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ABSTRACT

In this work a new adaptive evolutionary algorithm derived from a stochastic al-
gorithm for design optimization called Generalized Extremal Optimization (GEO)
is introduced. It eliminates the single free parameter of GEO by controlling its
value during the search by an adaptive approach which improved GEO performance
significantly, even when considering the “best” GEO configurations. Nonetheless, it
maintains the algorithm principal characteristics of dealing with continuous, discrete
and integer design variables on convex or disjoint spaces while respecting design
constrains. This new algorithm, called Adaptive Generalized Extremal Optimiza-
tion (A-GEO), is implemented in two variations and applied to a multidisciplinary
optimization problem of spacecraft engineering, showing the potential of the new
methods in solving real engineering problems.

Keywords: Generalized Extremal Optimization. Adaptive Evolutionary Algorithms.
Design Optimization. Space Engineering. Multidisciplinary Optimization.
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UM NOVO ALGORÍTMO EVOLUTÍVO ADAPTIVO PARA
OTMIZAÇÃO DE PROJETOS.

RESUMO

Neste trabalho um novo algoritmo evolutivo adaptativo derivado de um algoritmo es-
tocástico para otimização de projetos chamado Generalized Extremal Optimization
(GEO) é introduzido. Este elimina o único parâmetro livre presente no GEO atra-
vés de um método adaptativo que controla os valores deste durante a busca, assim
melhorando a performance do GEO significantemente, até mesmo quando compa-
rada a sua “melhor” configuração. Porém, mantém suas principais características
de lidar com variáveis de projeto continuas, discretas e inteiras em espaços conve-
xos ou disjuntos respeitando as restrições de projeto. Este novo algoritmo, chamado
Adaptive Generalized Extremal Optimization (A-GEO), é implementado em duas
variações e aplicado a um problema de otimização multidisciplinar de engenharia de
satélites, mostrando o potencial dos novos métodos em resolver problemas reais de
engenharia.

Palavras-chave: Otimização Extrema Generalizada. Algoritmos evolutivos adaptati-
vos. Otimização de projetos. Engenharia espacial. Otimização multidisciplinar.
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1 INTRODUCTION

The concept design of satellites and its optimization has been real challenging to
engineers, specially in early phases of development (CHAGAS et al., a; FLIEGE et al.,
2012; WERTZ et al., 2011). However, use satellite optimization techniques in the very
first phase of the project, also called pre-phase A or conceptual design phase, is not
an impossible task. As showed by Chagas et al. (b) and Chagas et al. (a), in these
cases, there is very little information about the mission and the design teammust find
feasible solutions based solely on the high-level mission specification provided by the
stakeholders. Hence, as stated in Chagas et al. (b), Multidisciplinary Optimization
(MDO)1 techniques can be used to search the design space for optimal solutions,
giving the design team a starting point for the analysis.

MDOs integrate models of diverse disciplines (e.g. orbital analysis, structural, elec-
trical, etc.) and optimize the design variables chosen to achieve objectives, which
are given as mathematical functions, through numerical computation (MARTINS;

LAMBE, 2013). The optimization cycle of an MDO can be applied by diverse algo-
rithms presented in the literature, from local search algorithms to neural networks.
One of these possibilities is to use evolutionary algorithms. They have been applied
to diverse science and engineering problems through the years and found to be a
suitable tool to be added to the engineer’s toolbox (EIBEN; SMITH, 2015; GOSSELIN

et al., 2009; LIAN et al., 2010; SCHMIDT; LIPSON, 2009; SHIRAZI, 2015).

In fact, evolutionary algorithms are applicable to almost any kind of optimization
problem. The concept of evolutionary algorithms comes from the theory of natu-
ral selection and survival of the fittest presented in Darwin (1859). Following this
principle, the first algorithms were developed to simulate the natural selection be-
havior focusing on help biologists and naturalists have a better understanding of the
evolution of species, until 1970. After it, Evolutionary Strategies, Evolutionary Pro-
gramming (EIBEN; SMITH, 2003) and Genetic Algorithms (GAs) (HOLLAND, 1975)
emerged. GAs where introduced by Holland (1975) and later popularized by Gold-
berg (1989). After GAs researchers started to incorporate other natural features
or behaviors into their optimization algorithms, as in Particle Swarm Optimization
(PSO) (KENNEDY; EBERHART, 1995), Ant Colony Optimization (ACO) (DORIGO

et al., 1999) and Generalized Extremal Optimization (GEO) (SOUSA, 2003; SOUSA;

RAMOS, 2003). Thus, optimization methods influenced by the laws of nature started
to become really popular, being them evolutionary or not.

1For more information about MDO and its architectures see Martins and Lambe (2013).
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Paying particular attention to evolutionary algorithms, one can say that they consist
of five main characteristic: a population of individuals, a representation for the indi-
viduals, a notion of fitness, a life and death cycle ruled by the adaptability (fitness),
called selection, and a notion of heredity. Those characteristics put together, as in
Figure 1.1, represent a complete evolutionary algorithm.

Figure 1.1 - Evolutionary algorithms workflow.

Population

Initialization

Termination

Parents

Offspring

Selection
Offspring
Generation

Survivor
selection

Parents
selection

SOURCE: Made by the author.

The main reason for evolutionary algorithms popularity is their universal applicabil-
ity. They can be used to solve a vast number of problems once their free parameters
values, such as population size and mutation rate, are adjusted and the problem is
encoded in the form of a population of individuals. However this takes a toll in their
performance. Since they are not a problem specific application they may overlook
important aspects of the problem search space and progress slower than an specific
heuristic.

1.1 Parameter setting on evolutionary algorithms

Although EAs performance on a given application be a function of the problem
being addressed and the kind of EA being used, another common aspect that has
great influence over it is the proper setting of their free parameters (KARAFOTIAS

et al., 2015).

One technique used for parameter setting, besides intuition or convention, is called
tuning. Tuning is a process that calibrates the EA to better adjust it to the problem
being solved, since the EA parameters setting vary from problem to problem. There-
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fore, each time that a new problem is to be solved through evolutionary computation
the algorithms need to be tuned again (ALETI; MOSER, 2016).

Tune an algorithm can be a very time consuming process that asks of the user a good
understanding of the algorithm, in order to extract its best performance (ALETI;

MOSER, 2016; CERVANTES; STEPHENS, 2009; EIBEN et al., 1999). Also, in problems
where the objective function or the design space have a complex landscape the best
algorithm performance can not be obtained by a static parameter configuration, in
other words, there is no static optimal configuration (CERVANTES; STEPHENS, 2009;
GOLDMAN; TAURITZ, 2011; SMITH; FOGARTY, 1996).

Fortunately, with an oversimplification we could say that: “[...] the tuning problem
has been solved by now. At least, there are very good parameter tuning methods
developed and publicized over the last decade and the EC community is increasingly
adopting them.” (KARAFOTIAS et al., 2015, p. 1). 2

Although parameter tuning being a extremely explored approach, there exists an-
other option to set parameters values in EAs. This technique is called parameter
control (ALETI; MOSER, 2016; KARAFOTIAS et al., 2015). It can set the EA param-
eters values during the search and provides some advantages (KARAFOTIAS et al.,
2015):

• Possible use of appropriate parameter values in different stages of the
search.

• When facing dynamic problems, allows the EA to adjust to the changing
fitness landscapes.

• Can collect information about the fitness landscape during the search and
use it to improve the algorithm performance.

• Frees the user from choosing parameter values, solving the tuning problem.

Now that both strategies have been presented, a general framework developed in
Eiben and Smit (2011) for parameter setting is shown in Figure 1.2. This framework
helps to understand how a parameter setting strategy (e.g. parameter tuning and
parameter control) can act upon an EA and what differentiates one from the other.

2For more information, an overview on tuning mechanisms subject was made in Eiben and Smit
(2011).
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Figure 1.2 - Hierarchy of parameter tuning.
Design Layer

Algorithm Layer

Application Layer

Optimizes

Optimizes Solution Quality

Algorithm Quality

Control flow (left arrows) and information flow (right arrows) through the three layers in
the hierarchy of parameter tuning.

SOURCE: Adapted by the author from Eiben and Smit (2011) and Karafotias et al. (2015).

As pictured in Figure 1.2 there are three layers in this framework. According to
Karafotias et al. (2015, p. 3) they are: “[...] the application layer (that contains a
problem to be solved), the algorithm layer (that contains an EA), and the design
layer (that contains a method to specify all details of the given EA, that is, its
numeric as well as symbolic parameters).”. Also, this scheme can be divided into two
optimization problems. The first is the EA trying to find an optimal solution for
the current problem and is inside the Application + Algorithm layers (KARAFOTIAS

et al., 2015). The second problem belongs to the Design + Algorithm layers, and
consists of trying to find the optimal parameter settings for the EA (KARAFOTIAS

et al., 2015).

Thus, this framework presents two possibilities on where to place the parameter set-
ting strategy depending on their behavior: The design or algorithm layer (KARAFO-

TIAS et al., 2015). Figure 1.3 shows how the parameter setting strategy can be char-
acterized between control and tuning based on the layer chosen for its placement.

Figure 1.3 - Possible combinations of tuning and control.

Control mechanism
tailored to application

Control mechanism
used out-of-the-box

Static values ob-
tained with tuning

Static values based on
intuition or convention

Control

Yes No

Tuning
Yes

No

SOURCE: Adapted by the author from Karafotias et al. (2015).

4



Placing the parameter setting on the design layer gives two possible outcomes: a
tuning strategy is used offline and the EA parameters will remain static during
the search or a control technique is used and they will change during the search
in a online fashion way (KARAFOTIAS et al., 2015). This means that the parameter
setting algorithm can be separated from the EA algorithm and used independent of
it. However, if the parameter setting strategy is placed on the algorithm layer the
EA and parameter strategy become one and only (KARAFOTIAS et al., 2015). This
implies that these control parameter techniques have parameters of their own to be
tuned, although they are hidden behind design decisions (KARAFOTIAS et al., 2015).
Therefore, a control parameter technique could be tuned.

1.2 Parameter control techniques

Algorithms that are able to set their own parameters started to become popular
in the EA community after 1990. Not that the parameter control problem did not
existed before, but it passed unnoticed through the years (KARAFOTIAS et al., 2015).
One reason that contributed to this was a misleading or missing nomenclature uni-
fication. Situation that changed with Eiben et al. (1999) publication that presented
a clear and unifying classification for parameter control techniques (KARAFOTIAS et

al., 2015).

In Eiben et al. (1999) work, parameter control techniques were classified as: deter-
ministic, adaptive and self-adaptive strategies (EIBEN et al., 1999; KARAFOTIAS et

al., 2015). Deterministic strategies change the value of the algorithm free param-
eters based on a given schedule (e.g. as function of the number of iterations)(EIBEN
et al., 1999; KARAFOTIAS et al., 2015). Adaptive strategies (ALETI et al., ; GINLEY

et al., 2011; VAFAEE; NELSON, 2010) change the algorithm parameters values based
on a given heuristic formula that uses feedback of the population (EIBEN et al.,
1999; KARAFOTIAS et al., 2015) and in self-adaptive versions, they encode the al-
gorithm free parameters in the population, such that they are co-evolved with it
along the search (ALETI; MOSER, 2016; CERVANTES; STEPHENS, 2009; EIBEN et al.,
1999; JITKONGCHUEN; THAMMANO, 2014; KARAFOTIAS et al., 2015).

Furthermore, control mechanisms can also be classified in respect to their designed
purpose. If a control mechanism was designed to be used only for one specific pa-
rameter (e.g. Ahrari and Shariat-Panahi (2015), Lobo and Lima (2007)), it is called
parameter specific (KARAFOTIAS et al., 2015). Combinations of heterogeneous
control strategies characterizes ensembles (e.g. Nadi and Khader (2011)), used
for multiple parameter algorithms optimization (KARAFOTIAS et al., 2015). Finally,
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parameter independent methods can be applied to control any parameter (e.g.
Wong et al. (2003)), with some limitations (KARAFOTIAS et al., 2015).

All of these forms of control approaches are applied to different classes of algorithms,
which have different types and number of parameters to be adapted (ALETI; MOSER,
2016; KARAFOTIAS et al., 2015). A more recent systematic review was made by Aleti
and Moser (2016), where they mapped papers that discussed parameters controlled
in EAs per year since 1990 until 2016, as shown in Figure 1.4. As can be seen the
most popular parameters adapted are mutation and crossover rates, and population
size. As for the least popular ones they are replacement, representation and offspring
size.

Figure 1.4 - Number of papers per year that discuss controlling each EA parameter.

SOURCE: Adapted by the author from Aleti and Moser (2016)

In Aleti and Moser (2016, p. 6) parameter control is defined as a technique that:
“[...] addresses the requirement of finding optimal parameter configurations as the
search proceeds. It describes a process in which optimization starts with subopti-
mal parameter values that are adapted during the progress of the algorithm.”. This
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definition can be represented as a set V of parameters to be optimized:

Optimize
V

V = {v1, . . . , vn}

Where vi ∈ {vi1, . . . , vim}

Subjected to m ≤ mu

(1.1)

where n is the number of parameters and mu is the upper limit for the number of
possible values of the parameter. The goal of controlling a parameter is to find what
combination of parameters values V = {vij, . . . , vkl} optimizes the performance of
the algorithm in a time t. Aleti and Moser (2016) revised most of the controlling
mechanisms presented in published works in the evolutionary computing field and
developed a concept model, shown in Figure 1.5, that shows step by step how a
algorithm free parameter can be set using parameter control mechanisms during the
search.

Figure 1.5 - A conceptual model of adaptive parameter control in EAs.

SOURCE: Adapted by the author from Aleti and Moser (2016)

The framework proposed by Aleti and Moser (2016), has four main steps that are
performed to set a parameter through controlling mechanisms, shown as painted box
in Figure 1.5. They are feedback collection, effect assessment, quality attribution
and parameter update. The majority of controlling techniques follow these steps to
optimize a free parameter through the search, even tough they are not required to
implement all of the steps.

First of all, according to the proposed model, to control a parameter it is neces-
sary to identify a property of an EA that can be measured to assess the effect this
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parameter is inducting on the algorithm. This task is performed by the feedback
collection strategy and the properties selected can be divided into five categories
according to their type (ALETI; MOSER, 2016). If the feedback collection property
selected is a solution quality or the relative quality of a set of solutions the ap-
proach is called phenotype or relative phenotype feedback (ALETI; MOSER, 2016).
Similar approaches to the two previous explained are genotype and genotype di-
versity feedback that choose components or parts of a solution or set of solutions
(e.g. building blocks) as the properties for the feedback collection phase (ALETI;

MOSER, 2016). The last type of feedback collection is classified by the violation of
constraints, called feasibility feedback (ALETI; MOSER, 2016). It is noteworthy, that
as mentioned previously, some parameter control methods do not use feedback col-
lection (e.g. deterministic control) or use it in a implicit manner as in self-adaptive
parameter control algorithms (ALETI; MOSER, 2016).

Finished the feedback collection stage the next step is to indeed find a reference
point to measured the effect the free parameter(s) has on the EA taking in consid-
eration the property chosen in the feedback collection. Thus, it is initiated the effect
assessment stage, which measures the impact of a free parameter on a certain phase
of the EA relative to other phase (ALETI; MOSER, 2016). Divided in Aleti and Moser
(2016) into ancestor, population, best, worst, median and current effect categories it
uses, mostly, statistic measurements to evaluate the effects of a parameter. Ances-
tor effect measures the improvement of a solution in respect to this solution parents
and population effect in respect to the population itself (ALETI; MOSER, 2016). Best,
worst, median and current effect assessment measure the improvement in reference
to the best, worst, median and current solution (ALETI; MOSER, 2016).

Right now, it is already known the property which gives us feedback about the
quality of a free parameter and how and in reference to what its effect is measured.
Thus, the next logical step is to finally estimate the parameter quality, a stage called
quality attribution in Aleti and Moser (2016). This stage is responsible to calculate
the quality of a parameter already applied to the search to make a better judgment
on the next parameter value to be chosen, using the effect assessment metrics already
computed (ALETI; MOSER, 2016). There are four categories that can characterize a
strategy for quality attribution: immediate, average, extreme and learned. If the
quality attribution is made relative to properties of the current solution it is in
the immediate category, else if it is made relative to change to properties of a set or
subset of solutions it is in the average category (ALETI; MOSER, 2016). In cases where
the quality attribution looks for outliers or best changes in properties it falls into
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the extreme category and finally if some machine learning or forecasting technique
is used it belongs in the learned category (ALETI; MOSER, 2016).

Finally, the parameter has been already analyzed in respect to a chosen property
of the EA, its effect measured and its quality estimated leading to the last stage,
the parameter value update. Parameter update is the last step on parameter con-
trol methods, where the parameter value is finally updated to be used on the next
iteration. According to Aleti and Moser (2016) there are four categories of updates:
quality proportionate, quality proportionate with minimum probability, greedy and
deterministic. Quality proportionate and quality proportionate with minimum prob-
ability use a probability vector associated to the quality attribution to update its
parameters, the difference between them is that the second approach has a minimum
value for the probabilities to avoid that a certain parameter value that isn’t good for
the search in the moment gets lost (ALETI; MOSER, 2016). Greedy updates selects
the best parameter value always and deterministic approaches have predefined rule
to update parameter values (ALETI; MOSER, 2016).

All these steps explained summarize the process of controlling a parameter through
the search, which can be applied to update a parameter value or even to choose
between parameters to be applied on the next iteration. Although using parameter
control may add some complexity to the algorithm, as shown by the explanation
made above, it can yield better results than only tuning them for a fixed set of
values, even if the control in itself is not optimal (EIBEN et al., 1999). For example, it
has been observed that finding a function p(t) that changes a given free parameter
“s” over the algorithm iterations, in a way that the search is to a given extent tuned
over time, generates better results than keeping the value of the parameter constant,
even if p(t) function is “suboptimal" (EIBEN et al., 1999).

New proposed evolutionary optimization methods have a lot to benefit in incorpo-
rating some strategy of adaptation for its free parameters, not only for improving
its capacity of finding the best solution, but also as a practical way to avoid the
process of searching the proper set of parameter values that will result in algorithm
good performance for a given application. This work proposes a new version of
GEO, called Adaptive Generalized Extremal Optimization (A-GEO), that applies
an adaptive control mechanism to the algorithm with the goals of:

• Elaborate an adaptive control mechanism for GEO that controls the τ
parameter through the search, eliminating the tunning process.

9



• Identify the advantages and disadvantages of using variations of an adap-
tive control mechanism on GEO versus tuning the algorithm.

• Discover how A-GEO performs against new state of the art optimization
algorithms on a well established benchmark.

Finally, this dissertation is divided as follows: in Chapter 2 the GEO algorithm is
presented, followed by the proposed algorithm, A-GEO, in Chapter 3. In Chapter 4
A-GEO performance and behavior are analyzed with a series of test functions exper-
iments. In Section 4.3 A-GEO performance is compared with 2017 IEEE Congress
of Evolutionary Computing, CEC2017 (AWAD et al., 2017) least performatic algo-
rithm: Teaching Learning Based Optimization with Focused Learning, TLBO-FL
(Kommadath; Kotecha, 2017). In Chapter 5 a spacecraft conceptual design optimiza-
tion problem is presented with an MDO implementation using A-GEO as optimizer.
Finally, in Chapter 6 the main conclusions of this work are presented alongside future
work recommendations.
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2 GEO ALGORITHM

GEO is a global search evolutionary meta-heuristic which has been successfully
applied to many engineering optimization problems (ALBUQUERQUE et al., 2016;
CUCO et al., 2009; FREITAS et al., 2018; MURAOKA et al., 2006; KUMAR et al., 2017;
SWITALSKI; SEREDYNSKI, 2008; VLASSOV et al., 2006). Different implementations of
GEO have been proposed since its conception (COELHO et al., 2017; GALSKI, 2007;
GALSKI et al., 2009; GALSKI et al., ; MAINENTI-LOPES et al., 2012; LOPES et al., 2016;
XIE et al., 2009), but strategies for the adaptation of its free parameters have been
little explored.

The GEO algorithm, shown in Figure 2.1, is based on the Extreme Optimization
(EO) method developed by Boettcher and Percus (2001). It was proposed as a way
to generalize the algorithm so it could be applied to a broad class of optimization
problems.

Figure 2.1 - GEO algorithm.
Initialize randomly the pop-

ulation of L bits that en-
codes N design variables

For each bit attribute a fitness
number that is proportional to
the gain or loss the objective
function has, compared to the
best so far, if the bit is flipped

Rank the bits according
to their fitness numbers

Confirm the mutation of a bit of
the population with probabil-
ity Pk ∝ k−τ with k=1,L

Was the
stopping

criteria met?

Return the best solution
found during the search

no

yes

SOURCE: Adapted by the author from Sousa and Ramos (2003).

The canonical GEO is composed of one free parameter, named τ , and a binary
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string population that encodes the design variables similar to genetic algorithm
chromosomes (SGA) (GOLDBERG, 1989). Each bit of this string is a specie (SOUSA;

RAMOS, 2003), as shown in Figure 2.2, where their precision p is defined by the
number of bits m they are encoded respecting an upper and lower boundary Xu

n and
X l
n:

2m ≥ [(Xu
n −X l

n)/p+ 1] (2.1)

The value of each variable is encoded into the string, and the objective function
must be evaluated to compute the fitness of each specie, so the value of the variable
n encoded in binary is converted to their decimal values by:

Xn = X l
n + (Xu

n −X l
n)[In/(2m − 1)] (2.2)

where In is the integer number obtained in the conversion from its binary value.

The fitness value, which is a way to measure how adapted this specie is in relation to
the others, is attributed proportionally to the gain or loss in the value of the objective
function resulted from a bit flip in the population. For example, in a minimization
problem, if flipping bit b6 in Figure 2.2 results in a higher value of objective function
for the entire population than if flipping bit b14, then bit b6 is more adapted (fitter)
than bit b14. Note that in GEO firstly the flip is done in a bitwise process, only for the
fitness attribution. That is, during the attribution of the fitness only the bit that is
being assessed is flipped, all others remain with their current value. After the fitness
is attributed for all bits they are ranked and one of them is mutated with probability
proportional to its ranking. At each canonical GEO iteration (generation), only one
bit is confirmed to mutate. In a slightly variation of it, called GEOvar, a bit is mutated
for each variable. In either version, The process of fitness attribution, ranking and
mutation is repeated until a given stopping criterion is met. The population of bits
is evolved through this process and the best configuration found during the search
is returned at the algorithm stop.

The τ parameter controls the selection pressure, making the algorithm more deter-
ministic for higher values and more stochastic for lower ones. This gives the algo-
rithm the capability to escape local optimums due to being able to walk through
the space of the problem not necessarily improving the best objective function value
found in some iteration (SOUSA; RAMOS, 2003). It has been extensively studied and
in practice, it has been observed that the best τ for different applications lies in the
range [0.75 to 5.0] (SOUSA; RAMOS, 2003; SOUSA et al., 2005; SILVA NETO et al., 2016;
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SOUSA, 2003). Besides, the effect that τ has on the algorithm may indicate traces
of Self Organized-Criticality (SOC) behavior in GEO (SOUSA, 2003).

Figure 2.2 - Design variables Xn, n = {1 . . . N}, are encoded in a binary string of L bits.

0 1 1 0 0 0 1 0 0 . . . 0 0 1 1 0 0 1 0 0

Population

b1
. . . . . . . . . . . . . . . . . . . .

bL

b6
Individual

b14
Individual

× ×

Design Variable X1

× ×

Design Variable XN

SOURCE: Made by the author.

SOC (BAK; CHEN, 1991) is a model created to describe dynamic systems behaviors
and applied to explain the process of evolution. Basically a system stays at equilib-
rium for an amount of time until it reaches a critical point, which causes instability
into the system. This system suffers "avalanches" that can be really small or even
the size of the entire system, what makes the system return to its equilibrium point
(BAK; CHEN, 1991). SOC may be present on GEO due to the τ parameter that
improves the population through avalanches, however more studies are necessary to
prove this behavior (SOUSA, 2003).

Along the previous years diverse GEO variations were developed, versions that ex-
plored methodologies as a auto reset for every time the algorithm stagnated, one
for parallel computation, a multi-ranking to make it more symmetric and a multi-
objective version are some examples (GALSKI, 2007).

Lopes (2013), Lopes et al. (2016) elaborated a base ten version of GEO, called GEO-
real, and a multi-objective version of it, in both the design variables assumed their
continuous values instead of being encoded in binary, and suffered mutation by a
Normal distribution.

Considering concurrent populations approaches there are few works in the literature
where EO or GEO are transformed into a multi population based algorithm (CHEN et

al., 2006; ZENG et al., 2014; XIE et al., 2009) as far as the author knowledge goes. In Xie
et al. (2009) GEO is extended into two versions that work with continuous variables.
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First, population based GEO (PGEO) implements multiple populations that are
ranked according to their fitness to then be selected by the same selection process
of GEO, using τ . After, the selected individuals variables are mutated through the
same selection process, but with a different τ , changing the individual for the next
generation. The second version, named Hybrid GEO (HGEO), is an extension of
the first, where its hybridized with GA. Basically, it runs PGEO, GA crossover and
elitist operator for the selected populations.

Galski (2007) also developed a version of GEO that presented different possibilities
for encoding the design variables. Introducing a new parameter b to represent the
base in which the user would like to encode the problem variables. A deterministic
hybrid version with Simulated Annealing (GALSKI, 2007; GALSKI et al., 2009), also
developed by Galski, consisted in using the temperature schedule of the simulated
annealing merged with the τ parameter of GEO. To define the schedule it is necessary
to set the number of stages, the number of function evaluations and the value of τ
in each stage. Although such approach allows the variation of τ during the search,
in a deterministic way, it added to the algorithm two new free parameters.

All those versions never explored controlling the τ parameter, except for the hybrid
GEO/SA one. Even this version presented a deterministic way to mutate τ through
the search and yet added another parameters for the user to tune.
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3 ADAPTIVE GENERALIZED EXTREMAL OPTIMIZATION (A-
GEO) ALGORITHM

GEO having only one free parameter to be adapted makes it a good candidate for
the use of control mechanisms from the implementation simplicity point of view,
since there would be no interference of other parameters on its performance. Plus,
in Aleti and Moser (2016), Karafotias et al. (2015) reviews, it has been shown that
between the identified parameters controlled on published works since 1990, the
parent selection receives little attention from the community. Thus, since there is
little information on the scientific community about control mechanisms actuating
on selection parameters it is interesting the use of control mechanisms within GEO.

In the past Galski et al. (2009) developed the first version of GEO that employed pa-
rameter control techniques. This version updated τ value based on a schedule derived
from Simulated Annealing (KIRKPATRICK et al., 1983), as described in Chapter 2.
Unfortunately, it added two more parameters to GEO and had a fixed rate of change,
which did not establish a proper balance between exploration and exploitation dur-
ing the search. Next Galski et al. () developed a self-tuning version of GEO thorough
an hybrid approach named GEO + ES. This version represented the design vari-
ables as real numbers, implemented a new mutation operation and eliminated the
τ parameter. However, it still added three other adjusting parameters: the learning
rate, the learning bias and the number of mutations.

Thus, with those two goals in mind, make GEO parameterless and balance explo-
ration and exploitation along the search, A-GEO was developed. To achieve its goals
A-GEO employs an adaptive parameter control technique to change τ values at each
generation i.

3.1 The A-GEO algorithm

A-GEO was split into two GEO variations, A-GEO1 and A-GEO2, presented in Fig-
ure 3.1. To balance the exploitation and exploration of A-GEO the GEO capacity of
exploration was maintained while the exploitation of local optimums was improved.
This was achieved by oscillating between behaviors proportionated by different τ
values. First, to increase exploitation of valleys, τ is made more deterministic when
the current population has lesser or equal chances of improving the solution than the
previous iteration population. Second, τ is made more stochastic when the current
population has no more ways to improve the solution, giving the algorithm more
randomness, enabling it to explore more points on the search space.
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Figure 3.1 - A-GEO Algorithms.
Initialize randomly the pop-

ulation of L bits that en-
codes N design variables

Initialize a variable CoIi−1

with 1/
√
n that will be the

ratio of successful mutations

For each bit attribute a fitness
number that is proportional to
the gain or loss the objective

function has, compared to the
best so far, if the bit is flipped

A-GEO1 A-GEO2

Calculate the chance of im-
provment CoIi of successful

flips over total flips, where suc-
cess is defined by being better
than the best population of all
historical current populations

Calculate the chance of im-
provment CoIi of successful

flips over total flips, where suc-
cess is defined by being better
than the current population

CoIi = 0

CoIi ≤
CoIi−1

Reset τ mode

Increase τ mode

Make CoIi−1 = CoIi and
Rank the bits according
to their fitness numbers

Confirm the mutation of a bit
of the population with proba-
bility Pk ∝ k−τ with k = 1, L

Was the
stopping
criteria
met?

Return the best solution
found during the search

no

yes

yes

no

no

yes

SOURCE: Made by the Author.

Improve a population on A-GEO means to find a better solution than a reference so-
lution. To measure this improvement A-GEO adds a solution improvement measure-
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ment metric for each current generation population, called Chance-of-Improvement
(CoI). CoI is calculated as

CoIi = Limp

L
, (3.1)

where Limp is the number of bits in the current population that when flipped provide
a better solution than a solution of reference and L is the total number of individuals
(bits). If a population of ten individuals has five bits that when flipped provides
better solutions than a solution of reference, the Chance of Improvement (CoI) of
this population is of 0.5.

Thinking about GEO algorithm with this new variable rises a necessity to initialize
its value for the first generation since, in respect to the beginning of the search,
there is still no previous reference population. Thus CoIi−1 for i = 0 is given by

CoI−1 = 1/
√
N, (3.2)

following the same rule adopted for uncorrelated mutation in evolutionary strategies
(EIBEN; SMITH, 2003).

Also τ must be initialized. Any value of τ may be used to initialize the search. It
may even be set randomly. Nevertheless, in the present work τ was always initiated
with its value set to 0.5.

Afterwards the initialization, the CoIi calculation occurs at each generation i, af-
ter the bit flips and before the ranking process performed by A-GEO. After it is
computed A-GEO evaluates how the τ value will be changed based on three modes:

If


CoIi = 0, Re-start τ mode.

CoIi ≤ CoIi−1, Increase τ mode.

otherwise, τ stays as it is.

(3.3)

In theRe-start and Increasemode τ values change based on different rules because
of different goals. The first one tries to enhance the exploration performed by the
algorithm reseting the value of τ to a low value, which leads to a more stochastic
behavior, facilitating jumps on the search space. To perform the mutation on τ

for this mode, the following equation inspired on the rule adopted for uncorrelated
mutation in evolutionary strategies (EIBEN; SMITH, 2003) was used:

τ = 0.5Lognormal(0, 1/
√
N) (3.4)
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However, if the Increase mode is applied to the algorithm, τ changes by

τ = τ + (0.5 + CoIi)U(0, 1), (3.5)

where U(0, 1) is a variable with uniform distribution in the interval [0, 1]. This
uniform probability distribution is used to maintain a stochastic characteristic on
the quality attribution of the τ parameter control technique while using the current
population CoI (CoIi) to insert population feedback into the mutation, as seen in
some techniques reviewed by Aleti and Moser (2016).

The only difference between A-GEO1 and A-GEO2 is the reference population used
to calculate the CoIi. For A-GEO1 the best population of all historical current
populations is used. At each generation a individual is chosen to be mutated and one
of the new populations generated by this process is chosen to be the next generation
current population, as in GEO. It’s important to notice that the reference population
is not the best population found so far, since only one of the mutation generated
populations is selected to be the next current population.

In A-GEO2 case, the reference population is the generation current population, it
means that, for A-GEO2, the CoI of a population is the number of flips that improve
the current population itself over the total number of mutations.

3.2 A-GEO parameter control mechanism classification

As pointed out in Section 1.2, Karafotias et al. (2015) discussed two classification
for parameter control mechanisms. The first one was in respect to how they adapt
an EA parameter (deterministic, adaptive or self-adaptive control). The second clas-
sification was in respect to how the mechanism was designed (parameter specific,
ensemble or parameter independent). A-GEO, as its name suggests, uses an adap-
tive control technique, that is responsible to control the GEO selection parameter
τ . Therefore, in respect to its design classification it was conceived as a parameter
specific control mechanism, being in the first quadrant of Figure 1.3.

However, the control mechanism employed is not dependent on any behavior or
peculiarity presented in A-GEO. This means it should be possible to apply it to
others numeric parameters as well, needing minor adjustments.

Focusing on how control mechanisms chooses or generates parameter values during
the search on EAs, Aleti and Moser (2016) established a framework for parameter
control techniques, as described in Section 1.2. It consists of four non-obligatory

18



stages: feedback collection, effect assessment, quality attribution and parameter up-
date. Thus, a parallel was traced between the adaptive parameter control technique
proposed to A-GEO and the framework developed by Aleti and Moser (2016).

To understand how the proposed technique utilizes this framework lets break it into
parts. First lets just analyze how it changes the algorithm by first measuring the
CoI at each generation. To compute CoI, as explained earlier, the technique needs
feedback of the population, in particular the solution value. After gathering the
feedback, it estimates the value of CoI, by first estimating how good a solution is
relative to a reference solution, what characterizes effect assessment. Next, when
it finally computes the CoI, it attributes a quality to the parameter for the next
generation. For last, the parameter value is updated using a deterministic update
strategy.

Now knowing how A-GEO1 and A-GEO2 work it is possible to say that they diverge
just in one stage of the framework, the effect assessment stage. Table 3.1 shows how
they can be classified in each framework stage.

Table 3.1 - A-GEO classification on Aleti and Moser (2016) parameter control framework.

Framework stage A-GEO1 A-GEO2
Feedback collection Phenotype feedback Phenotype feedback
Effect assessment Best effect Current effect
Quality attribution Average quality Average quality
Parameter update Deterministic update Deterministic update

SOURCE: Made by the author.

In respect to quality attribution and parameter update, the classification can be
somewhat confusing since A-GEO uses data from the current population to attribute
the parameter quality. However, remember that it uses current population data in
respect to the previous one, what characterizes a subset of populations, thus an
average quality attribution. In the parameter update case it is deterministic due to
the parameter quality indicating exactly what will happen to the parameter value,
what in A-GEO means that the quality attribution selects the mode in which the
algorithm mutates τ .

Aleti and Moser (2016) also classified the papers reviewed in their research based
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on what features of their framework were implemented in each stage, presented in
Figure 3.2. With this information its possible to position the A-GEO algorithm
in this chart and verify where it stands on todays scientific community developed
control mechanisms.

Figure 3.2 - Papers classified based on the adaptive parameter control mechanisms.

(a) Feedback collection. (b) Effect assessment.

(c) Quality attribution. (d) Parameter update.
SOURCE: Adapted by the author from Aleti and Moser (2016).

A-GEO control mechanism follows the mainstream choice of the community for
feedback collection and phenotype feedback. For effect assessment A-GEO1 uses the
second most used choice, the best population, which until 2013 was the preferable
choice, being replace by the ancestor strategy, used by A-GEO2. In respect to qual-
ity attribution and parameter update A-GEO uses unpopular strategies, which is
interesting since few works were conduct in the area.

This concludes the presentation of A-GEO, the motivation behind it and parallel
with the bibliography reviewed. In the next chapter more insights on A-GEO are
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given with an analysis on how its control mechanism affects τ during the search and
by performance comparisons with GEO.
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4 PERFORMANCE EXPERIMENTS AND ANALYSIS

A set of test functions was chosen to evaluate the performance of A-GEO in finding
their global optimum, when compared to the canonical GEO. These functions will
help establish a base of comparison for controlling techniques versus tunning pa-
rameters performance, and are also used to assess the A-GEO overall performance,
robustness of initialization and τ behavior.

The performance comparison for controlling versus tunning is done based on the
number of function evaluations (NFE) performed given a stop criterion for all test
functions except Rastrigin, which is not used for these experiments. For A-GEO
overall performance and robustness of initialization experiments it is used the value
of the objective function at the end of the algorithm given a large time limit. Finally
τ analysis evaluates the changes in τ value during each generation of the algorithms.

Five different continuous functions, shown in Table 4.1 and Figure 4.1, were chosen.
Three are separable functions (F1, F4 and F5) and two non separable (F2 and F3).
F1 is DeJong #1 function, a unimodal function with three design variables. It has a
global minimum at X = {0, 0, 0} where the value of the objective function is zero.

Table 4.1 - Test functions for performance experiment.

Functions Restrictions

F1: f(Xn|n=1,3) = ∑N
n=1 X

2
n Xn ∈ [−5.12; 5.12]

F2: f(Xn|n=1,2) = ∑N−1
n=1 [100(X2

n −Xn+1)2 + (1−Xn)2] Xn ∈ [−2, 048; 2, 048]

F3: f(Xn|n=1,10) = 1 +∑N
n=1

x2
n

4000 −
∏N
n=1 cos

(
Xn√
n

)
Xn ∈ [−600; 600]

F4: f(Xn|n=1,20) = 3.0N +∑N
n=1(X2

i − 3.0 cos (2πXn)) Xn ∈ [−5.12, 5.12]

F5: f(Xn|n=1,10) = 418.9829N +∑N
n=1(Xnsin

√
|Xn|) Xn ∈ [−500; 500]

SOURCE: Made by the author.

The second function, which is also a unimodal function, is known as the Rosenbrock
function. It was used with two design variables and has a global minimum at X =
{1, 1} where the value of the objective function is zero.

Griewangk is the third function and has multiple local minimums, it was considered
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with ten design variables and has a global minimum at X = {0, . . . , 0} where the
value of the objective function is zero.

F4 is the Rastringin function, a non-linear, separable with multiples local minimums
regular distributed function, considered here with 20 design variables. It has a global
minimum at X = {0, . . . , 0} where the value of the objective function is zero.

At last, the Schwefel function (F5) is considered with 10 design variables. It is a non-
linear, separable with multiples local minimums distant from the global minimum
function . It has a global minimum at X = {420.9687, . . . , 420.0687} where the value
of the objective function is zero.

Figure 4.1 - Design spaces shown in two dimensions for all test functions.
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SOURCE: Made by the author.

For most of the functions there were made 50 independent runs of the algorithms
with a predetermined set of seeds, except for Rosenbrock, which ran 100 independent
times due to its shape. Also, for all performed experiments A-GEO τ was initialized
as 0.5.
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4.1 Tunning versus controlling mechanism

The goal of this section is to present results and elaborate comparisons between
GEO, A-GEO1 and A-GEO2 focused on the strategy and cost of tunning versus
controlling the τ parameter. To establish a more fair base of comparison, according
to Eiben et al. (1999), the GEO algorithm will be run with various τ simulating a
tune of the algorithm.

The algorithms were tested with functions F1, F2, F3 and F5 defined in Table 4.1,
where F4 was not used due to its similarity to F3. Their implementations details
are shown in Table 4.2.

For the GEO tunning process, the τ ’s used for each function are presented in Ta-
ble 4.3. These τ ’s and steps where selected through a revision of the literature which
determined the min and max τ values for each function based on the best configu-
ration value, the complexity of the function (the higher the complexity higher the
step) and how long would it take to finish running all the runs with different steps.

Finally, the respective results of the experiments are in Table 4.4, Table 4.5, Table 4.6
and Table 4.7.

Table 4.2 - GEO, A-GEO1 and A-GEO2 tunning versus controlling configurations.

Function Runs Variable encoding Stop criteria
F1 50 11 bits f(X) ≤0.001
F2 100 13 bits f(X) ≤0.001
F3 50 16 bits f(X) ≤0.5 or NFE≥100,000
F5 50 16 bits f(X) ≤600 or NFE≥100,000

SOURCE: Made by the author.

In Table 4.4 are shown the F1 function results using GEO and A-GEO. The second
column is the mean NFE value spent to reach the stop criteria for the 50 runs of
each algorithm. Note that in GEO case, two results are presented, one for the GEO
tuning process, which is the mean NFE value needed to reach the stop criteria for
the 50 runs of each algorithm, considering the GEO τ range and step presented for
the function in Table 4.3. The other, is the mean NFE value of GEO with the best
τ found in the tuning process, which for F1 is equal to 4.5.
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Table 4.3 - GEO tunning τ configurations.

Function τ boundaries (GEO)
F1 [0.5;5.0] with steps of 0.5
F2 [0.25;3.0] with steps of 0.25
F3 [0.25;4.0] with steps of 0.5
F5 [0.25;3.0] with steps of 0.5

SOURCE: Made by the author.

Table 4.4 - Tunning versus controlling F1 results for GEO and A-GEO.

Algorithm Mean NFE Std. Dev.
GEO tuning 3.085E+03 -
GEO (τ=4.5) 3.500E+02 8.000E+01
A-GEO1 4.020E+02 9.600E+01
A-GEO2 4.120E+02 8.900E+01

SOURCE: Made by the author.

As can be seen f rom the results presented in Table 4.4, if the best τ for GEO was
known a priori, it would outperform A-GEO in F1. However, if a bad τ was chosen,
using GEO would lead to a significantly poorer performance when compared to using
A-GEO. This is highlighted when the values of the mean NFE found for A-GEO
are compared with the ones found for GEO using the best τ and all τs.

In Table 4.5 are shown the F2 function results using GEO and A-GEO. For GEO,
the best τ is equal to 1. For F2, the best performance of GEO is the worst of all
algorithms and the overall mean performance of the tunning is 28 times worse than
A-GEO1 and 33 times worse than A-GEO2.

Table 4.5 - Tunning versus controlling F2 results for GEO and A-GEO.

Algorithm Mean NFE Std.Dev.
GEO tuning 2.770E+05 -
GEO (τ=1) 1.079E+04 1.078E+04
A-GEO1 9.774E+03 1.094E+04
A-GEO2 8.471E+03 8.648E+03

SOURCE: Made by the author.
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In Table 4.6 are shown the results for F3 using GEO and A-GEO. The third column
shows the percentage of runs that met the precision criteria in 50 runs performed
for each algorithm. Note that in the case of GEO, the best τ value is 1.25.

Table 4.6 - Tunning versus controlling F3 results for GEO and A-GEO.

Algorithm Mean NFE Std. Dev. Met precision criteria
GEO tuning 6.106E+04 - 70%
GEO (τ=1.25) 1.370E+04 7.940E+03 100%
A-GEO1 2.160E+04 3.458E+04 84%
A-GEO2 8.241E+03 4.489E+03 100%

SOURCE: Made by the author.

Analyzing the runs for F3 it is clear that A-GEO outperforms the GEO tunning
process, however A-GEO1 presents an interesting behavior. It did not attend the pre-
cision criteria in 16% of the runs, what may be caused by a premature convergence.
This happens because A-GEO1 makes a lot of resets to find other local minimums,
while A-GEO2 can explore the search space in a more efficient approach without
letting aside the exploitation. Finally A-GEO2 can converge in a shorter period to
the precision criteria, outperforming all the other algorithms presented.

In Table 4.7 are shown the F5 function results using GEO and A-GEO. Note that
in the case of GEO the best τ is equal to 1.

Table 4.7 - Tunning versus controlling F5 results for GEO and A-GEO.

Algorithm Mean NFE Std. Dev. Met precision criteria
GEO tuning 8.012E+04 - 28%
GEO (τ=1) 6.002E+04 3.578E+04 70%
A-GEO1 7.216E+04 3.837E+04 42%
A-GEO2 5.918E+04 3.898E+04 70%

SOURCE: Made by the author.

The results, shown in Table 4.7, use the same metrics as in Table 4.6. The behavior
of the algorithms on this function is similar to the behavior on Griewangk since both
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have multiple local minimums. A-GEO outperforms GEO relatively to the tunning
necessity. Also, A-GEO2 outperforms all the other versions. However it does not
deliver great improvements in respect to the best GEO for this deceptive function.

All these experiments suggest that A-GEO outperforms GEO as the complexity of
the functions rises. This is a promising result, since high complexity functions are
common in real world scenarios. Considering the necessity to have the user tunning
the algorithm to retrieve a great performance from GEO requires a know how about
the algorithm from the user and imposes a considerable performance deficit. Also,
A-GEO2 outperforms the best static configuration of GEO in almost all functions.

4.2 A-GEO performance experiments and τ analysis

GEO, A-GEO1 and A-GEO2 overall performance was analyzed over long runs where
the algorithms searched for the best objective function value they can reach in a time
limit. Meanwhile each independent search progress (best solution found so far) was
stored to evaluate how different independent runs of the algorithms behave. For
this porpoise the samples objective function standard deviation σ, and coefficient of
variation cv (LOVIE, 2005) were computed by:

cv = σ

µ
, (4.1)

where µ is the mean value of the objective function samples. Both of them are used
to measure the variability of the best solutions found through different independent
runs and help develop some insights about the balance between exploration and
exploration.

Also, for these runs, it was analyzed the behavior of τ along the search. The τ
analysis uses as a time axis the number of generations, i, of GEO or its variants.
This metric was chosen because τ mutates at each generation on A-GEO and each
generation is related to the NFE, the number of variables N , and the number of bits
that the design variables were encoded m by

NFEi = N ×m. (4.2)

Where NFEi is the number of function evaluations that occur in generation i. To
illustrate how it works, based on Equation (4.2), for F1, that has a stop criteria of
i ≥ 37, in terms of NFE it would be greater than 1,200.
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Both experiments are executed for each test function presented in Table 4.1, and
their configurations are presented in Table 4.8. The GEO algorithm used for com-
parison is the one with best τ statical configuration, presented in Section 4.1.

Table 4.8 - GEO, A-GEO1 and A-GEO2 overall performance general configurations.

Function Runs Variable encoding Stop criteria
F1 50 11 bits NFE≥1.200E+03 (i ≥3.700E+01)
F2 100 13 bits NFE≥1.000E+06 (i ≥3.846E+04)
F3 50 16 bits NFE≥1.000E+06 (i ≥6.250E+03)
F4 50 16 bits NFE≥1.000E+06 (i ≥3.125E+03)
F5 50 16 bits NFE≥1.000E+06 (i ≥6.250E+03)

SOURCE: Made by the author.

4.2.1 Test Function 1 (DeJong #1)

The performance results for this function are shown in Figure 4.2. Analyzing first
the graphs presented for performance, it can be stated that GEO has the best overall
performance. Also, GEO demonstrated to present almost the same disparity between
its best solution values found through the search as the other algorithms, as shown
by the coefficient of variation and standard deviation.

The different solutions presented by each independent run of A-GEO2 start to
strongly diverge in value between 400 and 600 NFE, which can be caused by reset
mutations on the values of τ that leads the algorithm to other search spaces. After
some more evaluations it normalizes its cv and converge with the other algorithms.

The evolution of τ , shown in Figure 4.3 for all algorithms, demonstrate a strong
τ value increase in the first twelve generations for A-GEO. It can be noticed that
around generation thirteen, which is close to NFE 400, the τ value starts to stagnate
and then decrease. This can cause a variation on the cv of the objective function,
since some runs that start to decrease the parameter value in earlier generations are
performing resets while others can be maintaining their τ value through some more
iterations.

Further in the search, the first approach stabilizes τ between 0.4 and 0.8 while
the second one sees an increase on it again. This stabilization means that the τ
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parameter suffers fewer increases and more resets along the next generations or it
is maintaining its τ value. To analyze this last statement an average of the data
collected for the behavior of τ is presented in Table 4.9.

The columns on Table 4.9, starting from the second one are: the average of resets, the
average of increases, the average of no changes and the average value of τ performed
on the 50 independent runs of A-GEO. Analyzing the data A-GEO2 has a higher
τ average, almost no resets, more increases and maintained τ ’s more times than
A-GEO1, what may imply that it balances better its exploitation and exploration.

Figure 4.2 - Overall performance F1 results for GEO and A-GEO.
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SOURCE: Made by the author.

30



Figure 4.3 - F1 function evolution of τ parameter through generations.
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Table 4.9 - F1 τ average results.

Algorithm τ Reseted τ Increased τ Maintained τ
A-GEO1 2.100E+01 1.500E+01 1.000E+00 1.850E+00
A-GEO2 2.000E+00 2.400E+01 1.200E+01 2.340E+00

SOURCE: Made by the author.

4.2.2 Test Function 2 (Rosenbrock Function)

The performance results for this function are shown in Figure 4.4. Looking at the
graphs its clearly that A-GEO and GEO have similar performance, with A-GEO2

being the best among the three. When it comes to their disparity between solu-
tion values through different independent runs, A-GEO variations have the highest
through almost all the search.
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Figure 4.4 - Overall performance F2 results for GEO and A-GEO.
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The evolution of τ through the search in A-GEO, shown in Figure 4.5, first increases
its value in the first ten generations. Rapidly after this, A-GEO1 drops its τ value
to less than the best τ of GEO due to a lot of resets taken. It is important to notice
that A-GEO2 maintain its τ values always higher than the values presented by GEO,
while A-GEO1 after the first increase and decrease cycle does not reach GEO best
τ . Analyzing those values as the search pass through the generations it is observed
that the τ values amplitude increases as the search advances. This can be caused
by the difficult in improving a solution as it approaches the global optimum value
forcing resets on the algorithm. Also, the cv by Generations plot demonstrates that
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A-GEO2 τ mutations are more consistent through different runs.

Figure 4.5 - Rosenbrock function evolution of τ for A-GEO1 and A-GEO2.
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After the abruptly increase and decrease of τ value, A-GEO2 starts to better balance
the search in terms of exploitation and exploration making it find better solutions
than the other approaches. The overall behavior of τ can be summarized by Ta-
ble 4.10, showing that A-GEO2 may be a more balanced approach than A-GEO1

since it presents an equilibrium between the number of times that τ values increases
and are maintained. Also, other factor that contributes to the low disparity between
solution values on the different runs, and also to A-GEO2 being a better balanced
algorithm is that this function has a single valley, which as can be seem was better
exploited by A-GEO2.
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Table 4.10 - Rosenbrock τ average results.

Algorithm τ Resets τ Increases τ Maintained τ
A-GEO1 3.842E+04 2.200E+01 2.400E+01 6.400E-01
A-GEO2 3.681E+03 1.942E+04 1.536E+04 1.510E+00

SOURCE: Made by the author.

4.2.3 Test Function 3 (Griewangk Function)

The performance results for this function are shown in Figure 4.6. In this case A-
GEO1 is beaten by all the algorithms in performance, while A-GEO2 clearly suppress
GEO. However, analyzing the oscillations of the solution values, found by the in-
dependent runs, GEO demonstrates to find extremely likely solution values on its
independent runs during all the search while A-GEO2 increases its disparity as the
search advances.

This behavior of A-GEO2 can be justified by the adaption of its free parameter dur-
ing the search, that generates better results, but sacrifices solution convergence in
doing so. This behavior is indication of a trade off between exploration and exploita-
tion. A possible explanation is that since τ can be reseted making the algorithm ex-
plore new search spaces when it stagnates, each independent run has bigger chances
to be on different search spaces at each generation. After a new promising location
is found, the search starts an exploitation cycle that starts to make the algorithm
found more likely solution values, thus decreasing its cv. However, experiments that
analyzes the position that the algorithm population finds itself on the search space,
at each generation, have to be made to prove this possibility.

The adaptive parameter evolution results are shown in Figure 4.7. A-GEO1 and
A-GEO2 increase the average τ value in the first forty generations. However, after
this A-GEO1 starts to reset it constantly, due to the lack of capacity to improve the
population value in respect to the best population found so far. This does not mean
that A-GEO2 does not perform those resets too, however they are less frequent as
can be seen in Table 4.11.
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Figure 4.6 - Overall performance F3 results for GEO and A-GEO.
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After getting to the balance point, close to 0.65 for A-GEO1 and two for A-GEO2,
shown in Table 4.11, A-GEO2 increase and decrease cycles of τ have very different
sizes through the evolution of the search. This can mean that the independent runs
are finding different solutions because they have different values of τ , which leads
to different points on the search space, or vice-versa. This possibility is reinforced
by the cv presented in Figure 4.6 for the objective function value during the search
and by the cv of τ values in Figure 4.7. Thus, this can result in different regions on
the search space since greater cv implies a bigger distance between values.

35



Figure 4.7 - Griewangk function evolution of τ for A-GEO1 and A-GEO2.
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Table 4.11 - Griewangk τ average results.

Algorithm τ Reseted τ Increased τ Maintained τ
A-GEO1 6.182E+03 6.000E+01 8.000E+00 6.500E-01
A-GEO2 3.530E+02 3.671E+03 2.226E+03 2.060E+00

SOURCE: Made by the author.

Considering that the second version of the algorithm performs the adaption of τ
based on the current and possible future populations, the chances to make τ more
deterministic or maintain it in a short period increases, as shown by the zoomed
graph in Figure 4.7, where the increasing parts of the graph for the second algorithm
persist more time than the ones of the first one.
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4.2.4 Test Function 4 (Rastringin Function)

Similar to the Griewangk results A-GEO2 outperforms all approaches, as shown in
Figure 4.8. However, it does not present a relatively high cv compared to GEO as in
Function F3. In A-GEO1 case a decreasing cv is also observed, but it is probably due
to premature convergence to a local optimum, from which it can not scape. This can
be reinforced by Figure 4.9, which shows the adaptive parameter evolution results.

Figure 4.8 - Overall performance F4 results for GEO and A-GEO.
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SOURCE: Made by the author.
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The evolution of τ for both A-GEO1 and A-GEO2, increases the parameter value
in the first one hundred generations. However, after this A-GEO1 start to reset it
constantly, due to the lack of capacity to improve the population value in respect
to the best population found so far, as can be seen in Table 4.12.

Figure 4.9 - Rastringin function evolution of τ for A-GEO1 and A-GEO2.
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After getting to the balance point, close to 0.5 for A-GEO1 and two for A-GEO2, the
algorithms start to diverge in behavior. A-GEO1 performs cycles of slow increases to
τ through some generations and then restarts it close to the balance point. A-GEO2

has a more random behavior, after it reaches for the first time the balance point
in respect to the cycle of τ , it increase and decrease cycles have very different sizes
through the evolution of the search and the values of τ are always greater than the
values of A-GEO1, as it performs less resets.

Finally, Table 4.12 shows that A-GEO2 has a higher average, fewer resets, more
increases and maintained τ for more times than A-GEO1, what may imply that it is
more balanced than A-GEO1. Also, the cv of GEO can indicate that the algorithm

38



is converging to a solution value that it can not improve while A-GEO2 through its
different runs is still exploring new solutions, favoring its exploration without letting
the exploitation aside.

Table 4.12 - Rastringin τ average results.

Algorithm τ Reseted τ Increased τ Maintained τ
A-GEO1 2.987E+03 1.300E+02 8.000E+00 1.400E+00
A-GEO2 1.110E+02 1.782E+03 1.282E+03 2.830E+00

SOURCE: Made by the author.

4.2.5 Test Function 5 (Schwefel Function)

The performance results for this function are shown in Figure 4.10. A-GEO1 presents
the lowest disparity between its runs of the three algorithms, however it seems to
premature converge to a local optimum as in the Rastringin function. A-GEO2

is similar to GEO in performance and solution values disparity in this function.
Both present difficult to deal with a deceptive function, which caused the cv of the
algorithms to increase during the search as they look for more promising search
space.

The adaptive parameter evolution results are shown in Figure 4.11. The evolution
of τ for both A-GEO1 and A-GEO2, increases its value in the first fifth generations.
Both A-GEO algorithms exhibit the same behavior for τ as in Griewangk or Ras-
tringin, with A-GEO1 performing a extremely high number of resets, while A-GEO2

finds a balance between increasing and maintaining τ values.

Table 4.13 shows that A-GEO2 has a higher average, less resets, more increases and
maintained τ for more times than A-GEO1, what may imply that it is more balanced
than A-GEO1.
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Figure 4.10 - Overall performance F5 results for GEO and A-GEO.
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Table 4.13 - Schwefel τ average results.

Algorithm τ Reseted τ Increased τ Maintained τ
A-GEO1 6.086E+03 1.400E+02 2.400E+01 7.100E-01
A-GEO2 2.850E+02 3.506E+03 2.459E+03 2.070E+00

SOURCE: Made by the author.
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Figure 4.11 - Schwefel function evolution of τ for A-GEO1 and A-GEO2.
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From the results presented for performance on this section it can be seen that A-
GEO1 is no match for GEO in complex functions. However it has no free parameter
to be tunned, what is an enormous advantage. In respect to A-GEO2, it outper-
forms GEO in almost every function, possibly offering a better trade off between its
exploitation and exploration than GEO.

Analyzing the behavior of τ , its clear that the initial high climbing in value lasts
more as the complexity of the function increases. After τ values decrease to a balance
point the A-GEO variations differ in behavior. A-GEO1 present lower τ values than
GEO at all functions except for F5 in some points, what can be interpreted as if
GEO best τs are too deterministic at each stage of the search for A-GEO1, thus τ
is forced to be reseted before it reaches those values. These resets try to force the
algorithm to explore other search spaces along the search to obtain better solutions
than the best ones found so far.

Looking to the values of τ for A-GEO2 they are always higher than the ones of
A-GEO1 and for some functions even higher than the best value for GEO. This
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is a consequence of performing less resets and maintaining the value of the free
parameter through more generations when it still offers diverse better solutions to
be explored. Then, when the number of better solutions gets narrowed the algorithm
forces exploitation by increasing τ value.

As pointed out before, it can be seen that the resets and no changes in τ lower its
average value in some stages of the algorithm. This can occur when some runs are
searching for new exploration spaces while others are still exploiting their current
regions. Thus, when the τ in different independent runs differ on behavior, the cv
increases.

In summary, the results show that making GEO adaptive can not only free its user
of the burden of its free parameter τ , but also provide better results, even if the
“best” τ for GEO is know a priori. In the next Chapter A-GEO continues to be
analyzed an extremely more complex test suite.

4.3 A-GEO: A Glance Into the Future

A-GEO is a new version of GEO, an almost 20 years old evolutionary algorithm.
Since then a lot has changed in the field of evolutionary computation. As mentioned
through this work, there are a lot of new evolutionary algorithms with adaptive
and self-adaptive versions, and some of them are even using artificial intelligence
and machine learning techniques to improve their performance. All those algorithms
performed a long path being evolved till their current version to be considered state
of the art evolutionary algorithms.

It is not expected of A-GEO to be fully competitive with these algorithms, however
comparing it with them can give useful insights on how close A-GEO brings GEO
to them and where are the opportunities for improvement.

Thus, in this section A-GEO2 is compared with a recent evolutionary algorithm
named Teaching Learning Based Optimization with Focused Learning (TLBO-FL)
over 30 benchmark functions from the 2017 IEEE Congress of Evolutionary Com-
putation (CEC2017).

This algorithm was chosen due to being the worst ranked algorithm presented in
the CEC2017 competition, and it serves as a kind of metric for the performance of
A-GEO2 when compared to todays evolutionary algorithms.

First the benchmarks of CEC2017 are presented, followed by a brief description of
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the TLBO-FL algorithm, and finally the results and comparisons for both algorithms
are shown.

4.3.1 2017 IEEE Congress of Evolutionary Computation Benchmark

Every year, since 2005, IEEE Congress of Evolutionary Computation makes a new
competition on real parameter single objective optimization (AWAD et al., 2017). All
the selected algorithms are tested in 30 single objective benchmark functions that
can be transformed into dynamic, niching composition, computationally expensive
and many other classes of problems (AWAD et al., 2017).

The CEC2017 benchmark is composed of 30 bound constrained real parameter single
objective problems, shown in Table 4.14. Problems B1 to B3 are unimodal, B4 to B10
are multimodal, B11 to B20 are hybrid and B21 to B30 are composition functions.
Each function is shifted and rotated by a different matrix, o and M respectively
(AWAD et al., 2017). Also, they have D dimensions with search range [−100, 100]
(AWAD et al., 2017).

For this benchmark the hybrid functions are defined by Awad et al. (2017, p. 16) as:

F (x) = g1(M1z1) + g2(M2z2) + . . .+ gN (MNzN ) + F ∗(x)

F (x) : hybrid function

gi(x) : ith basic function used to construct the hybrid function

N : number of basic functions

z = [z1, z2, . . . , zN ]

z1 = [yS1 , yS2 , . . . , ySn1
], z2 = [ySn1+1 , ySn1+2 , . . . , ySn1+n2

],

zN = [yS∑N=1
i=1

ni+1
, yS∑N=1

i=1
ni+2

, . . . , ySD
]

y = x− oi, S = randperm(1 : D)

pi : used to control the percentage of gi(x)

ni : dimension for each basic function
N∑

i=1

ni = D

n1 = [p1D], n2 = [p2D], . . . , nN−1 = [pN−1D], nN = D −
N−1∑
i=1

ni

Next, the composition functions are the combinations of basic functions that merge
the properties of the sub-functions and maintains continuity around the global op-
tima (AWAD et al., 2017). They were defined by Awad et al. (2017, p. 19) as:
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F (x) =
N∑

i=1

{ωi ∗ [λigi(x) + biasi]}+ F∗

F (x) : composition function

gi(x) : ith basic function used to construct the hybrid function

N : number of basic functions

oi : new shifted optimum position for each gi(x), define the global

and local optima’s position

biasi : defines which optimum is global optimum

σi : used to control each gi(x)’s coverage range, a small σi

gives a narrow range for that gi(x)

λi : used to control each gi(x)’s height

wi : weight value for each gi(x), calculated as below:

wi =
1√∑D

j=1(xj − oij)2
exp−

∑D

j=1(xj − oij)2

2Dσ2
i

Then normalize the weight wi = wi/

n∑
i=1

wi

So when x = oi, wj =
{

1 j = i

0 j 6= i

}
for j = 1, 2, . . . , N, f(x) = biasi + f∗

The local optimum which has the smallest bias value is the global optimum. The compo-
sition function merges the properties of the sub-functions better and maintains continuity
around the global/local optima. Functions F ′i = Fi − F ∗i are used as gi. In this way, the
function values of global optima of gi are equal to 0 for all composition functions in this re-
port. In CEC’14, the hybrid functions are also used as the basic functions for composition
functions (Composition Function 7 and Composition Function 8). With hybrid functions
as the basic functions, the composition function can have different properties for different
variables subcomponents.

4.3.2 Teaching Learning Based optimization with Focused Learning
(TLBO-FL)

TLBO-FL is a variant of TLBO (RAO et al., 2011), an evolutionary algorithm that
implements a population based meta heuristic technique to mimic the knowledge
transfer in a classroom through teaching and learning process (Kommadath; Kotecha,
2017; RAO et al., 2011).

Each design variable Xn is considered a subject for each student X, represented
as a solution in the population (Kommadath; Kotecha, 2017; RAO et al., 2011). There
are two phases in the algorithm: teaching phase and learning phase. Every student
undergoes both phases, and the teacher Xbest is the solution with the best fitness
in the population (Kommadath; Kotecha, 2017; RAO et al., 2011). During the teaching
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Table 4.14 - Summary of the CEC2017 Test Functions.

No. Functions F ∗i = Fi(x∗)
B1 Shifted and Rotated Bent Cigar Function 100
B2* Shifted and Rotated Sum of Different Power Function 200
B3 Shifted and Rotated Zakharov Function 300
B4 Shifted and Rotated Rosenbrock’s Function 400
B5 Shifted and Rotated Rastrigin’s Function 500
B6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
B7 Shifted and Rotated Lunacek Bi Rastrigin Function 700
B8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
B9 Shifted and Rotated Levy Function 900
B10 Shifted and Rotated Schwefel’s Function 1000
B11 Hybrid Function 1 (N=3) 1100
B12 Hybrid Function 2 (N=3) 1200
B13 Hybrid Function 3 (N=3) 1300
B14 Hybrid Function 4 (N=4) 1400
B15 Hybrid Function 5 (N=4) 1500
B16 Hybrid Function 6 (N=4) 1600
B17 Hybrid Function 6 (N=5) 1700
B18 Hybrid Function 6 (N=5) 1800
B19 Hybrid Function 6 (N=5) 1900
B20 Hybrid Function 6 (N=6) 2000
B21 Composition Function 1 (N=3) 2100
B22 Composition Function 2 (N=3) 2200
B23 Composition Function 3 (N=4) 2300
B24 Composition Function 4 (N=4) 2400
B25 Composition Function 5 (N=5) 2500
B26 Composition Function 6 (N=5) 2600
B27 Composition Function 7 (N=6) 2700
B28 Composition Function 8 (N=6) 2800
B29 Composition Function 9 (N=3) 2900
B30 Composition Function 10 (N=3) 3000
*Notice that exceptionally in CEC2017 the problem B2 has been excluded due to

unstable behavior and performance variations for the same algorithm (AWAD et al., 2017).

SOURCE: Adapted by the author from Awad et al. (2017).

phase the professor tries to improve the class mean fitness while in the learning
phase the student try to improve itself by pairing with another random student
Xpartner (Kommadath; Kotecha, 2017; RAO et al., 2011). In both phases a new solution
is accepted only if it is better than the previous one (Kommadath; Kotecha, 2017; RAO
et al., 2011). Finally, each solution pass through the teaching and learning phase
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before another repeats the process.

In TLBO-FL all students try to improve their knowledge through the teaching phase,
however only the solutions that could not be improved in this phase go to the learning
phase (Kommadath; Kotecha, 2017). In TLBO-FL learning phase, a student pairs itself
with two other students, one having a better fitness value and the other a worse
fitness (Kommadath; Kotecha, 2017).

The algorithm steps defined by Kommadath and Kotecha (2017) are to first generate
a random uniform population within the bounds of the design variables and eval-
uate their fitness. Then a teacher is selected (Xbest) and modified by the following
equation:

Xnewbest
n = Xbest

n + rnX
best
n if n 6= k

Xnewbest
n = Xbest

n otherwise

∀n = 1, 2, . . . , N, (4.3)

where Xbest
n is the value of the nth decision variable of the best solution, k is a

random number between 1 and N , and rn is a random number in the range of
[0, 1] generated independently for each solution (Kommadath; Kotecha, 2017). Next
the solution is corrected in case of boundary violation by

Xnewbest
n = min(Xnewbest

n , Xu
n) ∀n = 1, 2, . . . , N

Xnewbest
n = max(Xnewbest

n , X l
n) ∀n = 1, 2, . . . , N

. (4.4)

If Xnewbest is worse than Xbest a new potential solution is generated at the learning
phase by

Xnewbest
n = Xbest

n + rn(Xbest
n −Xpartner

n ), (4.5)

where Xpartner
n is the nth design variable from any other solution of the solution pool.

Then the rest of the students are submit to the teaching phase (Kommadath; Kotecha,
2017), by the following equation:

Xnew
n = Xn + rn(Xbest

n − TFXmean
n ), (4.6)

where Xmean
n is the mean of the current class in the nth design variable and TF is

the teaching factor given by Kommadath and Kotecha (2017) as

TF = round(1 + r). (4.7)
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Then the solution is bounded and its fitness evaluated. If it is better than the solution
undergoing the teaching phase, it replaces it (Kommadath; Kotecha, 2017). If it is not
better it is discarded and a new solution is generated through the learning phase by

Xnew
n = Xn + r(Xpartner1

n −Xn) + r(Xn −Xpartner2
n ) ∀n = 1, . . . , N, (4.8)

where Xpartner1
n is the nth design variable of a superior random partner, while

Xpartner2
n is nth design variable from a inferior random partner (Kommadath; Kotecha,

2017). If the solution is better it is accepted, if not it is discarded. The procedure
repeats itself until it reaches the stop criteria.

Finally, it should be noted that the mean of the class is updated every time a student
completes one of the two phases of the algorithm.

4.3.3 Statistical Benchmark Comparison

The experiments conducted in this section followed the CEC2017 rules. A-GEO2

was run 51 independent times with uniform random initialization for every function,
except for B2 that was not computed. For Each function, D was set to 10 and 30,
A-GEO2 variables used a 16 bits encoding and the stop criteria was NFE≥100,000.

Table 4.15 and Table 4.16 show the results of A-GEO2 and TLBO-FL for D = 10
and D = 30, where the columns are the average error between the best, worst,
median and mean results achieved by the algorithms and the global optimum, and
the standard deviation.

As the results observed show, A-GEO2 performed poorly on functions B1, B3, B12,
B13, B14, B15, B18 and B19. These functions are the unimodal and hybrid func-
tions. The awful performance on B12, B13, B15 and B19 can be explained by the
composition of these hybrid functions, which includes B1, the worst performance
of A-GEO2. Since A-GEO2 presented difficulties handling unimodal function it also
can be assumed this is the reason behind the poor performance on B14 and B18.

Considering the average mean error, A-GEO2 only beats TBOL-FL in function B10,
a multimodal function with a deceiving global optimal. Also, for the rest of the multi-
modal and composite functions A-GEO2 performance is competitive with TBOL-FL.

Next a non parametric pairwise sign test (SHESKIN, 2006) comparison was made
between both algorithms to identify which one performed better on this test suite
statistically.
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The signed test is one of the most simple non parametric statistical methods. It was
explained by Derrac et al. (2011) as a comparison method that counts how many
times an algorithm won over other in a overall comparison. So, to satisfy the null
hypotheses of both algorithms performing equally, each algorithm would have to
win approximately F/2 out of F problems (DERRAC et al., 2011). Thus, to reject the
null hypotheses using a confidence interval of 95% (α = 0.05), the number of wins,
wins, of one algorithm should be at least equals to:

wins = F/2 + 1.96
√
F/2. (4.9)

Applying the sign test to the average mean error data shown in Table 4.15 and
Table 4.16 it is observed that A-GEO2 has only one win in each scenario against
TLBO-FL. Since the minimum number of victories for one algorithm to be consid-
ered better than other in one scenario is close to 20 for this case (see Equation (4.9)),
the null hypothesis can be rejected and there is a strong indication that the later
algorithm performed better on this test suite than A-GEO2.
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In summary, A-GEO2 has to be improved to compete with the state of the art
evolutionary algorithms. Considering that A-GEO2 is still the first adaptive version
of GEO and GEO is almost 20 years old, the performance results were reasonable. A-
GEO2 had difficulties with unimodal functions which undermined its performance on
the hybrid functions that used them, however for the rest of the functions presented
it was competitive with TBOL-FL and even won in one case. Also, A-GEO2 is a
parameterless version of GEO which gives it another huge advantage that is not
computed on this test, since TBOL-FL has the population size as a parameter that
needs to be tunned.

For last, one of the possible reasons for the gap in performance can be the variables
encoding used, since A-GEO2 still uses binary encoding while the more recent algo-
rithms use real values. However, further analysis and improvements need to be done
to A-GEO to understand why it had such a disadvantage on unimodal functions.

53





5 SPACECRAFT CONCEPT DESIGN APPLICATION

For Earth observation satellites in Low Earth Orbits (LEOs), the design of spacecraft
is driven by payload parameters such as mass and power (WERTZ et al., 2011). It
is known that the lower the orbit, the simpler the camera design, due to the lower
distance between the equipment and the target. However, a closer orbit will place
the satellite on an environment with higher air density and, consequently, higher
drag force, requiring a huge amount of fuel to maintain the nominal orbit (CHAGAS

et al., a). These aforementioned trade-offs exemplify the complexity of optimization
design in the conceptual phase, which encourages the use of MDO techniques.

Extending the works of Chagas et al. (b) and Chagas et al. (a), a simplified case
study is proposed in which the algorithms described in the Chapter 3 are used as
optimizers in an MDO to solve the following problem of the conceptual space mission
design phase:

• Find the variables I, Q and D, which define a Sun-synchronous
ground repeating orbit (SSGRO) (CHAGAS et al., a; WERTZ et al.,
2011), and minimize the satellite total mass Sm composed of the
satellite dry mass md and propellant mass mp.

The design variables required (I, Q and D) define the number of orbit revolutions
that a satellite makes per day (rev), given by

rev = I + Q

D
I,Q ∈ Z+, D ∈ Z∗+, (5.1)

where I,Q,D are integer numbers in which Q < D. Notice that after D days, the
satellite will complete D · I +Q revolutions, which is an integer number, leading to
the ground-track repetition in D days.

This chapter describes, discusses and evaluates the developed algorithms efficiency
applied into an MDO to solve a spacecraft conceptual design optimization case study.
First the mathematical models used for each necessary discipline are explained in
detail, then the problem mathematical definition is presented, followed by the MDO
framework and architecture. At last, the results are presented and analyzed.

5.1 Orbit analysis model

The orbit analysis model finds a nominal orbit for the mission and computes the
total velocity variation ∆Vt budget that the satellite propulsion subsystem shall be
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capable to provide. Where the ∆Vt budget is the sum of the amount of change in the
orbital velocity that the spacecraft must apply to transfer itself from the injection
orbit to the nominal orbit, to maintain its orbit altitude during the mission lifetime,
and transfer itself to the disposal orbit (CHAGAS et al., a).

5.1.1 Nominal orbit

The Sun-synchronous orbits (SSOs) are the most used ones for Earth observation
missions. They provide global coverage and the lightning conditions on the ground
are kept almost constant during the mission lifetime, which is important when com-
paring captured images (VALLADO, 2007). A SSO is an orbit in which the gravita-
tional perturbation precesses the right ascension of the ascending node (RAAN) by
0.9856473598948◦/day (WERTZ et al., 2011). In this case, the orbit plane will ideally
have the same orientation with respect to the Sun during the entire year. The RAAN
time derivative considering perturbation terms up to the Earth second gravitational
zonal harmonic J2 is given by (WERTZ et al., 2011)

.

Ω = −3
2

R2
0

a2(1− e2)2n0J2cosi, (5.2)

where R0 = 6, 378, 137 m is the Earth equatorial radius, a is the semi-major axis, e
is the eccentricity, J2 = 1.08262617385222× 10−3 is the Earth second gravitational
zonal harmonic, i is the orbit inclination, and n0 is the the non-perturbed orbit
angular velocity, given by

n0 =
√
µ0

a3 , (5.3)

where µ0 = 3.986004418× 1014 m3/s2 is Earth standard gravitational parameter.

Earth observation missions usually requires for the satellite to scan multiple times
the same area during a period, known as revisit period. This is accomplished by
selecting the number of orbital revolutions per day (rev), as in Equation (5.1) (VAL-

LADO, 2007). Hence, the camera can be designed so that an image of a target can
be obtained periodically according to this revisit time. Thus, solving

1.9910638534437197× 10−7 −
.

Ω = 0

ni − n0 − 3
4

R2
0J2

a2(1−e2)2n0{
√

1− e2[3 cos2 (i)− 1] + 5cos2i− 1} = 0,
(5.4)

for the semi-major axis a and the inclination i results in an SSGRO, whereas the
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orbital angular velocity ni is given by

ni = rev 2π
86400 . (5.5)

5.1.1.1 Field of View

After the orbit design, the next step is to find the minimum field of view that the
camera must have so that it can obtain images of the entire world in the selected
orbit. The minimum FOV is the angular distance, as seen by the satellite, between
two adjacent ground tracks (passages) on the Equator. If the camera design meets
this constraint, then the instrument will be able to acquire images of any place in
the world at every D days. Figure 5.2(a) shows the geometry of the problem where
θ′ is the angle between two adjacent passages measured from the Earth center and
considering the orbit inclination. In this case, the minimum swath width of the
optical instrument, which is the length of the imaged area on the ground, is the
distance ∆d .

Figure 5.1 - Geometries of the orbit and the field of view of the satellite.

(a) Geometry of the distance between two ad-
jacent ground tracks.

(b) Geometry for calculation of the minimum
FOV.

SOURCE: Adapted by the author from Chagas and Lopes (2015).

The Earth rotation angle during the orbit period Ti is

Θ = Ti
2π

86400 = 2π
ni

2π
86400 . (5.6)

Since the orbit cycle is D days, then the satellite will cross the equator D− 1 times
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between every two consecutive passages during the orbit period (WERTZ et al., 2011).
Hence, the angle θ can be computed as in

θ = Θ
D
, (5.7)

and, using spherical trigonometry, one can see that

θ′ = sin−1(sin(θ) sin i). (5.8)

Looking from the satellite point of view, shown in Figure 5.2(b), where β is the
FOV of the instrument, it follows that the minimum field of view FOVmin can be
computed by

c =
√
R2

0 + (R0 + h)2 − 2R0(R0 + h)cosθ
′

2 (5.9a)

β = 2sin−1(R0

c
sinθ

′

2 ) (5.9b)

FOVmin = 2sin−1

 R0√
R2

0 + (R0 + hp)2 − 2R0(R0 + hp)cos θ′2
sinθ

′

2

 (5.9c)

where h is the satellite altitude. If the selected orbit is eccentric, then one must use
the orbit perigee altitude hp to account for the worst-case scenario.

5.1.2 Orbit acquisition

After a spacecraft is launched it arrives at an injection orbit, and later corrective
maneuvers are made to position it into its nominal orbit.

The maneuvers correct the spacecraft orbit by adjusting the semi-major axis and the
orbit inclination. To correct the semi-major axis of the orbit it is necessary to make
two burns of propellant, one to correct its apogee and other to correct its perigee
(WERTZ et al., 2011). The first burn is executed at the angular position of the nominal
orbit perigee so that the orbit apogee is placed on the desired location. This puts
the satellite into a transfer orbit, which is an intermediate elliptical orbit used to
transfer a satellite from one orbit to another (WERTZ et al., 2011). The second burn
shall be executed in the orbit apogee and places the perigee in the desired position.
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Consider the velocity of the spacecraft represented as in Wertz et al. (2011) by

Va,r =

√√√√µ0

(
2
r
− 1
a

)
, (5.10)

where µ is the Earth gravitational constant, a is the semi-major axis of the orbit,
and r is the norm of the satellite position vector. As previously stated, adjusting
the spacecraft injection orbit semi-major axis to the nominal orbit semi-major axis
requires two burns (WERTZ et al., 2011), given by

∆V1 = Vat,ri − Vri,ri , (5.11)

∆V2 = Van,rpn
− Vat,rat , (5.12)

where an is the semi-major axis of the nominal orbit, rpn is the perigee of the nominal
orbit, rat is the apogee of the injection orbit, ri is the injection orbit radius and at

is the semi-major axis of the transfer orbit given by Wertz et al. (2011) as

at = rpn + ri

2 . (5.13)

The inclination correction maneuver requires a single burn normal to the orbital
plane at the ascending or descending node (WERTZ et al., 2011), it can be calculated
by

∆V3 = 2Van,ran sin
(

∆i
2

)
, (5.14)

where ∆i is the inclination error and ran is the nominal orbit apogee.

Finally, to compute the total velocity needed to correct the satellite orbit, the sum
of the the velocity variations modules obtained is made by

∆Voa = |∆V1|+ |∆V2|+ |∆V3|. (5.15)

5.1.3 Orbit maintenance

Since for this case study only LEO orbits are being considered, the satellite should
be able to correct the displacement caused by the atmospheric drag to sustain itself
through its mission lifetime in the nominal orbit as explained by Chagas et al. (a,
p. 3):
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Remote sensing mission with optical payloads are placed on a Low Earth
Orbit (LEO), which has altitudes from 400 km up to 1200 km (Wertz et al.,
2011). In these orbits, the atmospheric density applies a drag force to the
satellite that removes energy from the orbit and, consequently, decreases the
orbit altitude (Vallado and McClain, 2004).

Considering near circular orbits, the velocity variation ∆Vom necessary to counter-
balance the drag force can be computed as in Chagas et al. (a):

∆Vom = π
CDAcs

Sm
ρanVan,rpn

Tm

Torb
, (5.16)

where CD is the drag coefficient, Acs is the satellite cross-sectional area, Sm is the
satellite total mass, ρ is the atmospheric density, Tm is the expected mission lifetime
in seconds, and Torb is the orbital period in seconds, given by Wertz et al. (2011) as

Torb = 2π
√
rpn
µ0
. (5.17)

The satellite cross-sectional area Acs is estimated by a parametric model developed
taking into account a relation between itself and the satellite dry mass. Data from
34 LEO satellites, shown in Figure 5.2, launched between years 2000 and 2017, that
have an Earth Observation device were collected from the UCS Satellite Database.

Figure 5.2 - Satellite’s cross-sectional area and dry mass relation.
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SOURCE: Made by the author.
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Computing the satellite cross-section area from the data collected (Acs0) required to
draw a plane cutting the spacecraft perpendicular to its orbit, and if the solar panels
were not mounted on the body of the satellite, their area was take into account. Thus,
it was computed as:

Acs0 =

Asp + Ap if the solar panel is deployable,

Ap otherwise,
(5.18)

where Asp is the solar panel area and Ap is the satellite platform cross-section area.
Then making a linear regression of the data collected, between dry mass and cross-
sectional area, it is concluded that the satellite cross sectional area Acs is given
by

Acs(md) = 0.0216md, (5.19)

where md is the satellite dry mass. It is important to notice that in Chagas et al.
(a) this relation was found to be 0.019646md, which is not far from the one found
on on this work.

5.1.4 Deorbit

A disposal orbit is an orbit that will dispose the spacecraft (i.e atmospheric reen-
tering) after a specific period. This implies a propellant consumption at the end of
the satellite lifetime to insert it into this orbit, if so is required.

Nowadays exists an agreement between space agencies to dispose their satellites after
25 years of their end of operation. Thus, a model to estimate a spacecraft disposal
orbit that fulfills this agreement was developed, where the perigee of the nominal
orbit is changed to a perigee that turns it into a disposal orbit.

Using Debris Assessment Software (DAS) v2.0.2 it was possible to calculate the
orbit cycles of a satellite given its ballistic coefficient Sbc, apogee altitude ha, perigee
altitude hp and orbit inclination i during a specific period, thus showing when the
satellite will reenter atmosphere.

The software was used to create a model to find a perigee altitude hp that predicted
atmosphere reenter in a lifespan of 25 years by randomly generating 360 points of
apogee altitude ha and satellite ballistic coefficients Sbc between 500 and 800 km and
0.0001 and 0.9 kg/m2 respectively, with a nominal orbit inclination i of 98 degrees.
Also, using as starting year 2017, since it was the worst case scenario due to the
year solar cycle.
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After all points were generated, the 3D model was plotted and it is shown in Fig-
ure 5.3. Also, using GNU OCTAVE v4.2.1 to interpolate the points, one gets:

hp = −2.96741 ln(Sbc).[38.8249 exp(−0.001ha)− 50.7627] + 1017.1592, (5.20)

where ha is the apogee altitude and hp the perigee altitude.

Figure 5.3 - DAS output vs Model.
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The Equation (5.20) was compared to the other 360 points of Perigee altitude col-
lected from DAS and the mean error of this model is 0.0019Km with a standard
deviation of 18.9913 Km.

Now, having the disposal orbit perigee it is possible to compute the change in velocity
∆Vod, given as

∆Vod = Van,ran − Vad,rad , (5.21)
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where ad is the disposal orbit semi-major axis, and rad is the disposal orbit apogee.
The disposal orbit semi-major axis ad can be computed as

ad = rad + rpd
2 , (5.22)

where rpd is the disposal orbit perigee.

5.2 Payload model

To estimate the instrument mass, power, and FOV for the desired mission, a model
described in Wertz et al. (2011) was used. This method scales a new instrument
from a referenced one based on the instrument optical aperture ratio R defined by

R = A

A0
, (5.23)

where A0 is the aperture of the reference instrument. The desired instrument optical
aperture A is a function of the orbit height h, and focal length f as described in
Chagas et al. (a) as

f = Psizeh

ResN
, (5.24a)

A = A0Rv
f

f0
, (5.24b)

where Rv is the ratio between the ground velocity at the Equator for the current
mission and the payload reference mission, both measured at the descendant node,
Psize is the instrument pixel size, and ResN is the desired mission resolution.

Afterwards computing the ratio Rv, the mission payload head mass Wopt and power
Pp are estimated as in (WERTZ et al., 2011) by

Wopt = KR3Wopt0, (5.25a)

Pp = KR3Pp0, (5.25b)

where Wopt0 is the optical head mass of the reference instrument, Pp0 is the power
of the reference instrument and K is a scaling factor given by

K =

2 forR < 0.5,

1 otherwise.
(5.26)

Considering the payload mass Wp as the sum of the optical head mass Wopt and its
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electronics mass We one gets:

Wp = Wopt +We. (5.27)

Finally, the payload field of view FOVpayload can be computed by

FOVpayload = 2 arctan NpxPsize

2f , (5.28)

where Npx is the number of pixels of the camera.

5.3 Propulsion model

The total velocity variation for the entire mission lifetime ∆Vt is given by

∆Vt = |∆Voa|+ |∆Vom|+ |∆Vod|. (5.29)

Given the total velocity ∆Vt and the satellite total mass Sm, the propellant mass
mp can be obtained as in Wertz et al. (2011) by

mp = Sm

(
1− e−

∆V
g0Isp

)
(5.30)

where g0 = 9.80665 m/s is the gravity acceleration at Earth’s surface and Isp is the
propellant specific impulse, which is 225s for hydrazine (WERTZ et al., 2011).

5.4 Satellite model

The estimation of the total satellite mass requires a recursive algorithm since it
is necessary to know a priori the total satellite mass Sm to compute the satellite
propellant mass mp, and the contrary is also true. Developed by Chagas et al. (a),
the algorithm is shown below:

1. Given the orbit and a reference instrument, obtain the payload total mass
Wp as in Section Section 5.2;

2. Obtain the satellite dry mass estimate using the parametric relation
(WERTZ et al., 2011)

md = Wp/0.31; (5.31)

3. Obtain the satellite total mass estimate using the parametric relation of
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the first iteration, (WERTZ et al., 2011)

Sm
0

= 1.27md; (5.32)

4. Compute the satellite cross-sectional area using the model described on
Section Subsection 5.1.3 using the dry mass md;

5. FOR j = 1 : max DO

5.1. Compute the total velocity variation ∆Vt using the orbit analysis
model described in Section Section 5.1 using the total mass Sm

j−1
;

5.2. Compute the fuel mass of the jth iteration mp
j

using the propulsion

model described in Section Section 5.3;

5.3. Compute the new estimate for the satellite total mass:

Sm
j

= md +mp
j

(5.33)

5.4. If |Sm
j
− Sm

j−1
| < ε, stop.

6. END FOR

The threshold ε has been selected as 1E+0−5 kg and max has been selected as 100.
It has been verified that if the orbit altitude is higher than 360 km, the algorithm
converges. Otherwise, the stop condition is never reached and after each iteration
the satellite total mass estimate is increased until j = max (CHAGAS et al., a).

Next, for the satellite power P , Wertz et al. (2011) gives the following relation

P = Pp/0.46. (5.34)

Now that all the necessary disciplines models were explained, the MDO framework
implemented is presented in the next section.
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5.5 Multidisciplinary Optimization Framework

The spacecraft optimization model can be put as:

Minimize
Sm(I,N,D)

Sm(I,Q,D)

Where Sm = md +mp

Subject to FOVpayload − 1.05FOVmin ≥ 0

IL ≤ I ≤ IU

1 ≤ D ≤ DU

1 ≤ Q < D

(5.35)

where md (Equation (5.31)) is the satellite dry mass, mp (Equation (5.30)) is the
satellite propellant mass, FOVpayload is the payload field of view (Equation (5.28)),
FOVmin is the minimum payload FOV in the nominal orbit (Equation (5.9c)) and
IL, IU , andDU are the lower and upper boundaries of the respective design variables.

Notice that to ensure that the satellite payload can record images of the entire
Earth surface it is necessary that the payload instrument field of view, FOVpayload,
be greater or equal to the minimum payload field of view in the nominal orbit,
FOVmin, plus a margin.

After the problem definition is established the MDO requires to be assembled into
one architecture that will integrate its optimization model, design variables and op-
timizers. In respect to the MDO architecture adopted, it was the Multidisciplinary
Feasible (MDF) architecture. It was chosen due to its advantages of always return-
ing a system design that respects the optimization problem constrains and let the
optimizer have under direct control only the design variables, objective function and
constraints (MARTINS; LAMBE, 2013).

Finally, the complete MDO for this optimization problem is presented in the format
of an XDSM1 in Figure 5.4. Notice that ŷa is the copy of the response variables
ya, computed in each analyses a, while y∗a is the final solution, found in the last
iteration.

First, the MDO starts the optimization algorithm that generates a random Sun-
Synchronous Ground Repeating Orbit (SSGRO). At each iteration of the optimizer,

1For more information about XDSM refer to Lambe and Martins (2012).
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the orbit analyses, payload design, satellite design and propulsion analysis models,
are evaluated. These models were explained in detail in Section 5.2, Section 5.1,
Section 5.3 and Section 5.4.

Figure 5.4 - XDSM for spacecraft conceptual design.
I∗, N∗, D∗ Optimizer I,N,D I,N,D N,D

Newton-Raphson ŷ1
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SOURCE: Made by the author.

After the MDO initialization, first a nominal SSGRO and its minimum field of
view (FOVmin) are computed based on the orbit revolution, as described in Subsec-
tion 5.1.1. Afterwards, based on a reference payload chosen by the user, the mission
payload is designed as described in Section 5.2.

After designing the payload for the mission, the satellite design is started. With a
nominal orbit, a designed payload and the launcher errors, which is given by the user
as input parameters, the satellite design model computes the satellite dry mass md

and power P as in Section 5.4. With the satellite dry mass, its area At and ballistic
coefficient Sbc are computed from a parametric linear regression model developed to
obtain the satellite cross-sectional area Acs through the satellite dry mass md using
the UCS Satellite Database, described in Subsection 5.1.3.

Having the satellite area, the total propellant mass mp for the orbit acquisition,
maintenance and disposal maneuvers is estimated as described in Section 5.1, Sec-
tion 5.3 and Section 5.4. For the disposal maneuvers fuel consumption computation
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it is necessary to provide the disposal orbit perigee hp, thus an orbit analyses model
was developed and is described in Subsection 5.1.4.

Finally the total satellite mass Sm is computed using the model described in Sec-
tion 5.4. If the MDO reached the stop criteria, the results are returned to the user
and the MDO is finalized. Otherwise, a new evaluation is computed from a new
point selected by the optimizer.

Next section presents the MDO results, using the developed algorithms as the MDO
optimizers.

5.6 Spacecraft concept design MDO Results

The parameters selected for the case study can be seen in Table 5.1. For this case
study I was used between 13 and 15 otherwise the selected orbit would not be a
LEO, which is required for the Earth observation missions we are studying here. At
last, D is used between 1 and 60 because those are the minimum and maximum
revisit periods desired.

Table 5.1 - Simulation input settings.

Parameter Value
I 2 bits encoding in the range [13;15]
D 6 bits encoding in the range [1;60]
Q 6 bits encoding in the range [1;D-1]
Isp 225 s
Total area (At) percentage of cross-
sectional area (Acs)1

180%

Drag coefficient (Cd) 2.2
Eccentricity of nominal orbit (e) 0.0
Mission lifetime 4 years
Atmospheric density model2 1 year with F10.7 = 225 and 3 years

with F10.7 = 175
Mission resolution (ResN) 20 m
Launch error in the semi-major axis 20.000 Km
Launch error in the inclination 0.015◦

1 This is the total area of the satellite with respect to the satellite cross-sectional
area, in this case the total area is 1.8 times the cross-sectional area.

2 The mean atmospheric density was obtained from NRLMSISE-00 model.

SOURCE: Adapted by the author from Chagas et al. (a), Wertz et al. (2011).
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Before running the optimization, an extensive search was performed on the problem
to find its global optimum, as presented in Table 5.2 and took 11:43 minutes on a
Microsoft Surface 3 Pro, which has its specifications shown in Table 5.3.

Table 5.2 - Optimal solution.

Variables Values
I 14
Q 59
D 60
Semi-major axis of nominal orbit (a) 6944.284 Km
Inclination of nominal orbit (i) 97.656◦
FOVmin 4.469◦
∆V for Orbit Acquisition (∆Voa) 30.768 m/s
∆V forOrbit Maintenance (∆Vom) 217.983 m/s
∆V for De-orbiting maneuver (∆Vod) 0 m/s
Dry mass (md) 175.952 Kg
Cross-sectional area (Acs) 3.801 m2

Total area (At) 6.841 m2

Propellant mass (mp) 20.997 Kg
Total mass (mt) 196.949 Kg
Power (P ) 114.769 W

SOURCE: Made by the author.

Table 5.3 - Microsoft Surface 3 Pro Specifications.

System Item Value
Processor Intel(R) Core(TM) i5-4300U CPU @ 1.9GHz 2.50GHz
RAM Memory 4,00 GB
System Type 64-bit Operating System, x64 based processor
Operating System Windows 10
HD Type SSD

SOURCE: Made by the author.

It was only possible to perform the extensive search because the global design vari-
ables (I, Q and D) have only 10,620 possible combinations and it is a simplified
model. On real applications, the MDO would be composed of many other models
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that require orbit propagations to be evaluated. This leads to an algorithm with
very high computational burden in which an extensive search is not feasible during
the conceptual design phase timespan.

Since an extensive search was done, it was possible to map the entire search space for
the problem, shown in Figure 5.5. The solution values Sm that violated the problem
constrains are shown in gray and its values are not shown in the gradient color map.

Figure 5.5 - Spacecraft conceptual design search space.
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With the data presented in Figure 5.5 it is clear that the problem has a search space
extremely constrained, since almost half of it is composed of invalid regions, that are
presented in all project space. Thus, making this problem a very constrained one.

Next, 100 independent runs were executed for each algorithm, using the global op-
timum as the stop criteria for the MDO simulations to evaluate the performance of
the optimizers on the application. At each run the design variables were configured
as shown in Table 5.1. For GEO, the tunning was performed a priori with τ ranging
between [0.5; 2.5] by steps of 0.25 as shown in Figure 5.6. It turns out that the best
configuration was τ = 1, which was selected to compare the results.

Figure 5.6 - Spacecraft conceptual design GEO Tunning.
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SOURCE: Made by the author.

The results shown in Table 5.4 are the average NFE necessary to reach the optimal
solution for the 100 independent algorithms runs, its standard deviation, coefficient
of variation and the average runtime for one run. As can be seen, A-GEO2 out-
performs all algorithms and A-GEO1 has the worse performance. Considering the
evolutionary algorithms versus the extensive search A-GEO1 reduces the computa-
tional cost by 3.99%, while GEO and A-GEO2 reduced it by 42.93% and 46.18%
respectively, which means a significant gain of performance without losing quality.

Further analyzing the algorithms performance, its noticeable that the evolutionary
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approaches are extremely better than the extensive search, especially, when it comes
to the time needed to complete one full run of the simulations. Since all the evolu-
tionary approaches take less Average Runtime(t) to be evaluated than the extensive
search, due to its characteristic of at each run find a possible different path till the
final solution, they can decrease the computational cost and reduce the time needed
to complete the runs, while for the extensive search the computational cost in any
run would be the same. By the way, another information provided by the average
runtime is that A-GEO does not increase the complexity of the algorithm over GEO,
since the difference between times can be computed by a linear equation that if also
applied to the NFE generates a similar outcome.

Table 5.4 - Simulation results.

Algorithm NFE NFE σ NFE cv Average Runtime(t)
Extensive search 1.062E+04 - - 00:11:43
GEO (τ = 1) 6.061E+03 5.575E+03 0.920E-01 00:01:39
A-GEO1 1.020E+04 1.009E+04 0.990E-01 00:03:37
A-GEO2 5.716E+03 4.935E+03 0.860E-01 00:01:34

SOURCE: Made by the author.

Finally, these performances improvement, especially the ones resulted from A-GEO2,
become even more significant when its considered calculations that involve complex
simulations, as in solar power cycles of charge and discharge simulations for an orbit
period. These types of simulations demand huge amounts of computational power
that can be minimized using such types of algorithms as the one developed in this
work.
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6 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RE-
SEARCH

A new version of the GEO algorithm was introduced, named A-GEO. A-GEO is an
adaptive evolutionary algorithm that eliminates the only free parameter presented in
GEO, called τ , by employing an adaptive control mechanism to the algorithm, thus
making the process of tuning GEO unnecessary. Without a parameter to be tuned,
A-GEO becomes a parameterless version of GEO and shows the benefit of having
the algorithm parameters being internally controlled, making easier and faster the
work of the final user.

When A-GEO was compared with GEO it was made evident the gain in performance
that can be obtained by the adaptive approach. In fact, A-GEO performed better
than GEO in all numerical tests performed, except for F1. It is noteworthy that
even when the best τ is known a priori, A-GEO can still have a better performance
than GEO, although not for all test functions.

Two different implementations of A-GEO were developed in this work. They differ
on how a reference population used to assess performance improvement is defined.
While in A-GEO1 it is used the best population found so far in the search, in A-
GEO2 the current population is used. A-GEO2 performed better than A-GEO1, and
this difference seems to be the result of the way the algorithms balance the ratio
between exploration and exploitation during the search. In A-GEO1 there are more
resets in the value of τ than in A-GEO2, indicating that it is more prone to be stuck
in local minimums than A-GEO2.

From the point of view of the dispersion parameter Cv, which indicates how robust
to different initializations the results of a given algorithm are, GEO, when set to the
best τ , appears to be better than A-GEO. However, this indicates only that GEO
tends to converge more rapidly to a given minimum, but it may not be the global
optimum. Ideally the algorithm would converge to the global optimum area inde-
pendently from which point (solution) the run was initialized. Using this concept,
the convergence is desirable for an algorithm if it can delivery good solutions or if
the problem has some design limitation that must assure that the solutions found
must not be scattered through the search space. A-GEO resets make the algorithm
explore other search space regions sacrificing its convergence, but delivering bet-
ter results, which implies a compromise or trade off to balance its exploitation and
exploration.
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These resets are a important part of the free parameter behavior produced by A-
GEO controller mechanism. It was observed that the algorithm made the free param-
eter more deterministic in the beginning of the search, while after this it oscillated
inside a variable interval. These oscillations happened in cycles, which were shorter
for A-GEO1. This may indicate that A-GEO2 has a better control on its exploration
versus exploitation than A-GEO1, since it performed less resets maintaining a more
controlled value of τ through the search. More experiments shall be conducted fol-
lowing the present work, to study this behavior.

Finally, A-GEO2 was compared with a recent developed evolutionary algorithm,
named TBOL-FL, using a set of test functions from CEC2017. As expected, there
is a clear performance gap between the two. A-GEO2 performs poorly on unimodal
and hybrid functions from CEC2017 benchmark and loses in overall performance for
TBOL-FL on almost every one of the 29 functions tested, except one. However, this is
an expected outcome considering that A-GEO2 is a recent developed algorithm that
did great improvements on GEO, an algorithm from almost 20 years ago. Thus,
this is the first step towards a competitive state of art adaptive version of GEO.
The fact that it beat a “top” evolutionary algorithm in one test function and on
multimodal and composite functions exhibit competitive performance already shows
that this work is in the right direction. Part of this gap in performance between theses
algorithms can be caused by how A-GEO2 design variables are encoded, since it uses
binary encoding. Nonetheless, further improvements in A-GEO2 performance may
also be obtained by using other strategies for its control mechanism.

After the comparisons against GEO and TLBO-FL, A-GEO was used as an opti-
mizer in a MDO to solve an space application optimization problem of conceptual
satellite design with a constrained search space, were A-GEO2 performed better than
GEO and reduced the problem computational cost in almost half. All this implies
that A-GEO has a great potential to be applied in real engineering and scientific
problems, specially of the user-friendly point of view, promising to be a valuable
tool to be incorporated to the engineer’s or scientist’s toolbox. However, first the
algorithm has to be better worked on and improved to fulfill its gap to the current
generation of evolutionary algorithms.

Thus, the author proposes that future work should be directed in:

• Implement A-GEO with real encoding;

• Improve the control parameter technique presented on A-GEO;
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• Apply the control parameter technique presented on A-GEO to other al-
gorithms;

• Investigate the A-GEO behavior through the search space to confirm the
relation presented between the algorithm performance and the balance of
exploration and exploitation, and;

• Develop other adaptive or self adaptive versions of GEO.
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