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IMPURITY STATES IN NO-AND THREE-DIMENSIONAL DISORDERED SYSTEMS 

A. FERREIRA DA SILVA and M. FABBRI 

Instituto de Pesquisas Espaciais - CNPq, 12200 São José dos Campos, SP, 

Brasil 

ABSTRACT 

We investigate the microscopic structure of the impurity 

states in two-and three-dimensional (2D and 3D) disordered systems. A 

cluster model is outlined for the donor impurity density of states 

(DIDS) of doped semiconductors. It is shown that the impurity states 

are very sensitive to a change in the dimensionality of the system, 

i.e., from 3D to 2D system. 	It is found that ali eigenstates 

become localized in 2D disordered system for a large range of 

concentration. 

lmpurity states in 2D and 3D systems have attracted 

considerable interest, because of the existence of the poorly understood 

metal-nonmetal (MNM) transition in doped semiconductors. The commonly 

used approaches In the theoreticai investigations of such systems are 

based on the very well-known Mott-Hubbard-Anderson model l . In this model 

the electron correlation and the Anderson localization are regarded as 

the most essential factors, and the DIDS is split into two Hubbard 

bands, situated within the band gap of the host material. These two 

bands are identified as the lower (Do  -singly occupied impurities) 

and the upper (D-  -doubly occupied impurities) Hubbard bands, separated 

by the intra-atomic Coulomb correlation energy 02 . The correlation 



effect is seen in the D state through the formation of stable bound 

state, found experimentally by Narita and co-workers 3 . With increasing 

impurity concentration, these bands broaden and eventually start 

overllaping 	each 	other as wellas with those corresponding to the 

host material. 

The purpose of this work is mainly to investigate the 

influence of the impurity states in disordered systems, when the 

dimensionality is changed from three to two dimensions. Recently, the 

present authors s , by employing a simple one-electron Hamiltonian for 

the 2D case, found a symmetric impurity band with a considerable 

bandwidth for high concentration, while for low concentration it is 

drastically reduced by the cut-off of the long-range hopping energy. 

Here, as we will see later, we perform an improved self-consistent 

cluster calculation with spin-polarized potentials. We assume the 

bound state as a hydrogenic wavefunction in 2D 4 , in the light of the 

work in inversion layer by Stern and Howard s , who carried out a 

calculation for an inscreened impurity located at the inversion layer, 

assumed as widthless sheet s . We show, in Fig. 1, for the sake of 

comparison, the charge density of both 2D and 3D wavefunctions. 

For a given impurity concentration N, we generate a cluster 

of M random sites {R.; i=1,M) in a square of length L (volume n of a 

diamond lattice host), representing the location of M substitutional 

impurities. Thus,we simulate a sample of 2D (3D) disordered system. 

With each impurity is associated a wavefunction Y i (;) Y  , whereY = 2D or 

3D. The Hamiltonian of such system with M electrons is 



H  . 	P1 2   + 	vion 17 .) 4.  1 	r 	 4 
L V

el-el
( 	- r.), 	(1) 

1 	 J i 	2m 	 2 	i,j 

where V IMI ('r.) • IS the impurity -ion potentia1 acting on the i-th 
1 

electron, - V
el-el 	 . 

(r. 	r.) is the Coulomb interaction between the i-th 
1 

and j-th electron, and the summation are overall the M electrons in the 

square L (volume 2). The Hamiltonian will be solved with the 

Unrestricted Hartree-Fock-Roothaan (UHFR) formalism with spin-polarized 

potential 7  which was developed earlier by Fabbri and Ferreira da Silva 7  

to takle the problem of multi-valley 5  effects in doped semiconductors. 

Here we will only outline the key points. The UHFR equations are given 

by the following sets of coupled Schrddinger equations, 

	

H00 (;) Y na (;) = Ena  , H (7), a = f,4 and n = 1, M, 	 (2) 

where 

H 64.)  . 	v ion otl 	joul t7.1 	vExch(7). 	
(3) 

oa 	 ' 	a 
2m 

The single-particle eigenfunction can be constructed from the set of 

localized orbitais V i (r) Y , as 

T na
(;) = 	V

j
(-r)Y Bjna . 	 (4) 

Then, the UHFR procedure leads to two coupled M by M matrix equations 

for both spin o = 	and 4: 

rã+ IT 	1. 	E d..] C 	O, 	 (5) O oa 	ij 	ma ij 	mja 

where Ï is the matriz of the coefficients B
aij 

and E 	is the diagonal 
MO 

UHFR eigenenergy matrix for the spin a. After solving (5), in terms of 



the Slater integrais, the DIDS D(E) can be easily computed and 

normalized to 

J D(E)dE = 	=  
64n 	L 

(-14-2) a2
, 	

(6) 
H  

in two dimensions, and 

1 D(E)dE 	= 
PI 

	

 (-1-) a„ 	 (7) 
32n 	 n  

in three dimensions, where a H  is the effective Bohr radius. The 

constants 64n in 20 and 32n in 3D were chosen only for convenience. 

In our calculation we use M = 40 impurities, surrounded by 960 

impurities forming ao effective field, and so avoiding surface effects 7 . 

The configuration average is taken over 50 samples when the self-

-compensation effects 7  is not taken into account. The 2D DIDS is shown 

in Fig. 2 as a function of the dimensionless impurity concentration P. 

To study the character of the eigenstate we have calculated 

the inverse participation ratio (IPR) 7 ' s  

L = (1B . 1 4 )/(11 13.12) 2 	 (8) , 
na 	iria 	 iria  

for each eigenstate Y ria (7). These are calculated as a function of 

eigenenergy for different impurity concentrations (dots in Fig. 2). 

For small P most of the states have ao IPR between 0.5 and 1.0, 

indicating ao isolated impurity state or a pair state in aggreement 

with the conclusions, in 3D system, reached by Thomras et ai.', through 

their analysis of optical data. In the intermediate regime,larger 

cluster become more abundant and the one-particle eigenstate are 



localized on cluster of variable sizes. In the metallic regime (high 

concentration), still a non-neglible fraction of the occupied states 

shows localized character. In Fig. 3 we show the configuration average 

L
na 

>'s from low to intermediate regime of concentration, for both 

2D and 3D systems. We can see that, in two dimensions, the c L
na 

> is 

greater than 0.5 for ali range of concentration presented here. It 

shows that, for two dimensions the system is composed by isolated 

impuritiesorpairof impurities, while for the 3D case the system passes 

from localized to extended states. This finding indicates that ali 

eigenstates become localized for such 2D disordered system, contrary 

to the 3D system. A more complete discussion (and calculation) about 

the existence or nonexistence of extended electronic states in 2D 

disordered systems are in progress and will be reported elsewhere. 
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FIGURE CAPITIONS 

Fig. 1 - Charge density for 2D and 3D systems. 

Fig. 2 - 2D DIDS for P = 12(N I / 2 aH  = 0.24,). It corresponds to N = 2.0 x 

X. x 1012  cm-2 , with a
H 
= 17.3 A. The dots correspond to the IPR. 

The arrow indicates E
F' 

Shaded area represents the overlap of 

split bands. The host material is set at zero energy. The 

ionization energy, set at the lower D°  band, is -2.0 Hartrees. 

Fig. 3 - c L 	E < IPR > for various values of the impurity 

concentration P(20) and P'(30). For comparison P' = 1.0 (N I / 3 a H = 

= 0.21, Mott's relation), corresponds to N = 1.9 x 10 18 cm-3 , 

P = 16 (N I72a
H 
= 0.28) corresponds to 2.66 x 10 I2 cm-2 . The dots 

represent the individual L
na

, in 2D case, for each configurations, 

at a fixed P. 



Fig. 1 A. Ferreira da Silva and M. Fabbr 
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Fig. 2 A. Ferreira da Silva and M. Fabl 
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Fig. 3 A. Ferreira da Silva and M. rabbri 


