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29.1 Introduction

Solar Flares (SF) are sudden releases of large amounts of
energy from the solar atmosphere [1]. They are categorized
into 5 classes, namely, A, B, C, M and X, respectively in order
of their strength, where SF of class A are the least harmful,
while X flares are the most powerful and dangerous ones.
They are categorized according to the level of X-ray emitted
by Sun during the event. These phenomena impact satellite
communications [2], Global Positioning System (GPS) and
may also produce electricity power blackouts. So, it is
imperative to develop robust solar flare forecasting systems.

The features that influence the forecasting process are not
known. We can find papers that use features derived from
magnetogram vector [3–5], sunspot area [6], radio flux or X-
ray flux [7] and [8] the X-rays time series.

Solar Flare datasets are extremely imbalanced. Most work
in literature using traditional classifiers that deal with im-
balanced datasets have the drawback of producing biased
results [9–11]. An alternative to handle the poor results of
the learning in imbalanced data is the usage of an Ensemble
of Classifiers (EC) [12–14]. The EC main goal is to improve
“weak” classification methods by applying many of weak
classifiers (also called base inducers), so that the final clas-
sification may produce more accurate results. In this sense,
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we propose an EC tuned-up for the domain of the Solar Flare
forecasting.

Most of the previous works of Solar Flare forecast-
ing perform binary forecasting, classifying solar flare only
as “Positive” or “Negative”. Few works predict individual
classes. In the latter case, they usually use purely statistical
methods in the forecasting process. Some methods consider
“Positive” results for classes greater than or equal to “C”
[15], others consider “Positive” for forecasts greater than or
equal to a class M [3–5,7]. Furthermore, a recurrent practice
in the previous literature works is the forecasting of just the
maximum Solar Flare of a given day.

Accordingly, we propose a method called ECID (Ensem-
ble of classifiers for imbalanced datasets) that tackles some
important open issues:

(1) Perform individual class forecasting producing a multi-
class result for a given day, so that the method provides to
the astrophysicist a tool that shows possible Solar Flare
categories that may happen in a given day;

(2) Treat the imbalanced dataset issue using Ensemble with
a stratified random sampling for the training of the
inducers;

(3) Perform also a multi-label solution, giving the possibility
to the astrophysicist to decide (when adjacent classes are
indiscernible).

29.2 Method Description

In this section, we describe ECID (Ensemble of Classi-
fiers for Imbalanced Datasets) and its pre-processing steps.
Figure 29.1 presents its overview.

Steps 1, 2 and 3 are the preprocessing steps responsible for
obtaining, cleaning and transforming the data for the learning
task. Traditional classification methods produce models that
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Fig. 29.1 Overview of the proposal for solar flare forecasting: the
method ECID and its pre-processing

classify instances with “current” events. For the forecasting
purpose, it is necessary to map current values with future
events to turn such classifiers in forecasting methods. Thus,
our method prepares the original dataset to the forecasting by
using the “Sliding Window” algorithm proposed in [8].

The prepared data are submitted to the proposed ensemble
method ECID. The issue of imbalanced data is tackled by
employing a stratified random sampling, which produce the
datasets employed to train the base inducers. This is done
by splitting the original dataset into four balanced subsam-
ples, one for each forecasting class, using the new “Multi-
Class2Binary Balancing” schema (see Fig. 29.1 – Step 4(a)).

The base inducers are weak binary classifiers (see
Fig. 29.1 – Step 4(b)): the “Binary Classifier#1” generates a
“Positive” result if a class “A or B” is predicted by the model
and “Negative”, otherwise; “Binary Classifier#2” generates
a “Positive” result if a class “C” is predicted and “Negative”,
otherwise; and the same logic is applied for the classes “M”
and “X”. The output of the base inducers are submitted to
the aggregator method (see Fig. 29.1 – Step 4(b)), which
combines the individual votes of each inducer, producing the
final multi-class forecasting. The forecasting is also multi-
label when the aggregator function returns more than a class.

Step 5 provides the testing dataset to validate the model,
which comprises the time series of the current day. Hence,
ECID provides forecasting for the next day. A detailed
description of the steps of ECID is given in following.

29.2.1 The Preprocessing Steps

As shown in Fig. 29.1, in Steps 1 and 2, the time series of
X-ray intensity and the solar flare report are collected from
their sources. These time series have different sample rates:
the X-ray time series have a sample rate of 12 min, and the

solar flare report has a “varying” sample rate depending on
the duration of the Solar Flare events. So, for one entire day,
the X-ray time series produces 120 instances, and the solar
flare report produces a varying amount of instances. The next
task is to map the X-ray intensity and the solar flare report,
as formally explained next:

• the time series of X-ray intensity is defined as X =
{instant of X-rayobs,

X-rayintensity}, where:
– instant of X-rayobs is the observation instant of time;
– X-rayintensity is the intensity of X-ray measured

given by W/m2.
• the solar flare report contains summarized information

about solar events and it is defined as E =
{instant of SolarF lare,

SolarF lareClass}, where:
– instant ofSolarF lare is the instant of time that a

solar flare was observed;
– SolarF lareClass is the class of a solar flare.

The mapping between these time series produces the
“Preliminary Database” defined as:

• a tuple T = {instant of XRayobservation,

X-rayintensity, SolarF lareClass};
• instant of XRayobservation is the instant when the X-

ray was emitted by the Solar Flare;
• X-rayintensity is the X-ray emitted by the Sun in

instant of XRayobservation and,
• SolarF lareClass is the class of the Solar Flare occurred

in that instant.
• the “Preliminary Database” is MXE = ∪T .

In Step-3, the data is cleaned by discarding tuples with
troubled values and, then, the “Sliding Window” approach
[8] is applied to map current instances to future events
(classes of solar flares), enabling the learning model to
forecast. The Sliding Window approach builds a set formally
defined as:

• |MXE | is the number of instances of the “Preliminary
Dataset”, MXE ;

• SSFD = {xi(t), xi(t + 1), . . . ,

xi(t + currentWindowSize),

maximumClassOf FutureWindow,

1 ≤ i ≤ |MXE |}, where SSFD is the “Slided Solar Flare
Dataset”, xi(t) is the X − rayintensity of the current
Window, currenWindowSize is the size of the current
window, and maximumClassOf FutureWindow is the
maximum solar flare class occurred in the future window
(for a detailed explanation of current and future window,
see [8]);
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29.2.2 The Proposed Method ECID (Ensemble
of Classifiers for Imbalanced Datasets)

The preprocessed data is submitted to ECID that employs
a modified bootstrap strategy: ECID builds multiple learn-
ing models of the same type from different subsamples
of the training dataset. Specifically, it splits the training
dataset in subsamples using a strategy that we named Mul-
tiClass2Binary.

“MultiClass2Binary” strategy is the key to provide a
strong multi-class forecasting for 4 classes of solar flares
(AB, C, M and X). This strategy builds 4 distinct balanced
datasets using stratified random undersampling. The sam-
pling strata are the solar flares classes, and the sampling
schema is detailed next. The first dataset is composed of
50% of the tuples classified as classes A or B and 50% of
remaining; the second one is composed of 50% of tuples
class C and 50%, the remaining; the third is balanced in the
same way for class M, and the last one for class X.

In Step-4(b) Fig. 29.1, each dataset is applied to a binary
inducer from the same type (eg. a decision tree algorithm).
Accordingly, the Binary Classifier#1 provides the forecast-
ing for class A or B, Binary Classifier#2, for class C,
Binary Classifier#3, for class M, and, Binary Classifier#4,
for class X. We propose to employ all inducers of the same
type because preliminary experiments did not demonstrated
improvements by combining different types of inducer. How-
ever, the combination of different inducers types could also
be performed.

In Step-4(c), a testing dataset is applied to each model
to produce specific results for each solar flare class. For
solar flare prediction, the sample rate of the input is 12 min.
Different from traditional approaches, which the input of
testing is a single tuple, the testing input is a set of 120
tuples (collected in a day to forecast the most high class
for the next day). The Aggregator method combines the 120
results obtained in the last task, providing unified multi-class
forecasting for a given day.

The Aggregator method is based on a voting count
schema. Table 29.1 shows a simplified example of the
output produced by the base inducers, which are binary
classifiers. The “instant” column corresponds to the daily
12 min sample vote by each inducer. Columns zY (where
z ∈ {AB,C,M,X}) is set to 1 if the correspondent
inducer produced positive forecasting for the given class.
Consider the tuple with “Day_1_00:00”, for example, if
Binary Classifier#1 produced a “Positive” forecasting, the
ABY column is set to 1; if Binary Classifier#2 produced a
“Positive” forecasting, the CY column is set to 1; and so on.
Note that, the forecasting is originally given in a 12 min rate,
but the goal of this work is to produce a daily forecasting.
So, the Aggregator combines the votes of the base inducers
producing a daily result.

Table 29.1 Example of the base inducers individual forecasting

Instant ABY CY MY XY

Day_1_Instant_00:00 1 1 0 0

Day_1_Instant_00:12 . . . . . . . . . . . .

Day_1_Instant_00:24 . . . . . . . . . . . .

After calculating the daily sum of the zY columns of
Table 29.1, the Aggregator decides among the classes, con-
sidering the three most voted ones as formally defined: Let
firstYes, secondYes, thirdYes be the number of votes obtained,
respectively, by the first three classes most daily voted in the
aggregated table.

The parameters p1, p2 and p3 are the least vote frequency
acceptable to the class to be considered for firstYes, sec-
ondYes, and thirdYes, respectively, i.e. parameters p1, p2 and
p3 denote the daily minimum percentage of votes required
for the class to be chosen. We found empirically that the
best results are obtained using p1 = 20%, p2 = 5% and
p3 = 2%. These parameters values show that as the class
voting becomes smaller, the class becomes rarer, so it should
be kept in the results. In fact, as the class frequency becomes
smaller, it will probably be less foreseen, then the importance
of the minority class should be increased.

29.3 Experiments

Experiments 1–6 were performed to validate the proposed
method. All the experiments:

• used the same solar dataset composed of the time series of
X-ray intensity emitted by Sun and the solar flare report
from the period 2010 to 2017;

• employed the data pre-processing described in
Sect. 29.2.1;

• used 70% of the dataset for training and 30% for testing to
validate the method. More specifically, the training dataset
have 67678 instances (50% of class AB, 35% of class
C, 13% of class M, and 2% of class X). The dataset is
extremely imbalanced, and according to astrophysicist,
the most relevant class are M and X, which are the most
infrequent ones.

For experiments 1 to 3, we employed a traditional clas-
sification method alone to produce the forecasting model:
Experiment 1 used IBK; Experiment 2 employed SVM; and
Experiment 3 employed J48. The implementation of these
methods was obtained from Weka [16].

For experiments 4 to 6, we employed the proposed en-
semble method ECID (see Sect. 29.2.2). The stratified under-
sampling performed in the Step 4(a) of ECID (see Fig. 29.1)
is shown in Fig. 29.2. The training dataset contains 33839
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Fig. 29.2 ECID sampling (see Fig. 29.1)

tuples labeled as class “A or B” (called “AB”), 23633 labeled
as “C”, 8969 as “M” and 1238 as class “X”. The method ran-
domly undersamples the original dataset according to each
class. For example, the balanced dataset-AB is composed of
33839 tuples labeled “A” or “B” of the original dataset, these
tuples will be re-labeled as “Positive(AB)”, the other 33839
tuples are composed by a subsample of the original tuples
labeled as classes “C”, “M” and “X”, which will also be re-
labeled as “Negative(CMX)”. The experiments 4–6 used this
strategy for undersampling, but they vary the base inducers
in each experiment: in Experiment 4 the base inducers were
IBK; in Experiment 5 were SVM; and in Experiment 6 the
base inducers were J48.

The metrics used to analyze the results must be carefully
interpreted. Analyzing only accuracy (ACC) may incur in
error due to the majority classes have higher probability to
be predicted then the minority ones. In that case, the overall
ACC may perform well, but the most relevant classes (the
minority) should be poorly predicted. Then, for a better
analysis, the True Positive Rate (TPR) and the Precision
for each class may be balanced. In this case, it means that
either the model truly predicted most classes. Some metrics
aim to give numeric values for this “balance”, such as TSS
which is the difference between recall and False Positive
Rate (FPR) [4], and F-Measure, that relates Precision and
Recall. Our method was validated using the joint analysis of
accuracy (ACC), True Positive Rate (TPR), True Negative
Rate (TNR), False Positive Rate (FPR), TSS and F-Measure.
As the results obtained are multi-class, and sometimes multi-
label, we took some cautions:

(1) First, it was calculated individual metrics for each class
(AB, C, M and X) by considering “Positive” for a spe-
cific class, and “Negative” as all the remaining classes;

Fig. 29.3 Experiments – arithmetic mean

(2) Second, the arithmetic mean of each metric for all classes
was obtained to compare the experiments performed
(shown in Fig. 29.3).

As observed in Table 29.2, the classifiers alone produced
relatively good results for predictions to classes AB and C
(which are the majority classes), and very poor results for
classes M and X (the minority and most important classes).
The highest results for classes AB and C were 72.8% of TPR
and 64.1% of Precision in Experiment-2 (SVM), and 76%
of TPR and 70.8% of Precision for class C in Experiment-1
(IBK). In the other hand, it reached 34.2% of TPR and 12.4%
of Precision for class M, and 73.3% of TPR and 10.8% of
Precision for class X. Although a good TPR was obtained for
class X, a very poor Precision drastically decreased the level
of reliability of the forecasting model. TSS and F-measure
metrics corroborate these results, which were reasonable for
classes AB and C, and very poor for classes M and X.

Table 29.3 shows the results of Experiments 1–6, which
used our proposed method ECID. The results obtained for
the minority, but most important, classes were higher than
the previous experiment using the classifiers alone. The best
results for class X were achieved in Experiment 6 using J48
as the base inducers of ECID: 86.6% of TPR and 76.4% of
Precision, TSS of 0.85 and an F-Measure of 0.812. Also, the
predictions of class M resulted in 100% of TPR and 80% of
Precision. Predictions of classes AB and C achieved results
of more than 95%.

Figure 29.3 shows the increase of the individual metrics
from the first three experiments (not using ECID) and the last
three ones (using ECID). TPR had an increase of more than
50%, TNR, an increase of 12.5%, FPR, a decrease of 33%,
and the Precision an increase of 56%. As shown in Fig. 29.3,
TSS and Precision increased with the proposed method.

29.4 Related Works

In literature, Solar flare forecasting methods usually aggre-
gate more than one class as the “Positive” and “Negative”,
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Table 29.2 Experiments 1–3 – Metric Details

Experiment-1: IBK Experiment-2: SVM Experiment-3: J48

AB C M X AB C M X AB C M X

TPR 0,635 0,760 0,197 0 0,728 0,649 0,131 0,266 0,309 0,286 0,342 0,733

TNR 0,833 0,542 0,962 1 0,741 0,606 0,971 0,998 0,978 0,757 0,597 0,825

ACC 0,757 0,638 0,853 0,971 0,736 0,625 0,851 0,977 0,693 0,549 0,561 0,822

TSS 0,469 0,302 0,160 0 0,469 0,255 0,103 0,264 0,288 0,043 −0,06 0,558

FPR 0,166 0,457 0,037 0 0,258 0,393 0,028 0,001 0,021 0,242 0,402 0,174

Precision 0,708 0,566 0,468 0 0,641 0,565 0,434 0,8 0,914 0,482 0,124 0,108

F-Measure 0,670 0,649 0,277 0 0,681 0,604 0,202 0,4 0,462 0,359 0,182 0,189

Table 29.3 Experiments 4–6 – Metric Details

Experiment-4: IBK Experiment-5: SVM Experiment-6: J48

AB C M X AB C M X AB C M X

TPR 0,900 1 0,916 0,933 0,892 0,910 0,875 0,933 0,966 1 1 0,866

TNR 0,978 0,906 0,945 0,943 0,907 0,893 0,902 0,898 0,985 0,962 0,974 0,983

ACC 0,942 0,942 0,942 0,942 0,900 0,900 0,900 0,900 0,977 0,977 0,977 0,977

TSS 0,879 0,906 0,861 0,876 0,799 0,804 0,777 0,831 0,952 0,962 0,974 0,850

FPR 0,021 0,093 0,054 0,056 0,092 0,106 0,097 0,101 0,014 0,037 0,025 0,016

Precision 0,973 0,870 0,628 0,5 0,892 0,844 0,477 0,358 0,983 0,943 0,8 0,764

F-Measure 0,935 0,930 0,745 0,651 0,892 0,876 0,617 0,518 0,975 0,971 0,888 0,812

Table 29.4 Comparison among literature works and ECID

TPR TNR ACC FPR Precision TSS F-Measure

ECID 0,96 0,98 0,98 0,02 0,87 0,94 0,91

Nishikawa (=X) 0,90 0,99 0,99 0,0003 0,89 0,91 0,89

Nishikawa (>=M) 0,91 0,99 0,99 0,002 0,92 0,91 0,92

Bobra (>=M) 0,71 0,98 0,97 – 0,80 0,70 0,75

Li (>= M) 0,73 0,78 0,77 – – – –

turning it a binary classification model. Instead of this,
our method provides the contribution to give multi-class
(and multi-label) forecasting, because, in a single day, it
is important to identify the correct class of solar flare that
occurs in a day. Additionally, as the astrophysicists do not
fully understand these phenomena, each work considers a
different set of solar features as input. Taking those facts into
account, we can cite some relevant works that we named:

• Nishizuka: In [3], it was developed a solar flare forecasting
method that labels: (1) classes = X as “Positive”, in a
first experiment, and (2) classes ≥ M as “Positive”, in
the last set of experiment;

• Bobra: In [4], it was developed a solar flare forecasting
method that labels classes ≥ M as “Positive”;

• Li: In [5], it was developed a solar flare forecasting
method that labels classes ≥ M as “Positive” according
to an equation of flare importance;

Table 29.4 presents the metrics obtained by the Nishizuka,
Bobra and Li forecasting methods and our proposed method
ECID:

As shown in Table 29.4, ECID achieved TSS and Pre-
cision higher than Nishikawa and the other studies. If we
consider just the forecasting of class “X”, our method ob-
tained a TSS of 0,85 and an F-measure of 0,81. These results
are slightly lower than Nishikawa ones, but our method also
predicted flares of classes “AB”, “C” and “M” consistently,
instead of Nishikawa, which performed a binary classifi-
cation. Thus, we believe that our proposed approach is an
important contribution for the task of solar flare forecasting.

29.5 Conclusions

Most works for solar flare forecasting performs a binary
prediction. Therefore, in that scenario the problems of imbal-
anced data and high similarity between adjacent classes are
minimized. Our contribution was to deal with these problems
by proposing the new ensemble method ECID, producing
a multi-class forecasting. For each solar flare class, ECID
employs a stratified random sampling for the training of
base one-class inducers, strengthen their sensitivity to one-
class. Using a modified bootstrap approach, the aggregator
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method combines the inducers results enabling a strong
multi-class forecasting, which can also be multi-label in case
of indiscernible classes. The results obtained showed that our
proposal is well-suited to solar flare forecasting, achieving
86.6% of TPR and 76.4% of Precision for class X, 100%
of TPR and 80% of Precision for class M, 100% of TPR and
94.3% of Precision for class C, and 96.6% of TPR and 98.3%
of Precision for class AB. For future work, we intend to add
more solar features in the process.
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