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ABSTRACT 

A first principle method based on an Apw-t.; band structure 

calculation is derived in order to obtain the self-consistent 	eigen- 

energies, cristalline potential and electronic charge density. 	The 

simplicity and extensions of the method are discussed, including comparison 

with the results obtained by the use of Chadi and Cohen special points 

technique. 



1. INTRODUCTION 

The Symmetrized Augmented Plane Wave CSAPW) Method, in which this 

work is based, was first proposed in its simplest form by Slater [1 ] 

and since then developed by severa) authors [2,3 ]. Later on, relativ-

istic [4 ] 'and "non-muffin-tin" [ 5 ]corrections were taken 	into 

account. 

Once the energy leveis and the respective wave functions are 

obtained for each electronic state, then self-consistency may be 

established to obtain the charge density inside each one of the p spheres 

of the "muffin-tin" model [ 3 ] : 

a (r) = 2er 2  d2 	I bra. (tj) *  b re,  (,t.) ,; (r <R
p

) 	 (1) 

t n,i 

In the above expression,b[la i  (t,;) is a Bloch function belonging to the 

n
th 

band and transforming like the i th 
partner of the ra  irreducible 

representation of the group of the wave vector t.Summation is extended 

to occupied states only. Factor 2 comes from the fact that in a non-re-

lativistic formulation,each state is doubly degenerate because of the 

possibility of being occupied by electrons with spin up and spin down. 

In Eq. (1), a spherically symmetric distribution of charges inside the 

spheres of radius R is assumed. Also 

a (r) = 4u r 2  p (r) 

where p (r) is the charge per unit volume. 

In order to make the unitary cell neutral, a constant charge 

density outside spheres (plane waves) 1; is imposed such that 

p 	- 	Q /(2ws 
 - 
	V

p
) 	 (2) p  



Q being the total charge inside the p sphere, that is, 
Rp  

Q= lel Z - a (r)dr 
P 	P 

o 

and V2=4/3 4 3  ;SE 	is the volume of the Wigner-Seitz cell and Z 	the 
p ws 

atomic number of the atom, or ion, inside sphere p. 

So, at least formally,self-consistency is established. Once the 

charge density is known,we can, in principie, derive the crystalline 

pptential and reca1culate the band structure. 

The utilization of Eq. (1)to establish a self-consistent calcula-

tion has a great inconvenient: degeneracies in the states corresponding 

to a wave t decrease with decreasing symmetry of the respective point 

in the Brillouin zone. For this reason, the contribution of a low 

symmetry t point may require too many diagonalizations of the APW secu-

lar matrix. One solution in order to avoid this problem would be to assume 

that the periodic part of the Bloch function does not depend strongly on 

wave vector t. This would correspond using the approximate method 

proposed by Chadi and Cohen[6 ] and more recently by Mankhorst and Pack [7• 

It consists in the utilization of some special points in the Brillouin 

zone when performing the summation over occupied states in Eg. (1). 

Using only the value at these special points, nultiplied by some 

weight factors, the approximation solution is obtained. But the 

accuracy of that method depends on the material under study. Or, 

accordingly, the number of special points to be considered depends on 

the localization of the occupied states. 

The method to be described later in this paper tries to overcome 

these difficulties by proposing the use of a 	expansion for the 



Bloch states in the Brillouin zone. We assume that the sApw's are 

calculated at a point of high symmetry, and that the matrix elements of 

the momentum operator are also obtained. With them, we can derive an 

expression for the self-consistent charge density and obtain the 

crystalline potential. No other approximation is assumed in addition to 

the "muffin-tin" model, which is however only a simplifying hypothesis, 

not a restriction imposed by the method. Expressions are derived for 

T = O, but repopulation of states caused by variation of temperature can 

also be treated directly by considering the partition function. In this 

caseselectron-phonon interaction and variation of lattice parameter with 

temperature should also be considered. 

In Section 2, we derive the main expressions for the charge 

density and the crystalline potential, assuming Slater's exchange. 	In 

Section 3,we add some comments and discuss possible generalizations of 

the method. 

2. ITERATIVE PROCESS 

Let's assume that the one-electron eigenenergies and eigenfunctions 

are known at a point to  of the first Brillouin zone, preferably the r 

point, 2w/a (0,0,0). Hence, we are able to construct the complete set of 

Kohn-Luttinger functions and to use it to expand the Bloch function of a 

generic wave vector t.The coefficients of the expansion are determined 

through the diagonalization of the secular matrix, and if ali states at 

point 14(.0  are considered, the expansion is exact. For a non-relativistic 

calculation, off-diagonal terms contam n matrix elements of the operator 

between Bloch functions at to. The wave vector ït is the 

difference (t - to ) andi; is the momentum operator. This process is 



called t.fi and vias first utilized by Cardona and Pollack [91, using some 

experimental results and adjusting parameters. Later,Parada [10] showed 

the feasibility of obtaining matrix elements of momentum operators from 

first principies, without adjusting parameters. In this paper,we will 

follow Parada's procedure. 

Let's first expand the Bloch functions at toin terms of the 

Symmetrized Augmented Plane Waves, set as follows: 

bra (t ,Ft ) = X 	Cra ( ) Tra (t At j) 	 ( 3 ) n,i 	o 	* 	n,& s 	1,& o s &,K
s 

where
s 
are reciprocal lattice vectors. The SAPW's are obtained by 

applying to the APW's the projection operator [11] : 

P." = 	Ia 	(R)* R 	 (4) 

where the summation is extended to ali symmetry operations of the group 

of the wave vector to  ;14:' (R) is the (ia) element of the matrix corres 
 1,& 

ponding to operation R in the r a  irreducible representation. 

We construct then the Kohn-Luttinger functions 

Xni (t-t
o  .

rt) = exp [ i (t - t
o

) 	it] bra. ( t
o  í

t ) 
,' 	 11,1 	' 

and make the ansatz 

bre.  
(1,1 	m,i  (t,it) 	I 	Am , 4() bb 1'.(t ilt) 

n,1 	m,j 	o ( 5 ) 

Taking into account Eq. (5) in the one-electron SchrOdinger 

equation, we obtain after some calculations the secular determinant 

I 

det 	[E
m 

(t
ci
)- E n (t) + 412112  I a 	a. + -r tc,P i 'i 	= O 	(6) 

mn 1j 	 n,m 2m 	 m 



where 

= ler b*  . (t 	(- 	b . (Ft ,-kt ) 
n,m 	n,1 	o 	 M,J 	o 

Solution of Eq. (6) gives the energies E(1)and the coefficients 

Now
' 
 we substitute the ansatz (5) in the expression for the charge 
 

density. Defining 

Disim  = X 	Am'1 (t) *  Am: 4 1 (t) 	 ( 7 ) 
m,n11 	t n'l 	n,1 

and 

r 8  
I i l im  (r) = I d(-2 b re' . 	O  (itc >pl. ) b . .,(t ,rt) 	 (8 ) 

	

M,J 	M >7 	o 
P 

the charge density can be written as: 

ap  (r) = 2 er2  X 	LOS 
m,m , 	m,m 1  m,m' 	(r) 	 (9) 

j ,j 1  

We can see that the use of the t.; expansion separates expression 

(1)in to two parts: one that contains only information about the reciprocal 

space, and other that depends only on the results obtained at point t p • 

Summation in (7) extends to ali occupied states. Nowever, leveis (m,j) 

and (m' ,j')  are both occupied and unoccupied states at tp . The same 

occurs in the angular integral centered In sphere p shown in Eq. (8).This 

difficulty can be overcome in the following way. 

Equation (8) being invariant under rotation of the axis obeys the 

same property of the scalar product of symmetrized functions: 

<fryx 1 	a. . 	< 
a

f I g ra > 
n 	cio3 	1,1' 



where g is the order of the group, % is the dimension of the ra  

irreducible representation and f the unsymmetrized function which gives 

rise to the symnetrized one frie, s4  through the projection operator 

ga
R,
. 	f. So, matrix I is non-zero only if r a  and ris  are the same I  

representation, and j=j 1 . In addition,it does not depend on the index of 

the partner j. We can therefore omit index j and use an extra index a 

to represent ra  when defining I. So, instead ofwe will use I a m  . m,m' 	 m,' 
The unsynnetrized functions to be considered in Eq. (8) are the linear 

combinations of APW's 

APW * o E 	(K,r) = exp(i 	) 	X41J (KR ) u13 ' L '

E(r) 

x 
2=0 m-t 	 up,t,E (R p ) 

x Y* (0->,0+) Yt,m  0,0) t,m k k  

where r defines the position of the center of the sphere p, whose 

radius is R and 	and gs,- are angular coordinates of vector t. We 

can make use of the orthonormality of spherical harmonics: 

J sino de do Y* Y , , 
X,11 	,P i 	X'À 

and of the sum rule: 

y* 	(0 ,f)Y 	(01, 0 1 ) . 	(2x1-1)  P (cosY) À,u 	 À 4= 

where y is the angle between the directions (0,$) and (o',..) to arrive 

to the final expression 

I a 	= 	X2 era ( 
s 
 )*C

m 
 ,t(tr)X 

P , X 011 	P jP,À,1111 
Ba 	 (10) 

m ' ml  t t t,t m ' s 	 x 	r   
s' T 

	

U 	(r) 
P,À,m  up,A,m 	u 	(R ) 
P,A,m P 



and 

Da . _2_ 4v (2x + ij 	r*2't (R)expílt(RtT 	) t I x "p 	na 	
R  

	

x j x (KsR p )j x  (KTRp ) Rx  (cosy) 	 (11) 

In the above equations, R means the symmetry operation, RPT is the vector 

resulting from the operation R applied to t i_ and now yi5 the angle between 

Ç and RtT  Ba  . 	depends only on the crystal syetry and is not altered 

	

Ç 	 mm  

throughout the iterative process. 

An important simplification can also be performed on matrix D. Each 

coefficient of the Kohn-Luttinger expansion at a point t inside a certain 

fraction 	of the Brillouin zone is related to another vector t i = Ri 

[10] through 

Am ' i  (t')= Am0 (Ri) = Er (R). 	Am ' it  (t) 	 (12) n,1 	 cl 	3st n,i 

Eq. (12) is a general relation for any vector t, but some operations R, 

besides identity, transform t into itself. In order to avoid considering 

several times the same vector into the summation, we take, for each vector 

in the fraction l/g, a weight factor 1/W(t). 

tf the total number of vectors in that fraction is G, we have 
ZB/g 

G = / 	9/W(t) 

So, making use of the above arguments and of the fundamental 

theorem of irreducible representations, we obtain for matrix D 

ZB/g 

Da 	= -9-- 1 ZZ 	ZAm ' 	(t) *A111: 	(t)/14(t) • 	(13) 
m,m' 	na  ' 	G p,i 	n,1 	n,1 



which does not depend on partner j and is non-zero only if both m and 

m belong to the same representation ra  ( because of this property,we 

have amitted index j and used an extra index a to represent the common 

irreducible representation ra  ). 

Eq. (9) can then be rewritten: 

ap(r) = 2er2 	y 	n Da 	, a m,m rimm,m1,a 
(m,m' )ca 

(14) 

where the summation is extended to ali m and m' belonging to the same 

irreducible representation r“ . 

The charge density obtained is a real quantity as can be observed 

by the following properties of the matrices involved: 

a)Let's write 

Bcp' = Bcp'(1tS ,2,ET ,t,x). Interchanging TÇ and ti.,t and t in Eq. (11), it is 

easy to show that: 

Bap  (;.,Us ,t,x)* = Bap  (Ks ,&,PT ,t,x) 

b)As a consequenceme obtain 

I ,m ,(r) = 1
rnm

(r)* 

c)Direct observation of matrix D shows that 

Da  , = Da , * m,m 	m ,m 

and the following expression is obtained for a (r) : 

ap(r)= 	
If111 

2er2  	n a 2Re [5 ,m , 1:1,m 1 (r)j - 6mo tRe EÇ ,m ,ç ,m ,(r)] • 
,  

111?Fil l  

(15) 
where Re means real part. 

Up to now, we have derived the expression for a self-consistent 



charge density based on an APW — ItaricalculatIon and showed that the 

expression obtained can be separated loto a product of two parts: one - 

matrix I-that depends only on the results ata point of high symmetry, 

the center of the Brillouin zone preferably; and the other - matrix D - 

that can be written as a summation in reciprocal space of coefficients 

obtained from the expansion of Bloch functions in the Kohn-Luttinger set. 

These coefficients are obtained by diagonalization of the kliisecular 

matrix (Eq. (6)), in a collection of points inside a fraction of 	the 

Brillouin zone. When obtaining matrix I, the values of B a  are calculated 

only for the first iteration; for the others, including the first,we need 

only to calculate the radial functions for each energy levei and 	the 

coefficients of the expansion of the Bloch function into symmetrized 

augmented plane waves. 

Once the charge density is obtained inside each one of the "muffin-

tin" spheres,and the unitary cell is maintened neutral by imposing a 

uniform distribution of charge outside the spheres, we can obtain the 

crystalline potential. We will assume Slater 021 approximation for 

the exchange term: 

Vexch (r) = -6 [3a 	(r)/32u 2r2  

and 

out 	 -  
Vexch = -6 (3 p/87)

1 / 2  

-1 1/3 
I ; 

; 

r 	R 

r >R 

(16) 

(16a) 

The Coulomb part of the potential inside each sphere can be 

separated into two contributions: the potential due to charges located 

inside the sphere, and the potential due to charges lying outside the 

sphere under consideration. The solution of this problem is,generally 



speaking,a complicated one, but as we are only interested in the "muffin-

tin" approximation, we Wt11 use the spherical symmetric average of the 

potential inside the spheres. Non-spherical corrections are beyond the 

scopeof this paper. The spherically symmetric contribution from a charge 

element, located outside the sphere to the potential inside the sphere,is 

independent of r and equal to its value at the center of the sphere. So, 

the external charges contribute in the average with a constant temi to 

the potential inside the sphere. 

Therefore, we obtain from direct integration of u (m), the total 

Coulomb term of the potential indde sphere p. 

Coul 	2Zp 	2 V 	= 	 + 	a (t) dt + 2
R a

P (t)  dt + C 	 (17) r 	r 	p 
o 

In the above expression,we have made use of atomic units. C contains 

ali the contribution coming from externa] charges, and is determinei by 

an indirect process, as follows. 

Starting with the charge density obtained at the end of each 

iteration,we can calculate the spatial average of the potential outside 

the spheres, that will be called \I nt , and in the limit, the average 

value on the surface of each spheres, i.e, V(R ). This can be done by 

using a procedure similar to that of Slater [132, as shown in Appendix A. 

Assuming that in the whole plane wave region the potential is uniforrn and 

equal to Vout , according to the "muffin-tin" model, the difference 

V(R p )-Vout gives the discontinuity observei when crossing the surface of 

each sphere. As the Coulomb potential in the plane wave region is assumed 

to be zero, the value of the constant C must be such that the potential 

on the surface of sphere p is equal to the value of the discontinuity.So, 



we have the definidor) of each C 

R 22 

	

P  + 2 	j r

n 

a(r) dr + C = V(R) - V 	 08) R 	R 	 p 	p 	out p o 

It is a common practice to set the whole potential, not only the Coulomb 

tern outside spheres equal to zero. Then, we have to subtract the Slater 

exchange, Eq. (16a) obtaining: 

2Z 	 r 	 R a (t ) 
V (r) = --P-- + —

F- 
2 	a p (t) dt+2 1 —2--- dt+C+V(r) _vout (19)  

o 	 r 	 p exch P 	r 	 t 	 exch 

The core states are almost unaffected by the crystalline bonding, 

so we can leave them unaltered through the iterative process and treat 

only the valence bands. For each iteration tr, the total charge density 

will be 

(i) (r) = a
p,core

(r)+a(i) 	r 
p,valence

() 

Also, in arder to guarantee a more uniform convergence through the 

sucessive iterations,we calculate expression (19) using a charge density 

which is not that obtained from the preceding iteration, but a certain 

average calculated with densities previously obtained throughout 	the 

process. 

3. CONCLUSIONS 

The self-consistent method for band structure calculation presented 

In this article shows immediatly some advantages. First of ali, the APW 

calculation is carried out only once in each iteration, preferably at 

the center of the Brillouin zone, which is the point of highest symmetry; 

hence, less diagonalizations of the secular matrix are necessary. 

A second advantage is that Ba  depends only on the crystal symmetry 
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and sone parameters, such as the sphere radii, that once determined in 

the beginning of the first iteration, are kept unaltered. Therefore B a , 

which is the part of the calculation that involves most of the computa 

tional time,is calculated only once throughout the self-consistent 

process. 

Finally, information about points in the Brillouin zone other 

than t. is completely absorbed by matrix D, which is calculated, for 

each iteration, with results coming from the tf; expansion. 

Improvements on this method may follow the same sequence of a non-

self-consistent one: corrections to the "muffin-tin" model, spin-orbit 

interaction and others relativistic corrections. But, another advantage 

of this method is to easily allow the inclusion of temperature effects 

on repopulation. As matrix D contains ali information about the 

reciproca] space, the effect of temperature T can be considered by 

where p is the chemical potential 'and KB  is the Boltzmann consant. 

In the paper that follows an application to NaC1 and an optimization 

of the method will be presented, but, we can already present a conclusion, 

which can be used as a simplifying procedure in similar cases. It was 

observed that matrix D does not vary considerably with the numbers of 

póint in the fraction 2B/g of the Brillouin zone. So, self-consistency 

can be started with the special points of Chadi and Cohen E 61  , leaving 

the utilization of the others points for the last iterations, where ali 

contributions will be considered. 

redefining D as: 

Da
m 
 .(T)=9 n

-1 	
G
-1 

m, 	a 
n,i 

ZB/g 

t 

/ 	Am. 	(t) *  t n,n 	
(t) 

(20) 

W(k). 

c 

1+ exp (En,i (t)-u 	)/KBT] • 
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APPENDIX A  

CALCULATION OF V
out 

AND V(Rp) 

The Ewald's method is well known and its presentation in an 

interesting analytic way was done by Slater [13] . Since we have used 

Slater's Scheme in a special 	way to calculate the expressions V(R ) 

and Vout ,we present our results in this Appendix. 

First of all,we substitute our "real" charge distribution„consisting 

of spheres of radius R containing a charge density a (r) surrounded by 

a uniform sea of charge with density P,by a new distribution, which 

will consist of points charges g at the points where before the spheres 

were centered, with values 

R 
= leIZ + 	P a (r) dr - 	 (A.1) 

P 	o 	P 	 3 

They will be surrounded by a uniform charge density in order to 

make the unitary cell neutral. Potentials for pointsoutside the APW 

spheres will not be disturbed by such redistribution. 

Let's assume that we have a NaCl structure. We can separate the 

fcc structure of anion sites from that of the cations sites and treat 

them separately. 

The Coulomb potential per unit charge due to each substructure 

can be separated into two contributions 

= — + 	r2  + const.  
r 	3a 3 	 (A.2a) 

and 



-A.2- 

02 (r)= —1—.4 2±02.4 1,m4+ n4 - 4- 1+ A6 r 6 	12, 6  1,  M e+ n 6 - a 	4  a6  
a 6  

	

15  ( 2 4 	4 	) 

	

n 	-77 	 (4.2b) 

where t = 	m = —X—, n = —L and a is the lattice parameter. The 
total potential is 0 1  + 0 2 • Adjusting the parameters in order to fit 

Ewald's results, we obtain for an fcc structure 

1  
01 	

8.0 2 	4.58480  
= 	 r 

' 	3a 3 	a 

and 

Ay  = - 18.687; A6= - 1002.05 

The average potential ontside the spheres, Vout , is obtained by 

adding the contributions of the two sublattices. 

As the crystalline potential varies weakly in the vicinity of the 

boundaries of the Wigner Seitz cell, we can substitute this cell by a 

sphere with radius Rand equal volume in order to perform spherical 

integrations. Let's center our attention on, say, the Cl sublattice. 

We have to calculate the integral of • inside sphere of radius R, the 

integral of • inside the sphere of radius Rci  and the integral of 

( 0 1+ .2 ) inside the sphere of radius R Na  centered at (0,0,a/2). Let's 

call them 1 1 , 1 2  and Is respectively. Since .2 gives no contribution to 

the spherical integral around the site of the Cl atom, we conclude that 

the contribution of CI to the average potential in the plane wave region 

is 

out 	clC1 
'Cl = —J-- [1 1  - 12 - 1 31 	 (4.4) 

out 

where 
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Llu 	3 	3 	3 
20Ut = 	(R 	RC1 	RNa )  

The first two integrais are trivial to calculate. The difficulty 

which arises in the calculation of 1 3  can be avoided by fitting Ewald's 

results with new functions • and 14 centered at (0,0,a/2), a point 

with the same symmetry of (0,0,0). In the vicinity of this new origin, 

aside from the divergence due to the ion Cl, we obtain 

8u1.089730  
Oi = 	r- - 	 (A.5) 

3a 3 	 a 

Again, cp gives no contribution to 1 3  and we need only calculate the 

integral of (pl. The contribution of the Cl sublatticé is, then: 

out 	 4, 	3 , -2 2 	8 
VC1 = 	(1C1 	 2 (R -RC1 ) 	(R5- RC1Na - R)-  2out 

_ 4.584850 (R 3 -R 1 ) 	1.089730  R 1 3 
(A.6) 

	

a 	 a 	Mai 

A similar contribution is obtained for the second sublatticeinterchanging 

indices Cl and Na. 

In order to calculate the average values of the potentials on the 

surfaces of the "muffin-tin" spheres, we have to consider that each ion 

contributes to the average on the surface of its own sphere and also to 

the sphere of the other kind. Once again,let's consider first the Cl sub-

lattice and take one of the qui  as origin. The contribution of this 

sublattice to the average potential on the surface of the Cl sphere, 

using Eq. (A.3), is 

VC1(RC1) . 
Rui ( pl 	8, R2 	4.584850  

	

-Cl 	3a3 Cl 	a 	) 	
(A.7) 
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We can use Eq. (A.5) to oktail the contribution of the Cl sublattice to 

the sphere centered on 

r  87r 	2 	1.089730 	
(A.8) VC1 (RNa ) 	-qC1 7a^3 RNa 	a 

Conversely, we can establish the contribution of the second sublattice 

to V(R
Cl

) 

V 	(R ) .q 	( 8• 
R
2 	1.089730 

 ) 	 (A.9) Na 	Cl 	Na 	3 Cl 	a 3a 

Finally, 

V(Rcl) = 
VC1 (RCI ) 	VNa (RCI )  

with similar equation for  

Although wê have used this method specifically for the NaC1 

structure,it can be applied to ali structures composed by superposition 

of fcc sublattices. The parameters appearing in the Eqs. (A.2a) and 

(A.4), for each case, appear in the table presented by Slater [131. 


