
National Institute for Space Research - INPE
Graduate Program on Applied Computing

Historical Analysis of Code Annotations

Author: Phyllipe Lima - Level: Doctorate

Advisor: PhD. Eduardo Guerra
Co-Advisor: PhD. Paulo Meirelles
Program Entry: September 2016

Estimate Conclusion: September 2020
Related CBSoft Events: SBES, SBCARS

phyllipe_slf@yahoo.com.br,guerraem@gmail.com,paulo.meirelles@unifesp.br

Abstract. Code annotation is a JAVA feature that enables the introduction of custom
metadata on programming elements. It was introduced on version 5, and it is widely used
by main enterprise application, frameworks and APIs. Although popular, the software
engineering community lack research dedicated to the usage of code annotations. As
such, this paper presents the current state of the ongoing research and next steps into
assessing code annotations.

Keywords: Code annotations, repositories, metric, evolution

71



Historical Analysis of Code Annotations
Phyllipe Lima1, Eduardo Guerra1, Paulo Meirelles2

1National Institute of Space Research (INPE)
Av. dos Astronautas, 1758, Jardim da Granja, 12227-010 – São José dos Campos – SP

2Department of Health Informatics – Federal University of São Paulo (UNIFESP)
Rua Botucatu, 862 – Vila Clementino, 04023-062 – São Paulo – SP

phyllipe_slf@yahoo.com.br,guerraem@gmail.com,paulo.meirelles@unifesp.br

Abstract. Code annotation is a JAVA feature that enables the introduction
of custom metadata on programming elements. It was introduced on version
5, and it is widely used by main enterprise application, frameworks and
APIs. Although popular, the software engineering community lack research
dedicated to the usage of code annotations. As such, this paper presents
the current state of the ongoing research and next steps into assessing code
annotations.

1. Introduction
Code annotations, or simply annotations, are a feature available on the JAVA pro-
gramming language. It allow developers to introduce custom metadata directly on
programming elements. These are usually consumed by tools or frameworks, so they
can execute a specific behavior. Since annotations are inserted directly on the source
code, they are a convenient and quick alternative to configure metadata.

Main enterprise JAVA APIs make extensive use of code annotations, making
them a relevant feature used on a daily basis by developers. Examples of APIs
are the EJB1 (Enterprise Java Beans) used to configure transactions and security
restrictions, and the JPA2 (Java Persistence API) used to perform object-relational
mapping. Observing the 30-top rated JAVA projects on GitHub, the one with the
least amount of annotations has 22% of annotated classes. While the most annotated
project has 97% of annotated classes. On average, 76% of classes are annotated.

Although popular, the software engineering community lack work dedicated
to study and analyze code annotations. For this reason, we have begun a research
on this topic and the first outcome was published on [Lima et al. 2018]. As a first
result of this PhD thesis, we proposed a novel suite of source code metrics dedicated
to annotations, as there were none in the literature. It also uses a Percentile Rank
Analysis approach [Meirelles 2013] to obtain threshold values.

With the suite of metrics available, this research can take a step further and
study the evolution of annotations during software lifespan, in other words, we will
perform a historical analysis through MSR (Mining Software Repository). This is
also not explored on the literature, and software evolution has recently become the
center of attention of developers [Rajlich 2014].

1www.oracle.com/technetwork/java/index-jsp-140203.html
2www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

72



This PhD thesis will use the following research questions to guide the next
steps:

• #RQ1: How annotation metrics behave during software development?
• #RQ2: What is the life cycle of an annotation during software development?
• #RQ3: What is the relationship between annotations and refactorings?

2. Metadata
The word metadata is used in a variate of contexts in the computer science field. In
all of them, it means data referring to the data itself. When talking about databases,
the data are the ones persisted, and the metadata is their description, or in other
words, the tables structure. In the object oriented world, the data are the instances,
and the metadata are, as expected, their description. As such, attributes, methods,
super-classes and interfaces are all metadata of a class instance. A class attribute,
in turn, has its type, access modifiers and name as its metadata [Guerra 2014].

The class structure might not be enough to allow a specific behavior or rou-
tine to be executed, and therefore additional metadata can be configured on the
programming elements. Afterwards, a framework or tool consumes them and exe-
cutes the desired behavior. For instance, metadata can be used to generate source
code [Damyanov and Holmes 2004], compile time verification [Ernst 2008], frame-
work adaptation [Guerra et al. 2010], perform object-relational mapping, object-
XML mapping and more.

Custom metadata can be configured using external storage, such as a
database or an XML file [Fernandes et al. 2010]. This approach adds verbosity to
the system, since it is necessary to inform a complete path between the referenced
element and its metadata. Another alternative is to define code conventions [Chen
2006], used by the Ruby on Rails [Ruby et al. 2009] and the CakePHP framework3.
Developing with this method can be productive, however it is limited when it comes
to configuring more complex metadata. For this reason, some programming lan-
guages offer features for custom metadata configuration. JAVA offers annotations,
and in C# there is the attributes [Miller and Ragsdale 2004].

Annotations were introduced in the version 5 of the JDK(Java Development
Kit) as a response to the tendency of keeping the metadata files inside the source code
itself, instead of using separate files [Córdoba-Sánchez and de Lara 2016]. Despite
their potential for many interesting applications, its misuse can prevent software
maintenance and evolution. For instance, an excessive amount of annotations can
reduce code readability, and duplicated annotations through out the source code
might pose a challenge during refactoring. Even the coupling of a class with an
annotation schema (i.e, a set of related annotations) can prevent its usage outside
the application context [Lima et al. 2018].

3. Annotation Metrics
Source code metrics are used to retrieve information from software and assess its
characteristics. LOC (Lines of Code) and CYCLO (Cyclomatic Complexity) are

3cakephp.org

73



examples of established source code metrics. Well known techniques use metrics
combined with rules to detect bad smells on the source code [Lanza and Marinescu
2006]. However, traditional code metrics does not recognize code annotations on
programming elements, which can lead to an incomplete code assessment [Guerra
et al. 2009]. For example, a domain class can be considered simple using current
complexity metrics. However, it can contain complex annotations for object-XML
mapping. Also, using a set of annotations couples the application to the framework
that can interpret them and current coupling metrics does not explicitly handle
this. For this reason, the first step of this PhD thesis was to propose a novel suite
of metrics dedicated to code annotations.

This section presents the annotation metrics published on [Lima et al. 2018].
The Java source code in Figure 1 is used to further clarify the usage and definition
of the metrics.

1 import javax.persistence.AssociationOverrides;
2 import javax.persistence.AssociationOverride;
3 import javax.persistence.JoinColumn;
4 import javax.persistence.NamedQuery;
5 import javax.persistence.DiscriminatorColumn;
6 import javax.ejb.Stateless;
7 import javax.ejb.TransactionAttribute;
8
9 @AssociationOverrides(value = {

10 @AssociationOverride(name="ex",
11 joinColumns = @JoinColumn(name="EX_ID")),
12 @AssociationOverride(name="other",
13 joinColumns = @JoinColumn(name="O_ID"))})
14 @NamedQuery(name="findByName",
15 query="SELECT c " +
16 "FROM Country c " +
17 "WHERE c.name = :name")
18 @Stateless
19 public class Example {...
20
21 @TransactionAttribute(SUPPORTS)
22 @DiscriminatorColumn(name = "type", discriminatorType = STRING)
23 public String exampleMethodA(){...}
24
25 @TransactionAttribute(SUPPORTS)
26 public String exampleMethodB(){...}
27
28 @TransactionAttribute(SUPPORTS)
29 public String exampleMethodC(){...}
30 }

Figure 1. Code for candidate metrics examples.

3.1. Annotations in Class - AC
This metric counts the number of annotations declared on all code elements in a
class, including nested annotations. In our example code, the value of AC is 11.

3.2. Unique Annotations in Class - UAC
While AC counts all annotations, even repeated ones, UAC counts only distinct an-
notations. Two annotations are equal if they have the same name and all attributes
match. For instance, the annotation @AssociationOverride on line 10 is different

74



from the one on line 12, for they have a nested annotation @JoinColumn that have
different attributes. The first is "EX_ID" while the latter is "O_ID". Hence they
are distinct annotations and will be computed separately. The UAC value for the
example class is 9. Notice that the annotation on line 21, 25 and 28 are calculated
only once for they are equal.

3.3. Annotations Schemas in Class - ASC

An annotation schema represents a set of related annotations provided by a frame-
work or tool. This metric measures how coupled a class is to a specific frame-
work since different schemas on a class imply different frameworks are being used
by the application. The ASniffer measures this value by tracking the imports
used for the annotations. On the example code, the ASC value is 2. The im-
port javax.persistence which is a schema provided by the JPA, and the import
javax.ejb provided by EJB.

3.4. Attributes in Annotations - AA

Annotations may contain attributes. They can be a string, integer or even another
annotation. The AA metric counts the number of attributes contained in the an-
notation. For each annotation in the class, an AA value will be generated. For
example, on line 9 the @AssociationOverrides has only one attribute "value", so
the AA is 1. But @AssociationOverride, on line 10, contains two attributes, "name"
and "joinColumns", so the AA value is 2.

3.5. Annotations in Element Declaration - AED

The AED metric counts how many annotations are declared in each code ele-
ment, including nested annotations. In the example code, line 23, the method
exampleMethodA has an AED value of 2, it has the @TransactionAttribute and
@DiscriminatorColumn

3.6. Annotation Nesting Level - ANL

Annotations can have other annotations as attributes, which translates into nested
annotations. ANL measures how deep an annotation is nested. The root level, is
considered value 0. So @Stateless on line 18 has ANL = 0, while @JoinColumn on
line 11 has ANL = 2. This is because it has @AssociationOverride, line 10, as a
first level, and then the @AssociationOverrides, line 9, adds another nesting level,
hence the value ANL = 2.

3.7. LOC in Annotation Declaration - LOCAD

LOC (Line of Code), is a well-known metric that counts the number of code
lines [Lanza and Marinescu 2006]. The LOCAD is proposed as a variant
of LOC that counts the number of lines used in an annotation declaration.
@AssociationOverrides on line 9 has the valued LOCAD of 5, while @NamedQuery,
line 14, has LOCAD = 4.

75



4. Historical Analysis of Code Annotation Metrics
According to [Rajlich 2014] software evolution is the constant changes that occurs
during development. During evolution, developers add new features, correct previ-
ous mistakes, adapt to new requirements and new technologies. Software changes
are the basic building blocks of software evolution and they introduce a new feature
or a new property into software. On the other hand, software maintenance is where
programmers no longer executes major changes in the software, but only small re-
pairs to keep the software usable. Software in this stage has been called “legacy
software”, “aging software”, or “software in maintenance”.

In this PhD thesis we are concerned about annotations usage during both
of these stages, since we will analyze from a historical point of view. In short, we
will perform a study on changes that already occurred and how annotations were
used in those changes. For this analysis, repositories play an essential role. These
keep a set of data that represents changes, and through them it becomes possible
to perform a historical analysis on certain characteristics [Sun et al. 2015].

However, mining software repositories and performing numerical analysis on
our metrics is not enough to really comprehend the impact of code annotations on
software maintenance and evolution. As we’ll present additional discussion regarding
our research questions, it becomes clear that they are not trivial. Hence, we need
further investigation. For this purpose, we will also perform a qualitative analysis
on selected projects, to better tackle all proposed research questions.

4.1. Annotation Metrics Extraction

To automate the process of extracting annotation metrics, we developed an open
source and extensible tool called Annotation Sniffer (ASniffer)4. By extensible we
mean that other developers are able to implement their own metrics and integrate
them in the extraction process.

For the historical analysis, we need to collect these metrics values on a per
commit basis. That is, for every commit we will extract the metrics values. Cur-
rently, the tool ASniffer cannot perform the extraction process with this granularity,
so a new tool called ARTHAS (Automatic Recursive Tool for Historical Annotations
Sniffing) is being developed to support this part of the research. ARTHAS is a tool
that combines the core of the ASniffer with the Repodriller5 capabilities to mine
software repository. After the extraction process, a CSV file is generated for every
project being analyzed. With these values available, the research proceeds on to
further investigate how annotations behave from a historical perspective.

4.2. Selected Projects

To perform the analysis, a set of open source projects is required. Since it is unprac-
tical to use all available projects, a sample will be used. The criteria used to select
these will be based on the work of [Nagappan et al. 2013]. This paper introduces
a systematic way of obtaining a set of projects using the concepts of similarity and

4github.com/phillima/asniffer
5github.com/mauricioaniche/repodriller

76



diversity. It first needs to define a group of dimensions, which represents relevant
characteristics of software for the specific problem. Example of dimensions are:
Number of annotated classes, Total Number of LOC (Lines of Code) per class and
so forth. Following this criteria our goal is to update the set of projects selected to
the first part of this PhD thesis [Lima et al. 2018] that already are both diverse and
representative.

4.3. Metrics Evolution
To answer our first RQ lets consider the AC metric for example. For every commit,
ARTHAS outputs an AC value per class. We are interested in observing how the
AC value evolves from the whole project point of view, not just a single class.

It is expected that this value will grow during the software development life
cycle. We want to be able to identify if it stabilizes at some point, if there is a fallback
or if it just keeps on growing for as long as the software is being developed. We also
want to detect if there is a stage during the development where more annotations
are being added/created. For instance, are annotations primarily added during the
initial, middle, or close to a release version of the software?

One reason for this investigation is that, if annotation metrics values just
keeps on growing, then we can conclude that indeed annotations are highly impacting
software maintenance. If, on the other hand, it stabilizes quickly, then it might not
be a top priority in terms of software maintenance.

4.4. Annotation Life Cycle
Our second RQ aims at investigating the annotation life cycle. The goal is to track
what happens to a specific annotation as soon as it is created and used. It is
important to understand the difference between these two. In the first case we want
to investigate if, after an annotation is created, it goes through a refactoring process
and how that affects the code elements using it. In the second case we want to track
what happens to annotations already in use. Do they get deleted? Do they persist
through out the software life-cycle? If they get deleted, what triggered that?

4.5. Refactorings associated to Annotations
The third RQ seeks to understand how code annotations are associated to software
refactoring. This process occurs for several reasons, such as to make code cleaner,
extensible, maintainable, decoupled and so forth. Furthermore, we will pay attention
if annotations was used in the correction of bugs. The following list presents open
questions that we aim to answer with this research.

• To make the code cleaner was annotations added or removed?
• How annotations was used to make the code extensible? Did adding annota-

tions ease the process of making the code extensible? Or was it the opposite?
• During a refactoring process, were more annotations added or removed? Or

were they irrelevant?
• What is the association between code bugs and annotations? Did an anno-

tation introduced a bug? Was annotations used in a solution to correct a
bug?

77



5. Related Work
Since no previous annotation metrics were available, it was hard to perform a com-
parison study. Most works on the literature uses annotations to solve problems,
and not analyze their structure. Some works apply annotations to support the
implementation of design patterns [Meffert 2006] or to enable architectural refac-
toring [Krahn and Rumpe 2006]. A general experimental study about the use of
metadata-based frameworks was done by [Guerra et al. 2010]. This study indicates
that metadata-based frameworks reduce the coupling between the framework and
the application.

As such, the work published on [Lima et al. 2018] is novel, introducing a suite
of annotation metrics and applying a statistical analysis proposed by [Meirelles 2013]
to obtain thresholds values. Combining this with the next steps in this thesis, we
intend to present to the community a deep analysis in code annotations usage.

6. Preliminary Results
Prior to [Lima et al. 2018], there were no suite of metrics dedicated to annotations
and the software engineering community lacked studies that performed an analysis
of code annotations. With the suite of metrics available to the community we hope
other researches evaluate them as well. At this moment, the main contribution of
this PhD has been the release of this suite of metrics.

We also began investigating if projects could be clustered based on annota-
tions usage, and if that had any relationship with the software domain. For this,
a Kohonen Self Organizing Maps was used and the input was the annotation met-
rics values. The results showed a possibility of 4 different clusters. This work was
published on [Lima et al. 2017]

To support our research we developed the ASniffer, an open source extensible
tool. It is available to other developers, and we encourage them to use and contribute
to it. The ASniffer is evolving to a new tool, ARTHAS, that collects annotation
metrics on a commit basis to allow historical analysis. In short, the ARTHAS tool
will be essential to answer the questions presented and discussed in this paper.

References
[Chen 2006] Chen, N. (2006). Convention over configuration.
[Córdoba-Sánchez and de Lara 2016] Córdoba-Sánchez, I. and de Lara, J. (2016). Ann: A

domain-specific language for the effective design and validation of java annotations.
Computer Languages, Systems Structures, 45:164 – 190.

[Damyanov and Holmes 2004] Damyanov, I. and Holmes, N. (2004). Metadata driven code
generation using .net framework. In Proceedings of the 5th international conference
on Computer systems and technologies, pages 1–6. ACM.

[Ernst 2008] Ernst, M. D. (2008). Type annotations specification (jsr 308).
[Fernandes et al. 2010] Fernandes, C., Ribeiro, D., Guerra, E., and Nakao, E. (2010). Xml,

annotations and database: a comparative study of metadata definition strategies for
frameworks. May 19–20, Vila do Conde, page 115.

78



[Guerra 2014] Guerra, E. (2014). Componentes Reutilizáveis em Java com Reflexão e An-
otações. Casa do Código, 1st edition. [in portuguese].

[Guerra et al. 2010] Guerra, E. M., de Souza, J. T., and Fernandes, C. T. (2010). A pattern
language for metadata-based frameworks. In Proceedings of the 16th Conference on
Pattern Languages of Programs, PLoP ’09, pages 3:1–3:29, New York, NY, USA.
ACM.

[Guerra et al. 2009] Guerra, E. M., Silveira, F. F., and Fernandes, C. T. (2009). Ques-
tioning traditional metrics for applications which uses metadata-based frameworks.
In Proceedings of the 3rd Workshop on Assessment of Contemporary Modularization
Techniques (ACoM’09), October, volume 26, pages 35–39.

[Krahn and Rumpe 2006] Krahn, H. and Rumpe, B. (2006). Towards enabling architec-
tural refactorings through source code annotations. Lecture Notes in Informatics,
P-82:203–212.

[Lanza and Marinescu 2006] Lanza, M. and Marinescu, R. (2006). Object-oriented metrics
in practice: using software metrics to characterize, evaluate, and improve the design
of object-oriented systems. Springer.

[Lima et al. 2017] Lima, P., Guerra, E., and Meirelles, P. (2017). Definição de clusters
para classificação do uso de anotações em código java. In 5th Workshop on Software
Visualization, Evolution and Maintenance, VEM at CBSoft’17. [in portuguese].

[Lima et al. 2018] Lima, P., Guerra, E., Meirelles, P., Kanashiro, L., Silva, H., and Silveira,
F. (2018). A metrics suite for code annotation assessment. Journal of Systems and
Software, 137:163 – 183.

[Meffert 2006] Meffert, K. (2006). Supporting design patterns with annotations. In Engi-
neering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE Interna-
tional Symposium and Workshop on, pages 8 pp.–445.

[Meirelles 2013] Meirelles, P. R. M. (2013). Monitoring Source Code Metrics in Free Soft-
ware Projects. PhD thesis, Department of Computer Science – Institute of Mathe-
matics and Statistics of University of São Paulo. [in portuguese].

[Miller and Ragsdale 2004] Miller, J. S. and Ragsdale, S. (2004). The Common Language
Infrastructure Annotated Standard. Addison-Wesley Professional.

[Nagappan et al. 2013] Nagappan, M., Zimmermann, T., and Bird, C. (2013). Diversity
in software engineering research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pages 466–476, New York,
NY, USA. ACM.

[Rajlich 2014] Rajlich, V. (2014). Software evolution and maintenance. In Proceedings of
the on Future of Software Engineering, FOSE 2014, pages 133–144, New York, NY,
USA. ACM.

[Ruby et al. 2009] Ruby, S., Thomas, D., and Hansson, D. (2009). Agile Web Development
with Rails, Third Edition. Pragmatic Bookshelf, 3rd edition.

[Sun et al. 2015] Sun, X., Li, B., Leung, H., Li, B., and Li, Y. (2015). Msr4sm: Using
topic models to effectively mining software repositories for software maintenance tasks.
Information and Software Technology, 66:1 – 12.

79


