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ABSTRACT  

We propose a self-consistent many body theory for the standard basis 

operator Green's functions and obtain an exact Dyson type matrix 

equation for the interacting many levei systems. A zeroth order 

approximation, which neglects ali the damping effects, is investigated 

in detail for the anisotropic Heisenberg model, the isotropic 

quadropolar system and the Hubbard model. In case of the anisotropic 

Heisenberg ferromagnet with both exchange and single-ion anisotropy 

the low-temperature renormalization of the spin-waves for the uniaxial 

ordering agrees with the Bloch-Dyson theory. For the spin-1 easy 

plane ferromagnet, the criticai parameters for the phase transition at 

zero temperature are determined and compared with other theories. The 

elementary excitation spectrum of the spin-1 isotropic quadrupolar 

system is calculated and compared with the random phase approximation 

and Callen's like decoupling schemes. Finally, the theory is applied 

to the study of the single-particle excitation spectrum of the Hubbard 

model. 
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1. INTRODUCTION 

In the study of elementary excitations and thermodynamic proporties 

of the condensed matter systems, it is a commom practice to use the 

double-time temperature dependent Green's functions (1]. The equation 

of motion of these Green's functions leads to an infinite set of 

equations which couple the original Green's functions to the higher-

order ones. Approximate solutions are obtained by decoupling of the 

higher-order Green's functions, at certain stage, to set up a closed 

system of equations for the original Green's functions The decoupling 

procedure suffers from the problem that one hardly knows an error 

involved in this procedure. The quality of such an approximation is 

often justified on physical intuition, by comparison with the theories 

wich are certainly valid for limited values of parameters or by 

comperison with the experiment. 

Recently, it has been realized that it is possible to develop a 

systematic approach called the self-consistent many body theory 

to the double-time Green's function withan exact Dyson type 

equation [2,3 ]. The idea to derive a Dyson equation is a 

straightforward extension of the Zwanzig-Mori projection operator 

technique [4,5,6 ]. As it was previously discussed, this theory 

ensures the self-consistent results in every order of perturbation, 

[2,3 I. The self-consistent may-body theory (SMT) has already been 

applied to the study of single-particle and spin-wave excitations in 

the itinerant electron systems [2,3,7 ]. An essentially equivalent 

approach called the irreducible Green's function method has also 



been independently developed and applied to the localized electron 

systems [8-10r 

In this paper, we apply the SMT to the study of the elémentary 

excitations in the interacting many levei systems, using the standard 

basis operator (S80) Green's functions, originally introduced by 

Hubbard [11 3. 

For an ensemble of interacting systems (for example, atoms, lons or 

moleculs in solids) having a finite and discrete set of energy leveis, 

the Hamiltonian can be written in a very simple form in terms of the 

SBO's. Ali the Hamiltonians, containing one or more-than one system 

operators, have the identical algebraic structure in the SBO's and 

moreover since the SBO's forro a closed algebra under the multiplication 

rules hence the technique is especially useful In making model 

independent approximation schemes. Moreover in this method ali the 

terms in the Hamiltonian corresponding to the single system operators 

are always treated exactly. The Gree'ns functions of the SBO's enable 

us to determine a large class of elementary excitations in a well 

defined and consistent manner. 

In the previous applications of the double-time Green's functions 

method, the random phase approximation (RPA) decoupling schemes for 

the anisotropic Heisenberg ferromagnet with S=1, gave some 

inconsistencies [121, which were more clearly demonstrated by Halley 

and Erdbs El3 1 in the language of the SBO's. These inconsistence 

correspond to the breaking of the multiplication rules for the SBO's, 

called monotopic restriction or kinematic rules,and lead to ncnunique 

solutions for the order parameters. Furthemore,it appeared that these 

inconsistencies are quite common in the Green's function method, 



and that they are specially manifested in the many-level interacting 

systems, like strongly anisotropic magnets or the systems with higher-

order exchange cóuplings [14-203. The partia] solution of this 

problem has recently been given by Yang and Wang within the framework 

of the high-density expansion perturbation technique formulated in the 

terms of SBO's [21-223. They demonstrated for the 5=1 Heisenberg 

ferromagnet with uniaxial anisotropy that it is possible to fulfil the 

kinematic rules for the SBO's in the first order of perturbation with 

respect to the reci Procal interaction volume. Nevertheless, the 

problems of kinematic consistency still awaits the positive solution 

and we hope that the SMT for SBO's Green's functions proposed by us 

in this paper will be helpful in the solution of this question. 

In Section 2, after describing the general properties of SBO's, we 

give a brief derivation of the SMT for interacting many-level systems. 

We obtain the Dyson equation for the matrix Green's functions of the 

SBO's. The zeroth order approximation in our approach corresponds to 

preserving the first two moments of the spectral density exactly 

C23-2e. Ali the damping effects being included in the self-energy 

opera tor. 

The formalism developed in Section 2 is then applied in Section 3 

to the study of spin-waves for the 5=1 Heisenberg model with exchange 

and single-ion anisotropy, in the case of uniaxial ordering. In the 

zeroth order of approximation in the SMT we show that, the low 

temperature renormalization of the spin-wave spectrum is in agreement 

with Bloch-Dyson theory. 

Section 4, deals with an easy plane ferromagnet. Here we present the 



results concerning the criticai properties at the ground state as well 

as for the fidite temperature. We also completed the RPA solution and 

gave the comparison with the SMT results. 

In Section 5 we study the elementary excitation spectrum of the 

isotropic quadrupolar system. We compare our results with those of 

the RPA and Callen like decoupling schemes. [18, 14-15] . 

Finally, in Section 6, we determine the single particle excitations 

in the Hubbard model and show the equivalence of our zeroth order 

approximation to that given by Roth [25] . 

2. STANDARD BASIS OPERATORS AND THE SELF-CONSISTENT MANY-BODY THEORY 

The SBO's and their properties have been described in detail by 

Hubbard [11] and later on by Halley and Erdds [13]. However, for the 

sake of completeness, we should mention some of their properties 

relevant to our purposes. 

The SBO's are defined by 

L i  = 
a6 	

li,a> <i, 01 	 (2.1) 

Where the state vectors i, a >, corresponding to the many-levet 

system i, in the energy state a, form a complete set. They act as 

raising ar lowering operactors when a > 6 or a < 6, respectively, and 

thus generate interstate transitions. The diagonal operator Cicio  

measures the probability that the state I i,a > is occupied. The 

multiplications rules for the SBO's are evident 

1 	L i 	L i 	 (2.2) 
al3 yd 	Oy ad 



the commutation rules are the following: 

[Leee,  1-
08

.] 11  = d ij  (6., 0  Leo . + n 4 0 , a 	n = = 	(2.3) 

where + sign is used when both operators have fermion character, and 

the - sign if one or both operators have boson charater. The diagonal 

SBO's satisfy the normalization condition 

E 	= 1 	 (2.4) 
a  aa 

Anny operator O i  can be expressed in terms of L ias  according to 

0 1  < in 10. I is> (2.5) 
1 	a$ 

al3 

To study the elemetary excitations and thermodynamics of the 

interacting many levei system having m discrete leveis we consider 

the Green's functions of the off-diagonal SBO's operators defined by 

[1] 

aB, n 	 i I Li(t) 	» (t) 	« L 
a,a+n  

	

= ie(t) < EL i 	 (t)] 	>, 	= ± , 	(2.6) a, a+ n, 	+ n, 0 

where 0(t) is the Heaviside step function, and 

a + n m, 0 + n m. 

The SBO's are the members of the set tL corresponding to a 

particular type of elementary excitation to be studied. This point 

will be more olear in the subsequent sections. The operator O 
 (t) 

B I  

is given the Heisenberg representation. 

- 	B 
(t) 	eiHt 

tj0'0 e
-iHt , 	 (2.7) 

B  



where H is the Hamiltonian of the ensemble of the interacting many 

level systems, 

The SBO's Green's functions will be obtained by SMT, which is 

described briefly as follows. The equation of motion of the Green's 

functions (2.6) is given by 

. d 	a8 n 	r i - — G..' (t) 	< LL 	Li 	] 	> a.. 	6(t) 
ij 	 a, a+ n, a+ n, a n 	ij a0 

dt 

+ i e(t) < [L i 	 (t): 	> , 	 (2.8) 

	

a, a + n, 	8+ n, 	n 

where cr is the Lioville operator defined by 

x = [H, x] 	 (2.9) 

for any orbitrary operator x. 

The operator 	O (t) is broken into two parts 
8+ n,  

• 

	

(t) = P Li 	(t) + (1-P ) Li 	(t) 	(2.10) 
I3+ n, 	 n 5+n, 	 n 	e+n, 

where the projection operator P n  is chosen as 

P
n  = 
	 (2.11) 

ia ia 

and 

L i 	r 
LL

a, 	a+ n, 
xj

n
> 

pn 	 (2.12) 
ia

ELi 	
L i 	] > 

	

a,n+YI, 	ain, a n 

By introducing the Fourier time transform 

+=, 

Ga8; n (t)  . 	1 	eiEt c ri; a 	n (E) dE , 	 (2.13) 
ij 	 "ij 2n 	_ 



it can be shown that [ 2, 3 

E el3; n  (E) = c[1. 1 	Li 	] 	> 6 4: 6 ij 	 a, a+ n, a+ n,.a n 	ej 03 

.1.  z 	(5.2ay; n 4. ray; n ( E))  GY13; n (E)  (2.14) ty 	12, 	IR 	 94 

where 

	

LL 	] > ay; n _  - < [ oz. L a, a+ n, y+n,y n  ali 	 (2.15) 
< [Li  

Y,Y+11,
L
y+n,Y 7 n > 

(2.16) ;i1 r?T' n  'E) = f 	. e-iEtdt  lz (t) iz 	■ 

-io (t) c Cor') 	eito -Pn )2  (1 -p )v:1 2' 	-] > a r. y;n  (t) 	 a, a +ri,  
lz 

< EL st . 	Lt  :> y, y+n, y+n,y n 

(2.17) 

For translationally invariant systems, we can define the Fourier 

transforme like 

1 = 	
•e 	

(-R;  . 	, (2 .18) k  N 

then (2.14) becomes 

E Gair,n  (E) = c [L 
a, a+ n, a+ n, a

] > 6 

+ y (017; n  + r ir' n .(E)) Gr" (E) . 	(2.19) 

In matrix form, it can be rewritten as 

	

(w  _ Gn 1E11 Gn (E) 	An 
k 	/' k " 	 (2.20) 



where I is the unit matriz, and the matrix elements of B k  (w) and An 

are given by 

B 010;11 (E)  . 2a6;n 	ra0;n (E) 	, (2.21) 

Aan; n _ 	 (2.22) L. Lu, a + n, L 	> 8  a + n, a ] 	a0 • 

Equation (2.20) can be transformed into a Dyson type equation by 

defining the zeroth order Green's functions as 

(wI - o) 	n  (E) = An  . (2.23) 

Using eq. (2.23) and eqs. (2.20 - 2.21) one gets 

o,  
G 	

n 
k (E) = Gk 	(E) + G

o, n 
(E) In (E) G

n 
(E) 

k 	 k 	k 	' 	 (2.24) 

where 

12 (E) = (An ) -1  it(  (E) 
	

(2.25) 

Eqs. (2.23 - 2.25) together with eqs. (2.16 - 2.17) constitute the 

required Dyson type equation. In the present formulation, ali the 

damping effects are included in the self-energy operator y in<  (E). 

3. ANISOTROPIC HEISENBERG FERROMAGNET: UNIAXIAL ORDERING 

As a concret application of the results of Section 2, we consider 

the Heisenberg ferromagnet in the presence of both exchange and 

single-ion aisotropy. The Hamiltonian of the system is assumed to be 

ot the form 



H = - h 	- D 	(5
1

) 2  - _1_ X J.. (S )5S + O'sX) 
i 	1 	i 	2 ij 	1  J 	

1 J 

1 	 z - — 	S i
z 
 Si  , 	 (3.1) 

where h is the external magnetic field, D is the single-ion anisotropy 

constant and K
ij is the anisotropic exchange parameter. In this 

Section, we consider a case of uniaxial ordering. 

The SBO's (2.1) can be defined in terms of the states of the 

molecular field approximation (MFA) 	ia > = I1, $ - M + 1 > of the 

many level systems (ions) corresponding to the Hamiltonian 

o kl„...1.1s._g(gf)z 	 (3.2) 

and m, takes the values form + 5 to - S. From eq. (2.5) the spin 

operators can be expressed by the SBO's, as follows 

51.- =X A L 1 (3.3) 1 	a a 

S. = 	A Li  (3.4) 1 	a a+1, a 
a 

S
1 
 =Ba  = X Ba  Can  , 	 (3.5) 

a 

where 

Aa  = [a(2S - a + 1) ] 1 / 2  , 	 (3.6) 

B
a 

= $ - a + 1 , 	 (3.7) 

and a = 1, 2..., 2S + 1. 



The Hamiltonian (3.1) expressed in tens of the SBO's takes the 

following form: 

H=-Z h 	Li  - 	 , 	Li 	Lj 	 (3.8) 
ia  aa aa 	 aa ; 00' aa , 00"  2 ij aa' 

00' 

where 

h = hB
a 
+ DB 2  

aa 	 a (3.9) 

mii 	-11-J..(  Ao  A 3 _ 1 	s o,o , n + Ari  Ao 	0 0,0 e_ i ) 
aa ,
„
00 2 1 J 

	

+ K.. B B 65 	• 	 (3.10) 13 a 0 aa 	00 

A Dyson type equation for the off-diagonal Gree's functions is given 

quite generally by Eqs. (2.23 - 2.24). Here we shall consider only the 

zeroth order theory which neglects the self-energy operator 

(E). For naT ' n  we obtain 

nay;n  = (h 	- h 	 +nK EB D) 5 
aa 	a+ n, a+ n 	o 	o o ay o 

a a+ n; y+n,y R
k

' 
- -1-  J k  Ay  Aa  (Da  - Da+ 1 ) n, 1 + 

D - D 
Y 	Y+TI 

(3.11) 

where 

D
a 

= < L 	> 	 (3.12) 
aa 

In derivation of eq. (3.11) we have used the following definitions 



lk 	N-1/2 1 	Lj 	 (3.13) 
na 

- ft- (R. - -R 
= 	

.) (3.14) J 	I e 

K = 	K
1  
.. , 	 (3.15) 

o 	,3 1 

and the commutation rules for the SBO's in the K space, i.e. 

kl 	k2 	N-1/2 	Lak ívF k2 6a, 	Lekai  k 2  
[ L ixa  „ L oa , ] 	 6 8 , a ]. 	(3.16) 

The first and second terms in Eq. (3.11) give the RPA expressions 

for the collective excitation spectrum, for arbitrary spin value. For 

S = 1, they are in the agreement with those given previously [13]. 

The last term in eq. (3.11) is expressed in the terras of irreducible 

correlation functions and goes beyond the RPA. An explicit form of 

Raa;  " I  is given in Appendix. The transitions with n = 1 are the 

spin-waves that consist of 2S branches due to the non-equal distance 

between the molecular field states. The transitions with n > 1 

'• correspond to the single-ion-bound states. The quantities R: * 	' 

describe a scattering of the excitations on longitudinal and 

68' 

transversal fluctions of the angular momenta. 

Since the results for arbitrary spin value are rather lengtly, we 

ny;n 
present here 	= 1 case, only. n k 	are now given by 



-12- 

11;1 
2 

ft 

12;1 

2  K 

21;1 

2g 

= h4D -J 	D2 1 

= - 3 1( 	D12 	41  

J 	D23 	4-  = - 	k 	
, 

+K 	DI3 	"I" o  

2; 32 
k 

R 	12;21 
 k 

9 	(3.17a) 

(3.17b) 

(3.17c) 

D12 

D23 

R23;21 
k 

032 

22•1 	
R23;32 

21( 	= h - D - J k  023 4- K00 13 4" 	k 	 (3.17d) 
023 

and 

FW; 2 ' = —1— . 1 J <L9 3 	+ L;c21 )> + 2  1 J <Lq (L -q + 1 -q ) PI 	q 	 —w— 	g 	21.-12 	-23,› 

1 
-r-  Kq-K  <L92 L:?> - 	q-k 

_I_ 1 j 	<03L; (11> N 	 N  

1 
—R— / q-k < (E(21 2 	1-21) (Cr? - g  

/ Kg 	- E51 2) (1-1 - 	 (3.18a) 

12;32 	
1 R k 	= 	—g—  I Jfl-1 <(L cil 2 + 151 3) (C? + g   

1 -—R— 1 Kg_ k  <L51 3  L;?> , + 1  I J 	1 -q> N 	q-k 	13. 31  

- /<(C5/2 - 03) (E7? q-k 	 > 	 (3.18b) 

R23;2I 	RI2;32 
k 	k 	 (3.18c) 



-13- 

R23;32 	y 	< 	L;51) 	 < L52  (Cã + L:51 ) > 
N q

. 
N q 

--1- .1 K
q-k 

 < 19 3  L;51  > - 	I J - 	< L cil 3 L;51  
N q   

--1- I  
N q 

J,
"-- 

k < ( [92 	E93) 	- El) 5  

1 	" 	_ 
+ — - Kfl < 1-

q
22 - L93) (L19 - L39) 	. 	 ( 3.18d) 

N q m  

In Eqs. (3.18a-d) we denote Ei ct  = LL,  - < L k > and we have assumed that 

< L k  > = 15(k) a 	< L°  > 
ais 	 aS 	aa 

The equation of motion for the Green's functions given by eq. (2.23) 

takes the following form: 

= 612 

E 	n ii;]. 	2 
k 	s  

( 

_ 	_ 	1 

_221;1 , 	E-2r')  

o 	'i) 

V 	D23 

< 

	

,k 	1 
L12I 

	

k 	1 
L231 

- k 
1 21 >> E 

, -k „ 
1-21 	-- E  

> << L23 

,k 
3 <c1-2 

I 	L21 	>5 	E 

I ,-k >> 	i 
I 	L32 	E 

(3.19) 

k 
where D = D - D 	L k 	 » is the matrix element of the 

a0 	a 	8, 
« 

a,a+n
I 1

0+n, O E 

Gr 1 (E). 

The spectrum of spin -waves is then given by 

E± = -I_ ( 2 11;1 + 222;1\ + 1  n 	 (3.20) 



-14- 

where 

n  . {( n 11;1 _ n2211)2 + 4 Q12;1 92111 )1/2. 	 (3.21) k 	k 	k 	 k 	k 

Apart from the spin-wave excitations we have the collective excitations 

with n=2 which are given by the poles of the Green's function 

,k 	, 	-k 	 Di3 	 (3.22) 
« Lla I L3I >5  E - 	• 	 , 

E _ n11$2 
k 

with 

R13331 
n11+2 = 2h +K D 	+ 	k 	, 	 (3.23) 
k 	 o  13 

D13 

and 

R1 3 ;3 1 . -I- 	J 1<  <(1_2 3  - 1-72) (L; c11  - CA) 5  
N 	(1-  

J < ( 1.9 1  + d2) (11 4- L1) > 
N q 

- 4 	Y Ko  k 	L-311  
N 	g 	-.- 

ir  _g_1 Kc (E?' - E3?) (ET? - 	 (3.24) 
N 	q 

It is worthy to stress that this collective excitation is dispersive, 

in contrary to the RPA. 

The temperature dependence of the spectrum is determined through the 

correlation function. By making use of eqs. (3.17a - 3.21) and 

applying the spectral thenrem, we get the off-diagonal correlation 



-15- 

functions from: 

	

,-k 	,k 
< "21. L12 > = 

	

,-k 	,k 
< "21 L23 > = 

	

-k 	k 
c L32 L23 > = 

D12 
C ( 1  + Ok) 

2 

.-k 	,k 
< "32 "12 > = 

D23 
[ (1 	- ok ) 

2 

f (Et( ) 	- 

D12 	nr(1;1 

(1 	- 	4,$ ) 	f 	(E;) ], 

[ f(E) 	- 	] , 

(3.25) 

(3.26) 

(3.27) 

f(Et( ) 
nk 

f (Et) + (1 + o k ) f (E -k ) ], 

where 

&Ali _ snli 
k 	k  

tk - 	 ' 	 (3.28) 
nk 

and E t  and nk are given by eqs. (3.20) and (3.21), respectively. k 

-k k For < L 	L13 > one has 

-k .  k 
< L31 L13> = 0 13 f(Ek ), 	 (3.29) 

' 0. where 	Ek 
. 	12

k 	is given by eq. 	(3.23) 

distribution function 

and f(x) 	is the 	Bose-Einsten 

f(x) r  (exp (0x) - 1) -1 , B = (ks  T) -1 . 	 (3.30) 

As concerns the irreducible diagonal correlation functions, they creat 

much more difficult problem and their calculation certainly requires 

more sophisticated procedure. An eventual line of attack may be 

chosen by using an approach analogous to that of Liu, in the case of 

the isotropic ){eisenberg mode 	27 ]. In the following we neglect 
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we neglect them. This approximation is reasonable in the low-

temperature regime, where . they do not play an important role. 

It is easy to see from eq. (3.26) that we have nonvanishing values 

of <G1 11-13> and <1.1 2Lh>, which break the multiplication rules of 

the SBO's. This problem has already been discussed in the literature 

[13 - 211 . Although in our approach we found that it is minimal 

compared to the previous theories, nevertheless this does not resolve 

the difficulty. We feel that, to answer this question, one should take 

into account the self-energy operator 	(E) rather than use additional 

conditions as proposed previously r13 - 151 . 

The low-temperature renormalization of the spin-wave spectrum in 

our method can be given as follows. Firstly, to obtain the off-diagonal 

correlation function (3.25-3.27) and (3.29) we approximate them by 

the corresponding RPA expressions (the first iteration step in the 

full self-consistent solution)and get 

-k 	k 	k 
<L32 (1.12+1.21)>=D23 {(Ak -Bk) f(4) + (A+Bk ) f(w k )} 

<L: (1. 2+0 3 )»..D 12  {(Ç+Bk ) f(w+k ) + (4-Bk ) f(c..ç)} 

D12 D23 -k k 	-k k 
<12 1 L23> = <L32 L12> -   Cf(w) - f(W;) ] 	, 	(3.31) 

S k 

where 

	

= -4—(1-013 Ç I ) 	• 	 (3.32) 
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B 	_p_ 0-1 	 (3.33) 
J k 

4 	D 
k
= 1/1 D' + 

D  , 	(-T- + 3D2 -1 ) 	2 	 (3.34) 
13 	v k 	"k 

and 

	

1 	 1 
wk  - h + (K0  - -2- Jk) D13 d3" —2—  J k e k 	 (3.35) 

wk 
are the spin-wave energies in the RPA. 

Since the third branch of exCitations given by eq. (3.23) is independent 

on the wave-vector in the RPA, then by making use of the fact that 

1
'  J g 	

q-k". = O , the contribution from 1  1 J 	<Lq L -51  > vanishes. 

A 	
-N.  

Secondly, neglecting the upper branch W-r(  and taking the RPA values 
for D 	the low temperature regime as given by: 

Dl= 14 , 02 = 	, D3 = O 	 (3.36) 

1 

	

r -W- f(wk ) 	' 	
(3.37) 

wk = h+D+Ko-J k  • 	 (3.38) 

and using eqs. (3.20 - 3.21), we finally arrive at the following 

expression for the lower branch of excitations, for the sinal] D limit 

E; = wk - _4_ 
[ 

2D 	- J k  + Kg 	k  - Jo  ] f (wo) 	(3.39) 

I( K=J, eq.(3.39) agress with that of Kaschenko et ai [28] obtained 

within the framework of the high-density expansion diagrammatic 



technique. 

Eq. (3.39) reproduces exactly theBloch-Dyson spin wave theory 

[29-30]. In particular, for the isotropic Heisenberg nadei the 

renomalization of the spin-waves turn out to be -  i s h instead of 

- 1.1 / 2  RPA prediction. The result (3.39) can be generalized for 

arbitrary spin-value by simple replacement 

D • D(25 - 1). 	 (3.40) 

4 . EASY PLANE FERROMAGNET 

Another interesting application of our formalism concerns the easy 

planes ferromagnet. Let us consider, for simplicity, the paramagnetic 

phase and zero external field. If 0>0, the doublet is a ground state 

and system orders along z - axis no matter how weak the exchange 

interaction is. On the other hand if D<O, the singlet is a ground 

state and one needs the criticai value of exchange interaction, even 

at T=OK, to obtain an ordering in the X-Y plane, In the simple 

non-self-consistent RPA-MFA theory, the phase transition takes place 

if i0 j /J0  < 2 and this is a typical soft-mode phase transition 

(See, for example, [19 ] and references therein). 

Here we present an improved analysis and we will approach the 

criticai point from the paramagnetic side. The equations of Section 3 

still apply to this case provided thatill• - 101 andh = O. 

Ide begin with our self-consistent RPA expressions. On putting 

DI=0 3  in eq. (3.35) we get for the excitation spectrum 

-18- 

wk = 	1(1 Dj + 2qJk 	 (4.0) 
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where 

= -2- < (5Z
) 2 > - 1 = 0 12 • 	 (4.2) 

2 

A gap in the spectrum vanishes for 

IDI 	= - 2q Jo  . 	 (4.3) 

To determine the critical value IDI/J oas well as the critica] 

temperature mie needs to solve the self-consistent equation for q 

which can be obtained from RPA Eqs. (3.31) which, in the present case, 

take the from: 

< L2I(L12 + L23) > = _9_ E- 1 - lol 4' 3> 	 (4.4) 
2 

i 	i 	i 
< L32(L12 I-  L23) 	= -2- C 1 - IDI 	], 	 (4.5) 

2 

< L1 1  1_1 3 >=< L 132 L12 > = =-coth 	 ), (4.6) 
2 	N 	k w k  2kBT 

where 

1 coth ( 	 (4.7) 
N k wk 	2k8T 

and w k is given by (4.1) 

With the multiplicatin rules and the normalization condition 

2D1 + D2 = 1, we can obtain equation-for q. Since such a procedure is 

not unique, we apply two versions of RPA (for detailed discussion, 
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see [18-191 ). 

In the firstsversion of RPA (RPA*), we follow a prescription given 

by Halley and Erdbs [131 . In this prescription one uses only 

eqs. (4.4) and (4.5) and apply the externa) condition <1.1 1 L1 3 > 

4.12L12> = 0. It yields us 

2  
- 	 (4.8) 

1-3 IDI4,  

and 01) is given by eq. (4.7). By making use of eq. (4.3) and eq.(4.8), 

one has the following equation for the critica) temperature T c = kBT/J 0  

v 	-4 
A  = 	 (4.9) 

1-3F 

where 

1 	1 	
x 71 -Yk  F = -N-   coth 	 (4.10) 

	

k 	 2Tc  

x = -4-1- and yu  -1 -- 
o 	" 	"o 

The critical value od x for transition at the ground state is obtained 

	

by putting Tc 	O in (4.10) and is given by 

4 — 	 (4.11) Xe 
 = 3G-1 

where 

1 
G = 	 (4.12) 

k 	IlYk 
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The zero point reduction of q amounts - 
1

X . 
2 	c  

In the second version of RPA (RPA** or symmetrized RPA), we use ali 

three equations (4.4 - 4.6) to determine q and get: 

2  

	

_ 	 (4.13) 

1 -30 

where 

1 	
101 + O u  

coth 

	

" 	wk  

	

0 - 	/  	 (4.14) , 
N k 	wk 	 2k5T 

and w
k 
given by (4.1). The criticai temperature is given now by eq. 

(4.9) with 

r 	2 	- Yk 	x I 1 1 	Yk  

	

F - 	 coth 	 (4.15) 
2N k r 27c  

Similarly critica] value of x is given by eq. (4.11), with 

1 

2N 

z 
2 - Y k 

k 

(4.16) 

The critical values of X for the three cubic lattices haves been 

calculated numerically, and results are given in Table I. The X c 
in 

RPA are less than the MFA and clearly depend on the topology of 

lattice. The reduction of q due to the zero point motion at X = X c  is 

just - 1/2Xc , and from Table I we conclude that the condition 

< ($
z ) 2  » 0 is preserved in both versions of RPA. In Fig. 1 we 

ploted for comparison the phase diagram of the system in RPA and FIFA 
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for FCC lattice. Let is emphasize that although the RPA gives better 

results than fhose of MFA, the theory is not dependent on the 

longitudinal coupling, i.e. the phase transition takes place for the 

same value of X for both the X-Y and the Heinsenberg model. This 

shortcoming of the RPA theory can be overcome by the SMT as we shall 

show below. 

Since in the paramagnetic phase 0 I eD 3 , the third branch of excitations 

does not contribute. Retaining only the off-diagonal correlation 

functions and using eqs. (3.17-3.19), we obtain for dr i : 

ex,21 
5-4( 1;1 = ak=  _1D 	Jkg 	 (4.17.a) 

Ok2;32 
012;1 
-k 	= 8k = 	jkg 	

(4.17b) 

-8 1( 	 s 	 (4.18c) 

q( 2;1 =  _ak 	 (4.17d) 

where 

Fq( 2;21 = 1 	y J, 
	(Lp231.Lp12)> 

Np P 

I j <L i:1(LS + L;ç)> - 	I K 	<LxiSi> 
N p P 	 N p P-k 	 (4.18a) 
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X 

12.32 	1 	-P 
X ,) < (L21 -1  L23) ( 1 21 	L32) > 

N 	P 

-P ,P 	, _ 	kp_k  < L23 L21 > 	 (4.186) 

and the correlation functions are determined self-consistently from 

-k 	k 
< L21 L12 > = 

2 

q 

2 

a k 

Ek  

coth 
BEk 

( ---) 	, 
2 

(4.19a) 

,-k , k 	, -k ,k 	 Sk 	eEk  
< L21 1-23 	= < L32 L12 > = 12- 	COth ( -2=) 	 (4.196) 

2 	Ek 	2 

-k 
< L32 

k 
L23 > = -L.-1  

2 

o 
+ -'- 

2 

a k 

E k  

coth 
SE I, 

( _) 
2 

(4.19c) 

The spectrum E k  is given by 

r 	
"k 	

(4.20) 
"k  

To derive eqs. (4.18-4.19) we used the fact that 

1 j < L? L - 	= 	J
g 
 < L51 3 L-351  > g 	2 2q  1 > 	 (4.21) 

cl 

for the considered case. 
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Introducing the notation 

f l  = 	J < L P12 	> 	 (4.22) 
qN P P 

f 2 	2— X J r.,c LP, 	> 	 (4.23) 
qN P r 

and using the Callen-Bloch theorem for the cubic lattices with inverse 

symmetry E 29,31 ] 

1 	
/ 

 K 
J, 
 P 

 f(P) = vk 1  1 J f(p 

	

n 	 ) 	

(4.24) 
NP 	 N P 	r 

as well as the property J = O, we get for ak  and3 k  
P P 

ak = - I D I - J kci 	3(f) f2) 	nfivk 	, 	 (4.25) 

6k
. - j

kq + 2(f1+ f2) 	nf2ïk) 	 (4.26) 

and 

n = K/J. 

A litte inspection of eqs. (4.19) and (4.25-4.26) shows that ak  - 3 k  

lias a constant sign provided that n<1. Then the gap vanishes for 

a +6 = O 	 (4.27) o 	o 

We can estimate the critica) value using the RPA as the first 

interation step. Taking f l  and 1'2 as given RPA, one has 
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ak in 

ak -0 k 

where 

= -
1
- 

ti 

= 
ti 

= 

= 

I 
P 

P 

101  

1 0 1 

IDIJ, 

wp  

2 

q 
w p  

2qT I • -n ( I  •+1) Yk 
2 	2 

I (1) (1 - n Yk) 
2 

Own  
coth (--x) 

2 

I3=„ 
coth (

3
—L) 	, 

2 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

and w is given by eq. (4.1). The criterion for softening now reads: 

1 0 1 	+ 2qJ 	+ --5-- $ - 1  n e - n s i 	O 	. 	 (4.32) 
° 2 2 

Eq. (4.32) supplemented by equation for q in RPA should be solved 

self-consistently. Here we present the results for only two cases 

n= O and n = 1 

i) n=0, the X-Y model 

For the X-Y model after some algebra, we obtain the following integral 

equation for the critical value 

E 	
 X y 

C 	p  Xc 	21qj - 5 
	 (4.33) 

	

2N 	bix (x -21gly ) 
pccp 
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with q given in RPA, i.e., by eq. (4.8) or (4.13) depending on the 

versious of RPA we prefer. We have estimated the critical ratio x 

taking on the iiHS of (4.33) X c  as given in RPA i.e., X c= 2 jcil. This 

leads to 

x 	xRPA _ 5 Yp 	
(4.34) 

c 	c 	2N p 

The corresponding value of X c  are given in Table II. 

ii) For the isotropic Heisenberg model n=1, we obtain the 

following equation for X c  

2 
x y 

x
c 

= 21q1 - 2  X 	c p 	 ..L
qITp  

L  	 
N p ixc Exc -21cilyp ] 	N p 	

, x
c [xc -21q1v ] 

(4.35) 

In the first interation step, one has 

Y 
RPA 	5 c 	P 	1 

x
c 
 = xc  	(4.36) 

2N p /-1-:7-  2N p P 	P 
P 

1 
Since 	X y 	is negative, then the critical value for the 

N 	p 	p 

Heisenberg model is less then for the X-Y. One should notice this 

property from the general physical considerations. Table III* contains 

also comparison with the recent results given by Lines [32] obtained 

by the correlated effeccive field theory (CEF). Our values for n.1 

lie slightly higher than those given by Lines. Eventual improvement 

can be done by the full solution of above integral equations. 

* shows the results for x c  in SMT and 
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5. 5.1 QUADRUPOLAR SYSTEM 

In this Section we present application of general formalism 

developed in Section II to the isotropic 5.1 quadrupolar system, 

characterized by the following Hamiltonian: 

H = - 	12  • J ii 	(1)0;rn  (j) 	• 	 (5.1) 
ij m.-2 'u 

where Orli  are the tensor operators for 5=1 and are given by 

cit; (n. 4 
(i) 1  [s sL + 	] 

-r 	11 	11 

(5.2) 

A variety of physical situations can be described in tereis of effective 

quadrupolar coupling, among them the structural phase transitions 

induced by magnetic ordering in rare-earth compounds and the molecular 

hydrogen, see e.g. [18] and refs. therein. Although real compounds 

exhibit anisotropic quadrupolar coupling, for the sake of simplicity 

we shall consider the ideal ized system with Hamiltonian (5.1). The MFA 

gives quadrupolar ordering characterized by on order parameter 
o 

q = 4_ < 02 >, with ground state as a non-magnetic singlet 10 >and 

next levei asa doublet 1 ±1> • We shall study the collective 

excitations (librons) 
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which are the Goldstone modes and correspond to a transition between 

molecular field states [18 ] . To describe the dynamics of the system 

(5.1), several'authors have used a new set of pseudo-boson operators 

introduced by Raich and Etters [ 33-34 ] , [14-15 . Here we apply the 

formalism of Section II and derive a Dyson like equation in terms of 

the SBO's. 

The tensor operators can be expressed in terms of the SBO's as 

follows: 

O 
02 (1) = /1• 

	

 (L i  +L1  - 	, 
11 	33 

1 	1  02 (1) = 	( L i  - L ) 	, 

	

i 2 	12 	23 

-I 	1 
02 ( 1 ) = 	(L2I - L32) 

2 

(1) 	Li a  • o;2 (i) .4, 	 (5.3) 

and after the Fourier transformation the Hamiltonian (5.1) takes the 

following form 

0 
H = - 	N Jo  + J o  [-ff (LI

0 
 I I.  Las) - 	I J k(LI tt) 

A i k -k - 1 	J (1. 1 2 	1-2) (L; ij 	/ ne-13'-31 	 (5.4) 2 k  k 

where 1 k 	and J
k are defined by (3.13) and eq. (3.14), respectively. a$ 
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As earlier, the Dyson equation for. the Green's functions of the 

off-diagonal SBO's with n =lis given byeqs.(2.23-2.25). For the 

zeroth order approximation Green's function, we get 

11 ; 1 2 12 ;  _ 1 \  

	

k 	1 

( 

/(«L /f 2  1 C /j.  »E  , « i_ 1 2 1 I.; »E  

21.1 — 	s 

	

 • E-2
'

2.1// 	1 1, -; »E  , « 1_ 3  i L -3  »E  n k 	. k  

= ci (1 	) 
(5.5) 

O- 1 

where for the considered system D 1  = D3 and q =D 12 . 

	

2 k , 	are given by 

12;21 

	

11.1 	R k  

	

' 	= w + 	 (5.6a) n k 

12.32 

	

12.1 	21.1 	_ 	k 
2 k. 9  = — 2k 9  = Wk (5.6b) 

23.32 

	

22.1 	 R k  
(5.6c) nk 
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In eqs. (5.6a - c) 

= wk 	Je - 
I 

	

í 	"k 	
(5.7a) 

- I 
wk =- Jk 	

(5.7b) 

and 

R12 1 21 = _ 	j 	[<LP (L 	L-P)> - 2<LP (L -P - L -P)> 
P  2N 	23 	21 	32 	21 	12 	23 q 

- 2<L1  LP > 
13 31 

- -1- J 	E<LP L -P> + -1- <LP L-P> + 	<LP L-P> 
2N p P-k 	12 21 	3 	13 31 	3 	23 32 

3 + 	1 J <(L 	- LP ) (L - P + CP ) ,  
2N p P 	11 	22 	11 	33 

- 1 J 	<(L-P - L -P) (LP - LP )> 	 (5.8a) 
2N p P-- 	11 	22 	11 	22  

q2;32  = 	/ J 	<LP (L 	L-P)> - 	- L-P) LP > 1 
P 	12 	21 	32 	12 	23 	32 

+ 	J 	[ <LP L-P> + 	<L-P LP > - -1- <LP L-P> 1 
2N p P-- 	12 32 	3 	12 32 	3 	13 31 	- 

1 	r L 	<(L-P  - L-P ) (1?- LP  )> 	 (5.8b) 
2N p PR - 	22 	33 	11 	22 
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23.32 	1 	r 	 t, - P 	- Px 
L2 > - 	 - L3i -

P 	IP 	- 12  J, 	2 < v-12 	L2s, s 	< L121 1-21 	2 
2N p " 

- 2 <L -iç çl>. ] 

3 v 1 	r ,P -P 	• 1 	1P1 -P 	2 	-P 
1 
 P 

1 >  i • riv 

	

	L<L2a
1

s2 > • -5-  < 4-13Ln > 'E -5-  L12 2 P- K 

- X J< (L? 2  - L%) (LT? + L;I;') > 

	

2N 	P P 

	

1 	X J  -k < (CP - L-P) (L P2 - L 	> 	 ( 5.8c)P ) 

	

- 2N 	p 	22 	33 	2 	33 	9  
P 

where 

Ek =L k  - < L k  > aa 	na 	aa 

k -k 
For the considered system the correlation function <LI3L31> does not 

contribute, and the following equality holds 

X J < 1.. 1r2 L -2 ?› = X J <L 12) 3  L -A, 	 (5.9) 
P P 	 P P  

Having this in mind and neglecting the diagonal irreducible correlation 

functions in (5.8a-c), we obtain for the Green's functions 

, k 	, 1  -k 
c<L121 ,21"t ,  

(li <423 0-21"E , 

<412 

,k 
L23 

1 , -k 
1L32 	> 

k 1
1  - 
	
" 132 	E 

= --1--: E2 - E2 

+n 	' 	- n 	' k 	• 	k 

127 

1 	12.1 \\\ 

, 	_ En11,1 )/ 

k 	' 	k 

(5.10) 
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where 

	

11.1 	. 	3 	 5 
= 'k 	

(f1-f2) 
	flYk 	' 	 (5.11) 

	

12.1 	_ 	 5 
n k 	= wk 	(f1-f2) 	f2  Yk 	' 	 (5.12) 

and 

f 1 	I 	< L: 1? e2 > 	, 	 (5.13) 
qN p 

r 	e 1  -p 1  p 
12 = 1 
	

L v 	1-21 L23 - 	 (5.14) 
qN 

To obtain (5.11-16) we have also used the Callen-Bloch theorem (4.24). 

The collective excitation spectrum is given by 

2  
E l(  = :do q + -5- (f t - f 2 ) ] [J 0  q + 1 — (f l - f 2 ) - 

2 	 2 

	

5  ff .a.fl 	-1/1 - 	k.1. .2/ 	J 
2 

(5.15) 

which of course is gapless as required by the Goldstone theorem [18]. 

The correlations functions f1 and f 2  can be given explicitely by 

using the spectral theorem and eq. (5.10). The result is given below. 
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1  -k ,k 

( 	

,-k ,k \\ 
cL21 L12> 9 <L32 L12 >  

= 

.<1. 	Lib > , < l_; l_3>) 

	

n11•1 	3E k 	2 12 ' 1 

-Is-1 coth (--7-) - 1, - -r--- coth Ek 	 Lk 
q 
2 

BE211.1 	3E 
- —k' coth (--Is) , —ks coth (--Ic) - 1 

	

Ek 	2 	Ek 	2 

As concerns q, it can be given explicitely by using eq. (5.16). To 

estimate the zero-temperature corrections to the spectrum we take 

the-off diagonal correlation functions and q as given in RPA. We will 

use the RPA** since this version is best suited to the considered 

system 'E 18] 

12.1 	_ 
In RPA** one has [18:4; 1  =wk, R k  ' = wk  and for f l , f2  we get 

k 	k 	3,10q 
coth  	 (5.17) 

	

fl = TO 4N L 	
, 

	

k 	' -Yk 	 2 

,2 

 

sJoq Il  1 	' 

fz = --
.1 	 k
o 7171 L 	 coth  	 (5.18) 

k Yk 	 2 
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and q is given by 

. 	4 	
(5.19) • 

1+30; 

where 

	

1 	
2-y, 	 sio 

	

y 	 coth 	
q 	

(5.20) 

	

2N 	1/ 1-y 	 2 

	

K 	k 

For T -.0 2 K one has for the spectrum: 

E 2  = J5 (q + 5F) (q + F - 5Hy k ) (1 -v) (5.21) 

where 

	

1 	 Yk  
(5.22) 

4N  

_I_ X y, il-yk 	 (5.23) , 

	

4N 	k 	'' 

and q is given eqs. (5.19-5.20). In Fig. 2 we have plotted the 

zero-temperature spectrum of a simple-cubic lattice and have compared 

it with those of RPA-MFA and RPA**. [18]. A difference between the 

SMT and RPA** is roughly of the same order as between the RPA** and 

RPA-MFA. In the present method, we determine the two first-moment 

of the spectral density without any restrictions. In analogous 

method, based on the Callen-like decoupling scheme of the equation of 

motion for the Green's functions, Barma [14] as well as Fittipaldi and 

Tahir-Kheli [15] have introduced external conditions in order to 
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fulfil the kinematic rules. Our results, in the first iteration 

step, , are in fact not distinguishable from those of Berma [14]. 

Eventual improvement of our zeroth-order results can be done by the 

fui self-consistent calculation of the spectrum and inclusion of 

the self-energy 	(E) in order to chek the fulfilment of kinematic 

rules as well as to get a damping of excitations. 

6. THE HUBBARD MODEL 

After studying the various applications of SMT of SBO's in localized 

electron systems, we shall, now, apply it to the itinerant electron 

system deseribed by the Hubbard model [351. In the past, this model 

has been extensively studied in connection with the correlation 

effects in magnetism and metal-non metal transitions in narrow bands 

[36]. In the language of SBO's, the Hubbard model, described by the 

Hamiltonian 

H= 	T.. a.+ a. 	+_-L_ 	n. n. 
• 13 	Ia 	ja 	2 	

(6.1) 
ia 	lo 1-o •0 

can be written as 

H= 	c. 	Li 	+ 	X 	Teir 	Li 	Li 	 (6.2) 

	

ln 	a“ 	 cie 	ys ij 
neva 

where, . 	is the eigenvalue corresponding to the state lia> 	of the 
ela 

Hamiltonian 

H = y (T.. a.+ a. + —I— n. n. ) 	 (6.3) 
i 	11 1 a  10 	2 	la 1-a 

a 
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and 

T"86  = 	Ti4  <ia I a -iFer  I 1 0> <iy I a jo  I :1 6 > 	 (6.4) 
1,) 	

a 	J  

The Hamiltonian (6.3) has four eigenstates denote as Wh; 

I1,2>; I 1,3'; and I 1,4> corresponding to n + = n_ = O; n i. = 1, n_ =O; 

n+ 
= O, n

- 
= 1; n+ 	

= 1, respectively. Here n is the eigenvalue 
a 

of the number operator n ia . The eigenvalues c ia  corresponding to the 

above four states are c. = O; c12 - - c. = T. 1 
 and c. 	Tii  2 	+ I. For 

13 	1 	14  

convenience, here after we shall denote states 112>E ! 1,1+> and 

11,3>s ! 	Then from Eq. (2.5) the anihilation and creations 

operators for the single particle excitations are given as 

a. 	= 1-1,10 	g 1-1-0,4 	 (6.5a) 
ia 

and 

L 	 (6.5b) 
ia 	ià,t4,1-a 

By multiplying (6.5a) and (6.5b), and applying multiplication rules 

(2.2), SBO's can be written as a product of two fermions operators. 

Now we shall use our SMT to obtain the single particle Green's 

function «a.
i 

Iat
ja 

» from which one obtain the single particle 
a  

excitations and many thermodynamic quantities [1]. From (6.5a) 

and 6.5b), the Green's function «a. I at » E 
 can be written as 

la 	ja  

a sum of four SBO's Green's functions 
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<a ics  aja  » E  = «L1 ,10  ! LL ,1  »E  

I Li + «L ',Ia • 4,1-0 
>>

E 

+ «L i 	1 Li 	> 
1-0,4 	ia,' > c. 

+ «L i 	I Li,1-0  » E 	 (6.6) 
4  

The SBO 1 s Green's functions, appearing on the right hand side of 

Eqs. (6.6), can be obtained from the matrix equations (2.23-2.25) 

by putting a,0 a 1,1a and n = 	+ 260_. In the zeroth order 

aproximation, the calculations are straightfowatd. It is found that our 

results are the same as that of the two pole approximations of Roth F261. 

However, when one obtains the correlations functions from the SBO's 

Green's functions the monotopic restrictions are violated. This fact 

was not noticed earlier. We realized that if we approximate the self 

energy yr;"(E) in such a way that r 6;11 (E) = O for a = 0 	and 

Zur3 ' n (E) = - Oae i n  for a # 0 our results reduce to that of lkeda 

et al. [371 and satisfy the monotopic restrictions. Recently Ikeda 

et al. ru] theory has been applied to the doped semiconductors to 

calculated the specific heat f381 and found to be in good agreement _ 

with the experiment. 
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APPENDIX 

Here we give the explicity form Rkaa';OBI  for arbitrary spin value, 

which is obtained by calculating of the double commutator in eq. (2.15) 

Rcal;e131  = 	1 	JqAa-1 2N q 

1 + 	1 	Jci  
2N q 	

Ay_ i  [Welt _ 1,13 , ; „fly-1 
 6

a , a -M(01a , ;yty _ i  6 0 , ,a _ l  
y 

	

-k+q 	 -k+q _ 	1 	J A , E A6  Ma,a . +1;B 
	

- 	Ma a m +1;0,6 , -1  ] 
2N q 	 ' 

- - 1--11J A,A 	[PO 	 - Mci q a • y - 1 	a,0';Y,Y -1a l +1,0 	S,a 1 +1;y,y - 1 ó O' a 2N q y 

1 	 -k+q 	 -k+q 1. _13 A [A-1M11.1.1 '
a  ' 

'. 8 _1 e ,  - A  2N q g 	 o' Ma+1,a';S,S 1 +1 1  a 	a   

"o + --I-- I J A A FM ,  
2N q y . (1 a y - a+1,13 ] ;Y,Y+1 a'S

- Mq 
Sa ] ;Y,Y4- 1 6a+1,6' ]  

-k+q 

	

Aa.-1 [ A0-1 M 	] -113-1 O' - A 	
k+q 

S' Ma,a l -1,8,0 1 +1 ] a,a 2N q 

1 
I Act o-1 A 

[M 
- 1 	6a 1 -1,0 	M2,a ] -1;Y,Y+1 6 0'a ] 2N q y 



-39- 

; 1 	 Zik+q 
+ 	K (8 - 	;) ( 13 0 - '0" naa';00 .  N q q . aa  

r mq 	 - mq 	6 	I g "I" 	K  

	

-1-  Z g (8a - Bac' ) Ey - a,V;yy a'ó 	Ba ;yv (3 a N q y  

where A and B 	are given by eqs. (3.6-3.7) respectively, and 
a 	a 

-k-k 	-k M
aa 	= <(L

k 
. - <L

k ,>) (Loo , - <Las , > ) > , 
,08' 	aa 	aa 

and we assume that <L
k ,> 	ffi D 	ó (k) ó ,. aa 	 a 	act 
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TABLE I  

Critical values of IDI/J o  for the X-Y or 

Hei senberg model in MFA and RPA 

. 	LATTICE X 	. I D 1/4 c 

MFA RPA* 	 RPA** 

S.0 2 1.715 1.878 

B.C.0 2 1.777 1.907 

F.C.C. 2 
1 

1.8075 	1.918 
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TABLE II  

Critical values of IDI/J o  for the X-Y model in SMT . 

LATTICE 
Xo. 	1D1/J0 

RPA* as a starting 
point 

RPA** as astarting 
point 

S.0 1.375 1.519 

B.C.C. 1.538 1.649 

F.C.C. 1.595 1.7055 
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TABLE III  

Critical Values of IDI/J o  for the isotropic Heisenberg model in SMT. 

The results of CEF are given for comparison [32 ] 

LATTICE 

S M T 

RPA* as a starting 
point 

RPA** as a starting 
point 

CEF 

S.I. 1.330 1.474 1.148 

B.C.C. 1.504 1.615 1.294 

F.C.C. 1.571 1.681 1.359 
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FIGURE CAPTIONS 

Fig. I 	- Curie temperature k8Tc/J0  as a fundion of I D r/Jo  calculated 

by the MM and by the RFA** and RPA*. 

Fig. 2 - Zero temperature excitation spectrum for t = (0,0,k) plotted 

for a simple cubic lattice. SMT refers to the lowest iteration 

step in this method. RFA** and RPA-MFA spectra are given by 

Ekno  = I g 1 	where I q 1 = I in MFA whereas in RPA** 

q is given by eqs. (5.19-20) for T = O k. 
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