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ABSTRACT 

The answers to planetary problems could be hidden in gigabytes of satellite 

imagery from the last 40 years. Unfortunately, scientists lack the means for 

processing such amount of data as they are used to work over small 

quantities of satellite images. To amend this issue, we propose the use of 

web services from Big Earth data platforms along collaborative analysis 

environments. Both Web services and collaborative analysis environments 

fit the hypothesis-test workflow followed by researchers while writing 

analysis routines. Besides, the early use of Big Earth data structures eases 

the subsequent process of scaling analysis up to larger extensions. To test 

our proposal, we use our own Big Earth observation data platform, on which 

decades of satellite images are arranged into data cubes. By using our Web 

services platform, we integrate those data cubes into our collaborative 

analysis environment (a Jupyter notebook). Since our analysis routines 

consume the same data structure of the whole data sets, it is easier to scale 

up the analysis.  
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RESUMO 

As respostas aos problemas planetários podem estar ocultas em gigabytes 

de imagens de satélites adquiridas nos últimos 40 anos. Mas nem sempre os 

cientistas têm os meios para processar esse volume de dados uma vez que 

costumam trabalhar com pequenas quantidades de imagens de satélite. 

Para responder a esse problema, propomos o uso de serviços Web de 

plataformas de Big Data em ambientes colaborativos de análise. 

Acreditamos que os serviços Web e os ambientes colaborativos de análise 

encaixam com o padrão de hipótese-teste seguido pelos pesquisadores 

enquanto escrevem suas rotinas de análise. Além disso, o uso inicial de 

estruturas de dados de Big Data facilita o processo de análise em escala para 

uma maior extensão de dados. Para testar a nossa proposta, usamos nossa 

própria plataforma de Big Data de observação da Terra na qual décadas de 

imagens de satélite são organizadas em cubos de dados. Ao usar nossa 

plataforma de serviços Web, integramos esses cubos de dados em nosso 

ambiente colaborativo de análise (um Jupyter notebook). Uma vez que 

nossas rotinas de análise consomem a mesma estrutura de dados que todo o 

conjunto de dados, é fácil escalar a análise para toda a base.  

 

PALAVRAS-CHAVE: Ciência reprodutível, análise de dados, séries 

temporais. 

 

 

* * * 

Introduction 

 

The process of analyzing Earth observation data is a combination of 

science and art. It requires knowledge, perseverance and some resignation for 

the effort put on failed tests which never reach the final publications. To 

advance their research, scientists rely on a hypothesis-test cycle and diaries 

– or notebooks – to keep record of their findings.  This process also relies on 

computer code, which scientists write their own way, following the same 

hypothesis-test cycle over small data sets. Nowadays, computers also help 

scientists to manage their digital notebooks based on concepts such as 

Literate Programming and Overlay Journals. Furthermore, these notebooks 

are being taken to the web in the form collaborative analysis environments, 

which are on-line documents that mix code, data, descriptions, and tables to 

summarize the results of scientific research. This electronic approach to 

analysis fits well the current data distribution model based on files (KNUTH, 

1984; GRAY, 2009; PEREZ and GRANGER, 2007).  
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However, this approach is unsuitable to the analysis of large regions of 

space and time. Besides, a file-based model —as the one used to distribute 

satellite imagery— fosters problems such as data duplication and lack of 

traceability. On the other hand, global data sets are either unavailable or just 

too large for independent result validation. Both scenarios worsen the current 

scientific reproducibility crisis (BAKER, 2016; NATURE, 2016). 

This situation shows the issues of scaling up software routines for data 

analysis. Putting aside those related to computing power —they are already 

addressed in the literature on the data deluge or big data — we focus on the 

transit from small to large datasets. It is important for scientists to keep fast 

and short iterations of think-code-test and to minimize the amount of re-work 

incurred while scaling up analysis (BELL, HEY, and SZALAY, 2009; BOYD, 

2012; LI, 2016). 

We addressed this problem by setting up collaborative analysis 

environments along big Earth data web services. The former enables fast 

iterations of the hypothesis-test cycle while the latter enables scientist to 

analyze increasingly larger data sets. In other words, the earlier scientist use 

with Big Earth observation data structures, the easier to scale analysis to 

larger extensions. 

In this paper, we examine how Web services provided by big data 

platforms can be integrated into the analysis workflow of Earth observation 

data. To achieve this, we briefly introduce a computing platform – developed 

by us— and its web services (Sections 2 and 3). Then, we describe analysis 

environments and how they fit into the scientists' workflow (Section 4). 

Finally, we test our approach by setting up Jupyter notebook – a collaborative 

analysis environment – in which we mixture the web services provided by our 

platform and the analysis analytical tools provided by the Python 

programming language. 

This paper is an extended version of Sanchez et al. (2017), presented in 

XVII Brazilian Symposium on GeoInformatics (GEOINFO 2017). For this 

paper, we split the analysis section in two, one with extended descriptions of 
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the analysis methods, and the other with the methods applications in our 

selected collaborative environment (A Jupyter notebook). 

 

2 The e-sensing platform 

 

The Brazilian National Institute for Space Research (INPE) runs the 

e-sensing project. This project is building a platform for scientist to research 

Land Use and Land Cover Change (LUCC). The platform sorts decades of 

satellite images into multidimensional space-time arrays. 

The main requirements to these platforms are analytical scaling, 

software reuse, collaborative work, and replication. Analytical scaling is 

about moving data and code among computing platforms with little or no 

modifications at all. Software reuse refers to the ability to run code from 

different origins. Collaborative work and replication are about sharing and 

replicating analysis results. We address software reuse, collaborative work, 

and replication by using open source and open access software and data. Our 

platform only hosts open source software and open access data such as 

MODIS and LANDSAT images (CAMARA et al., 2016; STONEBRAKER et 

al., 2009).  

We have been using our platform to classify time series of vegetation 

indexes of the Amazon and Cerrado biomes into LUCC classes. Later, during 

post-processing stages, we analyze the LUCC trajectories over time. But the 

data workflow inside our platform relies on a mixture of technologies such as 

scripting languages (R, Python, Bash), distributed storage (SciDB, Hadoop), 

and operating system tools. As a result, the scientific reproducibility of our 

results is compromised. Therefore, we chose web services as the way to expose 

our platform computing capabilities while hiding its internal complexities 

(ASSIS et al., 2016; CAMARA et al., 2016a; LU et al., 2016; MACIEL et al., 

2017; MAUS et al., 2016).  

On the other hand, the CEOS Data Cube Platform (CEOS-ODC) 

handles storing, accessing, and managing metadata of remotely sensed data. 
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CEOS-ODC is built on top of the Australian Geoscience Data Cube. Just as e-

sensing, the CEOS-ODC platform can process large amounts of satellite 

imagery using open source tools. However, they employ different analysis and 

architectures. While e-sensing is focused on time series analysis, CEOS-ODC 

puts spatial before temporal analysis. Regarding architectures, e-sensing is 

built on top of array databases while CEOS-ODC is built around the 

programming language Python and data files; this difference is subtle but 

important since databases are independent of programming languages. As a 

consequence, the e-sensing platform is able to run analysis written in 

different languages while CEOS-ODC is constrained to Python scripts 

(CEOS, 2016). 

 

3 A Web Service for retrieving time series 

 

 Sharing and re-using computer resources has been important since the 

90s because writing software is error-prone and high performance hardware 

is expensive. Nowadays, Web services are a common way to address this 

matter. Web services are the standardized way to access software and data 

over the World Wide Web independently of operating systems and 

programming languages. Through them, scientists can access the data and 

algorithms available in our platform. At the same time, web services hide 

complexities – such as mixed technologies, and distributed storage – behind 

a uniform interface. 

The Web Time Series Service (WTSS) retrieves time series of Earth 

Observation data for specific locations on Earth. WTSS reduces the gap 

between data and remote-sensing time-series clients through simple text 

representations using JSON (a standard file format). Traditionally, 

assembling time series of Earth Observation imagery is a time-consuming 

task because users need to sequentially open several image files, extract some 

pixels, and then store them. Instead, WTSS connects to a multidimensional 

array database and makes temporal queries on behalf of the client. WTSS 
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exposes three main operations list_coverages, describe_coverage, and 

time_series. list_coverages returns a JSON list of the available coverages 

in the service. describe_coverage retrieves metadata of a specific coverage. 

Finally, the time_series operation retrieves specific time series. WTSS 

implementation is publicly available on-line (VINHAS et al., 2016).  

Moreover, WTSS has clients for the QGIS software and for the scripting 

languages R and Python. These WTSS clients enable scientists to access our 

data from on-line analysis environments. 

 

4 Interactive and collaborative analysis environments 

 

Literate programming is a style of coding software in which programs 

are treated as pieces of literature. That is, natural and machine languages 

are weaved together into a document where thought order prevails over code 

optimizations. Its goal is to create programs easier to understand and 

maintain and to achieve this, literate programming makes explicit the 

reasoning behind the code (KNUTH, 1984). 

Note how literate programming fits the way scientists analyses their 

data. Once data is collected, scientists make research questions, and then 

formulate hypotheses for later testing them on the data. The question making 

and hypothesis formulating is better described using natural language while 

data processing and hypothesis testing are automated using code. 

The modern realization of literate programming is the on-line analysis 

environments. They add collaboration and interactivity to the traditional 

scientific notebooks and laboratory journals. Two implementation of these 

analysis environments are available for R and Python. R is a computing 

environment designed for statistical analysis while Python is a general 

purpose programming language focused on readability and extensibility. Both 

support numerical processing, statistical data structures. Both R and Python 

are supported by large communities of users coming from either the field of 
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statistics or computer science. In this paper we preferred Python because 

most of the authors come from computer science field (IHAKA, 1998; JONES 

et al., 2001; OGRADY, 2016). 

IPython adds facilities to Python for scientific computing. IPython has 

an interactive command with tailor-made features for scientists, such as code 

completion, plotting, and parallel and distributed processing. These 

characteristics are taken to the web in the form of Jupyter notebooks. For 

example, the data and algorithms regarding the recent astronomic discovery 

of gravitational waves are available as Jupyter notebooks (KLUYVER et al., 

2016; CANTON et al., 2014; USMAN et al., 2016). 

 

5 Analysis of time series of vegetation indexes 

 

Vegetation indexes are simple estimates of vegetation activity derived 

from satellite imagery. They are independent of measurement units and for 

this reason they are well suited for Land cover identification. However, 

satellite imagery is subject to noise which induces variance on the time series 

of vegetation indexes (HUETE, 1985; JIANG, 2008). Statistical analysis 

provides several tools for time series analysis; some of them are of common 

usage for image analysis (e.g. line fitting, Fourier decomposition, Whitaker 

smoother, and the Kalman filter) and classification (e.g. Dynamic Time 

Warping), particularly for noise removal and classification (ATKINSON et 

al., 2012).  In this section we provide a trivial summary of analysis techniques 

because a complete discussion is beyond the scope of this paper.  

Line fitting is the process of finding the straight line which minimizes 

the differences to the points in the time series. Line fitting is useful to find 

global trends in the data and it is the starting point for more complex fittings. 

Fourier decomposition is a smoothing technique which is based on the 

Discrete Fourier Transform (DFT) and its inverse function. Assuming that 

time series are originally defined in the time domain, DFT converts time 

series data to the frequency domain while the inverse DFT convert from back 
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from the frequency to the time domain. In the frequency domain, a time series 

is the sum of sinusoids characterized by a frequency. Higher frequencies 

correspond to noise. Smoothing is achieved by removing these high-frequency 

sinusoids and then reconstructing the time series using the inverse DFT 

(HEIDEMAN, 1984; JAKUBAUSKAS, 2001). 

The Whitaker smoother computes smoothed values for each 

observation using least squares over the linear combination of nearest 

observations, while penalizing the roughness of the smoothed results 

(ATZBERGER, 2011; EILERS, 2003).  

The Kalman filter is an algorithm for estimating an unobserved 

quantity from a set of noise observations. As new observations are available, 

the Kalman filter improves its estimation, and due to its simplicity and speed, 

it is suitable for applications in engineering, econometrics, and more recently, 

remote sensing (GREWAL and ANDREWS, 2010; KLEYNHANS, 2011). 

Dynamic Time Warping (DTW) is an algorithm that computes a 

similarity measure – a distance – between two time series. Given a set of time 

series of known land coverages (the patterns), we compute the DTW distances 

to a time series of an unknown land cover (the samples). The samples are 

assigned to the labels of the patterns with the shortest DTW distance 

(BERNDT and CLIFFORD, 1994). 

These analysis methods are applied to time series of vegetation indexes 

in the following section. 

 

6 A collaborative environment - Jupyter notebook 

 

We setup a Jupyter notebook for the exploratory analysis of time series of 

vegetation indexes. It mixes the web services provided by our platform and 

the analytical tools provided by the Python programming language. This 

notebook presents three common jobs regarding time series of vegetation 

indexes: Exploratory analysis, filtering or smoothing, and classification.  
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Figure 1 – Get a time series into a Python pandas data frame. 
1. import pandas as pd   
2. from wtss import wtss   

3. from tsmap import *   
4. w = wtss("http://www.dpi.inpe.br/tws")   
5. latitude  = -14.919100049   
6. longitude = -59.11781088   
7. ts = w.time_series("mod13q1_512", ("ndvi", "evi"), \   
8.     latitude, longitude)   
9. ndvi = pd.Series(ts["ndvi"], index = ts.timeline) * \   
10.     cv_scheme['attributes']['ndvi']['scale_factor']   
11. evi  = pd.Series(ts["evi"],  index = ts.timeline) * \   
12.     cv_scheme['attributes']['evi']['scale_factor']   
13. vidf = pd.DataFrame({'ndvi': ndvi, 'evi': evi}) 

Source: Elaborated by the authors. 

 

In the exploratory analysis, we get the data and then plot the time 

series and its location on a map. Figure 1 shows how to retrieve MODIS data 

into a data frame which is a table-like data structure. Lines 1 to 3 load the 

existing libraries, while lines 4 to 6 establish a point on Earth, some 

vegetation indexes, and where to find the Web Service. Line 7 retrieves time 

series from the Web Service, and finally, lines 9 to 13 arrange the data into a 

data structure called data frame. 

  

Figure 2 – An on-line analysis environment for time series of Earth observation data. This 

environment displays a description of the Whitaker smoother, its Python implementation, 

and its results when applied to a time series of vegetation indexes. 

 
Source: Elaborated by the authors. 
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Once the time series is formatted as a data frame, it is possible to apply 

on it functions that receive and return data frame's columns as parameters. 

In this way, we smoothed our time series using the Whittaker smoother 

(Figure 2), the Kalman filter, and the Fourier decomposition.  

The code used to apply filters on the data is illustrated in Figure 3. Line 

1 imports the filter which is applied to vegetation indexes (lines 2 and 3). The 

remaining lines of code print the filtered vegetation indexes along with the 

original data (lines 5 to 11).  This code pattern is repeated for applying the 

Kalman filter and the Fourier decomposition (Figure 4). 

 

Figure 3 – Filter a time series using the Whitaker smoother. 

1. from whittaker import *   
2. vidf['ndvi_wf'] = pd.Series(whittaker_filter(ndvi,1000),index = ts.timeline)

   
3. vidf['evi_wf']  = pd.Series(whittaker_filter(evi,1), index = ts.timeline)   
4. fig, ax = matplotlib.pyplot.subplots(figsize = (15, 5))   
5. ax.plot()   
6. vidf['ndvi'].plot()   
7. vidf['evi'].plot()   
8. vidf['ndvi_wf'].plot()   
9. vidf['evi_wf'].plot()   
10. ax.legend()   
11. fig.autofmt_xdate()  

Source: Elaborated by the authors. 

 

Figure 4 – Fourier decomposition of time series of vegetation indexes. 

 
Source: Elaborated by the authors. 

 

The last example in our Jupyter notebook is classification. We used 

Dynamic Time Warping (DTW) to classify time series of vegetation indexes. 

We prepared a set of pattern time series corresponding to the land covers 
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cerrado and forest. We also collected a set of sample points from which we 

know the latitude, the longitude and the land cover over a specific time 

interval; then we retrieved the time series of these points using WTSS. Figure 

4 shows the time series of both patterns and samples. Figure 5 shows the code 

required to read the prepared files, retrieve the time series and to do the 

classification: Lines 1 and 2 load libraries while lines 3 and 5 load patterns of 

vegetation indexes and samples points from text files. Line 6 retrieves the 

time series corresponding to the samples. Finally, line 7 calls the classifier on 

the samples using the patterns.  

 

Figure 5 – Patterns (top) and samples (bottom) of NDVI time series for classification. 

 

 

Source: Elaborated by the authors. 
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Figure 6 – Python code for classifying time series using Dynamic Time Warping. 

1. from dtw import *   
2. from tools import *   
3. patterns_ts = pd.read_json("examples/patterns.json", orient='records')   
4. patterns_ts["timeline"] = pd.to_datetime(patterns_ts["timeline"])   
5. samples = pd.read_csv("examples/samples.csv")   
6. samples_ts = wtss_get_time_series(samples)   
7. classification = classifier_1nn(patterns_ts, samples_ts) 

 

Source: Elaborated by the authors. 

 

In summary, we joined data and analysis environments in order to plot, 

filter, and classify time series of Earth observation data by means of Jupyter 

notebooks and web services. This approach is flexible as users can use the 

same data and web services over different programming languages and 

analysis environments. For example, we setup another notebook using R, 

which is a statistical programming language. We do not describe this R 

notebook here because of lack of room, but the code is available on-line2. 

 

7 Conclusions 

 

In this paper, we discussed how literate programming is being taking 

to the Web as interactive and collaborative analysis environments. We also 

showed how these environments are enhanced with web services and how 

both – environments and services – help scientists to prepare their analysis 

routines. We set up a Jupyter notebook in which we analyzed data retrieved 

by the Web Time Series Service. In this way, we showed how to display, filter, 

smooth and classify time series of vegetation indexes. This is a convenient for 

scientists not only to interact with time series of Earth observation data but 

also to prepare their analysis routines before running them on big Earth 

observation data platforms such as e-sensing. 

                                                           

2 e-Sensing: Big Earth observation data analytics for land use and land cover 

change information https://github.com/e-sensing/SITS_R_notebook 
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Web services close the gap between big Earth observation data and 

analysis tools by means of collaborative environments for small amounts of 

data. As the amount of data to be processed increases, it is better to send the 

analysis routine to the data which is an ongoing effort at the e-sensing project.  

Finally, we would like to remark that the aforementioned the Jupyter 

notebook, the Web Time Series Service, and the analysis routine are available 

on-line to everyone at http://github.com/e-sensing/wgiss-py-webinar. 
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