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Abstract: Precipitation estimates derived from the Eta model and from TRMM (Tropical Rainfall
Measuring Mission) and CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data)
remotely sensed data were compared to the precipitation data of the INMET (National Institute of
Meteorology) meteorological stations in the south-southeast region of Minas Gerais state, Brazil, in
the period between July 2009 and June 2015. Then, information about evapotranspiration (ETR),
water deficit (DEF), and water surplus (EXC) was obtained from the precipitation data, using the
sequential water balance (SWB) separately for each type of precipitation data (INMET, TRMM, Eta,
and CHIRPS). Subsequently, the components of the SWB were comparatively analyzed. The results
indicate that all three products overestimate rainfall. The strongest relationships between the INMET
data and the estimated data were observed for the TRMM, in terms of precipitation estimates, as well
as DEF, EXC, and ETR components. The Eta precipitation estimates are overestimated relative to
those from INMET, resulting in underestimation of the water deficit (DEFETA) and overestimation of
evapotranspiration (ETRETA). In general, the CHIRPS data presented a pattern similar to the station
data, though statistical analyses were lower than those of the TRMM data.
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1. Introduction

Precipitation is one of the main meteorological variables affecting soil preparation and the harvest,
transportation, growth, development, and productivity of agricultural crops, in addition to having
a large impact on water and energy resources [1]. In this context, the information on meteorological
conditions provided by ground stations is of utmost importance for planning agricultural activities,
monitoring crops, and making decisions. However, Brazil has a low density and uneven distribution of
meteorological stations. The data are generally difficult to access and can contain irregularities, which
limits the registration of this data and limits the characterization of spatial and temporal patterns of
environmental variables that is necessary for agricultural planning and research. Such limitations
consequently inhibit the application of the data to agricultural productivity modeling [2–4].

At large scales, remotely sensed data and numerical predictions have helped to overcome the
lack of meteorological stations, serving as an alternative source of time series data on global and/or
regional scales and enabling event detection and decision-making. However, these resources are rarely
used in the agricultural sector [5,6].
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There are currently many precipitation products derived from numerical models, such as Eta [7]
and Global Forecast System [8], as well as data based on remote sensing and meteorological station
observations, such as the Tropical Rainfall Measuring Mission (TRMM) [9]; Global Precipitation
Climatology Project (GPCP) [3,10]; Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [11]; and, Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) [12,13].

However, these data are subject to errors and must be evaluated and validated before being used,
for example, to determine water balance [14–16], information that, in an agricultural suitability study,
is indispensable for estimating water deficits and surpluses to detect change during the crop cycle of
interest, supporting the application of management practices, erosion simulation studies, and even
agricultural crop yield models based on evapotranspiration and water stress [17–22]. Precipitation and
evapotranspiration values are determining factors for agroeconomic purposes and require analysis of
quality and validation for their use [23–25].

Vieira Junior et al. [5] pointed out not only that the Eta model usually over estimate rainfall in
Minas Gerais, but also that random and systematic errors are related to regional characteristics.
Franchito et al. and Pereira et al. [26,27] validated the accuracy of TRMM data over Brazil.
They highlighted that TRMM data tends to overestimate rainfall despite its high correlation to ground
station observations. Additionally, Franchito et al. [26] stressed the relation between errors—random
and systemic—and seasonal and regional characteristics. Paredes-Trejo et al. [28] compared mensal
rainfall estimates of CHIRPS v.2 with rain gauges in Northeast Brazil and they found a trend to
overestimate low and underestimate high rainfall values. Furthermore, CHIRPS not only achieves
better results during the wet season (March to May), but it also correlates well with observations for
all stations and can be a useful substitute for rain-gauge precipitation data.

In this context, the objective of this work is to evaluate the relationships of the precipitation
estimates from Eta/CPTEC, TRMM, and CHIRPS with the data from the meteorological stations of
the National Institute of Meteorology (INMET, for Instituto Nacional de Meteorologia in Portuguese)
in the south-southeast region of Minas Gerais, Brazil, to assess their applicability in areas where the
density of stations is low. We also assessed the use of these data to determine evapotranspiration,
water surplus, and water deficit through the sequential water balance (SWB) method.

2. Materials and Methods

2.1. Terrestrial Data

In this study, ground-truth data were collected at fourteen meteorological stations distributed
within and around the south-southeast region of Minas Gerais, Brazil, located between the latitudes
20◦S and 23◦S and longitudes 44◦W and 47◦W (Figure 1).

Figure 1. Spatial locations of meteorological stations (left) and relative pixel sizes of the rain data
products (right).
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A mountainous region, the south-southeast mesoregion of Minas is the principal coffee producer
in Minas Gerais, concentrating ≈21% of Brazilian Arabica coffee production. The region’s climate
is subtropical with well-defined seasons: a dry season in the winter and rainy one in the summer.
According to the Köppen climate classification system [29], the predominant climates on the area are
Cwb and Cwa. The former is subtropical altitude climate, that is, dry winters and mild summers when
the hottest monthly mean temperature is less than 22 ◦C and the latter is a subtropical climate of dry
winters and hot-rainy summers with temperatures of less than 18 ◦C and more than 22 ◦C, respectively.
The area is covered in Cerrado vegetation and Atlantic Forest [30].

2.2. Database

In this study, we used environmental variables sourced from fourteen INMET meteorological
stations, precipitation forecast data of the Eta/CPTEC model, and the satellite-based TRMM and
CHIRPS precipitation data. Strictly speaking, we sought to investigate the relationship between the
latter three data sources and the data collected from the stations. These data are briefly described below.

2.2.1. Meteorological Station Data

To assess the precipitation estimates obtained using the Eta, TRMM, and CHIRPS, we used
historical daily rainfall (mm) series from fourteen INMET stations. Each station was identified by the
name of the city where it is located, its altitude, latitude, and longitude (Table 1). The meteorological
data are part of a research and teaching database of INMET. This database holds time series collected by
conventional meteorological stations. The database was validated and the duplicated or inconsistent
data were rejected in order to ensure data consistency [26,28].

Table 1. Location of the meteorological stations. Availability of data is indicated by (X).

N◦ Station State 1 Latitude
(◦)

Longitude
(◦)

Altitude
(m) Precipitation WB 2

1 São Lourenço MG −22.13 −45.04 930.65 X X
2 Poços de Caldas MG −21.92 −46.38 1077.08 X
3 Lavras MG −21.23 −44.98 916.19 X X
4 Machado MG −21.68 −45.94 892.44 X X
5 Bambuí MG −20.03 −46.01 684.43 X X
6 Barbacena MG −21.24 −43.78 1128.08 X
7 Juiz de Fora MG −21.77 −43.36 936.88 X X
8 Divinópolis MG −20.17 −44.87 787.42 X X
9 Araxá MG −19.61 −46.95 1018.32 X X

10 Bom Despacho MG −19.72 −45.37 659.46 X X
11 São Simão SP −21.48 −47.55 617.39 X
12 Franca SP −20.58 −47.37 1026.20 X X
13 Campos do Jordão SP −22.75 −45.60 1642.00 X
14 Resende RJ −22.45 −44.44 439.89 X

1 MG: Minas Gerais; SP: São Paulo; RJ: Rio de Janeiro. 2 Water balance.

2.2.2. Eta Precipitation Data

A numerical model developed at the Hydrometeorological Institute of the former Yugoslavia
and the University of Belgrade, the Eta model was operationalized by the National Center for
Environmental Prediction (NCEP). In Brazil, the data are provided by the Center for Weather
Forecasting and Climate Studies (CPTEC, for Centro de Previsão de Tempo e Estudos Climáticos
in Portuguese) [31,32]. With a 15-km resolution, the model covers part of South America and provides
data every three hours, with rotations at 0:00 UTC and 12:00 UTC [33].
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2.2.3. TRMM Precipitation Data

A partnership between the National Aeronautics and Space Administration (NASA) and the
Japan Aerospace Exploration (JAXA), the TRMM produces global precipitation estimates based on
remotely sensed data [34,35].

The daily 3B42 product (Version 7, TRMM Multi-Satellite Precipitation Analysis) used in this study
is available at https://pmm.nasa.gov/data-access/downloads/TRMM. It covers an area between
50◦N and 50◦S and has a spatial resolution of 0.25◦ (~25 km). The final product is derived from the
combination of precipitation estimates based on observations in the microwave and infrared channels
obtained by satellites. Furthermore, these multi-satellite estimates are computed using re-analyzed
precipitation data from the Global Precipitation Climatology Centre (GPCC), which comprises
approximately 67,200 gauge stations world-wide, including the rain gauges from INMET [35,36].
Thus, the TRMM data partially and indirectly depend on the INMET information.

2.2.4. CHIRPS Precipitation Data

The daily CHIRPS data (version CHIRPS v.2) were obtained from the site ftp://ftp.chg.ucsb.edu/
pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05. According to [12], the main sources of
data used in CHIRPS are (i) the monthly accumulated climatological precipitation, from CHPClim;
(ii) geostationary satellite observations in the infrared (IR) channel from the NOAA data sources,
product of the Climate Prediction Center (CPC) and the B1 IR of the National Climatic Data Center
(NCDC); (iii) precipitation estimated by the TRMM; (iv) the rainfall field of the NOAA atmospheric
model, Climate Forecast System version 2 (CFSv2); and, (v) observations of precipitation in situ,
obtained from national and regional meteorological services. The data have a spatial resolution of
approximately 5.3 km (0.05◦), with coverage between 50◦S, 50◦N, 180◦E, and 180◦W.

2.3. Determination of Reference and Evapotranspiration

The water balance comprises fluxes of precipitation, evapotranspiration, and water surplus, as
well as storage. These components are related through Equation (1), which shows that the fluxes of
precipitation (P), evapotranspiration (ETR), and water surplus (EXC) are balanced by the change in
water storage (S) in the Earth’s surface:

± ∆S = P − ETR − EXC, (1)

A simple method of determining water availability was proposed by [37], named the sequential
water balance (SWB), through which the water deficiency (DEF), water surplus (EXC), and
evapotranspiration (ETR) of a crop can be determined from data on precipitation, potential
evapotranspiration (ETP), and water storage capacity (WSC).

Potential evapotranspiration (ETP) of a crop was determined using the Penman-Monteith equation
described in [38]. In this step, we used the following data: air temperatures (minimum, average and
maximum, in ◦C); wind velocity at a height of 2 m (m.s−1); relative air humidity (%); and, hours of
insolation. These data were obtained from the INMET meteorological stations between January 2009
and June 2015. Subsequently, the components DEF, EXC, and ETR were estimated using the [37].

The SWB was determined separately for each type of precipitation data—meteorological station,
Eta model, TRMM, and CHIRPS—for the considered period. Beginning the study period in January
2009 was necessary to determine the point at which precipitation (P) was greater than potential
evapotranspiration (ETP), an attribute needed to initialize the water balance for the chosen method.
However, only the period between July 2009 and June 2015 was described in this study.

2.4. Comparative Analysis

The daily precipitation data were grouped into 16-day periods, totaling 23 periods per year, with
the first period of each year starting on the 1st of January. When comparing between the average

https://pmm.nasa.gov/data-access/downloads/TRMM
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05
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accumulation data from INMET and the estimated data, we used a point-to-pixel analysis; i.e., the
value of the point was compared to the value of the pixel corresponding to the point’s location. To avoid
incorporating uncertainties in the values, we opted for non-interpolation of the point values to the grid.

2.5. Assessment of Errors Associated with Meteorological Variables

To quantify the differences between the precipitation, ETR, and DEF measures, we used the
average of errors (MBE or bias), root mean squared error (RMSE), and percent bias (PB), as described in
Table 2. We also used the coefficient of determination (R2) and the Nash-Sutcliffe efficiency coefficient
(EFF). These values were submitted to a test of significance using the p-value of the regression analysis,
for α = 5%, when considering the null hypothesis that a linear correlation does not exist between the
observed and estimated data.

Table 2. Formulas of performance measures coefficient of determination (R2), average of errors (MBE),
root mean squared error (RMSE), relative root mean squared error (rRMSE), percent average of errors
(PB), and Nash-Sutcliffe efficiency (EFF).

Name Formula

Coefficient of determination R2 =

(
∑N

i=1(Po−Po)×(P i−Pi)√
∑N

i=1(Po−Po)
2×
√

∑N
i=1(Pi−Pi)

2

)2

Average of errors (Bias) MBE =
N
∑

i=1

(Pi−Po)
N

Root mean squared error RMSE =

√
N
∑

i=1

(Pi−Po)2

N

Relative root mean squared error rRMSE = RMSE
Po

Percent Bias PB = 100 ∑N
i=1(Pi−Po)

∑N
i=1 Po

Nash-Sutcliffe efficiency coefficient EFF = 1 − ∑N
i=1 (P i−Po)

2

∑N
i=1 (Po−Po)

2

where: Pi = estimated variable; Po = variable observed at meteorological station; and Po = average of the
values observed at meteorological stations; N = total number of observations.

The MBE indicates whether the modeled data are underestimated (negative value) or
overestimated (positive value) relative to the observed data. The RMSE is a measure of the average
magnitude of errors and will always be a positive value. The nearer that the MBE and RSME values
are to zero, the greater the model precision. EFF values may vary from minus infinity to 1, a value of
1 indicating perfect agreement. In relation to the rRMSE value, Franchito et al. [26] consider reliable
estimates to be those that present rRMSE below 50%.

Besides, the three products (Eta, TRMM, and CHIRPS) were validated regarding their capacity to
detect rainfall. The Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index
(CSI), and Probability of false detection (PODF) (see Table 3) were computed using a contingency table
(not shown here). POD and CSI are rates of events forecasted right (see Table 3); FAR is the rate of
forecasted events which did not occur; POFD is the rate of no-rain events identified as rain [39,40].
The perfect score for POFD and FAR is 0, while for POD and CSI is 1. The precipitation day threshold
was set to 5 mm [41].
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Table 3. Formulas for performance measurements based on Probability of Detection (POD), False
Alarm Ratio (FAR), Critical Success Index (CSI) and Probability of false detection (POFD).

Name Formula

Probability of Detection POD =
Hits

Hits + Misses

False Alarm Ratio FAR =
FalseAlarm

Hits + FalseAlarm

Critical Success Index CSI =
Hits

Hits + FalseAlarm + Misses

Probability of false detection POFD =
FalseAlarm

FalseAlarm + Correct Negative

3. Results and Discussion

3.1. Correlation between Observed and Estimated Precipitation Data

Figure 2 shows the patterns of the average precipitation accumulations obtained from
meteorological stations and from Eta, TRMM, and CHIRPS estimates for the periods between July 2009
and June 2015. Note that the rainy period generally began in September–October, with precipitation
concentrated in the summer months (December to February), while the dry periods generally occurred
between March and August. Contrary to the Eta data, the distribution of precipitation according to
TRMM and CHIRPS data followed the variations in the station data for all of the analyzed periods.

Figure 2. Distribution of the average accumulated precipitation estimated from Eta, TRMM, and
CHIRPS and observed at fourteen INMET meteorological stations between July 2009 to June 2015, for
the south-southeast region of Minas, MG.

In Figure 3, the accumulated precipitation averages from INMET are plotted against the
accumulated precipitation averages estimated from the Eta, TRMM, and CHIRPS, separately, for each
crop year (corresponds to the period from July to June of the next year). For the Eta data, the coefficients
of determination varied between 0.69 (2013/2014) and 0.94, with the best result in 2010/2011, the
year of highest average precipitation. For the TRMM data, the coefficients of determination were
higher than 0.90 in all of the crop years, with a minimum of 0.93 (2012/2013) and a maximum of
0.96 (2011/2012). For the CHIRPS data, R2 varied between 0.88 and 0.98. The best results between
CHIRPS and INMET were obtained for the crop years 2011/2012 (R2 = 0.98) and 2010/2011 (R2 = 0.96),
and the lowest coefficients were observed for the crop years 2013/2014 (R2 = 0.88) and 2014/2015
(R2 = 0.90). The worst performance of Eta and CHIRPS was on 2013/2014, a time period of low rainfall
and drought (Figure 2).
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Figure 3. Precipitation (mm) from INMET versus the precipitation estimates from Eta, TRMM, and
CHIRPS, per crop year.

The analysis of Eta data (Figure 4) shows that the average of errors (MBE) was positive for all of
the years, confirming that the model overestimates precipitation relative to the INMET data, a result
consistent with the positive PB values. The root mean squared error (RMSE) varied between 37.45 mm
(2009/2010) and 93.47 mm (2012/2013), with higher values for the years 2011/2012 (70.04 mm) and
2012/2013. The determination (R2) between the observed data and the data estimated by the Eta model
varied from 0.69 (2013/2014) to 0.94 (2010/2011). Based on the paired t-test, we found a significant
difference between the station data and the data estimated by the Eta model (α < 0.05). Despite the
high R2 values (0.69 to 0.94), the EFF values were low (−1.66 to 0.74), indicating low correspondence
between the observed and estimated data. As shown, the rRMSE values exceeded 50% (except for
the 2010/2011 crop year), which indicates that the Eta measures are not very reliable for the analyzed
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period. Similar results showing overestimation in the Eta data for the Minas Gerais region was
observed in [5]. According to the authors, the modeling errors may be associated with deficiencies in
modeling elements of atmospheric circulation, elements of topography, surface coverage, and possible
interactions between these elements. Furthermore, according to [33], the model generated forecasts
based on average grid data, and is therefore not directly applicable to a specific point.

Figure 4. (a.1, b.1, c.1) Root mean squared error (RMSE), average of errors (MBE), relative root mean
squared error (rRSME; %), and percent average of errors (PB; %); (a.2, b.2, c.2) Nash-Sutcliffe efficiency
coefficient (EFF) and coefficient of determination (R2) between the precipitation (PREC) data from the
meteorological stations and estimates from (a) Eta, (b) TRMM, and (c) CHIRPS.

In relation to the TRMM data (Figure 4), RMSE varied between 9.51 mm (2013/2014) and 17.33 mm
(2012/2013), and MBE stayed below 9 mm. Regression analysis between the observed and estimated
data showed a determination higher than 0.90. The EFF value varied from 0.90 to 0.96, which indicates
that the estimated data and observed data are in strong agreement. We found a positive PB value for
the TRMM values relative to the measured data; however, the values were lower than the Eta model
estimates. We found no significant difference between the station data and the two TRMM estimates,
except for the 2009/2010 crop year (α < 0.05).

Regarding Figure 4, the RMSE of the CHIRPS data varied from 10.25 mm (2011/2012) to 21.85 mm
(2014/2015). When compared to the other estimated data, the annual RMSE values are lower than
those that are presented by the Eta, and lower than those presented by the TRMM for the years between
2009/2010 and 2011/2012. However, in the subsequent years, there was an increase of errors in the
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CHIRPS relative to the TRMM. Analysis of the MBE indicates underestimated CHIRPS values for
the years 2009/2010 and 2010/2011 and overestimated data in the following years. High EFF index
values show high correspondence between the observed and estimated values. However, we found
a significant difference between the station data and CHIRPS estimates for the 2014/2015 crop year
(α < 0.05). Discrepancies between the observed and the CHIRPS data were also reported by [28];
according to the authors, that fact may be associated with a reduction in the number of stations used
to generate CHIRPS data [42] over the years.

Analyses of the performance of Eta, TRMM, and CHIRPS precipitation products in relation to the
INMET precipitation for the entire period from July 2009 to June 2015 are presented in Tables 4 and 5.
In the Table 4, the MBE for the period reveals an overestimation of 42.8 mm, 4.21 mm, and 3.45 mm by
Eta, TRMM, and CHIRPS, respectively. High agreement of the TRMM and CHIRPS with the INMET
data is indicated by high EFF and R2 values, both above 0.90. Note that, the low error associated with
TRMM data is likely caused by using the GPCC reanalysis data. Similar findings were reported by [9].

The three products display good performance for detecting rainfall events (see Table 5). The best
one is Eta (POD = 1), followed by CHIRPS (POD = 0.95) and TRMM (POD = 0.94). As far as FAR is
concerned, the best performance was achieved by TRMM (FAR = 0.01) and CHIRPS (0.03), while Eta is
0.08. Regarding CSI, the three products displayed similar rates (Eta 0.92, TRMM 0.94, and CHIRPS
0.93). Finally, POFD is high for Eta (0.69), while for TRMM and CHIRPS is less than 20%.

Table 4. Coefficients of correlation (R), of determination (R2), and of Nash-Sutcliffe efficiency (EFF),
average of errors (MBE), root mean squared error (RMSE), relative root mean squared error (rRMSE),
and percent bias (PB) for precipitation during the period from July 2009 to June 2015.

Dataset R R2 EFF
MBE RSME rRMSE PB

(mm) (mm) (%) (%)

Eta 0.90 0.80 0.42 42.81 62.24 97.57 67.11
TRMM 0.97 0.95 0.97 4.21 14.70 23.05 6.60

CHIRPS 0.96 0.92 0.96 3.45 16.68 26.14 5.42

Table 5. Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and
Probability of false detection (POFD) for precipitation during the period from July 2009 to June 2015.

Dataset POD FAR CSI POFD

Eta 1.00 0.08 0.92 0.69
TRMM 0.94 0.01 0.94 0.06

CHIRPS 0.95 0.03 0.93 0.18

Figure 5 shows the seasonal variations (DJF, MAM, JJA, SON) of the MBE, RMSE, PB (%), and
rRMSE (%), and of the R2 and EFF coefficients between the Eta, TRMM, and CHIRPS data and the
INMET data. In relation to the Eta data (Figure 4), we found low correspondence between the estimated
and observed values, with low EFF metrics (EFF < 0) for all periods, as well as rRSME and PB greater
than 50%; furthermore, the R2 values are not significant (paired t-test; α < 0.05) for any of the four
analyzed periods.
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Figure 5. Seasonal variations in (a.1, b.1, c.1) PB and rRMSE, and in (a.2, b.2, c.2) EFF and R2, for the
periods (DJF, SON, JJA, and MAM), for the precipitation at meteorological stations and precipitation
estimated by (a) Eta, (b) TRMM, and (c) CHIRPS.

As shown in Figure 5, the coefficients of determination between the INMET data and the TRMM
and CHIRPS data are high for most seasons. The coefficients of determination for the TRMM data are
greater than 0.87 in all of the periods, the highest R2 values being observed in the periods Sept–Oct–Nov
(SON; 0.94) and Dec–Jan–Feb (DJF; 0.94). The percent bias is negative only for the period Jun–Jul–Aug
(JJA; −0.87) and lower than 11% in all seasons; the highest PB values occur in the periods DJF (6.49%)
and Mar–Apr–May (MAM; 10.42%). Figure 5.b.2 shows the seasonal variation of the rRMSE. We found
that the rRMSE value is lower than 50% in MAM (35.38%), SON (17.65%), and DJF (15.33%). However,
rRMSE is high in JJA (101.85%), agreeing with the EFF value (0.71), which indicates that the estimate
for that period is not reliable, since the error exceeds 50% of the amount of observed precipitation.
Similar results were reported by [26].

Note in Figure 5 that the CHIRPS values tend to overestimate precipitation relative to the INMET
data (positive PB). The high R2 (> 0.85) and EFF values (> 0.80) indicate good correspondence between
the estimated values and the observed INMET values for the periods between September and MAY
(SON, DJF, MAM); however, the rRSME value of 74% in JJA indicates that the data for that period is
not very reliable.
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3.2. Analyses of Water Deficiency and Evapotranspiration Values

In this part, we evaluated the components of the sequential water balance: the observed data of
INMET and the estimates from the Eta model and remotely sensed TRMM and CHIRPS data were
used to determine water surplus, water deficit and evapotranspiration. The evaluations were made by
comparing the average accumulation data of the stations (Table 2, column WB) with the averages data
of the Eta, TRMM, and CHIRPS, separately.

Figure 6 presents the water deficit and water surplus components estimated through the sequential
water balance, following [37]. In general, the DEF and EXC data obtained with TRMM and CHIRPS
are similar to the INMET data. The Eta data not only overestimates the precipitation values, but also
obscures the water deficit, due to high water surplus values.

Table 6 shows the performance metrics of the Eta, TRMM, and CHIRPS products in determining
the water surplus and deficit in the period from July/09 to June/15. In general, negative MBE and
PB (%) values indicate that the products tend to underestimate the water deficit. As the high EFF
and R values show, there is strong correspondence between DEFTRMM and DEFCHIRPS and DEFINMET.
The performance of the Eta data, however, is inferior to that of TRMM and CHIRPS. The relative errors
(rRMSE) are 83.27%, 30.63%, and 45.28% for DEFETA, DEFTRMM, and DEFCHIRPS, respectively. In the
joint analysis of metrics, DEFTRMM shows greater correspondence with DEFINMET, presenting higher
R and EFF values and lower MBE and RMSE values in comparison to DEFETA and DEFCHIRPS.

Table 6. Coefficients of correlation (R), determination (R2) and Nash-Sutcliffe efficiency (EFF), Average
of errors (MBE), root mean squared error (RMSE), relative root mean squared error (rRMSE), and
percent bias (PB) for the water deficit (DEF), and water surplus (EXC) in the period from July 2009 to
June 2015.

Dataset R R2 EFF
MBE RMSE rRMSE PB

(mm) (mm) (%) (%)

WATER DEFICIT
Eta 0.88 0.77 0.64 −6.15 10.80 83.27 −47.38

TRMM 0.98 0.95 0.95 −0.80 3.97 30.63 −6.14
CHIRPS 0.95 0.90 0.89 −1.56 5.87 45.28 −12.03

WATER SURPLUS
Eta 0.74 0.55 −2.02 42.63 75.62 399.15 225.01

TRMM 0.96 0.92 0.92 2.40 12.69 66.99 12.65
CHIRPS 0.96 0.93 0.93 2.15 11.88 62.72 11.34

Positive PB (Table 6) indicates that EXCETA, EXCTRMM and EXCCHIRPS were overestimated relative
to EXCINMET; however, the errors associated with EXCETA were greater than the other analyzed data,
with high rRMSE and PB: ≈ 400% and 225%, respectively. Meanwhile, EXCTRMM and EXCCHIRPS

present rRMSE lower than 70% and PB lower than 13%. The high errors agree with the low R2 (0.55)
and EFF (<0), indicating low agreement between EXCETA and EXCINMET. In this case, the water
surplus is due to overestimation of precipitation by the Eta model. As shown in Table 6, EXCTRMM and
EXCCHIRPS present similar performance metrics, with R2 of 0.92 and EFF close to 1; furthermore, both
show MBE close to 2 mm and RMSE of about 12 mm. The observed results agree with the findings
of [14–16]. Those findings rely on rainfall data from remote sensing and they report overestimations of
water surplus due to overestimations in rainfall.



Remote Sens. 2018, 10, 313 12 of 16

Figure 6. Average values of water deficit (DEF) and water surplus (EXC) estimated through the
sequential water balance, with use of the observed data of INMET meteorological stations and the Eta,
TRMM, and CHIRPS data for the period July 2009 to June 2015.

Average values of evapotranspiration, determined with the INMET, Eta, TRMM, and CHIRPS
data, are shown in Figure 7. The higher values of real ET are observed during the rainy seasons, with a
reduction during the transition from the rainy to the dry season. Generally, ETRETA values are higher
than the ETRINMET values, while ETRTRMM and ETRCHIRPS values present a pattern similar to the
ETRINMET values.

Figure 7. Average values of evapotranspiration (ETR) estimated through the sequential water balance,
using INMET, Eta, TRMM, and CHIRPS data, for the period July 2009 to June 2015.

Table 7 shows the results of the statistical analyses of each product for evapotranspiration. Positive
MBE values indicate that, relative to ETRINMET, the three products overestimate evapotranspiration.
However, high EFF and R2 suggest strong agreement of ETRTRMM and ETRCHIRPS with ETRINMET.
Evapotranspiration of TRMM presented the strongest relationship with that of INMET, represented by
a high R2 of 0.94 and a low RMSE of 3.97 mm·period−1; it also showed overestimation, represented
by MBE of 0.80 mm·period−1 and PB of 1.82%. The CHIRPS product presented an intermediate
pattern between the two products, with an overestimation of 3.57% and strong agreement with INMET,
represented by a low rRMSE of 13.4% and high EFF of 0.93. Regarding evapotranspiration, the
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errors found in the three products (Eta, TRMM, and CHIRPS) fall in the confidence interval described
by [43,44].

Table 7. Coefficients of correlation (R), determination (R2) and Nash-Sutcliffe efficiency (EFF), average
of errors (MBE), root mean squared error (RMSE), relative root mean squared error (rRMSE), and
percent bias (PB) for evapotranspiration in the period from July 2009 to June 2015.

Dataset R R2 EFF
MBE RMSE rRMSE PB

(mm·period−1) (mm·period−1) (%) (%)

Eta 0.92 0.84 0.76 6.15 10.80 24.72 14.06
TRMM 0.98 0.97 0.97 0.80 3.97 9.09 1.82

CHIRPS 0.97 0.94 0.93 1.56 5.87 13.44 3.57

The analysis of water deficit/surplus and evapotranspiration show that the Eta’s overestimation
of precipitation (Figure 8) in the dry period (JJA) is not reflected in the water surplus, which presents
high EFF values and low MBE for that period; it is reflected, however, in the water deficit, which is
underestimated, and thus in the evapotranspiration, which is overestimated (high MBE) and in low
agreement with the INMET data (low EFF). We found that the water deficits in the other periods were
masked by the overestimated precipitation, which resulted in EXC and ETRETA estimates with higher
error than ETRINMET.

Figure 8 shows that the strong agreement of the TRMM and CHIRPS estimates with the INMET
estimates is maintained throughout the four analyzed periods (DJF, MAM, JJA, and SON). However,
we found the best performance in the WB simulation with TRMM data, characterized by high EFF and
low MBE values for DEFTRMM, EXCTRMM, and ETRTRMM in the four seasons.

Figure 8. (a.1, b.1, c.1) Nash-Sutcliffe efficiency coefficient (EFF) and (a.2, b.2, c.2) average of errors
(MBE), for the periods (DJF, MAN, JJA, and SON), determined for (a) water deficit, (b) water surplus,
and (c) evapotranspiration.
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4. Conclusions

The present work intended primarily to investigate the errors associated with the Eta, TRMM,
and CHIRPS data relative to the fourteen INMET meteorological stations. Then, with the sequential
water balance, the investigation was extended to the data on evapotranspiration, water deficit, and
water surplus.

When compared to the TRMM and CHIRPS, the Eta model presented lower performance in
estimating precipitation. The CHIRPS estimate performed better than the TRMM model in the
first three years of study (2009–2011), but performed worse in the subsequent years (2012–2014).
The reanalysis data from GPCC could have improved TRMM’s accuracy as compared to other
rainfall products.

The Eta numerical model presented low performance in estimating precipitation, overestimating
by 50% the quantity of precipitation collected by INMET (rRMSE > 50%). The TRMM and CHIRPS
data present rRMSE < 50% for the periods DJF, MAM, and SON; however, the estimates have rRMSE >
50% for JJA, showing low reliability for that period.

In relation to the water deficit estimates, we found that all the data overestimated the deficiency;
however, TRMM and CHIRPS data show a pattern similar to that presented by the station data.
The estimates made with the Eta data tend to obscure periods of water deficit and overestimate periods
of water surplus and evapotranspiration.

The results show that the evapotranspiration estimated from TRMM data correlates well with
the evapotranspiration estimated from INMET data. In general, those estimates presented lower
MAE, RMSE, and MBE (bias) than were presented by the Eta and CHIRPS during the study period.
Furthermore, the coefficients of correlation and determination for TRMM are lower relative to the
other two estimates (Eta and CHIRPS).

The TRMM and CHIRPS data were efficient in determining the DEF, EXC, and ETR components
of the sequential water balance and were shown to be an alternative to precipitation data from
meteorological stations. TRMM and CHIRPS data can be used to offset the lack of meteorological
station data and support decision-making related to agricultural activities.
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