerful tool
specially for diagnosing star formation regions and interstellar clouds. The mean
strength of the magnetic field depends on the estimation of the σ polarized compo-
nent (CRUTCHER et al., 1993). The mathematical description of the circular polar-
ization is done with the use of the Stokes parameter 〈V (ν)〉, which is proportional
to B‖:

〈V (ν)〉 = aI(ν) +
(
ZB cos (θ)

2

)
dI(ν)
dν

, (3.3)

where a is a scaling factor, or gain correction, if there are differences between cir-
cular left and circular right polarizations due to instrumental effects; θ is the angle
between the field direction and the observer’s line of sight. A fit of this equation
to observational data can reveal the magnitude and direction of the B‖, since the
polarization direction is in the same direction as that variable.

However, the Zeeman effect technique applied to distinct environments such as in-
terstellar and molecular clouds, clumps and cores, is limited, since it does not show
up for all molecular and atomic species. Most of the common interstellar molecules
have all their electrons paired (nonparamagnetic species) and therefore do not have
strong Z factors (CRUTCHER et al., 1993). This fact makes the split components very
weak and with small separations, depending on the physical conditions of the ob-
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served region, being the main reason for the limitation. For example, in molecular
clouds, the most common species detected by Zeeman measurements are: C2H, SO,
C2S C4H, CH, C+ in recombination lines, and the masers of OH, CH3, SiO and
H2O (CRUTCHER, 2012). Figure 3.4 shows an example from Falgarone et al. (2008)
for the DR21 molecular cloud. They carried out a CN Zeeman survey together with
earlier CN Zeeman observations presented by Crutcher et al. (1996) and Crutcher
et al. (1999), measuring 14 different positions of dense molecular cores observed with
significant sensitivity.

Figure 3.4 - a) CN Zeeman Stokes I and V profiles towards DR21(OH). (b) CARMA map
of velocity-integrated CN towards DR21(OH). Contours are CN isolevels,
colors in the image represent dust continuum emission and the dotted circle
is the footprint of the IRAM 30-m telescope beam.

SOURCE: Crutcher et al. (1999).
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3.2.3 Synchrotron emission and Faraday Rotation effect

Synchrotron emission is a polarized non-thermal radiation generated by relativis-
tic electrons, moving in a helicoidal trajectory through a large-scale magnetic field
(RYBICKI; LIGHTMAN, 1979). This radiation can be detected in many different as-
tronomical environments, such as: active galactic nuclei (e.g., Clausen-Brown et
al. (2011) and Biermann and Strittmatter (1987)), radio galaxies (e.g., Hardcastle
(2013) and ), the Milky Way (e.g., Haverkorn (2015) and Wielebinski (2005)), intr-
acluster medium (e.g., Govoni and Feretti (2004) and Pfrommer and Dursi (2010)),
almost all star-forming galaxies (e.g.,Klein and Graeve (1986) and Tabatabaei et al.
(2007)), the warm neutral and ionized interstellar media (e.g., Iacobelli et al. (2013)
and Haverkorn and Spangler (2013)), supernovas (e.g., Vink and Laming (2003) and
Berezhko and Völk (2004)), spiral galaxies (e.g., Beck (2015) and Shukurov (2005)),
among other radio and x-ray sources.

The understanding of the physics of synchrotron emission production provides mean-
ingful physical quantities that characterize the condition of the emitting region: the
electron distribution, the strength of magnetic fields. Also, the degree of polariza-
tion is an important indicator of the field uniformity and structure, which makes
their estimation a valuable technique specially for estimating the interstellar mag-
netic field in different interstellar phases (see Beck (2009) for more information). In
addition, this emission produces a direct measurement of the magnetic field vector
perpendicular to the plane of the sky, which again makes it a powerful technique
to estimate the properties of B. The population of electrons that emit synchrotron
radiation is generally described by a power-law energy distribution given by

N(E)dE = KE2α−1dE, (3.4)

where E is the energy of the electrons, N(E) is the number density of electrons
with energy between E and E + dE, K is a normalization constant, and α is the
spectral index for the emission, I ∝ να. To determine the intensity of the synchrotron
radiation, we assume that the ultra-relativistic electrons have a homogeneous and
isotropic power-law energy distribution of the form of Equation 3.4, following the
energy equipartition principle between the electrons and magnetic fields (see Beck
(2005) for more details).

The emitted synchrotron intensity I, at frequency ν, is then given by Ginzburg and
Syrovatskii (1965):
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I (ν) = e3

4πmec2

∫ L

0

√
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)−α
KB1−α

⊥ ν−αdL′,

(3.5)

where B⊥ is the strength of the magnetic field perpendicular to the line of sight, Γ
is the gamma function, e is the electron charge, me is the electron mass, and c is
the speed of light. As shown by Equation 3.5, the synchrotron intensity is primarily
dependent on the strength of the magnetic field perpendicular to the line of sight, and
the spectral index can be measured from the variation of intensity with frequency.
The typical sensitivity of telescopes/detectors and the large intensity of emission
from several types of astronomical objects, together with the frequency dependence
of the emission provide valuable information from this astrophysical process.

Synchrotron radiation also presents linear polarization, which is related to the total
intensity (see Equation 3.5) by the polarization fraction, p, expressed as:

p = P

I
= 3α− 3

5− 3α, (3.6)

In order to describe the polarized emission that we measure, it is convenient to
express this measurement in terms of the Stokes parameters, Q and U . They can
be calculated from the polarization intensity and polarization angle, ψ, with the
following expressions:

Q = P cos 2ψ, U = P sin 2ψ. (3.7)

The polarization can be understood as complex configuration, P = Q + iU , which
corresponds to a vector in the Q−U plane. The polarization intensity and position
angle are written in terms of the Stokes parameters as:

P =
√
Q2 + U2 ψ = 1

2 arctan Q
U

(3.8)

The polarization angle ψ is oriented perpendicular to the direction of the magnetic
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field projected onto the sky, and by convention, measured anti-clockwise from North
(see Gardner andWhiteoak (1966) and Saikia and Salter (1988) for more information
on the polarization of synchrotron emission).

Another important physical phenomenon related to synchrotron emission in the
interstellar medium is Faraday Rotation. When polarized radio waves propagate
through a magneto-ionic medium, the left- and right-hand circularly polarized wave
components experience different phase velocities (SPITZER, 1978). Since any linearly
polarized wave can be expressed as a superimposition of one left- and one right-
hand circularly polarized waves, the plane of polarization of the linear resultant
rotates (TRIPPE, 2014). When the Faraday effect is present, the rotation in radio
polarization emission becomes proportional to the projection of the magnetic field
along the line of sight (OBEROI; LONSDALE, 2012). The Faraday effect is extensively
used in astronomy to investigate the magnetic field properties (see Stone (1963) for
more information).

Faraday rotation produces a polarization angle ψ that can be expressed as

ψ = ψ0 +RMλ2, (3.9)

where ψ0 is the synchrotron polarization angle without rotation, and λ is the wave-
length of the radiation. In Equation 3.9, RM is the rotation measure, given by

RM = 0.81
∫ 0

L
neB‖dL

′, (3.10)

where L is expressed in parsecs, ne is the electron density in cm−3 , and B‖ is the
strength of the magnetic field parallel to the line of sight, in µG. The integration is
performed along the line of sight to the observer, with B‖ defined as positive when
orientated towards the observer. From the equations above, when synchrotron polar-
ization is observed at different wavelengths, the rotation measure can be estimated.

For a polarized source observed at multiple frequency bands, a single RM value
can be fit to the polarization orientation as a function of frequency, and this RM
represents the integrated product of the thermal electron density and the magnetic
field along the line of sight. This observable is unique and is currently used not only
to probe the orientation of the magnetic field but also its direction: when the RM
is positive, the magnetic field is directed towards the observer. Faraday rotation
provides a very sensitive mean of studying the magnetic field in a 3-D sense, and is
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applied specially for the study of the warm ionized medium.

Figure 3.5 - Scheme summarizing how a linearly polarized electric field oscillates travelling
through a magneto-ionic region between the source and the observer. The
Faraday rotation occurs in the right-hand sense about the magnetic field. In
this example, B is oriented towards the observer, and the Faraday rotation is
counterclockwise in the plane of the sky. The polarization angle (ψ) convention
in the plane of the sky is also shown in the Figure (measured counterclockwise
from North; see inset in the upper-left corner).

SOURCE: Ferrière et al. (2021).

3.3 Magnetized interstellar turbulence

Turbulence affects the structure and motions of nearly all temperature and density
regimes in the interstellar gas. The first work that explains the interstellar gas evo-
lution in the presence of turbulence was pioneered by Weizsäcker (1951b). Later on,
direct and indirect signatures of turbulence were observed in different astrophysical
environments, ranging from the smallest up to cosmological scales. This section will
present a general discussion of the phenomenon, focusing on the most relevant top-
ics for this thesis. More details related to interstellar turbulence can be found in:
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Falceta-Gonçalves et al. (2014), Hennebelle and Falgarone (2012), Elmegreen and
Scalo (2004), Scalo and Elmegreen (2004) and Klessen (2004).

The dynamical evolution of the ISM and its observational parameters cannot be
characterized without the understanding of MHD turbulence (PADOAN; NORDLUND,
1999). Most of the studies on the turbulent interstellar gas are based on measure-
ments of column densities and gas velocities statistical distributions. These two ob-
servational quantities provide important insights to determine the main turbulence
features of the interstellar gas, usually measured by emission line and continuum
emission of various atomic and molecular species (KRITSUK et al., 2017). The sta-
tistical analysis of these observational quantities reveals that the interstellar gas
presents extremely irregular filaments of density with chaotic velocity fields that are
consistent with a turbulent scenario (KLESSEN, 2004).

Despite its importance, characterizing astrophysical turbulent fluids is extremely
difficult (BURKHART, 2021). Interstellar turbulence differs from the well-know Kol-
mogorov theoretical model in several important aspects. This theory considers
isotropy and incompressibility as essential assumptions (SCHMIDT et al., 2009). As
can be seen on the observational distributions, the interstellar turbulence is neither
isotropic nor homogeneous (KRITSUK et al., 2017). The astrophysical fluids are highly
compressible and magnetized. The existence of the interstellar magnetic fields breaks
the isotropy, and the turbulence characteristics, in such scenario, depend on the di-
rection of observation (BEATTIE et al., 2020). Most interstellar fluids are magnetized
and ionized. MHD turbulence physics is often used as an approach to the study of
different astrophysical environments (CHO et al., 2003).

Another important consideration is that interstellar turbulence, different from labo-
ratory experiments – where the driving often comes from the interaction with bound-
aries – presents a fair independence of explicit boundaries and is easily subject to
intrinsic instabilities. Consequently, the interstellar medium should be understood
as a multi-phase medium with many nonlinear effects. Thus, a unique analytical the-
ory capable of describing the different astrophysical scenarios is an open challenge
in astrophysics.

Fortunately, the application of different synergistic approaches has been successful,
enhancing the understanding of the physics of interstellar turbulence (BERESNYAK;

LAZARIAN, 2019). The use of different statistical tools, observational data and high
resolution MHD simulations helps astronomers to understand how physical quanti-
ties evolve in this chaotic environment (SCALO; ELMEGREEN, 2004). Observationally,
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the main techniques used to study MHD turbulence are based on measurements of
column densities and line velocity profiles. Analyses involving probability distribu-
tion functions and power spectra, indicate that both densities and velocities are far
from Gaussian equilibrium distributions. The analysis of these quantities is useful
to obtain information of how the turbulent energy transport occurs over different
scales (e.g. Burkhart et al. (2009).

Figure 3.6 shows the probability density functions, obtained from visual extinction
AV , of four molecular clouds: two located at high galactic latitudes, Spider (top
left) and Polaris (top right), and two at low latitudes, Monoceros R2 (bottom left)
and Orion A (bottom right). For cases with no star formation (the Spider cloud), a
description with a single log-normal probability density function is very well suited
to describe the frequency of cases against AV . As star formation begins to be more
and more important (the Polaris cloud) the log-normal PDF is no longer the best
option to describe the distribution, with a power law tail fitting well the observed
data (SCHNEIDER et al., 2015), for high values of AV . The same pattern happens for
low latitudes: Monoceros R2 has low star formation, and a relatively less steep power
law tail, while Orion A, with enhanced star formation has the smaller inclination in
the power law tail. Many numerical works discussed that these distribution patterns
can be explained under the assumption of MHD turbulence combined with self-
gravity conditions (see Kowal et al. (2007), Burkhart et al. (2009) and Burkhart
and Lazarian (2011) for more information).

Regarding turbulence velocity distributions, the spectral lines analysis also reinforce
that turbulence is an omnipresent regime. For example, the HI hyperfine broad
emission showed that warm cold medium in the Milk way is extremely irregular
(KALBERLA; KERP, 2009). Also, CO and other molecular spectral lines emission
indicate that molecular clouds present subsonic and supersonic turbulence features,
depending on the scale that is observed (STARK, 1984). The dispersion velocities
(σv) show large values for the different ISM phases and specifically for molecular
clouds, this quantity presents a universal line-width and mass distribution scaling
relation. Larson (1981) and Solomon et al. (1987) found the following dependence:
σv ∝ lβ, with β = 1/2. The value of β has been obtained for many other studies
in molecular clouds from the Galaxy to neighboring satellite galaxies (e.g., Heyer
and Brunt (2004), Bolatto et al. (2008), Falgarone et al. (2009), Roman-Duval et al.
(2011), among others). There is still some debate about the normalization and about
slight variations in the slope. However, the common interpretation is the presence
of turbulent gas motions that lead to these relations (see Heyer et al. (2009), Shetty
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et al. (2012) and Hughes et al. (2013), for some examples).

Figure 3.6 - PDF of column density for four molecular clouds, derived from Herschel obser-
vations: two high latitude clouds, Spider (top-left) and Polaris (top-right), two
other star-forming clouds, Monoceros R2 (bottom left) and Orion A (bottom-
right). The left y-axis gives the normalized probability, the right y-axis is the
number of pixels per log bin. The bottom x-axis is the visual extinction and
the upper x-axis the logarithm of the normalized column density. The red
line indicates a fit of a power law to the large values of AV . The green curve
indicates the expected log-normal PDF consistent with no star formation.

SOURCE: Schneider et al. (2015).

However, despite the use of power spectrum and probability density distributions
of these quantities being useful tools for obtaining information about turbulence
physics over different scales, they do not provide a full description of the turbulence
properties. This can be understood by projection effects on the plane of the sky and
the lack of phase information, an important quantity for a complete description in
Fourier space. For this reason, more sophisticated statistical tools have been used
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to provide information from observational quantities and their correlations with the
properties of the turbulent medium.

One can say that the synergistic studies provided progress in our understanding
of interstellar turbulence (see Cho et al. (2003), Schekochihin and Cowley (2007)
and Beresnyak and Lazarian (2019) for details). The use of advanced analysis tools
include high resolution simulations and refined statistics applied to high resolution
observational data. This approach is not only insightful in the sense of understand-
ing how different physical conditions affect interstellar turbulence, but also establish
which analytical theory is suitable to characterize the different environments (see
Cho et al. (2003) for more details). Figure 3.7 illustrates some galactic and extra-
galactic media and processes in which interstellar turbulence is crucial to understand
the physical evolution and dynamics. We expect these regions to exhibit different tur-
bulent features, which show up with different observational signatures (BURKHART,
2021).

Figure 3.7 - Illustration of some different astrophysical processes and environments that
are related with MHD turbulence.

SOURCE: Burkhart (2021).

In addition, as explained in Chapter 2, the presence of magnetic fields heavily affects
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the interstellar turbulence features. Hence, the comprehension of how the magnetic
fields are correlated to other physical quantities is insightful not only to give guide-
lines to analytical models, but also to give hints on how to measure the relevant
observational quantities (e.g, Falceta-Gonçalves et al. (2008) Iacobelli et al. (2013),
Prosekin et al. (2016)). As mentioned in the previous section, one can directly study
the properties of MHD turbulence with measurements such as: polarization, Fara-
day rotation and synchrotron fluctuations related to direction and gradients of the
observables. Figure 3.8 presents on the left side an optical polarization map of the
Musca Dark Cloud (PEREYRA; MAGALHÃES, 2004). As explained on Section 3.2,
the polarization vectors present the same orientation as the magnetic field. On the
right side of Figure 3.8, it is shown a polarization map superimposed on the column
isodensity projection with similar physical conditions observed in the Musca Dark
Cloud (FALCETA-GONÇALVES et al., 2008).

Figure 3.8 - Left side: optical polarization map of the Musca Dark Cloud (obtained from
Pereyra and Magalhães (2004)). Right: synthetic polarization map obtained
from a high resolution simulation of MHD turbulence (obtained from Falceta-
Gonçalves et al. (2008)).

SOURCE: Falceta-Gonçalves et al. (2014).

In particular, synchrotron fluctuations have great potential to provide robust statis-
tics that can be used to give insights on the magnetic turbulence properties (e.g,
Lazarian and Pogosyan (2012), (BURKHART; LAZARIAN, 2012), Gaensler et al.
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(2011)). Synchrotron intensity and polarization measurements are sensitive not only
to the magnetic field morphology, but also to two important parameters that con-
strain MHD turbulence, in different regimes: the sonic and Alfvénic numbers. The
following subsection will be devoted to examine in detail these parameters and show
synchrotron measurements that have been critical in the context of interstellar tur-
bulence.

3.3.1 Numerical simulations and physical parameters to describe inter-
stellar turbulence

As mentioned in Chapter 2, the description of the astrophysical turbulence flow
properties are based in statistical approaches. A useful way to simplify the study
of MHD turbulence is to separate the different conditions, introducing parameters
that provide clues to the comprehension of turbulence. A well known dimensionless
parameter is the Reynolds number (Re), previously described in Chapter 2. For
large Re values the flow becomes turbulent (FRISCH, 1995). The Reynolds number
can be obtained in the interstellar measurements by the estimation of the size scale
of the system, the line-of-sight non-thermal velocity obtained from spectral line
observations, and the gas viscosity. The Reynolds number in the interstellar medium
can be extremely large, around 109 (e.g., Tauber et al. (1991). For instance, this
value is larger than what can be reproduced by numerical simulations produced
by current computational facilities, therefore the inertial range obtained from these
will be order of magnitude shorter than that of the interstellar turbulence. The
comparison between both must be done with caution.

Two other important parameters are the sonic Mach number (MS), defined as the
ratio between the turbulent velocity and sound speed (KRUMHOLZ; BURKHART,
2016), and the Alfvenic Mach number (MA), which is the parameter that expresses
the ratio of the turbulent velocity to the Alfven speed (TOFFLEMIRE et al., 2011).
These parameters are defined by the following expressions:

MS ≡
〈
| v |
cs

〉
MA ≡

〈
| v |
vA

〉
(3.11)

The Alfvén speed, vA, represents the speed at which a signal can propagate along
the magnetic field lines in the plasma of the ISM, and depends upon the strength
of the magnetic field, and the density of the gas, as presented in Chapter 2.

In particular, the sonic and Alfvénic Mach numbers provide much coveted informa-
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tion on the gas compressibility and magnetization of the media. The turbulent MHD
physics can be studied into different conditions, using both parameters. Considering
sonic Mach number: when the medium in which the velocity of the gas is less than
the sound velocity, the regime is named as sub-sonic andMS < 1. Otherwise, when
the velocity of the gas is larger than the sound velocity, the turbulent regime is
known as super-sonic andMS > 1. For the Alfvénic Mach number: when the turbu-
lent energy is smaller than the magnetic energy,MA < 1 and the turbulent medium
is named sub-Alfvénic. For the case when the turbulent energy is larger than the
magnetic energy,MA > 1 and the regime is know as super-Alfvénic. Normally, the
MHD turbulence is studied and understood separately for each of these divisions, in
order to constrain the different physical conditions existing in the different turbulent
environments.

The understanding of turbulence in the interstellar medium is also carried out
through different sub/super-subsonic sub/super-Alfvénic regimes. Many techniques
have been developed. Many statistical techniques are aimed at obtaining these two
parameters of turbulence in the interstellar medium and information on the physics
of these regimes (BURKHART; LAZARIAN, 2011). They include the Delta Variance
Analysis applied in simulated molecular clouds (e,g., Stutzki et al. (1998); Ossenkopf
et al. (2008)), Principal Component Analysis applied to spectral lines imaging stud-
ies (PCA; e,g., Heyer and Schloerb (1997); Correia et al. (2016); Ensor et al. (2017)),
Probability Density Functions (PDF) including the Tsallis Variant of the gas den-
sity and the magnetic field structure (e,g., Federrath et al. (2008); Burkhart and
Lazarian (2012); González-Casanova et al. (2018)), PDF of filamentary structures
of HI column density (e. g., Makarenko et al. (2018)), density bispectrum analysis
(such as Genus; e.g., Kowal et al. (2009); Chepurnov et al. (2008)), the Betti num-
bers calculation of the gas density fluctuations Makarenko et al. (2018), the Velocity
Channel Analysis (VCA) and the Velocity Coordinate Spectrum (VCS) techniques
for optically thick spectral lines in different absorbing media contexts (e.g, Lazarian
and Pogosyan (2004); Lazarian and Hoang (2007), Lazarian and Pogosyan (2016)),
among others.

These techniques present powerful methods to indicate the sensitivity of the sonic
and Alfvénic numbers to different conditions of density, magnetic field and velocity.
For example, the Alfvénic and sonic Mach numbers of a MHD turbulent region can
be estimated applying the Tsallis formalism to fit the PDFs of density, velocity, and
magnetic field strength, as shown by Tofflemire et al. (2011) for simulated regions
of the diffuse interstellar medium. Since different observational techniques are nec-
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essary to obtain these parameters, a physical quantity or method that could give
straightforward information regarding both parameters could be valuable informa-
tion of the environment.

3.4 Synchrotron fluctuations to understand interstellar turbulence

As mentioned previously, measurements of polarized synchrotron radiation and Fara-
day rotation provide an important insight into the perpendicular component of the
magnetic field projected into the plane of the sky, and are powerful observational
quantities to provide information of the interstellar turbulence. More recently, sev-
eral authors have discussed the prospects of the use of radio polarization maps to
study turbulence (e.g., Haverkorn et al. (2004), Fletcher and Shukurov (2006), Beck
(2008), Gaensler et al. (2011)).

The synchrotron measurements present information about the magnetic field, but
they are also sensitive to the properties of the magnetoionic turbulence. A study
related to this was presented by Shu (1977) who analyzed structure functions of
polarization intensity and direction to estimate the difference between the slopes of
these structure functions, in order to understand whether the observed emission was
originated within or behind a region producing Faraday rotation. He showed that
both information present similarities with the turbulent properties of the medium.
Further, Haverkorn et al. (2008) used angular power spectra and structure functions
of Stokes Q, U to probe the turbulence in the warm ionized medium, and Haverkorn
et al. (2004) measured the structure function of observed rotation measure values to
constrain the outer scale of turbulence in the warm ionized medium. Lazarian and
Pogosyan (2012) also studied the correlation and structure functions of synchrotron
intensity, and predicted that the fluctuations in synchrotron intensity show the im-
prints of anisotropy of MHD compressible turbulence. This anisotropy propagates
in the same direction of the direction of the mean magnetic field.

In addition, many techniques based on synchrotron emission also have been success-
fully proposed to obtain information about the magnetic field of a turbulent medium.
Lazarian and Pogosyan (2016) introduced two new techniques called Polarization
Spatial Analysis (PSA) and Polarization Frequency Analysis (PFA) to extract in-
formation on the turbulent component of the magnetic field. These techniques are
based on the calculation of the correlation functions of the complex polarization
through an image map and provide information on the ratio of the strengths of the
regular and random components of the magnetic field, the spectrum of the magnetic
field fluctuations, and the correlation scale of Faraday rotation fluctuations. Lee et
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al. (2016) numerically applied these techniques to mock polarized synchrotron emis-
sion maps and confirmed the theoretical prediction that synchrotron polarization
fluctuations and magnetic field anisotropies are correlated. Zhang et al. (2016) used
the PFA technique to obtain information on the statistics of the magnetic field and
Faraday depth fluctuations.

Another important work that showed the great potential of the synchrotron quan-
tities to provide robust statistics to understand the turbulence properties was pre-
sented by Gaensler et al. (2011). They showed the advantages of using polarization
gradients applied to observations of the polarized Galactic emission, in order to
trace spatial patterns. Using a comparison with simulations, it was demonstrated
that turbulence in the warm-ionized medium has a relatively low sonic Mach number
(MS < 2).

The polarization gradient calculated in Gaensler et al. (2011), |∇P |, can be obtained
by the following expression:

|∇P | =

√√√√(∂Q
∂x

)2

+
(
∂U

∂x

)2

+
(
∂Q

∂y

)2

+
(
∂U

∂y

)2

, (3.12)

where the x and y axes are orthogonal directions in the plane of the sky, and have
the property of being invariant under rotations and translations of the Q−U plane.
Rotations of the Q − U plane can be caused by changing the reference frame used
to measure the polarization angle, and so any physically meaningful quantity must
be rotationally invariant in the Q − U plane. Translations of the Q − U plane can
be caused by missing interferometer spacing when observing the sky, particularly
missing ’zero-spacing’ information that is provided by single-dish telescopes, and
so translational invariance ensures that a quantity is robust to the limitations of
interferometric techniques.

An image of a 18-square-degree patch of the Galactic plane, observed with the Aus-
tralian Telescope Compact Array (ATCA) at a frequency of 1,4 GHz is shown in
Figure 3.9 (MCCLURE-GRIFFITHS et al., 2001). The inset shows an expanded view of
the structure of gradients and the blue vectors indicate the direction of the polar-
ization gradients. In addition, comparing the filament structures of the observation
with numerical simulations covering a range of sonic Mach numbers, they found that
the structures seen in the warm ionized medium present a relatively low sonic Mach
number. Gaensler et al. (2011) work is supported by Burkhart and Lazarian (2012),
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who constructed mock polarization gradient images for polarized emission propa-
gating through a Faraday rotating medium in simulations of MHD turbulence with
different Mach numbers. They found that polarization gradient images for super-
sonic simulations present filaments with a double jump profile at the sites of shock
fronts, while subsonic cases present filaments with single jump profile that are due
to the random fluctuations in the rotation measure along the line of sight. Transonic
simulations have both types of filaments present. In addition, they show that the
skewness, kurtosis, and genus of the polarization gradient structures are sensitive to
the sonic Mach number. Similar quantities and studies were presented by Herron et
al. (2018b) and Herron et al. (2018a) to trace information from the magneto-ionic
turbulent medium, such as generalized polarization gradient, polarization directional
derivative, polarization directional curvature, polarization wavelength derivative. Ia-
cobelli et al. (2013) analyzed the synchrotron fluctuation properties in a turbulent
fluid using power spectra, and were able to constrain the outer scale of the turbulence
and the ratio of random to total magnetic field strengths.

Figure 3.9 - Polarization gradient image of the Southern Galactic Plane Survey. The inset
shows an expanded view of part of the image, with blue lines used to denote
the direction of the polarization gradient.

SOURCE: Gaensler et al. (2011).
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Recently, Lazarian et al. (2017) and Lazarian et al. () extended the analysis of
synchrotron gradient quantities to obtain information about a turbulent medium.
They showed that using synchrotron intensity gradients (SIG) and synchrotron po-
larization gradients (SPG) one can obtain information about the magnetic field in
the magneto-sonic turbulent medium. The new probes have been proven successful,
providing information about the structure of the magnetic field.

These gradients successfully provide estimates of the magnetic field geometry and in-
tensity without the effects of Faraday rotation. The estimation of the magnetic field
structure using synchrotron gradients has the advantage of being a direct measure-
ment. Moreover, synchrotron observational data are obtained using interferometric
telescopes and with the existence of high resolution data of different regions of the
interstellar medium, this measurements can be a powerful tool to understand the
dynamics and origin of that medium. Since these techniques present a new approach
in obtaining an accurate estimate of the interstellar magnetic field and are central
points to this thesis, we will detail the subject in the next section.

3.5 Synchrotron gradients in turbulent medium

As mentioned previously, the use of different statistical techniques for the analysis
of polarization gradients, presented by Gaensler et al. (2011) and also Burkhart and
Lazarian (2012), showed that the use a complex polarized vector can be applied to
determine the Alfvénic Mach number of the interstellar turbulence. Based on this
breakthrough discovery and the work presented by González-Casanova and Lazarian
(2017), which showed the relation between velocity gradients and the direction of the
magnetic field, Lazarian et al. (2017) and Lazarian and Yuen (2018) presented a new
theory capable of identifying the relation between the direction of the Synchrotron
Intensity Gradients (SIGs), Synchrotron Polarization Gradients (SPGs) and the un-
derlying magnetic field. This discovery presents a valuable application in the context
of the interstellar turbulence. Since this thesis is devoted to explore the application
of these tools, this section will present a general description of the theory of these
synchrotron quantities in the context of MHD turbulence and the relationship with
magnetic field.

The understanding of the synchrotron gradients relies on the modern theory of
strong non-relativistic MHD turbulence presented by Goldreich and Sridhar (1995)
(see more details in Chapter 2). This turbulent model is based on anisotropic fluc-
tuations scaling, which propagate in the same direction of the mean magnetic field.
Subsequently, Lazarian and Vishniac (1999) extended this work, showing that mag-

53



netic reconnection does not present an impediment for the motions of a magnetic
fluid that mixes in the direction perpendicular to the local direction of the magnetic
field. In this picture, the anisotropic turbulent eddies trace the local direction of
magnetic flux tubes and consequently, measurements of velocity or/and magnetic
field gradients should reveal the magnetic field direction. The perpendicular turbu-
lent mixing results in the scale-dependent anisotropy of MHD turbulence and makes
the essential distinction between MHD and hydrodynamic turbulence.

For sub-Alfvenic regime, the magnetic field is weakly perturbed in a range between
the turbulence injection scale, L, and the transition scale ltrans = LM2

A. For scales
smaller than ltrans, the fast turbulent reconnection enhances the mixing of the eddies
in the direction perpendicular to the local magnetic field. Lazarian and Vishniac
(1999) (LV99) provided the eddy mixing theory description of MHD turbulence.
The energy transfer (dissipative or cascade) via eddies mixing has a correspondence
with the size of eddies. The relationship between the aforementioned eddy scales
follows:

l‖ ≈ L

(
l⊥
L

)2/3

M
−4/3
A , (3.13)

where l‖ and l⊥ are the parallel and perpendicular eddy scales relative to the local
magnetic field; MA = vL/vA is the Alfvén Mach number, with vL being the injection
velocity, and vA = B/

√
4πρ, the Alfvén speed (more details can be seen in LV99).

Notice that Equation (3.13) is similar to that formulated for the trans-Alfvénic
(MA = 1) regime in Goldreich and Sridhar (1995), with a new dependence on MA.

From Equation (3.13), one can infer that the anisotropy ratio of the eddies increases
as the scales decrease. Therefore, simulations to investigate MHD anisotropies should
be done at the smallest scales possible (as is the case of this work). According to
González-Casanova and Lazarian (2017), velocity gradient vl/l⊥ increases as the
scales decrease:

vl/l⊥ ≈

VAM4/3
A

L1/3

l−2/3
⊥ . (3.14)

In the super-Alfvénic regime (MA > 1), the magnetic field is weak. Consequently,
the kinetic energy dominates and therefore the energy cascade follows closely the
Kolmogorov description up to a scale
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lA = LM3
A. (3.15)

For scales smaller than lA, the magnetic field modifies the dynamics of the medium
and the turbulence cascade presents the same features as proposed by Goldreich
and Sridhar (1995), where the anisotropy of the velocity field becomes similar to
that of the sub-Alfvénic regime. In other words, the turbulence is hydrodynamic
and the velocity gradients are weakly correlated with the magnetic fields. Also, the
anisotropic perturbations are aligned with the local magnetic field. One can see
that the intrinsic properties of the eddies imprinted by both regimes of Alfvénic
turbulence imply not only the condition of a preferential direction along the local
magnetic field, but also that the eddy velocity depends on the size of the eddies. The
elongated eddies have the largest velocity gradient perpendicular to the their longest
axis. Hence, it is expected that the direction of the maximum velocity gradient to
be perpendicular to the local magnetic field.

The use of velocity gradient techniques to estimate the local magnetic field mor-
phology was introduced by González-Casanova and Lazarian (2017) using numerical
simulations and comparisons with other well-known techniques. In that work, the
authors used velocity channel gradients to validate the new way to infer the mag-
netic field properties. Subsequent analysis showed that velocity gradients can also
be obtained by other diagnostics such as the velocity centroid maps (VCG) and ve-
locity channel maps (VChG). Within the VCG context, the calculation of gradients
is performed using 2D spectroscopy maps of velocity centroids, while for the VChG
technique the calculation of the gradients uses the intensities within the channel
maps. Both VCGs and VChGs are readily available from the Doppler-shifted spec-
troscopic data. There is also an additional possibility named the intensity gradient
(IG) technique, which is based on the intensity from both gas and dust emission.
We note that the IG technique should be distinguished from the Histograms of Rel-
ative Orientation (HRO) technique, proposed by Soler et al. (2013), which requires
polarimetry data to define the direction of the magnetic fields. The IG technique is
a polarization-independent method and is a way of finding the magnetic field direc-
tion, using the sub-block averaging method. This gradient technique is more affected
by shocks, providing information from regions in such a condition. However, the IG
technique has the limitation of being a less reliable tracer of the magnetic fields in
supersonic turbulent conditions.

In addition, Lazarian and Pogosyan (2016) predicted that synchrotron emission gra-
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dients can also imprint turbulence signatures traceable by velocity gradients (locally
aligned with the magnetic field). Using the argument that magnetic field and velocity
are correlated in Alfvénic turbulence, attested that gradients of turbulent quantities
that are direct related to the magnetic field should have the same property as the
gradients of velocity. As gradients are linear operation then if we have a quantity
that is an integral of magnetic fluctuations along the line of sight, as this is the case
of synchrotron fluctuations. This work opened the venues to study the synchrotron
emission from our Galaxy and beyond. Lately, Lazarian et al. (2017) and Lazarian
and Yuen (2018) numerically confirmed that synchrotron intensity gradients and
synchrotron polarization gradients can indeed be used to infer the magnetic field
properties. Combining measurements of polarization with the synchrotron provides
several ways to obtain synergy from the two measurements and increase the relia-
bility of magnetic field tracing.

Since the synchrotron intensity gradients are not subjected to Faraday rotation,
they do not require multiple frequency measurements to compensate for the ef-
fect. One additional advantage is that measuring intensity is easier than measuring
polarization. Moreover, Lazarian et al. () showed that synchrotron polarization gra-
dients combined with a multi-frequency technique Faraday tomography, can be used
to trace the 3D magnetic field structure. These different observational techniques
to study astrophysical magnetic fields are important since the interstellar medium
presents distinct physical and chemical conditions. In this thesis, we particularly
intend to explore the synchrotron gradients to infer other physical properties of the
turbulent astrophysical fluids and their correlations.
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4 GRADIENTS IN SYNCHROTRON EMISSION MAPS – MHD SIM-
ULATIONS

The numerical simulations produced in this work were carried out with a multidi-
mensional numerical code, called ZEUS-MP1. This code was first implemented by
Hawley and Stone (1995). This chapter aims to describe the numerical code respon-
sible for performing the high resolutions maps shown in this work; the parameters
considered to reproduce different conditions of the interstellar medium and finally,
the construction of synthetic maps of gradients of polarization and synchrotron in-
tensity. The first section will present the MHD equations set in a conservative form,
as used to perform the calculation of the data cubes simulations. The second section
introduces an overview of each numerical method which in a simulation. Finally,
the third section presents the regimes selection of simulation samples, representing
conditions commonly observed in molecular clouds, such as cases where supersonic
turbulent energy is dominant or weaker than magnetic field energy, simulations
where auto-gravity is the ruling regime or regions where this effect can be neglected.

4.1 The ZEUS-MP numerical code

The simulations performed in this work result in three-dimensional data cubes,
generated by spatial and temporal solutions of the MHD equations via a numer-
ical approach. The ZEUS-3D code solves the equations of ideal, compressible MHD
equations using a finite difference scheme and a von Neumann artificial viscosity to
capture shocks structure. It is similar to different codes used by our group, developed
for the study of problems such as: the intergalactic medium (e.g Kulesza-Żydzik et al.
(2009) and Kulpa-Dybeł et al. (2011)), clusters of galaxies (e.g., Falceta-Gonçalves
et al. (2009) and Falceta-Gonçalves et al. (2010)), star formation (e.g., Santos-Lima
et al. (2012) and Pino et al. (2009)), magnetic re-connection (e.g., Kowal et al.
(2007) and Kowal et al. (2009)), cosmic rays (e.g., Kowal et al. (2011) and Kowal
et al. (2012)), among others.

There are four different versions of ZEUS. The first code initially developed by Nor-
man et al. (1980) presented a numerical one-dimensional solution for the collapse
and evolution of rotating interstellar gas clouds during star formation. The sec-
ond version, ZEUS-2D, is a two-dimensional version, able to solve hydrodynamic,
magnetohydrodynamic and radiative hydrodynamic equations (Stone and Norman
(1992a), Stone and Norman (1992b), Stone et al. (1992)). The following version,

1http://www.netpurgatory.com/zeusmp.html
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ZEUS-3D, is a three dimensional version of the previous ones. The latest, ZEUS-
MP, is a parallelized three dimensional magnetohydrodynamic version, suitable for
high resolution simulations of astrophysical problems. This code was developed at
the Laboratory for Computational Astrophysics (LCA) of the National Center for
Supercomputing Applications (NCSA) at the University of Illinois (KRITSUK et al.,
2011). The algorithm is based on finite differences on a staggered mesh (see Stone
and Norman (1992a) and Stone and Norman (1992b)). The temporal evolution is
obtained through explicit flows between cells of the computational grid, known as
Riemann solver approximation (see Toro (2013) for more information). It also in-
cludes a second-order-accurate, monotonic advection scheme (see Leer (1977) and
Miyoshi and Kusano (2005) for more information). The advection is performed in
a series of directional sweeps that are cyclically permuted at each time step. In
addition, a linear reconstruction method (second order) is used to interpolate the
core values of conservative variables. In order to emulate the interstellar turbulence,
periodic boundary conditions and solenoidal turbulence injections are applied in our
simulations. The code performs different resolutions in the MHD data cubes with
values of density, velocity, magnetic field for different physical conditions defined by
the user. An illustration of how the data cubes indicating different cells can be ob-
served in Figure ??.The next topics aim to describe the main steps for the numerical
solution of equations.

4.1.1 Matrix form of MHD equations

The family of ZEUS codes was developed to integrate a set of conservation laws,
which can expressed in the following way:

∂U
∂t

+∇ ·T(U) = S(U) (4.1)

where U corresponds to the set of conservative variables; and T(U) and S(U) cor-
respond, respectively, to the flows (that is, the flow of the variable U per unit of
time and area) and source term for each U component.

The simulations consider the case of turbulence generated by ideal MHD equations,
presented in Chapter 2. In order to rewrite these equations according to Equation
4.1, one can express them as following:
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where ρ , v and p and denote density, velocity, and pressure, respectively and E is
the energy. The term f = fturb is the external acceleration driving source in which
turbulence is included. The pressure P is related to e through an equation of state.

For this work, the internal energy is considered to be lost from the system via
radiation on timescales very much shorter than dynamical timescales, and P can be
obtained by the following isothermal equation of state:

P = Csρ (4.3)

Finally, the energy term E can be defined as the energy density of the gas and
the family of ZEUS codes considers the simplest case of an adiabatic gas of non
interacting particles, for which the equation of state takes the simplified form:

E = p

(γ − 1) + ρv2

2 + B2

8π (4.4)

As the space discretization is performed in terms of a grid of cubic elements, the set
of Equations 4.2 can be mathematically expressed in terms of their Cartesian coor-
dinates, taking the following form (see Stone et al. (2008) for the full mathematical
derivation):

∂U
∂t
− ∂F
∂x
− ∂G

∂y
− ∂H

∂z
= S, (4.5)

where F, G and H correspond to the fluxes in the x, y and z directions, respectively.
These flux terms can be represented in matrix form as:
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F =



ρvx

ρv2
x + P +B2/2−B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E + P +B2/2) vx − (B · v)Bx

0
Byvx −Bxvy

Bzvx −Bxvz



(4.6)

G =



ρvy

ρvyvx −ByBx

ρv2
y + P +B2/2−B2

y

ρvyvz −ByBz

(E + P +B2/2) vy − (B · v)By

Bxvy −Byvx

0
Bzvy −Byvz



(4.7)

H =



ρvz

ρvzvx −BzBx

ρvzvy −BzBy

ρv2
z + P +B2/2−B2

z

(E + P ) vz − (B · v)Bz

Bxvz −Bzvx

Byvz −Bzvy

0



(4.8)

Because the physical properties of the gas are provided for the center of the volume
element (cell) of the computational grid, it is important to emphasize that the
calculation of the fluxes between cells is done after a numerical interpolation step.
The interpolation procedure must ensure the continuity, and positivity of pressure
and density.

The numerical integration of the above equations used by the ZEUS-MP code is
obtained through a finite-volume formalism and a Godunov-type algorithm (see
Toro (2013) and Bodenheimer (2006) for more information). This algorithm consists
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of three main steps: (a) a reconstruction routine, where the values of the variables
are interpolated from the center to the faces of each cell in the computational grid;
(b) the solution of Riemann’s problem for the left and right side flows in the cell
interfaces; (c) by a temporal advance. A more detailed description of the ZEUS-MP
code for each time step will be presented in the next discussions.

4.1.2 Numerical grid discretization

One of the initial steps to make grid-based algorithms solve a partial differential
equation is the representation of the dependent variables on a numerical mesh.
The continuous independent variable x is transformed into discrete values in each
coordinate direction, considering a finite domain; the discretization is performed
using a three-dimensional Cartesian grid of size Lx × Ly × Lz; with Nx, Ny and Nz

being the number of cells in the three directions. These cells are indicated by indices
(i, j, k), and the central position of each of them is defined by de equally spaced
values of ∆x = Ly/Ny, ∆x = Ly/Ny and ∆z = Lz/Nz, respectively. The ZEUS-
MP family is based in staggered meshes, which consider scalar variables (pressure,
density, etc.) stored in the cell centers of the control volumes, whereas the velocity
or momentum variables are located on the corresponding cell faces with a normal
vector perpendicular to them, as presented in Figure 4.1.

Figure 4.1 - The variables in the ZEUS-MP code for one computational cell. The scalar
quantities (i.e., ρ and R) are located at the cell center, while vector quantities
are face-centered.

SOURCE: Hayes et al. (2006).
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The time is discretized into N steps between the initial moment, t0, and the final
moment, tf , defined by the user. Each instant of time will be indicated by the in-
dex n, so that the time step at a given instant will be defined as δtn = tn+1 − tn.
It is important to notice that the choice of timestep can not be arbitrary, because
otherwise, for long time steps, it is possible that all the material in a cell be ad-
vected through to neighbor cells in a single step. This could lead to errors, such
as negative pressure and densities. Hence, the choice of the timestep must satisfy a
stability constraint. The ZEUS family of codes obey the Courant–Friedrichs–Lewy
(CFL) condition: ∆t ≤ ∆x/umax, where umax is the maximum speed in the sim-
ulation domain. In the case of a 3D simulation, the CFL condition on the y and
z dimensions must also be considered. Since umax is time-dependent, the condition
must be checked at each timestep.

4.1.3 Finite-volume scheme

The ZEUS-MP code is based on the operator-split solution procedure to solve Equa-
tions 4.2 (except the induction equation, that will be explained on the following
subsections). This technique can be applied using two separate steps: transport and
source steps. In the first one, the equations are updated in conservative form us-
ing higher-order upwind methods. For the source step, a simple finite differences
scheme is used to evaluate the terms of Equations 4.2. Hence, the method separates
the original equation into two parts over a time step, separately computes the solu-
tion for each part, and then combines the two separate solutions to form a solution
for the original equation. The induction equation is updated with an entirely differ-
ent method, since the operator of the split method cannot give an accurate solution
for the magnetic field evolution.

The source step solves the MHD terms of Equations 4.2 computed through cell
boundaries, without the induction equation (last equation of the matrix). Hence,
the quantity U becomes a vector that depends on the mass density, momentum
density, and energy density. The transport step is based on a formalism known as
finite volume method, which considers that cells on the grid hold a single value
for fluid properties given by the cell averaged values. Therefore, vector U can be
obtained from a spatial average, expressed by:
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Un+1
i,j,k =Un

i,j,k −
∆y
∆t

(
Fi+1/2,j,k − Fi−1/2,j,k

)
− ∆x

∆t
(
Gi,j+1/2,k −Gi,j−1/2,k

)
− ∆z

∆t
(
Hi,j,k+1/2 −Hi,j,k−1/2

) (4.9)

where:

Un
i,j,k = 1

∆x∆y∆z =
∫ zk+1/2

zk−1/2

∫ jk+1/2

jk−1/2

∫ xk+1/2

xk−1/2
U (x, y, x, tn) dxdydz (4.10)

corresponds to the spatial average (within each cell) of the conservative variables,
while

Fn+1/2
i−1/2,j,k = 1

∆x∆y∆z =
∫ zk+1/2

zk−1/2

∫ jk+1/2

jk−1/2

∫ xk+1/2

xk−1/2
F
(
xi−1/2, y, z, t

)
dydzdt, (4.11)

Gn+1/2
i,j−1/2,k = 1

∆x∆y∆z =
∫ zk+1/2

zk−1/2

∫ jk+1/2

jk−1/2

∫ xk+1/2

xk−1/2
G
(
x, yi−1/2z, t

)
dxdzdt, (4.12)

Hn+1/2
i,j,k−1/2 = 1

∆x∆y∆z =
∫ zk+1/2

zk−1/2

∫ jk+1/2

jk−1/2

∫ xk+1/2

xk−1/2
H
(
x, y, zi−1/2, t

)
dxdydt, (4.13)

correspond to the temporal and spatial average fluxes (in the face of each cell) F, G
e H. The indexes i± 1/2, j± 1/2, k± 1/2 indicate the positions of the conservative
variables on the faces (or interfaces) of each cell.

4.1.4 Divergence of B

The ZEUS code presents an accurate method to obtain the induction equation solu-
tions using an innovative algorithm based on Constrained Transport (CT), which is a
robust method in which the magnetic field values are treated both in the center and
in the faces of each cell of the computational grid, preserving the divergence-free
condition for each cell imposed by Maxwell’s equations. The Method of Charac-
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teristics (MoC) is a second order interpolation scheme which uses quantities that
are upwind with respect to the MHD wave modes. As presented in Chapter 2, the
magnetic field is responsible for new degrees of freedom to a physical system, and
different wave modes need to be considered in a MHD fluid. For example, Alfvén
waves couple directly to the magnetic induction equation and, when treated numer-
ically, require knowledge of the fluid’s quantities upwind. Therefore, these modes
are computed in a separate step. In order to solve this problem, the MoC approach
uses Stokes’ theorem to express the rate of change of magnetic flux across a surface
S; the magnetic field solution can be expressed in terms of a electromotive force ε
(see Evans and Hawley (1988) for the mathematical description):

B
n+1/2
x,i−1,j,k =Bn

x,i−1,j,k −
∆t
∆y

(
ε
n+1/2
z,i−1/2,j+1/2,k − ε

n+1/2
z,i−1/2,j−1/2,k

)
− ∆t

∆z
(
ε
n+1/2
y,i−1/2,k+1/2 − ε

n+1/2
y,i−1/2,k−1/2

)
,

(4.14)

Bn+1
y,i,j−1,k =Bn

y,i,j−1,k −
∆t
∆x

(
ε
n+1/2
z,i+1/2,j−1/2,k − ε

n+1/2
z,i−1/2,j−1/2,k

)
− ∆t

∆z
(
ε
n+1/2
x,i,j−1/2,k+1/2 − ε

n+1/2
z,i,j−1/2,k−1/2

)
,

(4.15)

Bn+1
z,i,j,k−1 =Bn

z,i,j,k−1 −
∆t
∆x

(
ε
n+1/2
y,i+1/2,j,k−1/2 − ε

n+1/2
y,i−1/2,j,k−1/2

)
− ∆t

∆y
(
ε
n+1/2
x,i,j+1/2,k−1/2 − ε

n+1/2
x,i,j−1/2,k−1/2

)
,

(4.16)

where
Bn
x,i,j−1,k = 1

∆y∆z

∫ zk+1/2

zk+1/2

∫ yi−1/2

yj+1/2

By(xi−1/2, y, z, t
n)dydz, (4.17)

Bn
y,i,j−1,k = 1

∆x∆z

∫ zk+1/2

zk+1/2

∫ xi−1/2

xj+1/2

By(x, yi−1/2, z, t
n)dxdz, (4.18)

Bn
z,i,j,k−1 = 1

∆y∆z

∫ yk−1/2

yj+1/2

∫ xi−1/2

xj+1/2

Bz(x, y, zi−1/2, t
n)dxdy, (4.19)

correspond to the spatial means (in the face area of each cell) of the three components
of the magnetic field, and
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ε
n+1/2
x,i,j−1/2,k−1 = 1

∆x∆t

∫ tn

tn+1

∫ xi−1/2

xi+1/2

εx(x, yj−1/2, zk−1/2, t)dxdt, (4.20)

ε
n+1/2
y,i−1/2,j,k−1 = 1

∆y∆t

∫ tn

tn+1

∫ yi−1/2

yi+1/2

εy(xj−1/2, y, zk−1/2, t)dydt, (4.21)

and

ε
n+1/2
z,i−1/2,j−1/2,k = 1

∆z∆t

∫ tn

tn+1

∫ zi−1/2

zi+1/2

εz(xj−1/2, yk−1/2, z, t)dzdt, (4.22)

correspond to the temporal and spatial means (along the edges of each cell of the ε
component.

4.1.5 Reconstruction method

The reconstruction of the primitive variables inside the computational grid cells,
starting from the central values or from the faces (or both), is obtained according
to the Total Variation Diminishing method (TVD). In this approach, a monotonic
function condition is satisfied. This prevents the creation of spurious errors in the
proximity of the interfaces between the cells. The three well-known type of piecewise
representations are: constant, linear and parabolic. In ZEUS-MP, a linear piecewise
scheme is used, with a linear interpolation between cell centers. Once reconstruction
has been done, we have a cell interface with a discontinuity in the value of the
quantities across the cell boundaries. Based on this quantities, we have to compute
the flow. This is usually referred to as a Riemann problem.

4.1.6 Riemann problem using HLLD solver

Central schemes can be considered as Riemann problem due to the straightforward
central-difference approximation of the space derivatives to determine the advection
terms of the hyperbolic Equations 4.1. These numerical fluxes, also named Riemann
solvers, are known to be an important tool in the context of numerical schemes for
conservation laws, and consist of a piecewise initial values for two constant states,
separated by a jump discontinuity. Over the years, attention has been to the the
scheme by the numerical fluid dynamics community, in order to develop an efficient
Riemann solver. A well-known solver used for the MHD equations is the HLLD - an
improvement of the classical HLL (Harten, Lax, Van Leer) solution - Toro (2013),
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and is based on separating the flux term into four intermediary states Q∗L, Q∗∗L , Q∗R
and Q∗∗R , divided in five waves SL, S∗L,SM . S∗R and SR, as illustrated in Figure 4.2.

Figure 4.2 - The eigenvalues of waves generated by the local solution of the Riemann
problem at the cell interfaces, using the HLLD solver.

SOURCE: Adapted by Miyoshi and Kusano (2005).

Figure 4.2 illustrates the structure with four intermediate states and the five waves
used for calculating the numerical flow in HLLD. Also,it can be noted that the eigen-
values obtained from Equation 4.2 are the same MHD waves obtained in Chapter 2.
The function that calculates the numerical fluxes using HLLD solvers is given by:

Fn−1/2
i+1/2 =



FL if SL > 0

F∗L, if SL ≤ 0 ≤ S∗L,

F∗∗L , if S∗L ≤ 0 ≤ SM ,

F∗∗R , if SM ≤ 0 ≤ S∗R,

F∗R, if S∗R ≤ 0 ≤ SR,

FR if SR < 0

(4.23)
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In the above equations, SL and SL correspond to the smallest velocity to the left
and the greatest velocity to the right of the discontinuity, respectively. The complete
description of the calculation of each flux state, and wave division for numerical
MHD solutions can be obtained in Miyoshi and Kusano (2005). More information
regarding Riemman problem for partial differential equations can be seen in Toro
(2013).

4.2 Initial and boundary conditions

This work used numerical simulations with a three-dimensional box with periodic
boundary conditions, considering an ideal MHD system. In order to reproduce differ-
ent conditions of the interstellar medium, and statistically analyze the properties of
the synchrotron gradients, high resolution MHD numerical simulations were carried
out. The computational domain is 792× 792× 792 in Cartesian coordinate system
(x,y,z). Each data cube keeps spatial and temporal information regarding density,
velocity and magnetic field for every cell.

In this code, the root mean square (rms) of the density is maintained approximately
unity, so that v can be viewed as the velocity measured in units of the rms velocity
of the system with the Alfvénic velocity in the same units. Also, the rms velocity
induced by turbulence in the box is close to unity (in code units), i.e, for the cases
studied, the turnover time of the energy-carrying eddies. Finally, the magnetic field
can be decomposed into two parts: the uniform background B and a fluctuating b
field. We initially set b = 0, with B along the x direction.

The turbulence is driven solenoidally, at a spatial scale about 2.5 times smaller than
the box size, L (in all the simulations, L = 1, in code units), by adding a turbulent
term in the forcing part of Equation 2.15. This scale defines the injection scale in
the Fourier space of our models, to minimize the influence of the forcing on the
generation of density structures. Density fluctuations are generated later on by the
interaction of MHD waves. Density structures in turbulence can be associated with
the slow and fast modes (CHO; LAZARIAN, 2002).

Since our focus is to obtain information regarding the magnetization level in a MHD
turbulent scenario, we present numerical models of compressible turbulence for a
broad range of Mach numbers. The statistics of density fluctuations in MHD tur-
bulence is basically related to the sonic Mach number MS. The modeling of shocks
reveals that supersonic motions lead to compression that, in the isothermal approx-
imation, result in the δρ/〈ρ〉 ∼ M2

S relation. This is the main cause for the broad
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Table 4.1 - Simulation parameters.
MS MA β = 2M2

A/2M2
S Description

7.31 0.22 0.002 Sub-Alfvénic
6.10 0.42 0.01 Sub-Alfvénic
6.47 0.61 0.02 Sub-Alfvénic
6.14 0.82 0.04 Trans-Alfvénic
6.03 1.01 0.06 Trans-Alfvénic
6.08 1.19 0.08 Trans-Alfvénic
6.24 1.38 0.10 Super-Alfvénic
5.94 1.55 0.14 Super-Alfvénic
5.80 1.67 0.17 Super-Alfvénic
6.55 1.71 0.19 Super-Alfvénic

log-normal PDF of density fluctuations in isothermal turbulence (see Kowal et al.
(2007), for more information). On the other hand, MA is linked to the dispersion
and decorrelation length of B fluctuations (BEATTIE et al., 2022). Larger MA result
in shorter decorrelation lengths (i.e., larger power at short wavelength fluctuations)
and larger amplitudes of perturbations compared to the mean field. Small values
of MA, on the contrary, are related to large decorrelation lengths and small ampli-
tudes of δB/〈B〉. In order to avoid combined effects of density fluctuations in the
statistics of polarization vectors, this work made use of models with similarMS, and
consequently, a similar PDF of density fluctuations. RegardingMA, the models were
divided into three groups corresponding to sub-Alfvénic (B > 1.0), trans-Alfvénic
(B ∼ 1.0) and super-Alfvénic (B < 1.0) turbulence. The numerical parameters are
listed in Table 4.1, in a sequence of ascending values of mean magnetization given
by β. The domain MA < MS corresponds to the simulations with magnetic pres-
sure larger than the thermal pressure (and consequently β > 1), while the domain
MA > MS corresponds to the cases where the thermal pressure is larger than the
magnetic pressure. The relatively large values ofMS in Table 4.1 is justified since the
range of smaller values was explored in previous works, such as: Yuen and Lazarian
(2017), Lazarian et al. (2017), Lazarian and Yuen (2018), among others.

The viscosity and diffusion were not set explicitly in our models. The scale at which
the dissipation starts to act is defined by the numerical diffusivity of the scheme.
However, the numerical scheme used in the ZEUS-MP code is considered to be
of relatively low diffusion (NORMAN et al., 1980). It is important to highlight that
numerical diffusion depends not only on the adopted numerical scheme but also on
the “smoothness” of the solution, so it changes locally in the system. In addition,
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it is also a time-varying quantity. However, the dissipation scales can be estimated
approximately from the velocity spectra. The estimation of diffusity in the same
models considered in this work can be found in Cho and Lazarian (2010).

4.3 Scaling setup conversion to real physical unities

The results obtained in this work are expected to be applicable to the interstellar
medium. Hence, in the context of the choice of appropriate values of density, tem-
peratures and other physical quantities, scaling is very important to confront with
astronomical observations. The simulations used are isothermal, and self-gravity is
neglected, therefore the solutions may be understood as scale-free. In this sense, we
expect the physical quantities can be re-scaled (BURKHART et al., 2009). An example
of such scaling can be seen in Hill et al. (2008). Under an isothermal assumption,
those authors set temperature, length, and density of simulated data to match the
average values observed in the warm and hot ionized media. It is important to
highlight that the scaled models obtained in this work matched the warm ionized
medium very well with respect to what is expected in these regions. A similar scheme
of scaling in analogous simulations was used by Falceta-Gonçalves et al. (2008).

We aim to analyze the properties of synchrotron gradients in a turbulent context
and find ways to estimate the magnetization level. In order to achieve this objec-
tive, the synthetic synchrotron emission maps were obtained. The construction of
the maps and the calculation of the gradients from synchrotron quantities will be
explained in the next chapter. However, before this explanation, it is important to
note that depending on some physical conditions, the synchrotron quantities can
be severely affected (see Equations 3.4 to 3.8, Subsection 3.2.3). For example, low
values of electronic density can affect the statistical properties of the Faraday depth,
a quantity that can affect the estimation of synchrotron polarization.

In order to avoid this, we set real observed average values observed in the interstellar
medium for the physical quantities that can influence the calculation of synchrotron
emission intensity, synchrotron polarization and Faraday decorrelation. The calcu-
lation of these quantities considers a typical box length scale Lbox = 1 kpc. The
scale factor for the mean gas density is n ∼ 0.03 cm−3, and the mean magnetic field
Bext along the x direction has a strength of 10.3µG and zero for the z and y direc-
tions. The three fluctuating components of the magnetic field were initially set to
dispersions σx = 2µG, σy = 3µG and σz = 2µG, similar to that found in the ISM
(∼ 2µG). We emphasize that the regular field, local to the simulated volume, would
only contribute to the polarized intensity of the synthetic observations, unlike those
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observed in external galaxies. Polarization measurements in external galaxies are
performed with comparatively lower spatial resolution. They are mostly sensitive to
the ordered component of the magnetic field within the beam, or to the large-scale
regular fields, and therefore, in external galaxies, the ordered fields are observed to
be about three times weaker than the turbulent fields. The fact that the MHD sim-
ulations are isothermal and we have assumed that there is no ultraviolet radiation
field in the simulated volume makes the ionization fraction, fion = 0.5 for neutral
hydrogen, constant throughout the volume and time evolution, and can be used to
compute the free electron density. We also assume that the thermal electron number
density, ne, is proportional to n. An initial simulation was run with ne ∼ 0.01 cm−3.
To investigate the case in which Faraday rotation is important, a simulation with
ne = 0.13 cm−3 (∼ 100 % ionization fraction) was run. We expect stronger Faraday
depolarization in this case and this is discussed in Section 6.3. Values of ne consid-
ered in this work are expected in region of hot and warm ionized media (see Pynzar’
(2016) and Cordes and Lazio (2003)).

Since this work also intends to investigate how Faraday rotation affects the results
obtained using synchrotron polarization gradients, the synchrotron gradients are
computed at different observational frequencies. The real physical values considered
above avoid low Faraday depolarization effects. For example, for the simulation with
MA = 0.2, the Faraday rotation depths at 1.0 GHz ranges from -1.5 to 3.3 rad.m−2,
with a mean value of 0.7± 0.1 rad.m−2. For MA = 1.0, the values range from -18 to
26 rad.m−2, and the mean is 5±1 rad.m−2. Next chapter will be devoted to present
the construction of the mock synchrotron maps.
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5 SYNTHETIC SYNCHROTRON GRADIENTS DIRECTIONS: TOP-
BASE AND CIRCULAR STATISTICS METHODS TO OBTAIN
ALFVÉNIC MACH NUMBER

This chapter is devoted to the calculation of the intensity and polarization syn-
chrotron gradients, which are obtained from synthetic maps of simulated data, and
how these quantities provide the magnetization level and associated Alfvén Mach
number. Two methods will be described for obtaining the relevant quantities, but
before presenting them we describe how to obtain the synchrotron polarization and
intensity maps. The following section explains how the synchrotron gradients orien-
tations were calculated. Finally, the third section will introduce the two methods:
Top-Base and circular statistics to directly obtain quantitative values for the Alfvén
Mach number. Finally, to demonstrate the statistical reliability of the methods, an
error analysis within a Bayesian framework will be presented in the last section. This
chapter and Chapter 6 present the main results obtained on this thesis (CARMO et

al., 2020).

5.1 Synthetic synchrotron emission maps

Using the output of the MHD simulations converted to physical units, the synthetic
observations of synchrotron polarization and intensity emission are obtained from
the data cubes, following Equations 3.4 to 3.8. The values assumed for input physical
conditions are those typical for the diffuse interstellar medium. One of the results
obtained for different values of electron density will be presented on the next dis-
cussions, in order to show the consistency of the analysis and the wide applicability
of the results in the interstellar medium.

The numerical calculation of the intensity and orientation of the magnetic field is
obtained locally for each cell (see explanation on the next section), which are then
integrated along the line-of-sight (LOS) to produce a 2D image. An isotropic pitch
angle distribution for the particles was assumed to obtain the mock synchrotron
maps, with a power-law energy distribution of the electron population given by:

nCRE(E)dE = nCREE
2γ−1dE , (5.1)

where nCRE(E) is defined as the number density of relativistic electrons with ener-
gies in the range between E and E + dE. The spectral index (γ = 2) was chosen
following Lazarian and Pogosyan (2012), the first work that showed how gradients
of polarization can be used to characterize the magnetic field. This choice allows a
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direct comparison of our results to theirs.

The maps were constructed by assuming that there is a source region where both
synchrotron emission and Faraday rotation effect occurs simultaneously. Under this
consideration, the synchrotron intensity is obtained using real physical parameters
described in Section 4.3. The equation used to numerically obtain the synchrotron
intensity is the same as considered in Waelkens et al. (2009):

I(X) ∝
∫ Lz

0
nCREB

γ
⊥(X, z)dz , (5.2)

where Lz is the distance between the source region and observer, X = (x, y) is the
two-dimensional position vector in the plane of the sky, I(X) is the synchrotron
intensity and B⊥ =

√
B2
x +B2

y is the magnitude of the perpendicular component
of the magnetic field projected on the sky. On the left panel of Figure 5.1, the
total synchrotron emissivity is shown as an example of the 3D synthetic emission
obtained from the simulations. The right panel shows the 2D projected map of the
total synchrotron intensity, I(X), obtained by integrating the intensity along the
z-direction in the cube (the direction of the line of sight). Since we have assumed a
constant density of electrons, all the structures that show up are due to variations of
the synchrotron emissivity caused by fluctuations of the magnetic field component
in the plane of the sky.

Regarding the polarization maps, it is important to note this emission is partially
linearly polarized (RYBICKI; LIGHTMAN, 1979), being susceptible to a birefringent
effect known as Faraday rotation, as explained in Subsection 3.2.3 (e.g., Haverkorn et
al. (2004), Heiles and Haverkorn (2012), Zhang et al. (2016)). This magneto-optical
effect causes the plane of polarization to rotate as radiation propagates along the
plasma. In this work, maps with and without Faraday rotation will be produced, to
compare how this effect can influence the results of the analysis involving synchrotron
gradients orientations.
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Figure 5.1 - The left side panel presents the 3D synchrotron emissivity per cell of the sim-
ulation. Synchrotron emissivity was computed assuming a constant electronic
density in the volume. On the right panel, the 2D synchrotron intensity map
obtained from the integration along the line of sight is presented, without
considering Faraday rotation.

The intensity of the emission in the polarized synthetic maps, P (X, λ2), at a given
wavelength λ, was obtained by the following expression:

P (X, λ2) =
∫ Lz

0
Pi(X, z)e2iλ2θ0(X,z)dz , (5.3)

where the associated intrinsic polarization angle is θ0 (X, z) and

φ (X, z) = θ0 (X, z) + λ2Φ (X, z) , (5.4)

with θ0 (X, z) the intrinsic polarization angle:

φ (X, z) = π

2 + tan−1
(
By

Bx

)
., (5.5)

and Faraday depth, Φ(X, z), can be expressed as :

Φ(X, z) = 0.81
∫ Lz

0
ne(X, z′)Bz(X, z′)dz′ , (5.6)

where ne is the number density of thermal electrons (in cm−3), considered constant
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in the simulations, and Bz is the LOS component of magnetic field (in µG), with
the distance measured in parsecs.

The intrinsic polarization for each cell can be obtained in terms of stokes parameters.
Assuming the polarization as a complex vector P = Q + iU , the intrinsic Stokes
parameters Q and U are:

Qi = pne
(
B2
x(z) +B2

y(z)
)

Ui = 2pneBx(z)By(z), (5.7)

Both cases, with and without (Φ(X, z) = 0) Faraday rotation were studied in this
work. The expressions for Q and U can be found on synchrotron numerical works
such as: Waelkens et al. (2009), Lazarian et al. (2017) and Lazarian and Yuen (2018).
More details regarding the Stokes parameters can be found in Subsection 3.2.3, and
for more information, see Lee et al. (2016). The numerical calculation of the syn-
chrotron polarization and intensity gradients orientations is done using expressions
5.2, 5.3 and 5.7.

Figure 5.2 shows the representation of the polarization and intensity gradients vec-
tors compared to the synchrotron polarization vector rotated by 90◦. It is well es-
tablished that synchrotron polarization can determine the direction of the magnetic
field. The difference between the synchrotron gradients method to determine the
properties of the magnetic field is the fact that, different from the conventional
technique of synchrotron polarization vectors, the efficiency of the former is not
distorted by Faraday rotation, and according to Lazarian et al. (), the resulting
gradients are well correlated with other physical quantities.

74



Figure 5.2 - The synchrotron intensity vector, in red, and synchrotron polarization vector,
in blue (rotated by 90◦), for both sub-Alfvénic (top left) and super-Alfvénic
(top right) simulations. The bottom panel shows a case with an intermediate
Alfvénic Mach number. The x− and y−scales are expressed in kiloparsecs.

5.2 Synchrotron gradients maps and gradients angles distribution by
Sobel operator

The 2D synchrotron gradients maps are calculated in this work using the same
definition adopted by Soler et al. (2013), Lazarian et al. (2017) and Lazarian and
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Yuen (2018). Both quantities are given by:

∇I =
(
∂I

∂x

)l
x̂+

(
∂I

∂y

)l
ŷ ∇P =

(
∂P

∂x

)l
x̂+

(
∂P

∂y

)l
ŷ, (5.8)

where ∇I denotes the synchrotron intensity gradient and ∇P is the synchrotron
polarization gradient. The superscript l is related to the size of the area on which
the gradient is calculated. In order to obtain the gradients with a certain precision
and minimize the error caused by the discretization on the derivative calculation,
this work used the same numerical approach adopted by Yuen and Lazarian (2017).
The code is based on Soler et al. (2013) which uses a Sobel filter to calculate the
gradients for each pixel on the projected intensity and polarization maps.

The Sobel operator performs a 2D spatial gradient measurement in images, using
an edge-detection algorithm. The numerical procedure detects local discontinuities
in the image, which typically occur on the boundary between pixels, reducing the
noise introduced by them. The Sobel operator kernel is a 3 × 3 matrix that allows
the calculation of the derivatives in a finite differences scheme with a Gaussian
smoothing mask, and can mathematically be expressed by:

Gx =


−1 0 +1
−2 0 +2
−1 0 +1

 Gy =


−1 −2 −1
0 0 0

+1 +2 +1

 . (5.9)

Note that this operator places an emphasis on pixels that are closer to the center
of the mask. Also, it is important to highlight that the Gaussian noise reduction
filter is is achieved by averaging over the vicinity of each pixel. The calculation to
obtain ∇Isync and ∇Psync is equivalent to a convolution of the 2D maps with the
Sobel Kernel, that is,

∇Ix = I ? Gx ∇Iy = I ? Gy, (5.10)

where, ∇Ix, ∇Iy, ∇Px and ∇Py are the are the x and y derivative components of in-
tensity and synchrotron gradients, respectively, and ? is the notation for convolution
calculation. The magnitudes of the synchrotron intensity, ∇I (x, y), and polarization
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∇P (x, y) gradients, are calculated as follows:

∇I (x, y) =
√
∇I2

x +∇I2
y . ∇P (x, y) =

√
∇P 2

x +∇P 2
y . (5.11)

Also, the angle direction for each gradient can be calculated as:

θ∇I = 1
2arctan

∇Ix
∇Iy

 θ∇P = 1
2arctan

∇Px
∇Py

. (5.12)

The plane of linear polarization and intensity gradient are oriented to be perpendic-
ular to the direction of the magnetic field projected onto the sky. Hence, both θ∇I
and θ∇I are measured anti-clockwise from North, the same way that the polarization
angle vector is measured.

As mentioned before, the use of the gradients to explore the direction of the mag-
netic field was studied in previous works. In the context of turbulence, a gradient
from a single pixel and its neighbors contains little statistical information and does
not indicate the magnetic field direction reliably. However, the distribution of gra-
dient orientations presents a well defined Gaussian profile, considering appropriate
sizes of sub-regions in the image. Yuen and Lazarian (2017) proposed the sub-block
averaging method, i.e., obtaining a Gaussian fit to the directions distribution in se-
lected sub-blocks, to statistically define the mean magnetic field in the corresponding
sub-region.

As discussed by Hu et al. (2019c), using the code from Yuen and Lazarian (2017)
to determine the size of sub-blocks allows the recovery of the gradients directions
to a 95% confidence level. When the fitting error gets its minimum value, the cor-
responding sub-block size is the optimal selection. Using this well-tested code, the
gradient angles and magnitudes can be obtained for each pixel. Figure 5.3 shows one
example of ∇I and ∇P maps for a data cube with sub-Alvénic regime (MA = 0.8),
with Faraday rotation considered, in the frequency range of 100, 1.4, and 0.1 GHz.

The relationship between ∇I, ∇P , and the direction of magnetic field was discussed
by Lazarian et al. (2017), Lazarian and Yuen (2018), Hu et al. (2019c), Hu et al.
(2019b) and Zhang et al. (2019), and also summarized by Equations 5.10, 5.11 and
5.12. In this work, the attention will be devoted to characterize the distributions of
angles and how these distributions are related to MA. In an effort to investigate the
correlations, two methods will be presented in the following section. Before that,
the method for obtaining the uncertainties related to the quantities relevant for this
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work will be explained.

Figure 5.3 - ∇I (top left) and ∇P images for a subsonic simulation with MA = 0.8 (see
Table 4.1) projected along the line-of-sight. The ∇P images were produced
considering Faraday rotation, at frequencies of 100 GHz (top right), 1 GHz,
and 0.1 GHz (bottom panels). The x− and y−scales are expressed in kilopar-
secs.
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5.3 Error analysis

In order to analyze the relationship between two variables one can assume a proba-
bilistic view of the problem in which a variable Y depends strictly on an observable
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X, as follows:
Y = βX + ε , (5.13)

where β corresponds to the parameters of the model – in this case a linear one –
and ε to the errors (which are assumed to be normally distributed). To find the best
predictive model one can use Least Squares or a Maximum Likelihood approach
to obtain β and ε. However, the same problem can be analyzed on a Bayesian
framework, with advantages. In this approach, the model is seen as a probability
distribution:

Y = N (βX, σ2) , (5.14)

where Y is now a random variable that is normally distributed, with its mean be-
ing the linear predictor (βX) and with a variance of σ2. β and σ correspond to
distributions themselves given by:

β = N (µβ, σ2
β) (5.15)

σ = |N (µσ, σ2
σ)| . (5.16)

Both Equations (5.15) and (5.16) are known as priors and they quantify the ini-
tial guesses in each linear model, characterized by a mean and standard deviation.
Because all the variables correspond to probability distributions, at the end of the
fitting process one can learn about the probability distributions of the parameters
that give the best fit to the data (posterior distributions). The fitting process uses a
Markov Chain Monte Carlo (MCMC) procedure that takes into account the infor-
mation contents of the priors to obtain Y (SHARMA, 2017). The Bayesian analysis
allows us to quantify any previous knowledge on our variables (priors) and to quan-
tify the errors of the analysis (from the width of the posterior).

The independent variable is the Alfvén Mach number that is directly obtained from
the MHD simulations, while the dependent variable is the Top-Base ratio, T/B,
circular variance, V , or circular standard deviation, S. We first check, using the
Bayesian Information Criterion, if a power-law is the simplest model to describe
the relationship between the two quantities. We use a single power-law for the Top-
Base method and two for the variance and standard deviation; one power-law for
each Alvénic regime. The power-laws are fitted as a linear model, and the assumed
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distribution and parameters for all priors are:

Y = N (βMA, σ
2), (5.17)

β = N (−1, 1) , (5.18)

σ = |Cauchy(0.1, 2)| . (5.19)

All the results (see Section 5.4) from the analysis done with a Bayesian approach
use Pymc3 (SALVATIER et al., 2016). Pymc3 is a powerful Python package that im-
plements Bayesian statistical model and fitting algorithms, including MCMC. Its
flexibility and extensibility make it applicable to a large suite of problems. It runs
a MCMC sampling to obtain the dependent variables and correspondent posterior
distributions. For all fits we used 20,000 samples for each chain, with 16 chains run-
ning in parallel; the number of iterations to tune-up is 2,000. With the parameters
selected we obtained a very robust convergence in all the chains (see Sharma (2017),
Chapter/Section 3.7).

5.4 Top-Base and circular statistics method for synchrotron gradients
orientations

In order to obtain the magnetization level after estimating the gradients ∇I and
∇P , we investigated how the related quantities are correlated with the Alfvén Mach
number. The Top-Base and circular standard deviation methods, used to obtain
the correlation with the synchrotron gradient angles distributions with MA, will be
explained on this section. It is important to highlight that different other methods,
such as structure function, power spectra and other moments were tested to obtain
ways to estimate MA. However, any of them were effective as the two method that
will be presented.

The first method used to obtain MA is named as Top-Base method. In such tech-
nique, initially the distribution of gradient angles histogram is fitted with a Gaussian
profile superimposed on a constant baseline B (see Figure 5.4), in the form:

F (θ) = Ae−α(θ−θ0)2
+B, (5.20)

where A is the amplitude, α controls the angle spread, θ is the direction of either
∇P or ∇I, with θ0 being the mean value estimated. It is important to highlight that
the estimation of the angle orientation θ for the gradients calculated on each cell
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is the same of that explained in Section 5.1. Finally, using the fitting points, both
values from the Gaussian peak and the baseline are determined.

Figure 5.4 - The histograms of angle distributions for synchrotron polarization gradients
(θ∇P , top panels) and synchrotron intensity gradients (θ∇I , bottom panels)
for three different Alfvén Mach numbers. The gradients where estimated after
a smoothing kernel was applied to the data. The red dashed line corresponds
to a Gaussian fit which allows us to estimate the Top (T) and Base (B) of
the distributions that are used to estimate the magnetic field in the Top-Base
method.
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As seen in Figure 5.4, both ∇P and ∇I present well marked peaks for MA ≤ 1,
while for MA > 1 the peak is less pronounced. As MA increases, the Top-Base ratio
decreases as the gradients gradually loose correlation with the magnetic field. A
similar behavior happens to velocity gradients and velocity channel gradients in the
context of the VGT, as exlained in Yuen and Lazarian (2017). This is expected since
for MA > 1, the turbulent magnetic field become more isotropic and the gradients
orientation gets less correlated with the magnetic direction.

Other method that presents correlation withMA is based on an additional approach
that analyses the angle spread from the synchrotron polarization and intensity gra-
dients direction. Since the angles have a 2π periodicity, we use circular statistics
instead of linear statistics. On the circle, measurements at 0◦ and 360◦ represent the
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same direction whereas on a linear scale they would be located at opposite ends of a
scale. For this reason circular data require specific analysis methods. More informa-
tion about circular statistics can be found in Pewsey et al. (2013), (FISHER, 1995)
and Batschelet (1981). In this statistics, one definition is circular variance, written
as:

V = 1−R , (5.21)

where R is the mean resultant length defined as:

R = 1
N


(

N∑
i

cos (2θi)
)2

+
(

N∑
i

sin (2θi)
)2 , (5.22)

and θi is the angle of either ∇P or ∇I for each cell with N as the total number of
data points. The angle gradients are calculated with the same coordinates convention
as for ψ. The circular standard deviation is defined as:

S = 1
2 {−2ln (R)}1/2 . (5.23)

The factor of 2 in Equation (5.22) is related to the fact that synchrotron gradients
are calculated in the interval 0 and 180. Unlike in linear statistics, the variance is
bound for the interval [0, 1] (FISHER, 1995). V = 1 means a flat distribution and
V = 0 is the case if all angles are co-aligned. On the other hand, S is measured in
the interval [0,∞), having properties similar to the linear standard deviation. Fur-
thermore, because the standard deviation is not constrained, it is more susceptible
to fluctuations, in particular in the super-Afvénic regime. Figure 5.5 shows the de-
pendence of T/B, V and S with MA for both ∇I and ∇P angle distributions. The
well-defined power-law relationships (Table 5.1) can be used to directly estimate
the magnetization level from the gradients. As seen, both the Top-Base and the
standard deviation methods work well in the full range of magnetizations probed.

82



Table 5.1 - Power-Law relationships for the 3 different methods. The linear fitting uses a
Bayesian approach to estimate the parameters and uncertainties.

Method ∇P ∇I

T/B 1.6+0.01
−0.02MA

−0.55+0.02
−0.01 1.4+0.03

−0.02MA
−0.65+0.01

−0.02

V Sub-Alfvénic
Super-Alfvénic

0.93+0.05
−0.08MA

0.23+0.06
−0.07

0.95+0.05
−0.07MA

0.04+0.03
−0.04

0.90+0.06
−0.04MA

0.20+0.08
−0.09

0.89+0.08
−0.04MA

0.12+0.03
−0.02

S
Sub-Alfvénic
Super-Alfvénic

1.05+0.08
−0.09MA

0.28+0.05
−0.04

1.22+0.03
−0.01MA

0.16+0.10
−0.09

1.04+0.01
−0.01MA

0.24+0.06
−0.04

1.05+0.02
−0.02MA

0.31+0.05
−0.07
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Figure 5.5 - The relationships between the Top-Base ratio (T/B, Top panel), the circular
variance (V , Middle panel) and the circular standard deviation (S, Bottom
panel) with respect to the Alfvén Mach number for both ∇I (cyan) and ∇P
(brown). The regions MA < 1 (sub-Alfvénic) and MA > 1 (super-Alfvénic)
are treated separately for V and S. The trend lines are estimated using a
Bayesian approach, that allows realistic uncertainty estimates, in this case
1σ, for both ∇I and ∇P . The relevant parameters of the power-law fits can
be found in Table 5.1.
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6 THE CORRELATION BETWEEN SYNCHROTRON GRADIENT
DIRECTIONS AND MA FOR DIFFERENT OBSERVATIONAL CON-
DITIONS

A compact version of the discussions in this Chapter is presented in Carmo et al.
(2020).

6.1 Signal-to-noise considerations

Real observations have intrinsic noise. In order to understand the effects of noise on
both T/B and S presented in Figure 5.5, we added zero-mean Gaussian white noise
to the synthetic maps on a pixel by pixel basis. This is trivially done for I. If the
noise has standard deviation σN and the total pixel map intensity is I,
S/N = I/σN . However, adding zero-mean Gaussian noise pixel by pixel to Q and
U is tricky, since the result can be both positive and negative, and therefore the
average flux over these maps can be zero. In order to provide a realistic description,
we define the S/N in total intensity and compute the noise distribution for that.
Then we use the same noise distribution statistics for the Stokes Q and U maps.

A 2D Gaussian kernel with a spatial σ = 2 pixels is used to smooth the maps for
the evaluation of ∇I and ∇P . The results are presented for S/N = [2, 5, 10, 15, 50,
100] in the total intensity map.

The ∇I and ∇P power-laws as functions of MA in the presence of noise can be
obtained by the same procedure described before, using a Bayesian analysis approach
which allows a fair estimate of uncertainties. We obtained both gradients for 10
values of MA and 6 different S/N ratios. We applied the procedure for the Top-Base
ratio and the circular standard deviation methods. Figure 6.1 shows the effects of
the S/N on the synchrotron gradients considering the ∇I case. We found the same
behavior for the ∇P case. Notice that sub- and super-Alfvénic regimes are treated
separately.

For the circular standard deviation method, it is clear that for S/N & 5 the method
behaves well and one can properly derive the Alfvén Mach number (for the sub-
Alfvénic regimes). For the super-Alfvénic regime a single value of S can correspond
to multiple values of the Mach number. Considering 1σ errors, only an upper limit
to the magnetic field strength can be obtained. The relationship between S and MA

with 1σ errors for ∇I is:
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MA =

0.84+0.11
−0.09 S

3.6+0.3
−0.3

I , if MA < 1 .

0.93+0.10
−0.04 S

3.8+0.7
−0.5

I , if MA ≥ 1 ,
(6.1)

and for ∇P :

MA =

0.85+0.09
−0.11 S

4.2+0.7
−0.8

P , if MA < 1 .

0.85+0.07
−0.05 S

3.2+0.4
−0.6

P , if MA ≥ 1 .
(6.2)

We see in Figure 6.1 that T/B versus MA is more sensitive to the S/N ratio, and
should be used only in cases of S/N & 5.
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Figure 6.1 - Power-law fits of the circular standard deviation (S, Top panel) and Top-
Base ratio (T/B, Bottom panel) as functions of the Alfvén Mach number for
the SIG. The different colors correspond to different S/N ratios, with a case
without noise (only possible in computer simulations) added. The regions
MA < 1 (sub-Alfvénic) and MA > 1 (super-Alfvénic) are treated separately.
In the top panel, only the uncertainties (1σ and 2σ) for the trend lines of
S/N= 2 and S/N=100 are shown, for better visualization. The power-law
fits and uncertainties are estimated with a Bayesian approach. The ∇P (not
shown) has a similar behavior as the ∇I with respect to the effects of noise
levels.
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6.2 Influence of the mean magnetic field direction

It is important to understand how the projection effects may change the results from
synchrotron gradient direction techniques. The mean magnetic field 〈B〉, is oriented
parallel to the x-axis and varies with respect to the LOS with an angle α (i.e., rotates
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around the y-axis). The LOS and the mean magnetic field are perpendicular for
α = 0◦, and parallel for α = 90◦. Considering different values of α, the 3D data cubes
produce the following projected quantities: Bx = 〈B〉 cosα, and Bz = 〈B〉 sinα.
Thus, approaching 90◦ gives the largest (sin 90◦ = 1) mean field contribution to
the Faraday depth. Figure 6.2 indicates a schematic visualization of a cube rotation
around de y−axis, indicating the direction of the mean magnetic field (red arrows)
and the LOS (black arrows). In order to guarantee a consistent integration path
along the LOS for any α, a periodic replication of the basic simulation cube is used
in the calculations ( e.g., Falceta-Gonçalves et al. (2008),Zhang et al. (2019).

Figure 6.2 - Illustration of a cube rotation around the y− axis to obtain different directions
of the mean magnetic field (red arrows) with respect to the same line of sight
(black arrows).
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Figure 6.3 shows the relationship between circular standard deviation for different
angles α and the Alfvén Mach number for both ∇I and ∇P . Notice that now, we are
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considering the combined effects of both constant and random components of the
magnetic field, without Faraday rotation. We explore different angle configurations,
α = 80, 70, 50 and 30◦. Figure 6.3 shows that decreasing angles α show a slight
improvement in terms of the associated uncertainties. This behavior is expected
since the synchrotron gradients measure the apparent direction of the magnetic field
on the plane of the sky. If the plane of the sky component of the mean magnetic
field is weak, the turbulent component will become relatively more important, and
the gradients are not going to provide the projected direction accurately.

Figure 6.3 - Power-law fits of the circular standard deviation, S, for ∇I (Top Panel) and
∇P (Bottom Panel) as a function of MA for different angles α. The trend
lines are estimated using a Bayesian approach which allows the estimation
of the uncertainties in this case, 1σ. Only the uncertainties for 80◦ (purple)
and 30◦ (yellow) cases are presented. The regions MA < 1 (sub-Alfvénic) and
MA > 1 (super-Alfvénic) are treated separately. Faraday rotation effects are
not considered on this analysis.
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6.3 Faraday rotation effects

Synchrotron emission is susceptible to Faraday rotation effects that have been disre-
garded so far. Our synthetic polarization maps taking into account Faraday rotation
use the same dataset and input physical assumptions used in Zhang et al. (2019).
The thermal electron density and magnetic field strength are set to ne ∼ 0.03 cm−3

and B‖ ∼ 10.3 µG. As shown in that work, Faraday rotation depends on frequency,
as expected, and on the Alfvénic regime of the turbulence. To summarize the rel-
evant statistics in the two different regimes, the rotation measure calculated for
MA = 0.2 and ne = 0.13 cm−3 ranges from -13.0 to 60.3 rad.m−2, with a mean value
of 7.7±0.1 rad.m−2, while for MA = 1.0, it ranges from -2 to 140 rad.m−2 and the
mean value is 60±1 rad.m−2.

A compact way of visualizing the effects of the progressively larger Faraday rotation
for lower and lower frequencies is the use of the alignment measure (AM) which
describes the correspondence between ∇I, ∇P and the polarization vector quantity
(see González-Casanova and Lazarian (2017)). The definition of AM is

AM = 2〈cos2 φ〉 − 1. (6.3)

AM is analogous to the Rayleigh reduction factor in the dust alignment theory
suggested by Greenberg et al. (1968). φ is the angle between the measured magnetic
field direction and the intrinsic magnetic field. When AM = −1, the magnetic field
is perpendicular to ∇P or ∇I. When AM = 1, they have a perfect alignment,
whereas random orientations result in AM ∼ 0. Lazarian et al. (2017) showed that
AM and ∇I are in the range 0.78− 0.95, respectively, at 1GHz.

AM versus frequency is shown in Figure 6.4, which compares AM with ∇I and ∇P ,
and polarization vector (green). It can be seen that even though in low frequencies
Faraday depolarization effects become stronger and could introduce noise-like sub-
structures in the Stokes Q and U parameters, on small scales, different from what
happens with the traditional technique to estimate the magnetic field direction via
polarization vector, the statistics of the synchrotron intensity and polarization gra-
dients are still well correlated with the magnetic field, presenting good alignment.
It can be concluded that the presence of Faraday rotation does not affect the ap-
plicability of the use of ∇P to estimate the magnetic field direction (at least for
frequencies > 1 GHz).
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Figure 6.4 - AM as a function of frequency for the range 0.1− 10GHz, from sub- and
super-Alfvénic simulations. Small scale noise-like structures in the synthetic
synchrotron polarization intensity maps were smoothed with a σ = 2 pixels
Gaussian kernel.

Figure 6.5 shows the relationship between S and the Alfvén Mach number for dif-
ferent frequencies. It is clear that regardless the frequency, ∇I can measure very
well the magnetization level, especially in the sub-Alfvénic regime where the cor-
relation is more pronounced. Also, there is no dependence of the result with the
mean density of the medium. The reason for this is the fact that the intensity map
is insensitive to Faraday rotation, and its consequent depolarization. Also, being an
intensity normalized function, S calculated for ∇I is also insensitive to varying ne.
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Figure 6.5 - Power-law fits of the circular standard deviation, S, for SIG (Top Panel) and
SPG (Lower Panels) as a function ofMA. The regionsMA < 1 (sub-Alfvénic)
and MA > 1 (super-Alfvénic) are treated separately. The different colors
correspond to different frequencies to show the effects of Faraday rotation.
The trend lines are estimated using a Bayesian approach, that allows realistic
uncertainty estimates. In this case, 1σ errors are shown for the 1.4 GHz and
100 GHz frequencies, which are extreme cases. The lower panels show cases
for two different electronic densities.

0.13

0.01
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A different situation happens for the polarization maps, and consequently for the∇P
statistics. Synchrotron polarization suffers Faraday depolarization along the line-of-
sight, and depends on the observational wavelength and the density of the medium.
For this reason, to check these effects, we have calculated the S parameter of ∇P
for two different values of density, namely ne = 0.01 and 0.13 cm−3, and frequencies
between 1.4 to 100 GHz. We found that in the sub-Alfvénic regime, lower frequencies
tend to show a larger correlation between S and MA. However, as can be seen in
Figure 6.5, all lines shown lie within the 1σ uncertainty region from each other, with
no significant change in slope in a range of ∼ 2 orders of magnitude in frequency.
A factor of 3 in mean density also does not result in significant change in the slope
or the absolute value of S1. For the super-Alfvénic regime, it is still possible to
use a linear trend to model the magnetization level with ∇I but the power-law
description breaks up for the ∇P case. Given these uncertainties, only upper limits
to the magnetic field strength would be obtained from ∇P in the super-Alfvénic
regime.

Overall, it is evident that the ∇I and ∇P angle distributions can measure the
magnetization level, considering the range of parameters probed in this work. Future
work may explore and extend this analysis to even higher magnetic field values and
consequently higher values of Faraday rotation effects, in order to check its validity
for other regimes.

6.4 Telescope resolution

Another important observational aspect that must be studied is the finite telescope
resolution, which can introduce additional uncertainties to the techniques explored
here. In order to account for data averaging within the telescope beam, we use a
Gaussian smoothing kernels on the maps. Four different values for the full-width-
at-half-maximum (FWHM) of the smoothing kernel (2, 4, 8 and 16 pixels) were
examined to estimate the effects of progressively degraded resolution with respect
to the original data.

The relationships presented in 6.1 and 6.2 for ∇I and ∇P , respectively, are the
reference for the comparison. The same procedure to obtain the dependency between
parameters was applied, now considering different values of smoothing. We found
that the Top-Base method is limited for FWHM< 8. For larger values, this technique

1Notice that we plot S versusMA, which is dependent on n1/2. Therefore, for the same S value,
the magnetic field intensity estimated from the bottom-panel of Figure 6.5 will be

√
3 larger than

its value obtained from the mid-panel.
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does not present a good linear correlation with MA. However, both circular variance
and standard deviation methods present good linear correlations even for the largest
value of FWHM considered in the beam smoothing experiments. Table 6.1 presents
the best fit power-laws for different values of FWHM. As can be seen, for all the cases
considered there is no significant degradation with respect to the nominal values.

Table 6.1 - Power-Law relationships to obtain MA for circular variance statistics, con-
sidering different values of smoothing. The linear fitting used to obtain the
expressions bellow considers a Bayesian approach to estimate the parameters
and uncertainties.
FWHM ∇I ∇P

2
Sub-Alfvénic
Super-Alfvénic

0.84+0.12
−0.10 S

3.6+0.3
−0.4

I ,

0.93+0.11
−0.05 S

3.8+0.7
−0.6

I

0.85+0.09
−0.11 S

4.2+0.8
−0.8

P

0.85+0.07
−0.05 S

3.2+0.4
−0.7

P

4
Sub-Alfvénic
Super-Alfvénic

0.84+0.12
−0.12 S

3.6+0.3
−0.5

I ,

0.93+0.12
−0.06 S

3.8+0.8
−0.7

I

0.85+0.09
−0.12 S

4.2+0.9
−0.8

P

0.85+0.07
−0.06 S

3.2+0.6
−0.7

P

8
Sub-Alfvénic
Super-Alfvénic

0.83+0.14
−0.15 S

3.7+0.4
−0.6

I ,

0.94+0.12
−0.06 S

3.9+0.8
−0.7

I

0.83+0.09
−0.12 S

4.4+1.0
−0.9

P

0.85+0.08
−0.09 S

3.4+0.8
−0.7

P

16
Sub-Alfvénic
Super-Alfvénic

0.83+0.14
−0.15 S

3.7+0.5
−0.8

I ,

0.95+0.21
−0.11 S

3.9+0.9
−0.9

I

0.83+0.11
−0.13 S

4.4+1.1
−0.9

P

0.86+0.11
−0.12 S

3.4+1.1
−1.0

P
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7 DISCUSSION, CONCLUSIONS AND PERSPECTIVES

In this thesis, we have investigated ways to obtain information about the magne-
tization level in different magneto-ionic regions. In an effort to achieve this, large
numerical simulations using magnetohydrodynamic equations were performed. This
chapter summarizes the main results obtained in our work, presenting also a discus-
sion regarding the use of synchrotron gradient orientations for obtainingMA. Finally,
a discussion on current and future work expected to be done upon the finding of
this thesis is presented.

7.1 Summary

Recent developments in the study of synchrotron gradients show that these quanti-
ties provide a reliable way to trace the magnetic field direction in turbulent plasmas.
A synergistic analysis combining MHD simulations, statistical analysis and observa-
tional data provides a potential way to characterize the interstellar turbulence and
magnetic field distributions. The works of Zhang et al. (2019), Zhang et al. (2019),
Hu et al. (2019a) and Hu et al. (2019b) used such combination to study polarization
and velocity gradients (from emission lines) aiming to explore the different properties
of the ISM. We have analyzed possible correlations of angle distributions and other
parameters that are essential to describe astrophysical turbulence and the associate
distributions. In order to pinpoint MA, in this thesis, we addressed the following key
points:

• Regarding the effects of S/N ratio in the results, in Section 6.1 we showed
that for values S/N < 10, the Top-Base method presents limitations. Fortu-
nately, the circular standard deviation method is still well correlated with
MA, even for lower values of the S/N ratio. Since meaningful measurements
of synchrotron emission at radio wavelengths have a threshold around
S/N = 5, the application of the standard deviation method is viable even at
this limit. In order to have a fair assessment of the accuracy of the results,
we used a Bayesian approach, together with a MCMC sampling scheme
for investigating the relationships among MA and the relevant indicators
in Section 5.3.

• We also addressed the effects of the orientation of the mean magnetic field
with respect to the LOS, and checked whether it can limit the applicability
of the technique. As shown in Section 6.2, the statistics of the gradients,
as a proxy to estimate MA, is preserved for a broad range of angles.
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• Following Zhang et al. (2019) who tested the effect of the alignment of
the synchrotron gradients with the local magnetic field when the emission
is subject to Faraday depolarization, in our work, we also considered the
influence of weak Faraday depolarization regimes in order to test if the
techniques explored here can still be applied to estimate the magnetization
level. For both low and high frequencies, the ∇P angles are weakly affected
by Faraday rotation. The results also indicate that the use of gradients is
valid for regimes where the conventional polarization vector approach does
not behave well.

Our work opens venues to the study of the magnetization level via the synchrotron
emission in our Galaxy and beyond. Combining measurements of ∇P with ∇I pro-
vides several ways to obtain synergy from the two measurements and increases the
reliability of the results. Since ∇I are not subjected to Faraday rotation, they do
not require multiple frequency measurements to compensate for the effect.

7.2 Combined use of gradients in turbulence

The discovery of unknown properties of gradients provides another way of using the
associated information to study properties of the magnetized interstellar medium.
Other gradient studies showed the correlation between velocity gradient orientations
with the sonic Mach number, via studying the amplitudes of these quantities. The
combined study using both velocity and synchrotron gradients can provide both
MA, MS, as well as the magnetic field direction. Recovering these parameters from
astrophysical observations is important to characterize the different properties of
several astrophysical processes, such as: star formation, cosmic ray acceleration, and
cosmological foreground subtraction. As explained before, both MA and MS are
extremely complex to retrieve from observations. The statistical tools presented in
this work and in Yuen and Lazarian (2017) can be applied to observations, and this
is a promising next step starting from our work.

7.3 Synchrotron gradients directions to obtain 3D magnetization level

As presented by Lazarian and Yuen (2018), synchrotron polarization gradients can
also be used to probe turbulence and the distribution of magnetic field directions
in a 3D view. Using the properties of this quantity to measure the local magnetic
field direction and its dependency with frequency, the angle orientation in 3D can be
obtained. Using the angle distribution from this technique,MA can be obtained in a
volume. Figure 7.1 shows the 3D magnetic field vector constructed for the data cube

96



with MA = 0.61 at ν = 1.01 GHz using the same technique presented by Lazarian
and Yuen (2018). As can be seen, the 3D directions from the gradients are close to
what is obtained from the magnetic field vector in the original data.

Figure 7.1 - The three-dimensional magnetic field morphology plotted in blue with the 3D
reconstructed gradients in red, using the same recipe presented by Lazarian
and Yuen (2018). The data cube refers to a simulation with MA = 0.61.
The sudden jumps in some particular locations are better treated in Hu and
Lazarian (2022).

The correlation between the polarization gradients angles was obtained along dif-
ferent projections, therefore, the 3D angles distributions can be obtained. A paper
regarding the morphology of the MA has been prepared, together with other group
members that have been applying for the first time the gradients technique to obtain
information of 3D magnetic field in observations.
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7.4 Synchrotron gradients angles distribution correlation with MA in
simulations with self-gravity

Simulations with MA= 0.1 and MA = 1.3, including self-gravity, with resolution of
5123 cells were also investigated in this work, but with limited scope. The self-gravity
could distort the alignment of gradients and influence estimates ofMA. Self-gravity is
expected to modify the properties of the flow. The change in the properties of MHD
turbulence within such regions is expected to produce changes on the gradients
properties, in particular their alignment with the magnetic field. For sub-alfvénic
cases, the alignment is still preserved. For super-alfvénic case, we found that the
relevant correlations are lost for intensity and polarization synchrotron gradients
direction. This is expected because for large MA, the turbulent motions are not
affected by magnetic cascades that drive the correlation between both quantities.
This can also be seen on our previous results for MA and, therefore, the technique
is not efficient in regions where self-gravity is intense.

7.5 Use of gradients in astronomical observations

The techniques obtained on this thesis are important because they can be applied
in multi-frequency regimes, under the influence of weak and strong Faraday depo-
larization. Therefore, both intensity and polarization synchrotron gradients angles
distributions can be applicable on high resolution ISM data collected by the next
generation of radio-telescopes, as the Low Frequency Array (LOFAR), the Aus-
tralian Square Kilometre Array Pathfinder (ASKAP), and the Square Kilometre
Array (SKA). This would be complemented by the higher frequencies coverage and
smaller field-of-view instruments like the Atacama Large Millimeter Array (ALMA)
and the Very Large Array (VLA), meaning that the combination of these resources
can provide the magnetization levels for small and large scales of the ISM.

7.6 Future work

The main results presented in this thesis were published on the Astrophysical Journal
by Carmo et al. (2020), entitled "Synchrotron Intensity and Polarization Gradients:
Tools to Obtain the Magnetization Level in a Turbulent Medium". Another paper
focused on the use of gradients to obtain the magnetization levels compared to
LOFAR high resolution data of the diffuse interstellar medium is being finalized.

The current work has neglected so far the influence of synchrotron self-absorption
and variations in the distribution of relativistic electrons on the polarization maps.
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In general, Faraday rotation takes effect in relatively low frequency bands, exactly
at same ranges where synchrotron self-absorption effect should is important for the
astrophysical environments we are interested in. The influence of both effects is being
analyzed and should be presented in the near future.
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