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In this work, we apply the spatial recurrence quantification analysis (RQA) to identify chaotic burst
phase synchronisation in networks. We consider one neural network with small-world topology and
another one composed of small-world subnetworks. The neuron dynamics is described by the Rulkov
map, which is a two-dimensional map that has been used to model chaotic bursting neurons. We
show that with the use of spatial RQA, it is possible to identify groups of synchronised neurons
and determine their size. For the single network, we obtain an analytical expression for the spatial
recurrence rate using a Gaussian approximation. In clustered networks, the spatial RQA allows the
identification of phase synchronisation among neurons within and between the subnetworks. Our
results imply that RQA can serve as a useful tool for studying phase synchronisation even in networks
of networks. Published by AIP Publishing. https://doi.org/10.1063/1.5024324

One of the most relevant phenomena observed in vari-
ous coupled systems is synchronisation. There are experi-
mental evidences of synchronisation, e.g., in power grids,
electronic circuits, and neural networks. With this in
mind, we investigate methods for identifying synchronous
behaviour in coupled systems with burst dynamics. Burst
is a dynamic behaviour where signals are fired with high
frequency. We build a network composed of bursting neu-
rons by means of coupled Rulkov maps not only in single
networks but also in a network of networks which mimics
better the brain topology. The study of neural synchroni-
sation is important due to the fact that it can be related not
only to memory processes but also to pathological condi-
tions, where abnormal neural synchronisation can lead to
neurological disorders. Recurrence quantification analysis
(RQA) is a method of nonlinear data analysis that has been
used to investigate dynamical systems. We show that RQA
can be used successfully as a diagnostic tool to study the
transition to synchronisation in neural bursting networks.

I. INTRODUCTION

Neural synchronisation has been observed during dif-
ferent tasks, at rest, and within different frequency bands.1

Womelsdorf et al.2 suggested that synchronisation has rel-
evant consequences for neural interactions, contributing to

cognitive functions. Nevertheless, synchronous behaviour in
the brain is also related to neurological disorders.3 Motor
symptoms of Parkinson’s disease are associated with synchro-
nised oscillatory activity in some parts of the brain.4 Similarly,
epileptic seizures are related to abnormal synchronised firing
of neurons.5

In this work, we study synchronisation in neural networks
of coupled Rulkov maps. We consider two cases: the first is
a single small-world network and the second is a network
of networks6,7 which mimics better the brain topology. The
Rulkov map8 is a two-dimensional iterated map developed to
model neurons with burst dynamics. We analyse a topology
according to small-world property because it exhibits high
levels of clustering and short path lengths.9 There are many
reports about the existence of small-world brain functional
networks.10,11 Lameu et al.12 observed bursts synchronisation
in the cat cerebral cortex modelled by means of coupled small-
world networks of Rulkov neurons. They also studied the
effects of perturbations on the cat cerebral cortex to suppress
burst synchronisation.13

We apply RQA as a very efficient alternative method to
identify phase synchronisation in the two networks consid-
ered here. The RQA was developed in the late 1980s.14 Santos
et al. used RQA to identify chimera states and chimera col-
lapse in coupled dynamical systems15 and neural network.16

Recurrence plots have been used as a numerical tool to study

1054-1500/2018/28(8)/085701/8/$30.00 28, 085701-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5024324
https://doi.org/10.1063/1.5024324
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5024324&domain=pdf&date_stamp=2018-08-21


085701-2 Lameu et al. Chaos 28, 085701 (2018)

time series of dynamical systems.17 The recurrence matrix is
obtained by comparing distances between different points on
a trajectory in the phase space. If the distance is smaller than
a specific threshold, the corresponding points are considered
to be recurrent and the corresponding matrix element is set to
one (otherwise it is zero). For example, recurrence plots show
whether a system possesses periodic, chaotic, or stochastic
behaviour. Vasconcelos et al.18 applied an extension of the
usual recurrence concept to study spatial disorder in a net-
work at a fixed time. They applied the laminarity and trapping
length19 concepts to observe synchronisation in a lattice of
logistic maps. In this work, our main intention is to show that
a new measure inspired by laminarity, we call as laminarity
inspired, and recurrence rate can be used as diagnostic tools
of neural phase synchronisation.

This paper is organised as follows: Sec. II introduces the
Rulkov map. Section III defines the order parameter and the
spatial recurrence quantification analysis. In Sec. IV, we apply
the spatial RQA to a neural network with small-world prop-
erties to identify neural phase synchronisation. In Sec. V, we
use the collective dynamics measurement in a network of net-
works, where the subnetworks have small-world properties.
Section VI concludes the article.

II. BURSTING NEURAL MODEL

The model proposed by Rulkov8 is a model for a neuron
generating spiking and bursting activity, and it is given by the
two-dimensional iterated map

xn+1 = α

1 + x2
n

+ yn,

yn+1 = yn − σxn − β,
(1)

where n is the discrete time, xn is the fast dynamical vari-
able that represents the membrane potential, and yn is the
slow dynamical variable. The nonlinearity parameter α is
responsible for the spiking timescale, and the small param-
eters σ and β describe the slow timescale. In our simulations,
we consider σ = β = 0.001, α uniformly distributed in the
interval [4.1, 4.4], resulting in non-identical neurons, and ini-
tial conditions x0 and y0 randomly distributed in the interval
[−1, 1].

In Figs. 1(a) and 1(b), we see that the time evolution of
xn and yn exhibits bursts and regular saw-tooth oscillations,
respectively. A burst starts when yn has a local maximum in a
well-defined instant of time nk . The time interval of a burst is
given by nk+1 − nk (Fig. 1). We can associate the phase with
the time evolution of the bursts,

φn = 2π
n − nk

nk+1 − nk
, (2)

where k is an integer.

III. COLLECTIVE DYNAMICS MEASUREMENT

A. Order parameter

Synchronisation20,21 can be measured by the Kuramoto
order parameter,22 applied in different kinds of synchronous
behaviours, such as power-grids,23–25 Hamiltonian systems,26

FIG. 1. Time evolution n of the (a) fast xn and (b) slow yn variables in the
Rulkov map, where nk denotes when the neural burst starts.

and neural networks.27 The order parameter is defined as

rnei�n = 1

N

N∑

i=1

eiφ(i)
n , (3)

where rn and �n are the amplitude and the angle of a cen-
troid phase vector, respectively, and N (i = 1, 2, . . . , N) is the
total number of neurons. The amplitude of rn ranges from 0
to 1. For desynchronised phases, one finds rn � 1, namely,
the phases of the bursts are out of synchrony. When rn = 1,
all phases are identical, i.e., the bursts are synchronised. We
calculate the Kuramoto order parameter in order to com-
pare with RQA and to show that RQA provides substantial
complementary information, such as patterns of synchronised
structures.

B. Recurrence quantification analysis

The recurrence concept was presented by Eckmann
et al.17 through the recurrence plot (RP) of dynamical sys-
tems. Zbilut and Webber28 introduced recurrence quantifi-
cation analysis (RQA) which14 has been used as a tool for
the study of many nonlinear dynamical systems, e.g., the
exploration of cardiac signals29 or electrostatic fluctuations
in fusion plasma.30 We identify neural phase synchronisation
by means of methods based on spatial recurrence rate and
laminarity inspired.

The spatial recurrence rate RR is defined as

RRn = 1

N2

N∑

i,j=1

Ri,j(n), (4)

where n corresponds to the time and the Ri,j(n) is the N × N
recurrence matrix at time n. Ri,j(n) is given by

Ri,j(n) = �(l − |φ(i)
n − φ(j)

n |), (5)

where l is the threshold distance, �(·) is the Heaviside func-
tion, and φ

(j)
n is the phase of neuron j at time n. The nonzero

elements of the spatial recurrence matrix Ri,j(n) at a given
time n represent recurrent phases, namely, the pairs of neurons
which have phase differences smaller than the threshold l.
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In our approach, RRn varies in the interval [0, 1] and gives
information about the proportion of synchronised pairs of
neurons in the network. We are also interested in verify-
ing whether pairs of synchronised neurons are isolated or
organised in groups. To do that, we use the laminarity inspired

Ln =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

, (6)

where P(v) is the number of columns in Ri,j(n) with exactly v
nonzero elements, normalised by N . The laminarity inspired
(Ln) is the ratio between the number of oscillator pairs belong-
ing to synchronised groups of size v ≥ vmin and the total
number of synchronised pairs [points in Ri,j(n)]. We choose
vmin = lN/2, while a more detailed explanation for this choice
will be given in Sec. IV B. Through the RP, we also calculate
the average size of the structures S,

Sn =
∑N

v=vmin
vP(v)

N
∑N

v=vmin
P(v)

. (7)

IV. SMALL-WORLD NETWORK

A. Numerical results

Coupled dynamical systems have been used to describe
behaviours of neural networks. There are experimental evi-
dences that some anatomical connections in the brain have
small-world properties.10,11 We consider a small-world topol-
ogy formulated by Newman and Watts,31 where a regular

network with periodic boundary conditions [Fig. 2(a)] is
transformed into a small-world network [Fig. 2(b)] adding
shortcuts. Figure 2(c) shows the adjacency matrix for such
a network with N = 200 neurons, where the black points
indicate the pairs of connected neurons. All neurons are con-
nected locally with the first two neighbours [Fig. 2(a)], and
then shortcuts are randomly chosen with probability p = 0.1
[Fig. 2(b)].

We consider a mean-field coupling among the connected
neurons,

x(i)
n+1 = α(i)

1 + (x(i)
n )2

+ y(i)
n + ε

k(i)

∑

j∈I

x(j)
n ,

y(i)
n+1 = y(i)

n − σx(i)
n − β,

(8)

where ε is the coupling strength and each neuron i is coupled
with a set I comprising k(i) other neurons in the network with
N neurons.

Figures 3(a)–3(c) show the spatial RPs for ε = 0,
ε = 0.03, and ε = 0.1, respectively, at the time n = 150 000.
Considering l = 0.1 and increasing the ε value, the number
of black dots and vertical structures in the RP increases due
to the phase synchronisation among the neurons. In the corre-
sponding figures, increasing ε, the phase distribution changes
from a uniform [Fig. 3(d)] to a unimodal distribution with a
decreasing standard deviation [see Figs. 3(e) and 3(f)]. The
solid line in Figs. 3(d)–3(f) shows a fit of the phase distribu-
tions to a Gaussian one. The possibility of a good fit of the

FIG. 2. Schematic representations of
(a) regular and (b) small-world networks.
(c) The adjacency matrix of our network
with small-world properties, where the
black points indicate the pairs of con-
nected neurons.
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data by a Gaussian distribution allows for an analytical study
of r and RR, as described in Sec. IV B.

We also calculate the time evolution of the quantities
rn, RRn, Ln, and Sn for ε = 0, ε = 0.03, and ε = 0.1, as
shown in Figs. 3(g)–3(i), respectively. For the uncoupled neu-
rons (ε = 0), all the RQA measurements have small values,
showing no synchronous behaviour, and in accordance with
the small rn values. For ε = 0.03, RRn exhibits that about
15% of the neuron pairs are recurrent, and the increasing of
Ln indicates that more than 80% of them are part of a syn-
chronised group of neurons. However, as shown by Sn, the
sizes of these groups are small and oscillate around 0.15.
Therefore, for ε = 0.03 and l = 0.1, through the RQA, it is
possible to observe the presence of a large amount of small
synchronised neural groups. The rn also display synchroni-
sation in the network, but it does not give any information
about synchronised groups. Increasing ε to 0.1, rn and Ln

have values near unity due to the wide-spread synchroni-
sation. The values of RRn and Sn also increase showing
that there are more synchronised pairs of neurons and larger
groups.

In Fig. 4, we calculate the time average of the collec-
tive dynamics measurements as a function of ε for different
l values, where we consider a time window equal to 50 000
iterations. Figure 4(a) exhibits the dependence of RR on l and
gives us an average proportion of synchronised pairs of neu-
rons for a ε value. l provides us a way to adjust the RQA to
identify synchronised and desynchronised behaviours. We see
that L has almost the same behaviour for different l values,
which occurs because the vmin changes with l [Fig. 4(b)]. For
S, we observe that for larger l more recurrent points are com-
puted, and as a consequence larger groups of synchronised
neurons can be identified.

We also calculate the probability distribution of S,
namely, the probabilities of occurrence of different possible
average structure sizes in the spatial RP. Figure 5 displays
ε versus S, where the colour bar represents the probabil-
ity distribution P(S). Considering l = 0.1, small structures
are found for ε < 0.025, while larger groups are observed
for ε > 0.15. For each ε value, there is an S interval with
P(S) > 0, namely, it is possible to find different average
sizes.

FIG. 3. RPs for N = 200, p = 0.1, l = 0.1, (a) ε = 0, (b) ε = 0.03, and (c) ε = 0.1. Panels (d), (e), and (f) show the respective φ distributions. In panels
(g), (h), and (i), we calculate the respective collective dynamics measurements: rn (black), RRn (red), Ln (green), and Sn (blue).
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FIG. 4. (a) r and RR as a function of ε for l = 0.1 (red), l = 0.3 (green), and
l = 0.5 (blue). (b) L and S as a function of ε for different l values.

The values of L and S are independent of the reordering
of the nodes. This occurs due to the fact that the vertical struc-
tures are calculated considering only the amount of non-zero
elements in each column, i.e., we do not take into account the
gaps between them (the zero elements).

FIG. 5. ε × S for l = 0.1, where the colour bar corresponds to size probability
P(S).

B. Analytical estimations of spatial recurrence rate for
normally distributed phases

As numerics in Figs. 3(d)–3(f) indicates the phase dis-
tributions for the single small-world network for different
couplings can be approximated with a normal distribution.
Therefore, let us assume that the oscillator phases are dis-
tributed accordingly to a circular normal (von Mises) distri-
bution

ρκ(φ) = 1

2π I0(κ)
exp[κ cos(φ − μ)], (9)

where I0(κ) is the modified Bessel function of order 0, μ is the
mean, which we assume to be zero without loss of generality,
and κ is the parameter measuring the degree of synchronisa-
tion. The order parameter corresponding to the distribution (9)
can be computed as32

r(κ) =
∫ 2π

0
eiφρκ(φ)dφ = I1(κ)

I0(κ)
. (10)

Similarly, the spatial recurrence rate, i.e., the number of oscil-
lator pairs, which possesses the phase difference smaller than
l, can also be computed analytically as

RR(l, κ) =
∫ 2π

0

∫ l

−l
ρκ(φ)ρκ(φ + η)dηdφ

= 2

π I2
0 (κ)

∫ l/2

0
I0 (2κ cos η) dη. (11)

Figure 6(a) illustrates the behaviour of r(κ) and RR(κ) given
by expressions (10) and (11) for different values of the thresh-
old l. Figure 6(b) shows a comparison of the numerical and
theoretical dependence of RR on r. In the graph, the cou-
pling parameter ε acts as a parametrisation of the numerical
results and the parameter κ of the von Mises distribution for
the theoretical results. The reason for the good agreement
between analytical and numerical results can be explained
by the fact that the phase distributions are normal to a good
approximation. A similar situation was previously observed
in oscillatory neural networks with spike timing-dependent
plasticity.33

We remark that without coupling κ = 0, the recurrence
rate is RR(l, 0) = l/π , which, in particular, implies that the
phase of an oscillator will be closer than l with v̄ = Nl/π other
oscillators (expected value). As a result, in order to avoid cal-
culating such a “spurious” synchronisation in the laminarity
inspired coefficient (6), we choose the threshold vmin = Nl/2,
which is larger than v̄, but still linearly proportional to l and N .

V. NETWORK OF NETWORKS

To better mimic the brain structure, we build a network
of networks consisting of four coupled small-world subnet-
works, where each subnetwork has 100 neurons (N = 400).
Figure 7 shows the adjacency matrix (pairs of connected neu-
rons in black points) for the coupled small-world networks,



085701-6 Lameu et al. Chaos 28, 085701 (2018)

FIG. 6. (a) Analytical order parameter and spatial recurrence rate versus κ for
the random phases distributed according to the circular normal distribution
[Eq. (9)] for different threshold values l. (b) Comparison of the numerical
results with the theoretical for normally distributed phases. Spatial recur-
rence rate versus order parameter are shown for three different values of the
threshold l. Lines are theoretical values and points correspond to numerical
results.

where there are (intra) connections between neurons inside the
small-world subnetwork and (inter) connections between neu-
rons located in different subnetworks. We consider the proba-
bility of connections between neurons in the same subnetwork

FIG. 7. Adjacency matrix of the network with four coupled small-world
subnetworks for pintra = 0.5 and pinter = 0.005.

FIG. 8. (a) r and RR as a function of ε for l = 0.1 (red), l = 0.3 (green), and
l = 0.5 (blue). (b) L and S as a function of ε for different l values.

to be pintra = 0.5 and between different subnetworks pinter =
0.005.

Figure 8 shows the collective dynamics measurements for
our clustered network. This network exhibits phase synchro-
nisation due to the fact that r goes to values about 1 [Fig. 8(a)].
We also verify that RR varies for different l [Fig. 8(a)] and it
behaves like S [Fig. 8(b)]. The values of L follow approxi-
mately the same curves for different l, due to the fact that vmin

changes with l.

FIG. 9. Probability P of finding a cluster of size S depending on the coupling
strength ε and size S for l = 0.1.
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According to Fig. 9, for l = 0.1, there are only groups
of small size of synchronised neurons for ε < 0.025. Similar
results were obtained for one network, as it is shown in Fig. 5.
However, when ε is increased, for ε > 0.15, we find larger
synchronised groups. P(S) has significant values for S equal
to 0.25, 0.5, 0.75, and 1, which are related to synchronised
groups with the sizes 100, 200, 300, and 400, respectively. We
can associate these values with the synchronisation inside and
between the subnetworks. There are experimental evidences
that phase synchronisation occurs between separated regions
of the brain.34 Phase synchronisation between brain regions
plays an important role in understanding memory processes.35

VI. CONCLUSIONS

We have considered two types of neural networks com-
posed of coupled Rulkov neurons: (i) small-world network
and (ii) coupled small-world subnetworks. When the coupling
strength was increased, we observed neural phase synchroni-
sation of bursts. Depending on the coupling strength value, the
clustered network can exhibit a coexistence of synchronous
and desynchronous behaviours.

For the single small-world network, we verify that RR
depends on l and increases, similar to S, when ε increases.
During the transition to synchronisation, the phase distribu-
tions are shown to be close to circular normal distribution.
This allows one to obtain certain analytical estimations of
the dependence of the spatial recurrence rate on the order
parameter. Close to synchronisation, for larger ε, the values
P(S) indicate the appearance of larger synchronous groups of
neurons.

We show that RQA can be also used for the identification
of phase synchronisation in network of networks. Consider-
ing a network with four coupled small-world subnetworks,
we observe that the size probability P(S) displays four max-
ima for larger values of ε, and these maxima can be related to
synchronisation among the subnetworks.

In summary, RQA can be used as an efficient tool to
study the transition to phase synchronisation in networks. In
this article, we showed that RQA can be applied also for the
analysis of synchronisation in networks composed of burst-
ing elements. We believe that similar observations can appear
for other models, since a phase can be associated with oscilla-
tory behaviours. For instance, the spatial recurrence rate was
used to identify chimera-like states in a network composed of
coupled Hindmarsh-Rose neurons.16 More studies consider-
ing other models are necessary in order to extend the observed
results to larger classes of systems.

In future works, we plan to use RQA to identify neural
phase synchronisation in network of networks considering the
structural connection matrix of the human brain. We also plan
to investigate synchronisation by means of RQA in networks
with neural plasticity, due to the fact that RQA allows one to
find not only synchronous behaviours but also synchronised
structures.
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