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In 1987, recurrence plots were first introduced by Eckmann,
Oliffson-Kamphorst, and Ruelle as a simple graphical tool
to visualize basic dynamical characteristics of time series.1

This present Focus Issue is dedicated to the 30th anniver-
sary of recurrence plots and constitutes a unique collection
of diverse papers on advanced recurrence plots, their exten-
sions and ramifications, as well as their broad applications
and utility. In the last three decades, an analytical framework
based on recurrence plots has been developed, demonstrating
an unanticipated but huge potential stemming from the orig-
inal conceptualizations.2,3 In its brief history, thousands of
recurrence publications over numerous disciplines spanning
these three decades have permeated the scientific literature.
In addition, regular scientific meetings continue to attract and
recruit new members to the “recurrence community” indi-
cating lively growth and expansion into new disciplines of
inquiry. For example, our most recent meeting in Brazil at the
Escola Politénica Universidade De São Paulo (August 23–25,
2017) focused on disciplines of engineering, earth science,
and life and social sciences.

A recurrence plot visualizes the times when the phase
space trajectory of a dynamical system recurs to previous (or
later) states up to a small error (the recurrence threshold).1,2

The recurrence plot is the ground base for quantification of
the recurrence structures, e.g., using recurrence quantifica-
tion analysis4 or recurrence networks.5 Recurrence analysis of
time series can be used to classify different signals or states,
to identify transitions in the dynamics, or even to investi-
gate interrelations, coupling directions, and synchronization
between different time series.

A fundamental parameter in recurrence analysis is the
recurrence threshold. When considering systems with chang-
ing dynamics, the threshold selection deserves special atten-
tion. Kraemer et al. discuss the effect of time-delay embed-
ding and the consequences for threshold selection.6 Prado
et al. suggest an approach of optimizing the selection of the
threshold in order to better find regime transitions in non-
stationary systems or to infer coupling between dynamical
systems.7 As for any time series analysis, recurrence-based
methods are also affected by certain challenges, such as noisy
data or time series with irregular sampling. For the latter,
Lekscha and Donner show how to use Legendre polynoms for

reconstructing the phase space trajectory, which is then used
for the recurrence analysis.8 Wendi and Marwan reconsider
an alternative criterion of recurrence9 and extend it for noisy
data; moreover, some of the basic elements of recurrence
quantification analysis are redefined in order to overcome the
challenges with noise.10 Further challenges are related to spe-
cial use cases, such as analyzing spatial data, event data, and
discourses. These challenges are solved by a combination
of complex networks and recurrences that allow for investi-
gating spatial data,11 introducing a new windowing concept
for recurrence analysis,12 and extending the conceptual recur-
rence quantification analysis for the discourse data.13 All these
new developments emphasize the applicability of the recur-
rence approach. The potentials of this approach are also best
demonstrated by prototypical examples and selected physical
problems. Ramdani et al. apply recurrence analysis to inves-
tigate the correlation structure of stochastic processes, such
as fractional Gaussian noise;14 Santos et al. study the regime
changes in the standard nontwist map;15 and Lameu et al. use
recurrence analysis to identify chaotic burst phase synchro-
nization in networks.16 Moreover, recurrence plots contain
enough information about time series that they can be used for
nonparametric inferential statistics, as worked out by Wallot
and Leonardi.17

The recurrence plot framework can be applied to diverse
research questions in various scientific disciplines. The col-
lection of studies in this Focus Issue gives an overview
about this. By using recurrence quantification analysis as test
statistics in surrogate data tests, the hypothesis that musi-
cal compositions arose from a Markov chain is tested.18

Recurrence analysis is further used to identify events, regime
transitions, and bifurcations, such as in social media streams
(concept drifts in Twitter sentiments),19 in the nonlinear mag-
netospheric dynamics of the earth’s magnetosphere (magnetic
storms),20 in electrochemical systems (corrosion processes),21

in the cardiovascular system to detect physiological stress,22

and in polysomnography data for sleep-wake detection.23

Applications of recurrence plots in medicine have a long
tradition and were one of the drivers of certain develop-
ments, e.g., leading to the recurrence quantification anal-
ysis. Therefore, there is no surprise that recurrence plot
methods are widely applied for different medical purposes: to
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identify certain physiological or pathological states, e.g.,
voice disorder,24 atrial fibrillation,25 or patients’ response to
ventilator treatment;26 to analyze the quality of surgeons using
dual eye tracking;27 or to classify certain states, e.g., for
an emotion recognition system,28 or to distinguish between
mental fatigue and normal mental state (interesting for brain-
computer interfaces).29 Further applications presented here
and completing the disciplines refer to the detection of unsta-
ble periodic orbits in mineralizing geological systems30 and
to investigate the coupling between the Pacific and the trop-
ical North Atlantic by an atmosphere-land bridge (via the
Amazonian).31 The diversity of topics in general and in this
Focus Issue speaks to the wide applicability of recurrence
plots across many disciplines of inquiry.

In summary, from their very outset 30 years ago, recur-
rence plots are not only beautiful to look at (art) but also
contain hidden quantitative details that report on dynamical
subtleties (science). The ability to embed vector inputs from
the temporal and spatial domains into higher dimensional
spaces teases out numerical descriptors that have amazing
utility in diagnosing real-world dynamics. As evidenced by all
the unique contributions to this Focus Issue, recurrence plots
and their quantifications are powerful nonlinear tools whose
applications run circles around classical linear methodologies.
Researchers not familiar with recurrence plots are encouraged
to apply this approach to their system of choice. The hope
is that new generations of scientists will catch the vision and
contribute creatively to the field. Indeed, there seems to be no
limit to the type of dynamic that can be viewed from this per-
spective. In short, recurrence plots are here to stay. Indeed, we
are all indebted to Eckmann, Oliffson-Kamphorst, and Ruelle
for their astounding contribution and key insights from so
many years ago.1
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