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14.Abstract/Notes 

The surface generating method proposed by Coons is axtensively 
used in designing automobile bodies, ship hulls and other complex forms 
which are impossible to be analytically described. In arder to desenhe the 
"capes", which basically provide these surfaces, BeZier ar B-Spline methods 
are traditionally used. These methods, however, have a disadvantage, since 
the control points do not belong to the generated curves and this creates 
difficulties in modifying the design. The present work proposes, for 
generating the "capes", a method known asWeighted Splines, of great 
computational efficiency and without the restriction regarding the control 
points, since, in this method, they belong to the generated curves. 1We 
method is also shown to be a particular case of Coons' ideas. In addition 
to this, a method to allow the setting of derivativa of the curve at the 
desired points is also presented, in which even a discontinuity may be 
generated when necessary. 
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1. COONS METHOD 

1.1 - SURFACE EQUATION 

A known method for interpolating surfaces was developed 

at the Massachusetts Institute of Technology by Coons (1967), as main 

idea is the following: 

Assume a "patch", as shown in Figure 1, defined by its 

four boundaries. These boundaries may be defined parametrically ar by 

points. The only restriction imposed is that they must be closed at 

the four corners. Thesefour boundaries, defined in natural 

coordinates - [0,1] - are given by functions g(i,j). 

V u ,01 

Fig. 1 - Surface "patch", 

It can be verified that the surface equation below 

contains the four curves g which define the boundaries and that the 

equation is defined by them. 

Z(u,w) = t g(i,w) F.
1
(u) 	t 9(n,i)  r(w) + 

.1=0 	 i=0 

- t 	t g(i,j) r1 (u) E(w) j 	
(1.1) 

i=0 j=0 



The functions F. (i
'  .0 1) are known as "Blending" 

Functions and the following conditions are stipulated so that the 

boundaries belong to the surface: 

F 1 (j) = 6- • 	 (1.2) 
1,J 

One can say that the surface is generated by a gradual 

transition from one boundary to the other and that these two boundary 

shapes are "blended" together by virtue of the "blending" functions 

F 1 . The subtracting term is necessary because the four comer points 

g(i,j) are common to the boundaries g, and this makes them appear 

twice in the equation. 

A further stipulation is that F 1  be continuous and 

monotonic over the interval [0,1], so that the generated surface will 

aso be a continuous one, without presenting oscillations in the 

interval. 

1.2 - SURFACE CONT1NUITY 

Consider two "patches", A and B, with a common boundary 

aS shown in Figure 2. 
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Fig. 2 - Two "patchesff with a common boundary. 



For patch A the boundary is A(1,w); for "patch" O it is 

B(0,w) and the vectors of coordinates are equal to: 

A(1,w) = B(0,w). 

Then, the two "patches" will be continuous across their 

common boundary. They wi11, however, be discontinuous in slope across 

the boundary and it is necessary to investigate this and make some 

corrections that will eliminate this stope discontinuity. 

1.3 - BOUNDARY SLOPE CONTINUITY 

Stipulating the following conditions: 

F (j) = O 	i,j = 0,1 
	

(1.3) 

for the derivate of Equation 1.1, the derivatives of Z along the 

common boundary of Figure 2 are described by the fo1lowing expression 

(given in terms of coordinates of the left "patch"): 

2( 1 ,w ) u 	1 310  g(1,i) u  F1 (w) 
	

(1.4) 

where u is the coordinate in tens of which Equation 1.1 was derived. 

Since Equation 1.1 is symmetric, the same can be shown 

for any boundary. 

1.4 - BOUNDARY CURVATURE CONTINUITY 

In an analogous way, it is shown that stipulating the 

following conditions. 

F1 1  (j) = O 	j,j = 0,1 	 (1.5) 
1 



for the second derivative of Equation 1.1, the second derivative of Z 

along the common boundary is described by the following expression: 

Z(1 ,w) uu = ¡ to  g(1,i) uu  F i (w), 	 (1.6) 

It is easy to see that in this manner one may go further 

to any level of derivative continuity along contiguous boundaries. 

2. SLOPE CORRECTION SURFACE 

The necessity of specifying the values of derivatives in 

a surface to be interpolated is very common in many applications. 

The surface equation described above has a definite 

intrinsic slope along the boundaries, the variation of which are 

strictly prescribed by a simple formula in terms of the derivatives at 

the comer points (Equation 1.4). 

In order to allow the setting of derivative values along 

the boundaries, one can proceed in the same manner as before, that is, 

developing a new surface, known as "correction surface", which may be 

added to the original one (Equation 1.1), thus producing the desired 

derivative value along the boundaries, whithout changing the surface 

and the curvature, tf necessary, along the boundaries. 

Consider the surface 

u (u ,w) = f(i,w) u  G 1 (u) + 	f(u,j) w  Gj (w) + 
i=0 	 j=0 

- 	f(i,j) uw  G 1 (u) Gj (w). 	(2.1) 
j.0 



Proceeding exactly in an analogous way, the following 

conditions are imposed in order to obtain the necessary 

characteristics: 

G i (i) = O 

G(í) = 	! 	i,j = 0,1. 	 (2.2) 

G"'(i) . O 	] 

One can nottce that the new surface a(u,w) satisfies the 

necessary restriction of changing the slope along the boundaries 

without changing the continuities of surface and curvature. 

As this correction surface is valid inside the "patch", 

it can also be used to break the continuity of the slope which 

Equation 1.1 normally enforces. 

One should note that the function f u' 
 f and f of 

w 	uw 

Equation 2.1 are differences between the new values imposed to the 

derivatives and intrinsic slopes in the surface equation. It can also 

be seen that derivatives of any arder may be corrected. 

3. BOUNDARY INTERPOLATION 

The surfaces are obtained joining the "patches" using 

Coons method. In order to generate the "patch", one has to define 

the four boundaries from the control points. There are many ways to 

obtain these boundaries - polynomial interpolation like Langrange, 

Nermite, etc., Cubic Splines, (Forsythe et alii, 1977), Bézier, 

B-Spline, (Newman and Sproull, 1979), etc. The first three methods 

have two disadvantages - the great computer effort and the lack of 

guarantee that a smooth curve can be described. The last two are very 

fast, provide smooth curves, but the control points do not belong to 

the generated curve except for the extreme ones. 



An interpolating method known as Weighted Spline (Costa, 

1980) is proposed, which is very fast, smootb, and has the advantage 

that the control points belong to the generated curve. This method is 

shown to be a particular case of Coons' ideas, when his method is 

reduced to two dimensions. 

3.1 - WEIGHTED SPLINE 

Consider a sequence of points 1, 2, ..., 	i, 1+1, 

i+2, 	n-1, n through which one wishes to interpolate a curve ar 

boundary: 

i+2 

In order to obtain the segment (i, 1+1), the points 

(1-1) and (1+2) are also considered because they provide a general 

trend of the curve before and after the segment. Two parabolas, hp and 

h l , are used to interpolate through i-1, i and i+1, and i, 1+1 and 

i+2, respectively. 

In the same way as in the three-dimensional case, the 

segment (1, 1+1) is represented by a suitable "blenda of the parabolas 

of .the form. 

P(x ) = 	x .(x ) h.(x), 	 (3.1) 
1=0  1 

wherex.are the "blending" functions. 

In order to guarantee the continuity of the first and 

second derivatives, a polynomial to interpolate between points i and 

1+1 has at least to be of fifth degree. Since the parabolas are of 

second degree, third degree ablending" functions will be considered, 

which satisfy the following conditions: 
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x 1 (j) = 

x(j) = 0 	 i,j = 0,1 	 (3.2) 

x 6 (i) -E X
1
"(0) = 0 

Although it can be noticed that there are more equations 

than unknowns, one can find that the following two solutions satisfy 

ali the conditions in Equation 3.2: 

x
o 

(x) = 2x 2  - 3x 2  + 1 

x 1 (x) = 1 - x 0  (x) = -2x 2  + 3x 2 	 (3.3) 

The above "blending" functions guarantee the continuity 

of the curve, the first and second derivatives satisfying the 

conditions in Equation 3.2. They do not satisfy simultaneously 

conditions in Equation 1.2, 1.3 and 1.5; they satisfy only conditions 

in Equations 1.2 and 1.3. These "blending" functions may be used for 

the three-dimensional case if only first derivative continuity is 

necessary. 

3.2 - SLOPE CORRECTION FOR CURVES 

As in the case of the slope correction surface, one can 

specify slopes for the end points of the segment. This would yield the 

following equation: 

C(x) = y(x) D i , 
	 (3.4) 

where y 1 (x) are the "blending" functions and D i  are the derivatives at 

the end points of the segment. The conditions are: 
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y 1 (i) = 0 

y
1
(j) = s. 	14 = 0,1. 

ti) . o J 

Considering only the first two conditions, one can 

obtain: 

(x) - xs - 2x 2  
YO 	

+ x, 

11 (X)  - 3 

	2 

Figure 3 shows an example, using the weighted spline 

method, which passes through five data points. The same curve is shown 

in Figure 4, with new derivatives at the third point. The Figure 5 

shows in detail the region where the derivatives have been corrected; 

and a complete surface is shown in Figure 6. 

4. CONCLUSIONS  

The particular case of Coons method for the 

bidimensional case shows many advantages over the traditional methods: 

the small computational effort, which increases linearly with the 

number of data points; the smoothness of the interpolated segment is 

guaranteed; the curves pass through ali data points; the continuity of 

any order is guaranteed (if one is prepared to pay the computational 

cost); and it allows one to have a complete control over the slopes, 

which makes possible to specify them, and also to produce 

discontinuities where necessary. 



REFERENCES  

COONS, S.A. Surfaces for Computer-Aided-Design of Space Forms, 

MAC-TR-41, MIT, June, 1967. 

COSTA, L.A.Z. da Spline Ponderado - Um Novo Algoritmo, In: II Simpõ 

sio sobre Aplicações Grã-ficas por Computador e Sistemas Gráficos In 

terativos, 1980, 2, 445-464. 

FORSYTHE, G.E.; MALCOLM, M.A.; MOLER, C.B. Computer Methods for 

Mathematical Computations, Prentice-Hall, Inc., 1977. 

NEWMAN, W.M. and SPROOLL, R.F. Principies of Interactive Computer 

Graphics, McGraw-Hill International Book Co., 1979. 



Fig. 3 - Interpolation using Weighted Spline Method. 
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Fig. 4 - Original curve with new forms after slope correction. 
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Fig. 5 - Details of the region where the derivatives have been 
corrected. 
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