1. Publication NO	2. Version	3. Date	5. Distribution
INPE-3065-PRE/482		April, 1984	🔲 Internal 🖾 External
4. Origin Program		□ Restricted	
DTE/DCT Materiais Semicondutores			
MEMORY FUNCTION 2~D SYSTEM HALL EFFECT			
7. U.D.C.: 539.2			
8. Title	INPE-	3065 -PRE /482	10. Nº of pages: 05
RESISTIVITY OF A DISORDERED 2-D ELECTRON GAS IN TERMS OF FORCE-FORCE CORRELATION FUNCTION			11. Last page: 04
			12. Revised by
9. Authorship Ivan Costa da Cunha Lima			Antonio F. da Silva
			13. Authorized by
Responsible author	A		Nelson de Jesus Parada
14. Abstract/Notes			
The lowest order diagram in a perturbative expansion of the			
force-force correlation function for a 2-D electron gas under strong magnetic field is used to calculate its resistivity.			
Física dos Sistemas Amorfos", Niteroi, Fev. 1984, and will de submitted for publication in the Revista Brasileira de Física.			

RESISTIVITY OF A DISORDERED 2-D ELECTRON GAS IN TERMS OF FORCE-FORCE CORRELATION FUNCTION

I.C. da CUNHA LIMA

Instituto de Pesquisas Espaciais - CNPq, 12200 São José dos Campos, SP, Brasil

The lowest order diagram in a perturbative expansion of the force-force correlation function for a 2-D electron gas under strong magnetic field is used to calculate its resistivity.

It has been shown recently by Ying and da Cunha Lima /1/ and also by Shiwa and Isihara /2/ that transport properties of disordered electronic systems can be obtained via a memory function-projection operator formalism. A review of the theory is shown as a talk in this symposium.

In this work the resistivity of a 2-D electron gas under a strong magnetic field is obtained in the lowest order of a diagrammatic perturbation expansion of the force-force correlation function. The starting point is the equation for the resistivity matrix (2x2).

$$\overline{\rho}(\omega) = -\frac{im}{Ne^2} \left[\omega \downarrow - \Omega + \overline{M}(\omega)\right], \qquad (1)$$

where m_0 is the electron effective mass, e is its charge and N is the number per unit area, $\frac{1}{2}$ is the unit matrix. The bar refers to average on all impurities configurations. Ω is defined as

$$\Omega_{-} = -i \operatorname{Nm}_{0} \omega_{c} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
(2)

where ω_{c} is the cyclotron frequency. $M(\omega)$ is the memory function, expressed in terms of the retarded force-force correlation function $\pi^{R}_{\alpha\beta}(\omega), \alpha, \beta=x, y$:

$$M_{\alpha\beta}(\omega) = -\frac{1}{Nm_{\alpha}\omega} \left[\pi_{\alpha\beta}^{R}(\omega) - \pi_{\alpha\beta}^{R}(0)\right], \qquad (3)$$

where

$$\pi_{\alpha\beta}^{\mathsf{R}}(\omega) = -i \int_{-\infty}^{+\infty} \Theta(t) < [U_{\alpha}(t), U_{\beta}(0)] > e^{i\omega t} dt.$$
 (4)

In the equation above U_{α} is the α -projection of the generalized force acting on the center of mass of the 2-D electron system due to scattering by impurities:

$$U_{\alpha} = \sum_{\vec{q},1} i q_{\alpha} e^{i \vec{q} \times \vec{R}_{1}} U(q) \rho(\vec{q}), \qquad (5)$$

ity operator, i.e., $\rho(q) = \sum_{\vec{q}} e^{i \vec{q} \cdot \vec{r} j}.$

where $\rho(q)$ is the density operator, i.e., $\rho(q) = \sum_{j=1}^{n} e^{i(q+1)}$.

For low impurity concentration $\overline{\pi}^{R}_{\alpha\beta}(\omega)$ can be written as

$$\overline{\pi}^{R}_{\alpha\beta}(\omega) = n_{i} \sum_{\vec{q}} q_{\alpha} q_{\beta} U^{2}(\vec{q}) \overline{S}(q,\omega), \qquad (6)$$

where $S(q,\omega)$ is the density-density correlation function. Then

$$\overline{\rho}_{xx}(\omega) = -\frac{i\pi\omega}{Ne^2} + \frac{1}{N^2e^2} \frac{1}{\omega} \pi_{xx}(\omega), \qquad (7)$$

$$\overline{\rho}_{xy}(\omega) = \frac{m\omega_c}{Ne^2} + \frac{1}{N^2e^2} \frac{1}{\omega} \overline{\pi}_{xy}(\omega),$$

with $\overline{A}(\omega) \equiv \overline{A}(\omega) - \overline{A}(0)$.

The force-force correlation function can be expressed in terms of finite-temperature Green's function

$$g(\vec{r}, \vec{r}; \epsilon) = \sum_{n,ky} \Psi_{n,k,y}(\vec{r}) \Psi_{n,ky}(\vec{r}_2) G(n,k_y; \epsilon); \qquad (8)$$

with $G(n,k_y, \tau)$ for the Landau quasi-particle propagator in the self--consistent Born approximation (SCBA) given by,

$$G_{R}(n, ky; \epsilon) = (\epsilon - E_{n} + i/2\tau)^{-1},$$

 $G_{A}(n, k_{y}; \epsilon) = (\epsilon - E_{n} - i/2\tau)^{-}; E_{n} = \omega_{c}(n + 1/2),$
(9)

and

$$\Psi_{n,ky}(\vec{r}) = e^{ik_y y} \phi_n(x/\alpha + \alpha k_y),$$

$$\phi_n(\zeta) = (\sqrt{\pi} 2^n n! \alpha)^{-1/2} H_n(\zeta) e^{-\zeta_2/2},$$
(10)

where $\Psi_{n,ky}$ is the eigengunction corresponding to the Landau level $(n,ky); \alpha = (m_0 \omega_c)^{-1/2}$ and $H_n(\zeta)$ are the Hermite polynominal of order n.

Defining

$$J_{nm}(q, k_1, k_2) = \int dx \ e^{iq_X x} \ \phi_n(x/\alpha + \alpha k_1) \ \phi_m(x/\alpha + \alpha k_2), \qquad (11)$$

the lowest order diagram in the expansion of $\overline{\pi}_{\alpha\beta}(\text{Fig.1})$ in the Matsubara representation is given by

$$\frac{\overline{\pi}_{\alpha\beta}^{O}(i\Omega) = \frac{u^{2}p}{(2\pi)^{2}} \int d^{2} q q_{\alpha} q_{\beta} \sum_{mn} |j_{mn}(q_{x}, 0, q_{y})|^{2} x$$

$$\times \frac{1}{\beta} \sum_{i\omega} G(n, i\omega) G(m, i\omega - i\Omega).$$
(12)

We have assumed delta function scattering potential, $u^2 = N_i U^2(q)$. The degeneracy of each Landau level is $p = m_{o'c}/2$. The retarded correlation function $\overline{\pi}^R_{\alpha\beta}(\Omega)$ is obtained from (12) after the analytic continuation $i\Omega \rightarrow \Omega + io^+$. Performing the integral on $\dot{\vec{q}}$, we obtain

$$\frac{1}{(2\pi)^2} \int d^2 q q_X^2 | J_{mn}(q_X, o, q_y) |^2 = (E_m + E_n) / \omega_c \alpha^2,$$

$$\frac{1}{(2\pi)^2} \int d_q^2 q_X q_y | J_{nm}(q_X, o, q_y) |^2 = 0.$$
(13)

Then we can make a separation of variables m and n and perform the summation on each Landau level. Since we have assumed the SCBA, the density of states for the noninteracting, zero field electron gas becomes

$$N_{1}(\varepsilon) = (2\pi u^{2}\tau)^{-1}.$$
 (14)

With this result the memory-function becomes

$$\overline{M}_{XY}^{O}(o) = 0,$$

 $\overline{M}_{XX}^{O}(o) = iN^{-1}E_{F}N_{1}(E_{F})\tau^{-1}.$

In the limit of zero magnetic field the memory function reproduces Drude's model:

$$\lim_{H \to 0} \overline{M}_{XX}^{O}(0) = i\tau^{-1},$$
$$\overline{\rho}_{XX}(\omega) = -\frac{\lim_{O}}{Ne^2} [\omega + i\tau^{-1}].$$

This result consist in a good test for the theory. The next step is to calculate higher order terms involving Coulomb interaction and vertex corrections. They should lead to terms on $\ln(\Omega \tau)$. The calculations are on progress.

REFERENCES

S.C. YING and I.C. da CUNHA LIMA Journal de Phys. to be published.
 Y. SHIWA, and A. ISIHARA Journal Phys., <u>16</u>(1983) 4853.