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•  Scientific computing and Inverse problems 

•  Data science and data assimilation:  

  New method: based on neural network 

•  Atmospheric turbulence parameterization:  

  Some results: Taylor’s approach for turbulence in clouds 

                       New model for convective boundary layer growth  

                       Cosmological evolution as turbulent-like dynamics 



	Applications: space weather	

Sun-Earth interaction: 

Sun                   Propagation         Impact on             Perturbing 
activity                                          magnetosphere     ionosphere 



		Applications: space weather	
SAA: South Atlantic Anomaly 

Figures from the wikipedia 



	Applications: space weather	

Predic0on	24	h:		

SUPIM	model	

TEC:	Total	Electronic	
Content	



	SUPIM: Space weather prediction	



	SUPIM: Space weather prediction	

n  7, 13, 19 UT: March 19th, 2011 



	SUPIM: Space weather prediction	

n  7, 13, 19 UT: June 19th, 2011 



	SUPIM: Space weather prediction	

n  7, 13, 19 UT: December 19th, 2011 



	Atmospheric	turbulence	modeling	

n  Planetary	boundary	layer	representaBon	

¨ ApplicaBon	to	the	atmospheric	numerical	models	
¨ ApplicaBon	to	the	turbulence	inside	the	clouds	
¨ TransiBon	boundary	layers	parameterizaBon	
¨  IntermiGency	parameterizaBon	
¨ Cosmological	evoluBon:	turbulent	dynamics?		





Sketch of physical processes on the atmospheric boundary layer 
(cartoon extract from Stull’s book) 

Degrazia, Campos Velho, Carvalho  (1997), BzPA 

Degrazia-Moraes (1992), BLM 

Almeida et al (2006): Atmospheric Research 

Degrazia et al. (2003): BLM 
Degrazia et al. (2002): N. Cimento 

???? 

Nunes et al (2010) 



Applica0on	of	G.	I.	Taylor	theory	on	PBL	
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Brazilian Regional Atmospheric Model System – BRAMS 
 
 
An atmospheric model able for simulating several types of the 
atmospheric flows, from large scale circulations up to microscale. 
 
Starting its development at 70’s:  
 
       Mesoscale model (Pielke,1974)  
       Model of clouds (Trípoli e Cotton, 1982) 
 
RAMS first version (1986) ⇒  Department of Atmospheric Sciences 
                                                Colorado State University 



ABRACOS 

REBIO-Jaru 









B-RAMS is a free software  
    http://brams.cptec.inpe.br 



Networking	BRAMS,	CCATT-BRAMS,	RAMS	



 

BRAMS:	Atmospheric	simulaBon	model	
Chemical	process		

 
 

		BRAMS:	represented	processes		
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From: S. R. Freitas, CPTEC/INPE 



      BRAMS environmental prediction 
Pollutant  emission by forest 
fires and urban-industries 

Regional scale 

Large scale 

Mega-cities 



		BRAMS	–	research	in	progress	…	
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From: S. R. Freitas, CPTEC/INPE 



      BRAMS 5.2 (new version)  
    Air quality and weather prediction 



		BRAMS	–	New	version	5.2	
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From: S. R. Freitas, CPTEC/INPE 



	Turbulence closure problem	
Mathematical equations 
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Smagorinsky (1963) – (Hill, 1974) 

csz  tunning parameter  
∆z  vertical grid space 

|Dh|  norm of the horizontal deformation tensor 



	Turbulence closure problem	
First order closure 
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	Turbulence closure problem	
Second order closure 
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	Turbulence closure problem	
Second order closure 



	Turbulence closure problem	
Second order closure 



	Turbulence closure problem	
Second order closure 



Sm e Sh are turbulent diffusivities  
Se = 0.20,    and   l  is mixing length 

κ  Is the Von Karman constant,  z0  is rugosity 

Mellor-Yamada (1982)  

Taylor 

































Sensible heat 



 

   First order closure and counter-gradient: 
 
 
 
 
 
Cuijpers e Holtslag (1998):     From Taylor’s theory: 

		Counter	gradient	parameteriza0on	
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		Why	do	we	need	a	counter	gradient	term?		
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Heat flux × height: 
 

1. On the top of PBL: counter  
    gradient appears 
 

2. Only second order closure  
    can present this. 
 

3. The idea: add a term for  
   representing the counter  
   gradient for the first order 
   closure. 



 

   Taylor vs. Taylor-CG 
 

    (Farm, Abracos) Radiation: (a) short wave, (b) long wave 
 
 
 
 

		Counter	gradient	in	BRAMS	
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   Taylor vs. Taylor-CG 
 

    (Farm, Abracos) Radiation: (a) short wave, (b) long wave 
 
 
 
 

		Counter	gradient	in	BRAMS	
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   Taylor vs. Taylor-CG 
 

   (ReBio-Jaru) Radiation: (a) short wave, (b) long wave 
 
 
 
 

		Counter	gradient	in	BRAMS	
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   Taylor  vs.  Taylor-CG 
 

   (Farm, Abracos) Potential temperature 
 
 
 
 

		Counter	gradient	in	BRAMS	
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   Taylor  vs.  Taylor-CG 
 

   (ReBio-Jaru) Potential temperature 
 
 
 
 

		Counter	gradient	in	BRAMS	
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PBL parameterization for new numerical schemes  





Il Nuovo Cimento C, Vol. 26, Issue 01, p. 39-51 (2003).  



Modeling for residual boundary layer (RL) 

The decay of energy-containing eddies in the CBL is the physical  
mechanism that can maintain the dispersion process in the RL.  
 

Homogeneous isotropic turbulence, when buoyant and shear  
production terms are not important, satisfies the following energy  
transfer relation: 
 
 
 
 
 

k: the wavenumber; 
E(k,t): 3D energy density spectrum function (EDS);  
W(k,t): the energy-transfer-spectrum function (contribution due to 
            the inertial transfer of energy among different wavenumbers)  
viscous dissipation: second term on the r.h.s.. 
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Considering  frequency instead of wavenumber, the energy spectra 
is written as 
 
 
 
 
 

where: n = kU/2π ;  and  U: mean wind speed; 
             T(k,t) = W(k,t)2π /U ; S(k,t) = E(k,t)2π /U . 
 
Using the Heisenberg’s assumption, where the mechanism of inertial  
transfer of energy from large to small eddies is given in terms of an  
additional eddy viscosity, called kinematic turbulence viscosity (KTV):  
 
 
 
 
 
νT: kinematic turbulence viscosity caused by the eddies with frequency  
      ranging from  n  to infinity. 
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The following assumption is taken into account: 
 
 
 
 

where: ne: characteristic frequency in the energy-containing subrange; 
            nI: characteristic frequency in the inertial subrange; 
            nd: characteristic frequency in the dissipation subrange; 
are considered statistically independent. 
 
νT  can be calculated directly from Taylor’s statistical diffusion theory  
for large travel times τ → ∞ (Hanna, 1981; Weil, 1989) as: 
 
 
 
 
 
where:          is the turbulent velocity variance in the inertial subrange.  
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Therefore, the evolution equation for the spectra can be presented: 
 
 
 
 
being S0(n) = S(n, t=0). 
 
As the energy-containing spectral range is characterized by ne , a similar 
equation of that expressed for νT can be written for eddy diffusivity: 
 
 
 
 
where 
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Comparison νT: Taylor’s theory x Heisemberg’s model 
 
 

3D spectra in the inertial subrange:  
 
 
 
 
 
where                                                 By setting:  
 
                             
 
 
 

an expression for KTV can be derived: 
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Dimensional analysis yields:  
 
 
 
 
 
where CH ~ 0.47  is the Heisenberg’s spectral transfer constant. In the 
inertial subrange:  
 
                             
 

an expression for KTV can be obtained: 
 
 
 
or using                      : 
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Derivation of a One-Dimensional KTV and Kz in the RL:  
 
 

Vertical spectrum in the inertial subrange (Kaimal et al., 1976):  
 
 
 
 
 

where                                                                                    By setting:  
 
                             
 
 
 

an expression for KTV can be derived: 
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For CBL the vertical spectrum is given by (Degrazia et al., 1997):  
 
 
 
 
 
 
 
 

where               is convective spectral peak. Since the spectral peak for  
the vertical component can be approximated:  
 
                             
 
 

the vertical spectrum becomes: 
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For vertical wind component aw ≈ 1.8, and  
 
 
 
 

where                                                                                   Using the relation  
 
 
 
 

the condition nI << ne is verified that the inertial subrange is statistically 
Independent of the subrange energy-containing eddies. Hence, KTV: 
 
 
 
Considering typical values for CBL:   
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Integrating the time-dependent spectrum equation: 
 
 
 
 
 
 
where                       Fig. 1 shows the vertical velocity variance averaged 
 

across the boundary layer and normalized by  
 
The expression for the decaying vertical eddy diffusivity results 
 
 
 
 
 
 
Figure 2 shows the temporal evolution for Kzz(z,t). 

( )[ ]
( )( )

∫
+

−
=

∞

−18.1
35

*
2

2
*

352  
7.21
16.0exp

76.0),(
wq

k
kw

k
ww df

fq
htwfwqtzσ

.Unhfk =

.  offunction  a as  2
* htww *

( )[ ]
( )( )

21

8.1
35

*
2

611

* 1
 

7.21
16.0exp

15.0),(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫

+

−
=

∞

−
wq

k
kw

k
w

zz df
fq

htwfq
hw

tzK



Figure 1: Temporal of the evolution vertical velocity variance.  
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Figure 2: Temporal evolution of the vertical profiles of normalized  
                RL eddy diffusivity.   
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Algebraic approximation for Kzz(z,t) in the RL:  
 
 

Based on the Nieuwstadt-Brost (1986) study, integral form to the vertical  
eddy diffusivity can be approximated by a simple algebraic formula  
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Algebraic approximation for Kzz(z,t) in the RL:  
 
 

Based on the Nieuwstadt-Brost (1986) study, integral form to the vertical  
eddy diffusivity can be approximated by a simple algebraic formula  
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Figure 3: Vertical eddy diffusivity calculated from eqs.(21), (integral,  
                solid line) and (23) (algebraic, dot line). The profiles are  
                evaluated at five different times: t = 0, 1, 3, 6, and 10 hours.  
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From the spectral evolution equation 
 
 
 
 
E(k,t): 3D energy density spectrum function (EDS);  
W(k,t): the energy-transfer-spectrum function (contribution due to 
            the inertial transfer of energy among different wavenumbers)  
M(k,t): mechanical production term (≈ 0); 
H(k,t): thermal production term; 
viscous dissipation: second term on the r.h.s.. 
 
As before:  
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Therefore the spectral evolution equation becomes 
 
 
 
 
Using the Laplace transform, where                                               the 
 

following operational equation is obtained 
 
 
 
 

with analytical inverse Laplace transform:  
 
 
 
 
for t → ∞ the asimptotic expression for the spectrum is 
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The spectral model from Kristensen et al. (1989): 
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Results for the analytical model: 
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LES for simulating the CBL growing 
 
 
 Acronym Turbulence type Hs (Kms-1) Time of the profile 

(after QSS) (h) 
Period of the stage 

(after QSS) (h) 

CBL1 Fully developed CBL 0.24 0.45 0 to 1.09 

DEC1 Starting the decay 0.16 1.73 1.09 to 1.73 

DEC2 Decaying 0.08 2.37 1.73 to 2.37 

NEU Neutral stage 0.00 3.65 2.37 to 4.94 

GRO1 Starting the growth 0.08 5.58 4.94 to 5.58 

GRO2 Growing 0.16 6.28 5.58 to 6.28 

CBL2 Fully developed CBL 0.24 6.91 6.28 to 8.14 



LES for simulating the CBL growing 
 
(a) u-component of the wind                            (b) Total kinetic energy 
 
 



LES versus analytical CBL growing: 
 
Time evolution of the TKE 
 
 



LES versus analytical CBL growing: 
 
Time evolution of the TKE 
 
 



LES versus analytical CBL growing: 
 
Time evolution of the TKE 
 
 





Taylor’s theory can also be applied for turbulence parameterization in the cloud  
dynamics problems. The method is illustrated for the turbulent transport in the  
stratocummulus-topped boundary-layer. 
 

Meteorologists have given a great emphasis to the study of marine stratocumulus  
clouds formed in subtropical latitudes during summer. First of all, stratocumulus  
formation is a very common phenomenon. This type of clouds is often present in  
great extensions (usually 106 km2), showing an almost 100% area coverage and  
lasting for a long residence time (about a half part of the year in the UK). 
 

From the Taylor’s theory, the vertical eddy diffusivity is given by (BzPA, 97): 
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where parameter λw is the peak wavelength in the vertical velocity spectrum. The 
value of σw and a fitting curve for λw are obtained from ACE-2 experiment. 

Turbulence model for cloud dynamics 



An expression for λw – h is the boundary layer height: 
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with the numerical values for the constants: 
 

          a1 = 3.7           a2 = 1.46           a3 = 0.003           a4 = 4.7 
          b1 = 3.15         b2 = 7.07               b3 = 2.7 

 Fitting curve for λw 



Aerosol Characterization Experiment  (ACE):  
 

Investigation for understanding  
some aspects of cloud system:  
- turbulent transport,  
- radiative cooling,  
- entrainment,  
- large-scale subsidence. 

Geographic position of 
the ACE-2 experiment 



     Autoconvertion parameterization 

An autoconversion scheme was also proposed, in which the small-scale variability  
of cloud water content is taken into account. 
"
ACE2 data were used to achieve a PDF for cloud water content (qc).  First, data  
collected during horizontal flight legs were normalized by the mean qc (qc,mean).  
The PDF was computed with respect to fractions of qc,mean and fitted by  
a polynomial. In the parameterization, autoconversion is calculated for ten cloud  
water content categories, according to Berry-Reinhardt's formula.  

Figure 2 depicts the average cloud  
water content PDF for the several  
ACE2-cloudcolumn flights, as well  
as the polinomial fitting used  
in the present parameterization. 
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      Single-column model 

The  single-column model (SCM) used to test the  turbulence and autoconversion  
schemes comprises prognostic equations for the horizontal wind, the ice-liquid  
potential temperature, the total water mixing ratio, and the turbulent kinetic energy 
(Golaz 1997). The SCM uses a radiation transfer scheme developed by  Harrington  
(1997) and the microphysical parameterization used in RAMS (Walko et al., 1995): 

SCM representation        
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        Parameterization of turbulent fluxes:  
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Initial conditions: Vertical profiles of the horizontal winds, potential temperature, 
 water vapor mixing ratio, 26 June 1997, approximately at local noon.  
 

Discretization parameters: Nz = 150, Δz = 20 m,  Δt = 10 s. 

26 June 1997                                             08 July 1997 



         Numerical results 

The	new	parameterizaBons	were	used	to	simulate	two	ACE2-cloudcolumn	cases.	
08	July	1997:	larger	droplet	concentraBons	occurred	(196	cm-3,	on	average),		
and	the	near-surface	mixed	layer	and	the	cloudy	layer	were	coupled.		

Time evolution of the vertical 
distribution of cloud water content.  

3-hour average of the simulated cloud 
water content (line with white circles in 
g/m3). Diamonds indicate averages of 
airborne observations at two horizontal 
levels.  



08 July 1997: 

Vertical profile of the simulated vertical velocity 
variance, after 2 hours (white circles), 3 hours 
(black circles) and 4 hours (white squares). Blue 
diamonds and red squares indicate observations 
(raw and filtered data, respectively)  

Vertical profile of the simulated buoyancy flux, after 2 
hours (white circles), 3 hours (black circles) and 4 
hours (white squares). Blue diamonds indicate 
observations.  



26 June 1997: droplet concentrations of the order of 55 cm-3, on average, drizzle was  
significant and a decoupled boundary-layer was observed. 

Time evolution of the vertical distribution of 
cloud water content. This case was characterized  
by a deeper cloud-top height, significant drizzle 
formation, decoupling between the cloudy-layer 
and the near-surface  layer and breaking of the 
stratocumulus deck.  

σw
2	a[er	2	hours	(white	circles),	3	hours	(black	

circles)	and	4	hours	(white	squares).	Blue	diamonds	
and	red	squares	indicate	observaBons	(raw	and	
filtered	data).		



	Turbulent	boundary	layer	modeling	

Questions?  
 
Comments?  
 
Suggestions?  



	
Thank	you!	

!


