XIV Congresso Ibero
Latino-Americano de
Métodos Computacionais em Engenharia

Instituto de Pesquisas Tecnológicas
São Paulo - SP - Brasil
1 a 3 de dezembro de 1993

```
L` OPTIMAL LINEAR ESTIMATION AND PROJECTION OF THE GRADIENT
    ?PR_ACH TO SOLVE LINEAR PROGRAMMING PROBLEMS
```

*-air Rios Neto

- Ion Venâncio de Carvalho
-nstituto Nacional de Pesquisas Espaciais - INPE
:aixa Postal 515-12201-970 - São José dos Campos-SP
Ficardo L.U. de Freitas pinto
Iniversidade Federal de Minas Gerais
Escola de Engenharia
:3STRACT
A method to solve linear programing problems is
greeerted. It combines an optimal linear estimation approach to
solve systems of linear algebraic equations with the projection
of the gradient method. This results in a solution search
nrocedure wich can involve interior and or boundary points and
-hich is expected to have satisfactory numerical performance and
-nmplexity.

.. INTRODUCTION

Schemes where parameterized suboptimal solutions are used An order to have a more realistic modelling of problems are Frequently adopted in applied optimal control. This reduces the numerical solution of dynamic control problems to one of Earameter optimization in each iteration. Linear programming or projection of the gradient type methods are then good mathematical programming tools to be used in these schemes Ceballos and Rios Neto, 1981; Prado and Rios Neto, 1990), eading to insights that conduct one to arrive at approaches :ike that proposed here to solve the usual linear frogramming problem (P).

The combination of an aproach to solve linear systems
Freitas Pinto and Rios Neto, 1090 ; Abbaffy and Spedicatr, 1984) with the projection of the gradient method resuits in a method ro solve the linear programing problem (P) with favorable characteristics concerning numerical complexity and performance,
expected to be competitive with path-following type methods (Gonzaga, 1992).

Good numerical complexity is expected to be attained as a consequence of the resulting method algorithm conducting the search in each step looking for a possible direction closest to the opposite of the objective function gradient. This results in a solution search procedure which can involve interior and or boundary points, with the search along this last type of points not being restricted to go from vertex to vertex as in the Simplex method.

Favorable characteristics in terms of numerical performance, specially when dealing with problems of round-off errors and ill-conditioned linear systems, are expected as a consequence of features that allow both iterative schemes and factorized forms to be used in the approach to solve linear systems (Freitas Pinto and Rios Neto, 1990).

To present the proposed method a heuristic approach is lised and the paper is organized as follows in the next sections. The method basic procedure and algorithm are presented in Section 2. Section 3 presents a few remarks form a preliminary analysis. Section 4 presents the paper conclusions.

2. METHOD BASIC PROCEDURE

The objective is to solve the standard linear programming probiem (P):

$$
\begin{equation*}
\text { Minimize: } c^{\mathrm{T}} \mathrm{x} \text {; subject to } \mathrm{Ax}=\mathrm{b}, \mathrm{x} \geq 0 \tag{2.1}
\end{equation*}
$$

where x is a real n dimensional vector; A is a real mon matrix of rank m, formed of row vectors $a_{1}, a_{2}, \ldots, a_{m}$ all other vectors are real of appropriate dimensions; and the problem bounded with an optimal basic feasible solution (see, for example, Luemberger, 1973).

To do so, one combines the projection of gradient method with the approach by Freitas Pinto and Rios Neto (1990) to solve the const.riined optimization problem:

$$
\begin{equation*}
\text { Minimize: } \frac{1}{2}(x-\bar{x})^{T}(x-\bar{x}) ; \text { subject to } A^{e} x=b^{e} \tag{2,2}
\end{equation*}
$$

with the following algorithm:

$$
\begin{align*}
& \text { (i) Take } x^{0}=\vec{x}, \quad P_{0}=I_{n} \\
& \text { (ii) For } i=1,2, \ldots, m \quad \text { compute } \\
& x^{i}=x^{i-1}+\left(b_{i}^{e}-a_{i}^{e} x^{i-1}\right) p_{i} ; \quad p_{i}=q_{i} P_{i-1}\left(a_{i}^{e}\right)^{T} \tag{2.3}\\
& q_{i}=\left(a_{i}^{e} p_{i-1}\left(a_{i}^{e}\right)^{T}\right)^{-1} ; \quad p_{i}=p_{i-1}-p_{i} a_{i}^{e} p_{i-1} \tag{2.4}
\end{align*}
$$

getting $x^{e}=x^{m}$ as the point in the hyperplane of (2.2) closest to \bar{x} and pe $=P_{m}$ the projection matrix associate to A^{e}.

The result is the following algorithm for searching a solution to problem (P) of (2.1):

Step 1: In correspondence with a feasible point x_{f}, identify the active constraints in (P) and redefine A as an extended Ae to include these active constraints.

Step 2: Using the algorithm of (2.3) and (2.4), recursively calculate the projection matrix Pe^{e} associated to A^{e} and determine the projection of the opposite of the objective function gradient:

$$
\begin{equation*}
d=-p^{e} c \tag{2.5}
\end{equation*}
$$

Step 3: If $d \neq 0$, recalculate x_{f} as:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{f}} \leftarrow \mathrm{x}_{\mathrm{f}}+\mathrm{f} \mathrm{~d} \tag{2.6}
\end{equation*}
$$

choosing the maximum value of factor f such as to still have a feasible point; return to Step 1.

Step 4: If $d=0$, calculate the inverse $\left[\left(A^{e}\right)^{T}\right]^{-1}$ of $\left(A^{e}\right)^{T}$, using the algorithm of (2.3), (2.4). Determine:

$$
\begin{equation*}
g=-\left[\left(A^{e}\right)^{T}\right]^{-1} c \tag{2.7}
\end{equation*}
$$

and (i) if $g_{j} \leq 0$ for all components in correspondence with active satisfied inequalities in (P) stop, Kuhn-Tucker conditions are satisfied;
(ii) if some of the $g_{j}>0$, analyse as shown bellow which positivity constraints can be deactivated, redefine A^{e} and return to Step 2 .

To decide in step 4 (ii) which constraints can be deactivated, take the partition:

$$
\begin{equation*}
g^{T}=\left[g_{p}^{T} \vdots g_{a}^{T}\right], \quad\left(A^{e}\right)^{T}=\left[\left(A_{p}^{e}\right)^{T} \vdots\left(A_{a}^{e}\right)^{T}\right] \tag{2.8}
\end{equation*}
$$

where p is to indicate the $g_{j}>0$ and a refers to active constraints. Calculate the projection matrix P_{a}^{e} and

$$
\begin{equation*}
d_{a}=-p_{a}^{e} c=p_{a}^{e}\left(A_{a}^{e}\right)^{T} g_{p} \neq 0 \tag{2.9}
\end{equation*}
$$

and verify for which rows of A_{p}^{e} it is not true that

$$
\begin{equation*}
\left(a_{p}^{e}\right)_{i} d_{a}>0 \tag{2.10}
\end{equation*}
$$

redefining g_{a} and A_{a}^{e} to include in A_{a}^{e} the row for which the most negative value occurred in the verification in (2.10). Recalculate d_{a} in (2.9) verifying again (2.10) and reiterating the procedure until (2.10) is verified for all rows of the remaining A_{p}^{e}; noticing that in the worst case there will at least be one row in the remaining A_{p}^{e} and the resulting d_{a} will be a valid direction of search (Luemberger, 1973).

3. METHOD ANALYSIS

(i)Notice that for generating a feasible solution x_{f} in Step 1, one can always use the same method, solving in a first phase a problem with artificial variables as suggested by Luemberger (1973):

$$
\begin{equation*}
\text { Minimize: } \sum_{i=1}^{m} y_{i} ; \text { subject to } A x+y=b, x \geq 0, y \geq 0 \tag{3.1}
\end{equation*}
$$

assuming without ioss of generality $b \geq 0$ and starting with $x=0$, $y=b$.
(ii) The algorithm of Section 2 leads to a kind of method where the search can result in a combination of going along interior and constraints boundary points. When the search is along the boundary it is not restricted to go from vertex to vertex as in the Simplex Method. Thus, though a rigorous analysis was not done, the method is expected to have polynomial complexity, since in each search step it has as intrinsic characteristic looking for a possible direction closest to the opposite of the objective function gradient.
(iii) The recursive nature of the procedure of (2.2) to (2.4) in Section 2 guarantees efficiency in the calculations of projection and pseudo inverses matrices needed along the use of the search algorithm. Besides that, to have better performance in ill conditioned problems one can always use the algorithm of (2.3) and (2.4) in a factorized from and or in an iterative scheme as proposed by Freitas Pinto and Rios Neto (1990).

4. CONCLUSIONS

Exploring ideas and results of a previous work (Freitas Pinto and Rios Neto, 1990), a method was proposed to solve the usual linear programming problem (P). This was done using an optimal linear parameter estimation type of method combined with the projection of the gradient method. The result was a method where a mixed kind of search can occur involving both interior and boundary points. A quaiitative analysis of the method raises the expectation of polynomial complexity, though this should be
rigorously treated before a definite conclusion can be made.
Previous experience with the linear estimation algorithm associated to the method indicates a good numerical performance 'Freitas Pinto and Rios Neto, 1990), in terms of attenuating deterioration due to computer round-off.

Further studies should explore the analysis and determination of the characteristic of the method concerning computational complexity.

ACKNOWLEDGEMENTS
The authors want to express their profound gratitude to Jrs. Luiz Antonio Nogueira Lorena, Horacio Hideki Yanasse and Jerônimo dos Santos Traveiho for their invaluable help in the form of discussions and revisions along the development of the method.

REFERENCES

- Abbafy, J., Spedicato, E. (1984) - "A generalization of Huang's Method for Solving Systems of Linear Algebraic Equations", Boll. Un. Mat. Ital. 6, pp 515-519.
- Cebailos, D.C., Rios-Neto, A. (1981) - "Linear programming and Suboptimal Solutions of Dynamical Systems Control Problems", in Proceedings of an International Symposium in Spacecraft Flight Dynamics, Darmstadt, Germany, (ESA report ESA-SP-160), pp. 239244.
- Freitas Pinto, R.L.U., Rios-Neto, A. (1990) - "An Optimal Linear Estimation Approach to Solve Systems of Linear Algebraic Equations", J. Computacional and Appl. Math. 33, pp. 261-268.

Gonzaga, C. (1992) - "Path-following methods for Linear Programming", SIAM REVIEW, 34, pp. 167-224.

- Luemberger, D.G. (1973) - "Introduction to Linear and Nonlinear Programming", Addison-Wesley, Reading, MA.
- Prado, A.F.B.A., Rios-Neto, A. (1990) - "Suboptimal and Hybrid Numerical Solution Schemes for Orbit Transfer Manoeuvres", in: Mecanique Spatiale, Centre National D'Etudes Spatiales-CNES (Cepadues Editons, Toulouse, France), pp. 749. 760.

