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Abstract: Several studies have explored the linkages between phenology and ecosystem productivity
across the Amazon basin. However, few studies have focused on flooded forests, which correspond to
c.a. 14% of the basin. In this study, we assessed the seasonality of ecosystem productivity (gross primary
productivity, GPP) from eddy covariance measurements, environmental drivers and phenological
patterns obtained from the field (leaf litter mass) and satellite measurements (enhanced vegetation
index (EVI) from the Moderate Resolution Imaging Spectroradiometer/multi-angle implementation
correction (MODIS/MAIAC)) in an Amazonian floodplain forest. We found that ecosystem productivity
is limited by soil moisture in two different ways. During the flooded period, the excess of water
limits GPP (Spearman’s correlation; rho = −0.22), while during non-flooded months, GPP is positively
associated with soil moisture (rho = 0.34). However, GPP is maximized when cumulative water deficit
(CWD) increases (rho = 0.81), indicating that GPP is dependent on the amount of water available. EVI
was positively associated with leaf litter mass (Pearson’s correlation; r = 0.55) and with GPP (r = 0.50),
suggesting a coupling between new leaf production and the phenology of photosynthetic capacity,
decreasing both at the peak of the flooded period and at the end of the dry season. EVI was able to
describe the inter-annual variations on forest responses to environmental drivers, which have changed
during an observed El Niño-Southern Oscillation (ENSO) year (2015/2016).

Keywords: tropical wetlands; floodplain phenology; eddy covariance; GPP; MODIS; MAIAC;
seasonality

1. Introduction

Tropical forests are known for their high productivity, accounting for 33% of terrestrial net primary
production, which regulates carbon-climate feedbacks [1]. In this context, the Amazon forest represents
a sink of 0.42 to 0.65 Pg C per year of total carbon assimilated, making it the most significant carbon
sink on the planet [2]. However, extreme droughts have demonstrated the sensitivity of this ecosystem
to environmental changes. Previous studies have reported aboveground biomass loss, increased tree
mortality [3,4] and a long-term decreasing trend of carbon accumulation [5], which could lead to the
possible shift of forest functioning from a sink to a source of CO2 during long-term droughts [6,7].
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Although detailed knowledge about the tropical forest carbon cycle is still lacking, previous studies
have sought to understand the mechanisms of seasonal photosynthesis control, such as water and light
availability [8,9] and phenological cycles [10–12]. To understand these seasonal patterns on a larger scale,
several studies have correlated seasonal environmental drivers with remote sensing-based multispectral
vegetation indices in the Amazon basin. Some of them have suggested the Amazon rainforest is resilient
to seasonal droughts [13] and extreme droughts [14]. Other studies, however, reported that an apparent
greening of the forest canopy could be attributed to abnormal leaf flushing or as an effect of sun position
in relation to the sensor, increasing near infrared reflectance, and thus not reflecting a true resilience from
the forest [15–20]. Part of these uncertainties has been attributed to the high atmospheric contamination
of the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor surface reflectance data, the
most commonly used sensor for phenological studies in the tropics [21,22].

Given the reported uncertainties related to sun-sensor geometry effects and atmospheric
contamination, progress has been made towards the development of more robust atmospheric
correction methods and data normalization procedures for MODIS data, such as the multi-angle
implementation correction (MAIAC) algorithm [23] implementation of the bidirectional reflectance
distribution function (BRDF). Enhanced vegetation index (EVI) values extracted from this improved
MODIS product (MODIS-MAIAC) have shown a correlation between phenology and productivity of
the Amazon forest [11,24–27].

Apart from these advances, a remaining limitation is that the majority of studied forest plots in the
Amazon are located in terra firme (upland) forests, even though c.a. 14% of the basin is covered by flooded
forests [28], which remain understudied. These ecosystems are subjected to seasonal, long-lasting and
monomodal flood pulses [29], with studies reporting adaptation mechanisms developed by species in
these environments in response to the excess or lack of water. During the flooded period, some species
can increase root porosity, release biological volatile organic compounds into the atmosphere, enrich
the rhizosphere with oxygen, reduce photosynthesis and exhibit anaerobic metabolism [30,31]. During
the dry season, decreases in leaf water potential, foliar surface, and xylem flow have been observed,
which reduce water loss through transpiration [32].

Floodplain areas are widely recognized for the ecosystem services they provide, playing an
important role in water and climate regulation services [29,33]. Different studies have pointed to
a higher resilience of Amazonian floodplain forests to seasonal droughts [31,34,35], as during the
terrestrial phase, these forests had higher rates of stem growth [34] and greater rates of CO2 assimilation
as a result of new leaves and soil aeration [32,36]. Conversely, a period of dormancy has been suggested
to be a survival strategy during the aquatic phase [34].

According to the most recent IPCC report, floodplain forests are one of the most threatened
ecosystems because of the undergoing “savannization” feedback to extreme drought events [37]. In this
scenario, the carbon and methane sink services they provide could be compromised [38]. Furthermore,
recent reports have demonstrated considerable tree mortality on central Amazonian floodplains due to
changes in flooding quota by upstream dam construction [39]. Although induced by indirect changes
to the flood pulse, direct effects of extreme droughts also revealed the sensibility of this ecosystem.
The droughts of 1997 and 2005 have also shown that fires have a stronger and longer-lasting impact on
floodplain forest structure than in upland forests; moreover, these floodable areas are located at the
core of the Amazon forest, threatening the resilience of the entire system [40].

Most Amazonian floodplain studies have been located in the central Amazon basin, surrounding
the Solimões and Amazonas rivers. Nonetheless, a different pattern of climate change is expected
to occur at the southern portions of the basin, with an increase in temperature and decrease of
precipitation during wet seasons [41]. In the southeast region, bordering the Amazon basin, there is
an LBA (large-scale biosphere-atmosphere) eddy flux tower site (Bananal site) located on a seasonal
floodplain forest, at the transition between the Amazon and Cerrado biomes. Previous studies have
suggested that this forest shows two periods of water stress—one due to excess of water in the peak of
the rainy season—and another due to water deficit, at the end of the dry season [42–44]. During the El
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Niño drought of 2005, decreased rates of evapotranspiration [42] and increasing rates of tree mortality
were reported in this region [44].

Given the uncertainties of floodplain environmental response to seasonal cycles of flood and
dry periods, this study aims to evaluate the seasonal productivity of this floodplain forest located in
the Amazon-Cerrado transition, as well as its environmental controls, based on field observations
and on enhanced vegetation index (EVI) derived from MODIS (MAIAC) surface reflectance data. We
asked the following questions: (i) How does the Bananal seasonally flooded tropical forest respond to
flood and drought cycles in terms of evaporative fluxes and gross primary productivity (GPP)? (ii)
Do phenological patterns observed from field data agree with landscape-level remote observations
(EVI from MODIS/MAIAC)? (iii) Does flooding affect the EVI signal of these forests?

2. Materials and Methods

2.1. Study Site

The study site is located in a floodplain area of Cantão State Park (PEC), which consists of
approximately 90% natural vegetation and is located about 260 km west of Palmas, state of Tocantins,
Brazil (Figure 1). The area is located at the transition between the Amazon and Cerrado (savanna)
biomes, bounded in the southwest by the Bananal Island region, which is the largest river island in
the world [42]. The LBA micrometeorological tower (Bananal (BAN) site) is located about 2 km east
of Javaezinho river, a tributary of Javaes river. The climate is wet-dry tropical, classified “Aw” in
Koppen’s climatic classification. The annual rainfall typically varies between 1300 to 1900 mm, and
temperature varies from 22 ◦C in January to 31 ◦C in September [43]. Dry seasons occur between
May and September, and wet seasons between October and April, concentrating approximately 90%
of annual precipitation. The local topography is flat and the predominant soil type in this region is
Gleysol (Food and Agriculture Organization (FAO) classification) [45].
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Figure 1. Large-scale biosphere-atmosphere (LBA) eddy flux tower location. (A) Tocantins State inside
Legal Amazon delimitation (red line), (B) Cantão State Park location in the transition area between
the Amazon and Cerrado biomes (Brazilian Institute of Geographic Statistics (IBGE) delimitation,
green and beige), and (C) LBA tower inside Cantão State Park (Sentinel-2 image, red-green-blue (RGB)
composite of June 2018).
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2.2. Flux Tower and Field Data

Data from the flux tower have been recorded daily since October 2003 and include the following
variables: GPP (µmol CO2 m−2 s−1), air temperature (Ta, ◦C), rainfall (mm), net radiation (Rn, in
w m−2), latent heat (LE, in w m−2), specific humidity (q, g Kg−1), pressure (press, kPa) and vapour
pressure deficit (VPD, kPa). A detailed description of the methods used in eddy covariance technique
the CO2 ecosystem exchange at this site is reported in Restrepo-Coupe et al. [8] and Costa [43].

Evapotranspiration was calculated from LE and Ta as a function of latent heat of water vaporization
(λ) (Equation (1)).

ET = LE ∗ λ,
where λ (J kg−1) = 103

∗ (2500 − 2.37 ∗ Ta)
(1)

Vapour Pressure Deficit was calculated through Bolton (1980) equations using a script available
freely for the R language (LeBauer, D. 2018). The input parameters are air temperature, specific
humidity, and pressure.

Soil moisture has been measured close to the tower using FDR (frequency domain reflectometer)
probes installed at four depths 0.2, 0.4, 0.8, and 1.5 m from 2004 to 2006 and from 2006 onwards, two
more probes were added at 2.0 and 2.9 m depths.

The Javaes river level record of the Barreira da Cruz station was obtained from the Agência
Nacional de Águas (ANA) in Brazil (http://hidroweb.ana.gov.br), from 1990 to 2017. The river level
describes the flood pulse and the flood height measured at the tower base (r = 0.76, p < 0.05) (Figure S1).

Gap Filling of CO2 Estimates

We performed gap filling on night and daily CO2 estimates according to the method described in
Restrepo-Coupe et al. [8]. There was an underestimation of night positive CO2 fluxes due to insufficient
turbulent mixing. We filled each missing nighttime value from an average of all valid nighttime values
(from 6 pm to 5 am) within a 5-day window. The data was replaced by the average of this 5-day
window, and when this was not possible we applied windows varying 11–31 days. The correction
performed in this paper involved 35% of the total night data for a friction velocity (u*) threshold of
0.19 m s−1 for the rainy season and 0.17 m s−1 for the dry season. Our data can be considered below
the thresholds and percentage of gaps found in the literature for other sites in the Amazon region [46].

The relationship between photosynthetically active radiation (PAR) and the observed data of NEE
(net ecosystem exchange) was used for filling daytime NEE (NEE, assumed as a proxy for turbulent
flux) [47,48]. The hyperbolic relationship pattern between these variables included coefficients which
represented the maximum photosynthetic efficiency of the canopy (a2), its yield (a3) and the mean
ecosystem nocturnal respiration (a1) [48], as described in Equation (2).

NEE = a1 +
a2 ∗ PAR
a3 + PAR

(2)

NEE values for PAR < 40 µmol CO2 m−2 s−1 were excluded from this analysis since this condition
is generally associated with invalid turbulence and abrupt changes in light levels [48]. Further details
are described in Restrepo et al. [8].

2.3. Litterfall Collection

Litter was collected in traps installed along a transect of 200 × 800 m near the flux tower, spaced
25 m from each other. From April 2004 to May 2005, litterfall was collected every month from 30 litter
traps, with 1 m2 size. Litter was sorted into leaf material, reproductive material (flowers and fruits),
woody material (twigs), and non-identifiable plant material. Following separation, the material was
then dried to a constant mass in an oven and weighed to calculate biomass [49].

http://hidroweb.ana.gov.br
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2.4. Remote-Sensing Data and Products

We acquired the MODIS-MAIAC product EVI for the study area from the time period of 2004 to
2017 [50]. In this product, prior to EVI calculation, the surface reflectance data were normalized to nadir
target and 45-degree solar zenith angle through the Bidirectional Reflectance Distribution function, at a
spatial resolution of 1 km and aggregated to biweekly (16-day) composites using the median values.
The EVI was calculated using Equation 3 [13]. Further information on image processing and correction
are described in Dalagnol et al. [50,51]. The composites were retrieved considering only cloud-free and
low atmospheric turbidity according to MAIAC quality flags. For the MODIS-MAIAC pixel containing
the flux tower, the mean number of samples per 16-day composite was 4.6 samples for the flooding
period (February–May) and 12 samples for the non-flooding period.

EVI = 2.5 ∗
ρNIR− ρRed

ρNIR + (6 ∗ ρRed− 7.5 ∗ ρBlue) + 1
(3)

where ρNIR is infrared reflectance, ρRed is red reflectance, and ρBlue is blue reflectance. The constants
(6, 7.5, 1, and 2.5) in the divisor represent the aerosol coefficient adjustment of the atmosphere for the
red and blue band, the adjustment factor for the soil and the gain factor, respectively [52].

There is a high density of water channels in the study area. Therefore pixels composed of more
than 10% of permanent water were excluded from the analysis, using the Global Forest Change
product v1.4 mask [53]. This procedure also eliminated areas that were disturbed between 2000 to
2016. The mask was resampled from 30 m to 1 km according to MODIS pixels resolution. Only pixels
around the tower footprint (2 km) meeting these criteria were selected for analysis. To further check
the presence of water channels in these pixels, we used the high resolution Bing Virtual Earth image on
QGIS 2.18 to visual interpret and manually delineate permanent water bodies, and we found more
than 94% of forest cover (Figure S2 and Table S1).

To explore rainfall variability over the time series, we obtained rainfall data from the Tropical
Rainfall Measuring Mission (TRMM). This data showed a significant correlation with tower
measurements from 2004 to 2014 (r = 0.62, p < 0.001) (Figure S3). We did not use the field measured
rainfall data directly due to gaps on records from 2014 to 2016. We also used 2 meter air temperature
and vapour pressure deficit data from the ERA5 climate reanalysis [54] to build an inter-annual analysis,
due to gaps in tower for these variables from 2010 to 2016. Both variables from the ERA5 reanalysis
product had a very high correlation (Ta: r = 0.83, p < 0.001; VPD: r = 0.95, p < 0.001) with tower data
(Figures S4 and S5).

The cumulative water deficit (CWD) was calculated to investigate negative monthly precipitation
anomalies [55]. We calculated the monthly average ET from the tower, based on records with a good
density of observations from 2004 to 2014 (Table S3), since there were gaps in measurements from 2010
to 2016. The CWD increases in magnitude when rainfall is lower than ET. The following rule was
applied to the rainfall data (R) for each month (m) with evapotranspiration (E) set at 100 mm month
(Equation (4)).

CWDm = CWDm−1 + Rm − Em

If CWDm > 0 then CWDm = 0
(4)

We also performed a canopy gap analysis for the studied forests using airborne LiDAR data to
assert the degree of expected interference of free standing water under the canopy during the flooded
period on MODIS EVI values. The data was collected on 20 February 2016 along a 15 km transect with
500 m width, using a Riegl LMS-Q680i laser scanner at 500 m average flight altitude, 45◦ fiLMS of
view, and 300 kHz scanning frequency. The data had a high pulse density of greater than 5 points
per m2. Using the point cloud, we derived a canopy height model (CHM) utilizing the highest height
of return within 1 × 1 m cells using standard procedures, as described in [56]. We detected canopy
gaps following the procedures described in Hunter et al. [56] and considering the traditional Brokaw’s
gap definition of a hole in the forest that extends to at least 2 meters above the ground. Lidar data from
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this study was obtained by the EBA project (Amazon biomass estimate, EBA). Regarding the canopy
structure, as this transect is located 7 km away from the LBA tower, we compared tree heights of 170
individuals distributed in two experimental plots located 200 (BAN1) and 100 meters (BAN2) from the
tower [57] with LiDAR measurements. A forest inventory was performed in 2015 in these plots and
tree heights were measured with a telescope pole of 15 m length (Table S2).

2.5. Statistical Analysis

The seasonal cycle of climatic drivers (rainfall, soil moisture, flood amplitude, evapotranspiration,
net radiation, deficit vapour pressure, cumulative water deficit and air temperature) and phenology
from EVI were based on monthly mean measurements from 2004 to 2016, while the GPP monthly
average was based on measurements from 2011 to 2013 due to data availability (Figure S6). The analyzed
EVI was based on the mean value of the seven pixels around the tower, considering the limits of the
flux tower footprint and filtering of forest cover areas (>90%).

Since there are many parameters measured from different sources, we summarized data acquisition,
availability and usage on Table 1.

Table 1. Availability and usage description of tower, satellite and field data.

Parameter Acquisitions Start Year End Year Usage

LE Tower 2004 2014 ET computation
PAR Tower 2011 2013 NEE computation
Press Tower 2004 2014 Relative humidity (RH) computation

q Tower 2004 2016 RH and VPD computation
Rn Tower 2004 2014 Correlation variable

GPP Tower 2011 2013 Productivity estimate/Correlation variable
ET Tower 2004 2014 Correlation variable

VPD Tower/Satellite 2004 2016 Correlation variable
Ta Tower/Satellite 2004 2016 VPD and ET computation/Correlation variable

Rainfall/TRMM Tower/Satellite 2004 2014 Correlation variable
CWD Tower/Satellite 2004 2016 Correlation variable
EVI Satellite 2004 2016 Phenology and productivity proxy/Correlation variable

Soil moisture Field 2014 2016 Correlation variable
Litterfall Field 2004 2005 Phenology proxy/Correlation variable

Flood height Tower 2004 2016 Define seasonal flooding

We divided our seasonal analyses into two distinct periods: Flooded (Feb to May) and non-flooded
(Jun to Jan). The phenology pattern described by EVI was also analyzed with ground data (litterfall)
from 2004 to 2005 [49]. We also performed an inter-annual analysis, in order to evaluate anomalies in
relationships from year to year between monthly EVI and the climatological variables described in
Table 1.

We performed correlation tests using daily data from 2011 to 2013 (GPP data availability) to
measure the degree of association between GPP and the climatic variables estimated for the significant
models (p-value ≤ 0.05). We used the Shapiro–Wilk test to analyze the normality of the distributions of
all variables described in Table 1. We performed the Pearson correlation test (r) between GPP, monthly
EVI, and leaf litter mass (normally distributed variables). Other variables (rainfall, net radiation,
evapotranspiration, soil moisture, CWD, temperature and vapour pressure deficit) were not normally
distributed, thus we used the non-parametric Spearman’s correlation (rho) to measure the degree of
association between them with daily and monthly GPP.

3. Results

3.1. Seasonal Meteorological, Gross Primary Productivity (GPP) and Enhanced Vegetation Index
(EVI) Patterns

The seasonal variation of GPP and its interaction with environmental drivers (rainfall,
evapotranspiration, cumulative water deficit, vapour pressure deficit, soil moisture, net radiation
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and temperature) and phenology (described through EVI), showed different patterns among periods
of the year. We observed an extended dry season from May to September, when rainfall was below
100 mm·month−1, while ET remained high through all seasons (mean of 110 mm·month−1), especially
during the flooding (Figure 2a). This high ET values indicated that soil moisture was sufficient to attend
the atmospheric demands, which were described by the increased VPD (Figure 2c) and decreased
CWD from April to August (Figure 2b).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 19 
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Although ET at this site exhibited a flat pattern, slight maximum values coincided with maximum
GPP (Figure 2f), but the first and more pronounced peak occurred in March (123 mm), mid-flooding,
in response to an increase of Rn at this month (Figure 2e). The second peak occurred in June/July
(116 mm), mid-dry season, and a third in December, mid rainy season (122 mm), before the period
of flooding.

Net radiation did not seem to be the main productivity driver on this site, since during the months
of highest GPP values (June and December), Rn varied between 276 and 282 W·m2, respectively, and
not close to the maximum value of 314 W·m2 in August (Figure 2e).

Soil moisture seems to be the main productivity driver at this forest (Figure 2d). Soil water content
remained relatively constant from March to June, especially for layers at 20 cm, 40 cm, 80 cm, and
200 cm depth, indicating that the soil was 100% saturated. Layers at both 150 cm and 293 cm depth
remained saturated for a longer time, extending until July and August, respectively. During the months
of maximum GPP (June and December), the mean soil moisture of layers at 20 cm, 40 cm, 80 cm, and
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200 cm were 0.541 and 0.501 m3 m−3. Conversely, in April and August (months of minimum GPP), the
average volumetric soil moisture content was 0.585 and 0.344 m3 m−3, respectively. Thus, we observed
that both flooding and dry soil limited productivity at the BAN site.

EVI values (Figure 2g) indicated a bimodal pattern of foliar production, with a peak in July
(mid-dry season) and a more pronounced peak in December (mid-rainy season prior to flooding).
These EVI peaks were in phase with GPP, which decreased at the peak of flooding (April) and at the
peak of the dry season (September).

GPP remained high during the flooded period (Figure 2f) due to the shorter duration of soil
saturation in higher terrain portions concentrated near the flux tower (Figure 3). Therefore, the mean
flood amplitude of 1.3 m (Figure 2d) could take longer to saturate the soil at the beginning of the
flooded period. Similarly, these terrain portions would be aerated first at the end of flooding, enabling
photosynthesis to recover after the anoxic conditions that occur during the flooded period, explaining
the GPP increase in May, before the end of the flooded period (Figure 2f). However, the majority of
the terrain around the tower footprint (89%) is at the same level or below the base tower level. This
might be the reason why the landscape remained under anoxic conditions for a longer time, which was
reflected on canopy response, suggesting a one-month lag between EVI and GPP during non-flooded
months, from May to September (Figure 2f,g).
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Figure 3. Shuttle Radar Topographic Mission (SRTM) classified as areas below and above the tower level,
which is located at 181 meters of altitude (red dot). Grey squares represent the Moderate Resolution
Imaging Spectroradiometer (MODIS) pixels within the tower footprint (green circle, Borma et al. [42])
selected to extract mean EVI and be analyzed.

3.2. Correlation Between GPP, Climatic Variables and EVI

The relationship between GPP and Rn was positive during the flooded period (rho = 0.2, p < 0.05)
and negative but not significant during non-flooded months (rho = −0.19, p = 0.12) (Figure 4a). GPP
was positively associated with ET during both flooded (rho = 0.25, p < 0.05) and non-flooded months
(rho = 0.38, p < 0.05) (Figure 4b).

Our analyses show that soil moisture and VPD are correlated with GPP in two contrasting ways.
During the flooded period, soil moisture is negatively associated with GPP (rho = −0.22), while VPD is
positively associated (rho = 0.15). However, during the non-flooded months, soil moisture is positively
associated with GPP (rho = 0.34) and VPD negatively (rho = −0.33) (Figure 4c,d).
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represent the regression fit between variables during flooded (blue) and non-flooded (yellow) months.

As GPP is in phase with soil moisture when the forest is not flooded, it decreases at the end of the
dry season (September) and starts to increase in the onset of the rainy season (October). Nevertheless,
a negative trend was observed between GPP and rainfall during non-flooded months (rho = −0.26,
p < 0.05) (Figure 4e). Air temperature was negatively associated with GPP during non-flooded months
(rho = −0.24, p < 0.05) and was not significant during the flooded months (rho = 0.081, p = 0.27)
(Figure 4f).

Monthly CWD had the strongest positive association with GPP during non-flooded months
(rho = 0.81, p < 0.05), to the extent that GPP increases when CWD gets less negative. No trend was
observed during flooded months (rho = 0.01, p = 0.96) (Figure 4g).

As a proxy of photosynthetic capacity, EVI was positively correlated with GPP during non-flooded
months (r = 0.50, p < 0.05) and despite not being significant, a positive trend was also observed during
flooded months (r = 0.53, p = 0.09) (Figure 4h and Figure S6).

3.3. Seasonal Phenology Patterns and Analysis of Forest Canopy Gaps

Annual EVI was positively correlated to leaf litter mass (r = 0.55; p < 0.05). We observed one month
lag between peaks in leaf litter mass (June and November) and EVI (July and December) (Figure 5).
These observations suggest the months with greater leaf renewal would be June and November, which
correspond to high peaks of seasonal GPP.

The canopy structure of our studied area had a mean height of 10.2 m (sd = 3.08), where most
values from the canopy surface model are between the range of 4.8 and 14.9 m (5th and 95th percentile),
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and up to 38 m maximum height (Figure 6b). The canopy surface model shows the canopy is mostly
closed with only 0.51% of the canopy area exhibiting gaps (height < 2 m), meaning that only a very
small fraction of areas within the forest canopy would allow direct observation of the underlying
understory. Although the LiDAR transect is 7 km away from the tower (Figure 6a), field measurements
of tree height support our assumptions that the forest structure around the tower is similar to those of
the LiDAR transect, as described in Table 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 
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the blue shading area (a). Scatterplot between EVI and leaf litter mass with the fitted regression
line (red) (b).
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Table 2. Experimental plots and LiDAR statistics regarding tree height measurements.

Plots Number of
Individuals

Tree Mean
Height (m)

5% Percentile
(m)

95% Percentile
(m)

Maximum
(m)

BAN1 86 11.79 6.84 18.86 28.36
BAN2 84 12.48 4.5 19.77 38.89
LiDAR - 10.2 4.8 14.9 38

The EVI spatial correlation also showed that pixels within this transect are positively correlated to
the tower EVI response through the time series analysis (r ≥ 0.6, p < 0.01). Hence, we argue there is no
strong influence of free standing water on the EVI from MODIS-MAIAC observed during the flooded
period, which could skew the observed phenological patterns.

3.4. Inter-Annual Variation of Seasonal Drivers and EVI-Multi-Angle Implementation Correction (MAIAC)

Our inter-annual EVI analysis showed that during extreme wet (2009) or dry (2016) years,
phenology patterns have changed due to both excess and lack of water (Figure 7). During 2009, soil
moisture was higher compared to other years (Figure 7e). Lower cumulative water deficit (Figure 7a)
and lower temperatures (Figure 7b) was also recorded. On the other hand, during 2016, the river
level was well below the mean, which decreased soil moisture (Figure 7e) in association with high
temperatures and high VPD (Figure 7c). These changes on water availability have produced an
anomalous EVI seasonal trajectory between these two years (Figure 7d).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 19 
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Figure 7. Monthly variation of CWD (a), temperature (b), VPD (c), river level (d), soil moisture (e)
and EVI (f). The dashed line represents the average value (2004–2016), the standard deviation of the
monthly variables is indicated by the grey shading, the blue line represents the wettest year (2009), the
red line the driest year (2016) and grey lines represent remaining years (2004–2015).
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The period of leaf exchange in 2009 occurred from July to December, while in 2016, there were
two peaks of EVI, a small peak from April to June and another from October to November. Thus, we
did not observe the bimodal pattern in 2009, and in 2016 leaf renewal and photosynthetic capacity
period have changed due to the decrease of flooding and increases in atmospheric demands, observed
through VPD, CWD and temperature.

4. Discussion

The annual average pattern of ET and GPP suggests that free water is exerting an influence
on the evaporative processes during the flooded period since the peak of ET observed in March,
matched the flooding peak. Our analysis confirms the free water evaporation hypothesis reported by
Borma et al. [42] when observing higher values of ET during flood than during the dry season and
lower GPP values [43].

This decoupled pattern of ET and GPP on the rainy-flooded period describes the forest dormancy
probably due to anoxic conditions along the flooded months, as reported for Amazon flooded
forests [34]. However, we observed the remaining high levels of GPP until March (one month after the
flood started) and at the end of the flooded period (May), due to the shorter duration of the flooded
period (or soil saturation) in higher terrain portions near the flux tower.

Conversely, both ET and GPP decrease during the dry period as a result of soil moisture depletion,
with the lowest values of ET occurring at the end of the dry season (September), and the lowest values
of GPP recorded in August/September. ET and GPP recover during the early rainy season (October to
January), with the highest seasonal carbon assimilation rates from 20.40 to 22.63 µmol CO2 m−2 s−2 [43].
The same growth and carbon assimilation pattern were reported in the central Amazonian floodplain,
which exhibited greater productivity during the terrestrial phase, reaching on average 20 µmol CO2

m−2 s−2 [32] and the highest growth rates from September to November [34]. At other Amazonian sites,
GPP is maximized during the early dry season as a result of increasing incident radiation and reduction
of cloudiness, coupled with high levels of ET [8,45], however, at the BAN site, GPP seasonality seems
to be mainly governed by soil moisture which also regulates the canopy phenology.

The phenology pattern described by EVI suggests that the new leaves flush synchronized with
senescence, which can be used as a proxy of canopy changes [11]. These peaks occur when GPP is
maximized, suggesting the coupling between new leaves and phenology of photosynthetic capacity.
Instead of light availability, EVI at this site seems to be strongly governed by soil moisture/aeration,
differing from the terra firme forest [9]. However, over the flooded forests across the Amazon basin, a
similar pattern is expected to occur as observed in this study, which is important for modeling carbon
seasonality since approximately 14% of the basin is composed of flooded forests [28]. Nonetheless,
phenology patterns obtained through satellite data in the central Amazon region should be interpreted
carefully, since the flooding height is much higher than in this transitional area and assessments about
the influence of flooding on vegetation indices should be considered. The EVI oscillation reflected the
effect of soil moisture depletion at the end of the dry season, which reduced evapotranspiration and
carbon assimilation rates, exhibiting the lowest peak in September. Thus, we highlight the potential
of accurately monitoring of the floodplain forest phenology from spaceborne remote sensing, which
described the carbon assimilation seasonality coupled with new leaves.

Previous studies have suggested two or more months of lag between canopy greening and
forest productivity at terra firme forests [9,25], which could be explained by leaf demography [11].
Although our results have shown one month of decoupling between EVI and GPP during the dry
season (May–Sep), at a flooded site, this lag could be an effect of topography within the tower footprint
where the early GPP response is from sub-footprint regions that are topographically higher and drier.
The EVI is characterizing the larger landscape response, where most forest area remains in likely anoxic
conditions due to a longer period of inundation.

Our inter-annual analysis revealed a trend of increase in temperature and decrease of rainfall
(Figure 7; Figure S7) as suggested by forecasts for this region [41,58], which is becoming drier over



Remote Sens. 2019, 11, 1530 13 of 17

the last 10 years. The El Niño drought that significantly decreased rainfall and increased temperature
in the Amazon basin during 2015/2016 [59] also affected this transition area, promoting a different
vegetation response to environmental controls. The EVI suppression in 2009 reflected an extended
dormant period due to soil saturation from January to June, while during these months in the ENSO
year, EVI was slightly higher than the mean (Figure 7f), which was a result of the shorter flooded
(eventually anoxic) period (Figure 7f). This seasonal EVI shift suggested that canopy changes are
describing inter-annual water availability.

Hydroperiod has proven to be the main environmental control on above ground biomass in central
Amazonian floodplains [60] and according to our findings, the hydrological regime also plays an
important role in the seasonal vegetation response and consequently on the ecosystem productivity in
our study region, at the southeast of the Amazon basin. These results suggest that changes in flooding
patterns, which increases the duration and/or intensity of the dry season, could directly impact these
areas, increasing tree mortality [39,61], wildfires [40] and CO2 emissions [38], likewise reported for
central Amazonian floodplain forests. Thus, it is important to analyze the seasonality of these flooded
forests at landscape scales as we did in this study.

Although we found a significant relationship between GPP, leaf litter mass, and EVI computed
from the moderate resolution images (MODIS), the forest seasonality approach could be investigated
combining other remote sensing data with finer spatial resolution. In this context, the new products
from the GEDI (Global Ecosystem Dynamics Investigation) and ECOSTRESS (ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station) are an alternative to obtain Earth Observation data
at a very high spatial and temporal resolution to investigate the carbon and water cycle in this forest.

5. Conclusions

Cycles of ecosystem productivity and evapotranspiration are decoupled in this southern Amazon
flooded forest due to the dormancy period during flooded months, which influences the amount of
free water evaporation and the decrease of productivity. The remaining high values of productivity at
the beginning of the flooded period and before the flooding ends, in May, are explained by the shorter
duration of soil saturation in higher terrain portions, concentrated near the flux tower. Although
topographic differences in this floodplain forest only vary by 2 meters in height, some terrain portions
are not subject to the same flood pulse, given the mean flood height of 1.3 m. Flooding also determines
the amount of soil moisture during the non-flooded months, which is positively associated with
productivity (rho = 0.34). To address the remote sensing challenges of detecting canopy phenology
and productivity seasonality in this flooded area, we associated these ground measurements and leaf
litter mass data with the EVI from MODIS-MAIAC and assessed the density of canopy gaps using
airborne LiDAR data. Our results showed that EVI is positively associated with leaf litter mass (r =

0.55) and with GPP (r = 0.5), suggesting a coupling between new leaf production and phenology of
photosynthetic capacity, with a bimodal productivity pattern of assimilating maximum carbon after the
flooded period ends and during the rainy non-flooded season, under non-limiting soil water conditions.
We also found that this forest has a very dense canopy, which means that free water exposed through
gaps during the flooded period does not strongly influence EVI observations. Additionally, EVI
described inter-annual variations of vegetation response to environmental drivers and revealed that
water availability is the main phenological driver at this site, which can change vegetation phenology
during extreme years, consequently affecting ecosystem productivity. Our study showed the potential
for accurate monitoring of phenology in floodplain forests using spaceborne remote sensing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/13/1530/s1:
Figure S1: Scatterplot between flood height and the river level; Figure S2: Permanent water channels mapped
through the Bing Virtual Earth high-resolution image provided on QGIS 2.18 software; Table S1: The percentage of
water channels and forest cover extract from the Bing Virtual Earth high-resolution image provided on QGIS 2.18.
Figure S3: Scatterplot of rainfall data from TRMM against flux tower data; Figure S4: Scatterplot of temperature
data from ERA5 against flux tower data; Figure S5: Scatterplot of vapour pressure deficit (VPD) from the tower
and ERA 5 data. Table S2: Forest inventory of two plots located 200 and 100 m from the Bananal tower. Figure S6:
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Monthly GPP and EVI from May, 2011 to September, 2013; Figure S7: A) Monthly rainfall estimated from the
Tropical Rainfall Measuring Mission (TRMM) and flood height measured at the flux tower base. B) Cumulative
Water Deficit from 2004 to 2017, calculated with TRMM. C) Average monthly soil moisture (volume of water per
bulk volume of soil) for depths ranging from 0-150cm (Clayey layers), and for the 200 cm (Clayey layer) and
290 cm (Sandy layer). Data availability: The flux tower dataset, TRMM and leaf litter mass dataset are summarized
in Tables S3–S6.
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