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Abstract—Qualitative data clustering is a fundamental data
analysis task, with applications in many areas, like medicine,
sociology, and economics. An appealing way to deal with this task
is via Integer Linear Programming, as it avoids inappropriate
inferences by the final user. This approach has two main
advantages: the data are directly used, without the need of being
converted to quantitative values, and the optimal number of
clusters is automatically obtained by solving the optimization
problem. However, it might create large and redundant models,
which can limit the size of the problems it can be applied.
Recently, models that are more compact and able to avoid some
redundancy have been proposed in the literature. These models
consume less memory and are faster to obtain the optimal solu-
tion set. In this study, a new model is introduced and compared
with the state-of-the-art alternatives using datasets from different
application domains. Empirical results show that the new model
outperforms its predecessors, achieving the optimal solution set
with lower computational time and memory consumption.

I. INTRODUCTION

Data clustering is fundamental for many data analysis
applications. It is frequently used to learn and understand the
relationship between entities. Due to the importance of data
clustering, several clustering techniques have been proposed in
the literature [1]. Formally, a clustering technique distributes
a set of n entities, each characterized by m attributes, into
disjoint subsets (or clusters) as homogeneous as possible, re-
garding the data attributes. In general, the clustering process is
performed in two steps. First, a similarity measure is selected
to distinguish the entities. Next, the entities are grouped into
clusters according to their similarities [2].

Qualitative data clustering works with data composed only
of qualitative attributes. Qualitative data are common in differ-
ent knowledge domains, like medicine [3], sociology [4] and
economics [5], where qualitative attributes, like ”blood type”,
”gender” and ”industrial sector”, respectively, are frequently

employed. In spite of a large number of datasets with quali-
tative attributes, there are few algorithms specifically tailored
to cluster qualitative data [6].

This work focus on an Integer Linear Programming (ILP),
which formulates this clustering problem as a Clique Partition-
ing Problem (CPP) [7]. This approach has some advantages
when compared with related techniques. First, the data are
directly used, avoiding inappropriate conversions from qual-
itative to quantitative data. Another benefit is the automatic
identification of the optimal number of clusters, avoiding
another improper inference of the specialist. Finally, Wang et
al. [8] reported that this approach provides superior cluster
structure recovery when compared to heuristic approaches,
like the latent class cluster analysis [9] and the K-means [10]
techniques.

The standard ILP model for CPP, however, may contain a
large number of redundant constraints. If removed, redundant
constraints do not change the optimal solution set. Nonethe-
less, they limit the size of the problems that can be solved.
Some strategies were proposed to eliminate redundant con-
straints, like the cutting plane heuristic proposed by Grötschel
et al. [7] and the development of more compact models by
Dinh et al. [11] and Miyauchi et al. [12]. In this paper,
the authors extend the results from [12], presenting a new
CPP model. Experiments reported next show the good results
obtained by the proposed model for datasets from different
application domains.

This work is organized as follows. In Section II, the prob-
lem is defined, and the standard mathematical programming
formulation is presented. Section III introduces the proposed
model. The computational experiments are reported in Section
IV. Finally, conclusions are discussed in Section V, along with
future work directions.
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II. QUALITATIVE DATA CLUSTERING VIA ILP

Grötschel et al. [7] provided an Integer Linear Programming
model based on the Clique Partitioning Problem (CPP) for
qualitative data clustering. The CPP model this problem as a
complete weighted graph where each entity of the dataset is
represented by a vertex and the edges weight represents the
similarity between entities. The goal is to partition the graph
into complete subgraphs that have the highest similarity value
among its members. To illustrate this approach, consider a
dataset with n entities and m qualitative attributes (Table I).

TABLE I: Example Dataset.

Id Age Prescription Astigmatic Tear
1 young hypermetrope yes reduced
2 young hypermetrope yes normal
3 pre-presbyopic hypermetrope yes ?
4 pre-presbyopic hypermetrope no normal
5 presbyopic myope no reduced
6 presbyopic myope yes reduced

The similarity between entities i and j is calculated as:

sij = 2

m∑
k=1

rkij − (m− Iij) (1)

where

rkij =

{
1 attribute k is the same in i and j,
0 otherwise

and Iij is the total of incomplete attributes. The similarity
matrix S is obtained after applying Equation 1 to the data
from Table I.

2 1 −2 −2 0
2 1 0 −4 −2
1 1 1 −3 −1
−2 0 1 −2 −4
−2 −4 −3 −2 2
0 −2 −1 −4 2


Figure 1a shows the problem presented in Table I as a

complete weighted graph. Figure 1b represents the optimal
solution obtained by the CPP.

(a) Example Graph.

2

2
1

1

(b) CPP optimal solution.

Fig. 1: Example graph and the optimal solution obtained by
CPP.

Based on the similarity matrix S, Grötschel et al. [7]
provided the following ILP model, defined here as GM, to
solve this problem:

(GM): Maximize
∑
i<j

sijxij

subject to xij + xjk − xik ≤ 1 i < j < k (2)
xij − xjk + xik ≤ 1 i < j < k (3)
−xij + xjk + xik ≤ 1 i < j < k (4)

xij ∈ {0, 1} i, j ∈ [1..n]

where

xij =

{
1 if i and j are in the same group
0 otherwise.

Constraints (2-4) are called “transitivity constraints”. They
enforce that: if vertex i is in the same cluster as vertex j,
and j is in the same cluster as vertex k then i is in the same
cluster as k. The GM model has a total of O(n3) transitivity
constraints. This huge number of constraints may prevent the
use of this model on larger instances since it demands more
computational resource as n grows.

Grötschel et al. [7], however, experimentally discovered that
a large number of the transitivity constraints are redundant.
Only a subset of then was needed by their cutting plane
algorithm [13] to achieve the problem optimal solution. This
fact justified the development of new models that could avoid
such redundancy.

Recently, Miyauchi et al. [12] provided two ILP models
that are more compact and faster than the standard GM
model. Although these models are able to reduce considerably
the number of redundant constraints, there is still room for
improvement. Hence, a new model is proposed in this paper.
It addresses the problems encountered in previous proposals
while achieving superior redundancy elimination.

In the next section the models proposed by [12], denoted
here as GM1 and GM2, are revisited highlighting some of
its shortcomings. Next, the new model is introduced, expos-
ing some particular aspects of the qualitative data clustering
problem that were considered to create a more compact ILP
model.

III. PROPOSAL OF A NEW CPP MODEL

To better understand the new model proposed in this work,
consider a complete undirected data graph denoted by G =
(V,E), where V and E are, respectively, sets of vertices and
edges. An edge is denoted by {i, j} (i, j ∈ V ) and its weight
value is represented by the similarity (sij).

Let x′ = (xij) be a feasible solution of model GM, and

E′ = {{i, j} ∈ E | xij = 1}

C = {(V1, E′
1), (V2, E

′
2), ..., (Vp, E

′
p)}

where E′ is the set of edges present inside the clusters of
the feasible solution and C is the set of the corresponding p
clusters.
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Miyauchi et al. [12] proposed new ILP models that have
less redundant constraints than the GM model. The authors
analyzed the groups obtained in the optimal partition and de-
fined a sufficient condition that its edge weights should follow
to preserve group structure. A constraint will be included in
those models only if it respects such condition, otherwise, it
is considered as redundant.

The sufficient condition states that if any cluster C in the
optimal solution is partitioned in two clusters {A,B}, the
set of edges between clusters (EAB) must contain at least
one non-negative edge weight. Otherwise, the cluster structure
cannot be preserved.

An example illustrating the sufficient condition is given in
Figure 2. To explain it, suppose a feasible partition (Figure
2a). If the cluster composed of vertices {4, 5, 6} is partitioned
in two (A = {4} and B = {5, 6}), the set EAB will contain
only negative edge weights (Figure 2b). Hence, there is an
improvement in the objective function of the problem if the
vertex 4 is set as a new cluster. Cluster {4, 5, 6} from Figure
2a is feasible but will never occur in the optimal solution.
Constraints that consider such invalid state can be considered
as redundant.

(a) Feasible Partition.

-4
-2

(b) Negative edge
weights in EAB .

Fig. 2: Negative edge weights in the set EAB .

The first model proposed by [12], denoted here as GM1,
was created to prevent the inclusion of constraints that fails
to respect the sufficient condition they have defined. The GM
model is modified to include the following conditional clauses
for each transitivity constraint:

GM1

 (2), sij ≥ 0 ∨ sjk ≥ 0
(3), sij ≥ 0 ∨ sik ≥ 0
(4), sjk ≥ 0 ∨ sik ≥ 0

GM1 tests each constraint during the ILP model construc-
tion checking if there is at least one non-negative edge weight
in the set EAB . Constraints that do not respect these clauses
are not included in the model.

As can be observed in the section of experimental re-
sults, GM1 reduces the number of redundant constraints and
consequently improves the computational times for the ILP
solver. However, this improvement is still modest, justifying
the search for alternative models.

There are conditions that GM1 is unable to prevent. Suppose
the feasible partition presented in Figure 3a. If the cluster
composed of vertices {1, 3, 4} is partitioned in two, clusters

A = {1, 3} and B = {4} will be obtained. The set EAB

respect the condition that it must contain at least one non-
negative edge weight, however, there is an improvement in
the objective function of the problem if the vertex 4 is set as
a new cluster. This occurs because the sum of the weight of
the edges in the set EAB is negative. Constraints that consider
such invalid state can be considered as redundant.

(a) Feasible Partition.

1

-2

(b) Negative edge weight
sum.

Fig. 3: Negative edge weight sum in the set EAB .

A second model, denoted here as GM2, was derived by
[12] to prevent a negative value for the sum of the weight of
the edges in EAB . The GM model is modified to include the
following conditional clauses for each transitivity constraint.

GM2

 (2), sij + sjk ≥ 0
(3), sij + sik ≥ 0
(4), sjk + sik ≥ 0

GM2 tests each constraint during the ILP model construc-
tion checking if the sum of the weight of the edges in EAB is
non-negative. Constraints that do not respect these clauses are
not included in the model. The number of redundant transitiv-
ity constraints is reduced by controlling the role of negative
edge weights in the set EAB . This provides better results when
compared to GM1 (see the section of experimental results).

Although the GM1 and GM2 models provide superior
results over the GM model, there is still room left for
improvement in terms of computational time and memory
consumption. These models focused solely on the role of edges
in set EAB . Hence, here we expand the analysis of which
transitivity constraints should be included to preserve cluster
structure in the context of the optimal solution.

To derive a new model, let’s first examine the edge weight
distribution within triangles considered by the transitivity
constraints of the GM model (Figure 4). It can be observed
that all triangles in T4 and some triangles in T1 are extreme
cases in which there is no doubt about the decision on keeping
the vertices together or apart.

It is not necessary to create constraints that check for T1
triangles with strictly positive edges since there is a consensus
that the vertices should be together. The maximization model
will try to set the corresponding variables to 1. In the same
way, T4 triangles should be disregarded by the constraints
during optimization, since there is a consensus that the ver-
tices should be separated. Consequently, transitivity constraints
should be included only for the triangles T1 (not strictly
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positive weights), T2 and T3, where such consensus is not
present.

T1 T2 T3 T4
≥0 ≥0

≥0

≥0 ≥0

<0

≥0 <0

<0

<0 <0

<0

Fig. 4: Possible edge weight distribuitions.

The proposed model, named here GM3, can eliminate
transitivity constraints corresponding to extreme values of
triangles T1 and T4 and control the distribution of the negative
edge weights within triangles T2 and T3.

GM3

 (2), (sij + sjk ≥ 0) ∧ (sij ≥ 0) ∧ (sik ≤ 0)
(3), (sij + sik ≥ 0) ∧ (sij ≥ 0) ∧ (sjk ≤ 0)
(4), (sik + sjk ≥ 0) ∧ (sik ≥ 0) ∧ (sij ≤ 0)

The conditional clauses of GM3 respect the sufficient con-
ditions presented previously. When applied to constraint (2),
the conditional clause assures that at least one of the edges in
EAB are non-negative by fixing (sij ≥ 0) and states that the
sum of the edge weights in the set EAB is non-negative by
using (sij + sjk ≥ 0). The conditional (sik ≤ 0) ensures that
strictly positive triangles are avoided.

In the context of the triangles of Figure 4, GM3 avoids the
creation of transitivity constraints that checks for triangles T4
by using (sij ≥ 0) and strictly positive triangles T1 using
(sik ≤ 0). The clause (sij + sjk ≥ 0) controls the negative
edge weights in the context of triangles T2 and T3.

In the next section, a set of experiments were conducted
to compare the models presented in this section according
to redundancy elimination, computational time and memory
consumption.

IV. EXPERIMENTAL RESULTS

The experiments and algorithms were coded in C++14
and executed on a computer with the following configura-
tion: Intel Core i7-6770HQ (3,5GHz) with 32 GB RAM
running Windows 10 64-Bit. The commercial solver IBM
ILOG CPLEX [14] 12.7.1 was used to solve the ILP mod-
els, and the R [15] language was employed in the sta-
tistical analysis. The source code is available online at
https://github.com/LuizHNLorena/QualitativeClustering/.

Figure 5 presents the methodology used to conduct compu-
tational experiments. First, at step 1 and 2, the datasets were
standardized by removing their class attribute (if provided)
and by using the symbol ”?” to represent missing attribute
values. At step 3, four different ILP models for each dataset
were created: GM is the ILP model composed of all the
constraints; GM1 and GM2 are the models proposed by
Miyauchi et al. [12], and GM3 is the model proposed in this
work. At step 4, the ILP models were solved by the Integer
Linear Programming solver. Finally, the obtained results were
analyzed in step 5 using statistical tests, which verified whether

Fig. 5: Methodology used to conduct the computational ex-
periments.

there are significant differences between the performance of
each model.

The ILP models were evaluated using various real-world
problem datasets (Table II). Each dataset received a unique id
(first column) and a name (second column). The remaining
columns in this table have the following meanings: n is the
number of objects; m is the number of attributes; Incomplete
informs if the dataset has objects with missing attributes; and,
finally, %Pos reveals the proportion of edges with positive
weights values.

The datasets whose ID belongs to the set {2-
7,9,13,14,17,18} are classical instances of the CPP proposed
in the literature. These instances can be found in the

TABLE II: Real-world datasets used in the experiments.

ID Dataset n m Incomplete %Pos
1 Lenses 24 4 No 60.87
2 Wildcats 30 14 No 62.76
3 Lung Cancer 32 56 Yes 69.15
4 Cars 33 13 No 72.73
5 Workers 34 13 No 58.82
6 Cetacea 36 16 Yes 27.94
7 Micro 40 14 No 28.59
8 Soybean (Small) 47 35 No 99.17
9 UNO 54 3 No 40.81
10 Sponge 76 45 Yes 65.33
11 Zoo 101 16 No 71.23
12 Bridges 108 13 Yes 47.87
13 UNO1b 139 3 No 47.72
14 UNO2b 145 15 No 75.64
15 Lymphography 148 18 No 67.46
16 Teaching Evaluation 151 5 No 8.12
17 UNO1a 158 3 No 39.73
18 UNO2a 158 15 No 64.45
19 Hayes-Roth 160 3 No 24.01
20 Primary Tumor 339 17 Yes 93.87
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Appendix of [7]. Datasets whose ID belongs to the set
{1,3,8,10-12,15,16,19,20} represent instances of problems
from different knowledge domains selected from UCI
Machine Learning Repository [16]. All datasets are composed
only of categorical attributes.

The following subsections detail the results obtained after
applying the steps 1-4 of the methodology presented in Figure
5. Each model is compared in terms of constraint elimination,
computational time, space efficiency and robustness.

A. Constraint elimination and computational time

Table III provides detailed results regarding the number of
constraints and computational time obtained by each model.
The first column makes reference to the dataset ID from Table
II, the objective function value is presented in column Obj,
columns #Constraints and Time represents the total of
constraints of the model and the computational time it takes to
solve it, respectively. The best results are highlighted in bold.

It can be observed, from Table III, that all models achieve
the optimal objective value. However, the performance of
GM3 was superior to the others in the context of constraint
elimination and computational time.

Figure 6 complements the results presented in Table III. It
summarizes the results related to the percentage of constraints
elimination. Model GM2 performs better than GM1, but the
boxplot confirms the improvement obtained by GM3, 100%
of the distribution is above GM1 and GM2 median value.
According to its lower quartile, 75% of the instances obtained
a percentage of constraint elimination above 80%.

Figure 7 presents the speedup obtained by each model. The
graph horizontal axis is in log scale. It can be concluded that
GM2 performs better than GM1, but GM3 achieved better
results than its competitors. Its lower quartile shows that 75%
of the instances obtained a speedup above 5.

0 10 20 30 40 50 60 70 80 90 100

%Constraints

GM1

GM2

GM3

Te
ch

ni
qu

e

Fig. 6: Percentage of constraints elimination.

Fig. 7: Speedup obtained over GM model.

TABLE III: Experimental Results.

ID Objective #Constraints Time
GM GM1 GM2 GM3 GM GM1 GM2 GM3

1 72 6072 5208 3024 2076 0.387 0.370 0.289 0.227
2 1304 12180 10043 8060 1905 0.163 0.144 0.131 0.025
3 3472 14880 12959 11089 2809 0.315 0.301 0.277 0.029
4 1501 16368 14708 13257 2324 0.425 0.414 0.406 0.059
5 964 17952 14444 12413 3422 0.433 0.366 0.329 0.053
6 967 21420 9798 6214 1980 0.138 0.102 0.082 0.024
7 406 29640 14217 6161 3147 0.207 0.127 0.086 0.047
8 14613 48645 48638 48630 395 2.865 2.709 2.791 0.018
9 798 74412 45756 36945 12703 1.939 1.209 1.116 0.217
10 25677 210900 182196 162169 43798 2.959 2.347 2.313 0.596
11 16948 499950 451130 387355 136133 106.897 56.505 45.335 20.300
12 3867 612468 393126 220328 96487 305.371 294.935 125.122 54.120
13 11775 1313967 910908 838054 254913 57.562 35.733 33.199 2.246
14 71818 1492920 1310497 1175303 117649 34.119 28.599 25.368 0.797
15 19174 1588188 1380477 1072877 387728 4359.761 3043.938 2327.782 989.907
16 1108 1687425 261201 179647 84337 23.071 2.888 1.944 0.614
17 12197 1934868 1161623 1026713 321261 99.061 51.521 46.043 2.798
18 72820 1934868 1542583 1235377 142490 53.037 38.628 29.776 0.971
19 2800 2009760 836313 563121 229952 553.723 359.689 295.675 89.836
20 323614 19307067 19121209 18680264 1634216 612.824 607.379 592.644 70.632

Qualitative data clustering: a new Integer Linear Programming model
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TABLE IV: Memory Consumption in megabytes for each
model.

ID GM GM1 GM2 GM3
1 4.8 4.2 3.0 2.5
2 8.5 7.1 6.2 2.5
3 9.8 8.8 8.0 3.0
4 11.2 9.7 9.1 2.7
5 12.2 9.7 8.6 3.4
6 13.7 7.1 5.0 2.6
7 18.6 9.7 5.1 3.3
8 30.4 30.4 30.4 1.9
9 46.1 29.3 23.7 9.0
10 123.1 111.5 95.3 29.2
11 282.2 262.5 229.6 85.7
12 357.0 232.2 131.7 61.0
13 746.8 525.9 482.3 159.7
14 884.1 745.8 690.9 73.4
15 923.0 838.7 649.6 232.3
16 963.4 163.0 114.1 54.5
17 1092.0 686.2 573.9 189.8
18 1092.1 905.0 716.1 91.4
19 1122.5 712.9 277.3 192.9
20 11174.4 11098.7 10920.3 961.9

B. Space Efficiency

Table IV shows the amount of memory in megabytes
required to store each model. It can be observed that GM1 and
GM2 reduce memory consumption when compared to GM, but
GM3 clearly outperforms both. For dataset 20, for instance,
it requires 960 MB of memory, while the remaining models
require 10 GB or more.

Figure 8 summarizes the results presented in Table IV. The
amount of memory consumption reduction is calculated for
each model using the GM model as a base. The graph shows
that GM1 and GM2 are able to reduce memory consumption,
but GM3 outperforms its competitors. Its lower quartile shows
that it obtained above 75% of memory consumption reduction
for 75% of the instances.

0 10 20 30 40 50 60 70 80 90 100

%Memory

GM1

GM2

GM3

Te
ch

ni
qu

e

Fig. 8: Percentage of memory consumption reduction over GM
model.

C. Robustness

The authors in [12] mentioned that the model GM1 would
work better on graphs with a small proportion of positive edge
weights. This behavior can be observed in the graph of Figure
9. The bottom horizontal axis of this graph lists the datasets
sorted in ascending order of proportion of positive edge weight
values (%Pos of Table II), while the top horizontal axis lists
the dataset’s ID (ID of Table II). The vertical axis represents
the percentage of constraint elimination obtained by each
model regarding the GM model.

Figure 9 shows that GM1 is de facto affected by the pro-
portion of positive edge weights. Hence, the Spearman’s rank
correlation coefficient [17] (ρ) was used to verify this influence
on each model. The Spearman correlation coefficient value
is ρ = −0.97, showing a strong negative linear correlation
between the variables %Constraints and %Pos.

The GM2 model has the same shortcoming of GM1. It is
affected by the increase of the positive edge weights propor-
tion, but, on average, it obtained better results. Its correlation
coefficient is ρ = −0.95, which represents a strong negative
linear correlation between the variables %Constraints and
%Pos.

The proposed model (GM3) presented some fluctuations,
but was not directly affected by the proportion of positive
edge weights (Figure 9). It obtained a correlation coefficient
equal to −0.058, which represents a weak negative linear
correlation association between the analyzed variables. This
model presented the best overall performance. It obtained
its worst performance on Dataset 1 (65.81% of constraint
elimination), but this result is superior to GM1 and GM2,
which obtained 14.23% and 50.19% of constraint elimination.

D. Statistical significance

Finally, following the step 5 from the methodology proposed
in Figure 5, an all pair comparison test was executed in
order to ensure that there is a significant difference between
the performance of each model. This work followed the
recommendations from Demsar [18] and Garcia et al. [19],
[20] to compare the percentage of constraint elimination
(%Constraints).

The Friedman test with Iman and Davenport [21] extension
was applied as omnibus test to detect if at least one of
the models performs differently from the others. Friedman’s
Aligned Rank Test [22] allied with Bergman and Hommel
[23] method to correct the obtained p-values, was employed
as post-hoc test. The significance level of α = 0.05 was
considered. This work used the R [15] package provided by
Calvo et al. [24], which contains the omnibus and post-hoc
tests, to conduct the hypothesis tests.

The omnibus test obtained a p-value equals to 2.2e−16,
showing that at least one of the models performed differently.
The post-hoc showed that all the models performed differently
and that GM3 outperformed all the other models.
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Fig. 9: Influence of the proportion of positive edge weights in the performance of each model.

V. CONCLUSIONS

Qualitative data clustering via integer linear programming
has its advantages. But one of its shortcomings is the number
of redundant constraints in the traditional ILP model. Recently,
more compact models were created [12]. Although these
models are able to reduce the number of redundant constraints
considerably, there is still room for improvement.

In this work, a new model, named GM3, was proposed.
Experimental results showed that it achieved superior perfor-
mance over its counterparts. It required less computational
time and memory to achieve the optimal solution. The exper-
iments also showed its robustness. GM3 performed well on
datasets with different properties, avoiding the shortcomings
of previous models.

As future work, the authors will study how feature selection
may impact the performance of the new model. The similarity
matrix depends on the number of features of the dataset and
any reduction of features will change its values. This new
configuration may be beneficial for solving more computa-
tionally costly problems, such as the instance 15 used in the
experiments.

The results obtained in the mathematical approach context
can be used to guide the construction of better heuristics for
this problem. The authors also expect to use model GM3
in other contexts, like clustering of microarray data [25],
community detection [11], [26] Group Technology Problem
[27] and Flight-gate scheduling [28].
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