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ABSTRACT

Hamilton’s principle is applied to obtain the equations of motion for fully relativistic collision-free plasma. The variational treatment is pre-
sented in both the Eulerian and Lagrangian frameworks. A Clebsch representation of the plasma fluid equations shows the connection
between the Lagrangian and Eulerian formulations, clarifying the meaning of the multiplier in Lin’s constraint. The existence of a fully rela-
tivistic hydromagnetic Cauchy invariant is demonstrated. The Lagrangian approach allows a straightforward determination of the
Hamiltonian density and energy integral. The definitions of momentum, stress, and energy densities allow one to write the conservation
equations in a compact and covariant form. The conservation equations are also written in an integral form with an emphasis on a general-
ized virial theorem. The treatment of boundary conditions produces a general expression for energy density distribution in plasma fluid.
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I. INTRODUCTION

Variational formulations of fluid dynamics have a long history,
but the modern presentation was mostly developed in the 1950s and
1960s.1–5 Although the Lagrangian and Eulerian formulations were
firmly established during this period, they continue to be an important
topic of research. In the Lagrangian formulation, each fluid element
can be treated as a particle, whose position is followed in time.
Accordingly, each fluid element is identified by a spatial integration,
which is performed over the position occupied by the element at the
initial time t¼ 0. In the Eulerian approach, the integration region is
fixed in space, and the fluid element passes through this position at the
instant of time t. For the fixed initial position and changing t, transfor-
mation from Lagrangian to Eulerian variables specifies the trajectory
of the fluid element. This continuous transformation (Lagrangian
map) of configuration space into itself, parameterized by time t, forms
the concept of fluid flow.

The canonical Lagrangian picture is akin to particle physics and
quantum mechanics, providing a convenient tool in the treatment of
symmetries and conserved quantities.6–8 On the other hand, the non-
canonical Eulerian equations are closed in the macroscopic fluid varia-
bles, giving the general picture of flow. These equations can be, in
principle, solved without finding the trajectory of all the fluid elements.
They are generally preferred in practical applications and in the treat-
ment of boundary conditions. Both formulations are equivalent.9

Although not variational, relativistic formulations of the equa-
tions of motion for perfect fluids have been presented in many

textbooks.10,11 Nevertheless, due to its importance in astrophysics,
since early efforts, the variational formulation has been extended to
cover relativistic perfect fluids.12–15 It should also be mentioned that
the topic of invariants in fluid flow, first advanced by Cauchy in 1815,
continues to be of interest in current research.16–18 Invariants appear
in varied applications of plasma physics.19–21

Plasma fluid equations possess an energy integral and a subsidi-
ary energy principle derived from a linearized Lagrangian form of
hydromagnetic equations.22,23 This energy principle has been success-
fully used in the stability analysis of magnetically confined plasmas.
However, it seems that a complete variational formulation of fully rela-
tivistic plasma fluid equations, including the full set of Maxwell’s equa-
tions and conserved quantities, is lacking in the literature. The present
paper is partly based on the author’s unpublished Ph.D. thesis.24 It is
deemed worthwhile to present these well-established results in a con-
sistent form due both to its inherent importance and in the interest of
applying the same formulation to extended theories of gravitoelectro-
magnetism. Some comments about these applications will be pre-
sented in Sec. VIII. Due to its fully relativistic content, the results are
applicable in astrophysical plasma problems, although not including
gravitation in their present form. This is the quest of extended
gravitoelectromagnetism.

Equations of motion of plasma fluid can be derived in a fully
covariant form. However, in applications, the equations become more
transparent without using the covariant formalism. In particular, the
transformation between the Eulerian and Lagrangian frameworks, as
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well as the derivation of a hydromagnetic Cauchy invariant, becomes
straightforward using the Jacobian matrix of configuration space in
the transformation. This approach, proposed by Cauchy, is fully
explored in the present paper. It makes possible to demonstrate the
existence, possibly for the first time, of a Cauchy invariant for three-
dimensional relativistic, compressible, and rotational plasma flows in
the presence of a magnetic field. Nevertheless, the covariant form of
the dynamical equations is readily obtained after defining the energy
and momentum densities and the stress tensor for each component of
the plasma fluid. The covariant form of the conservation equations is
presented in Appendix A.

The content of this paper is organized as follows: Sec. II develops
the variational principle for fluid plasma in both its Eulerian
(Subsection II B) and Lagrangian (Subsection IIC) forms. In the
sequence, Sec. III presents the fluid equations in the Clebsch parame-
terization, including a discussion about helicity injection in plasma.
Then, Sec. IV demonstrates a hydromagnetic Cauchy invariant. This is
followed by a derivation of the Hamiltonian density and the energy
integral in Sec. V. The conservation equations are put in compact and
integral forms in Sec. VI. Section VII is dedicated to the boundary con-
ditions and the energy density balance. Finally, Sec. VIII presents
some comments, notably concerning the extension of electromagnetic
theory to gravitoelectromagnetism.

II. HAMILTON’S PRINCIPLE AND THE PLASMA FLUID
EQUATIONS

Hamilton’s principle provides an elegant derivation of the
equations of motion of a fluid.1,2,4 A brief account of the concepts
of classical field theory and notation used in this paper is given in
Subsection A.

A. Basic concepts of classical field theory

In its Eulerian form (fixed frame), Hamilton’s principle states
that the fluid equations of motion for generalized field coordinates
uðr; tÞ can be derived from a Lagrangian density Lðu; _u;$u; tÞ by
the variational principle,25

d
ð
d3r dtL ¼ 0: (1)

The virtual displacements are constructed for constant r and t so that
Hamilton’s principle and integration by parts giveð

d3r dt
@L
@u

duþ @L
@ _u

d _u þ @L
@ $uð Þ � d $uð Þ

� �

¼
ð
d3r dt

@L
@u
� @

@t
@L
@ _u

� �
�$ � @L

@ $uð Þ

� �" #
du ¼ 0: (2)

For arbitrary variation of the field coordinate u, with vanishing varia-
tion du at the end points, this leads to the Euler–Lagrange equation,

@L
@u
¼ @

@t
@L
@ _u

� �
þ $ � @L

@ $uð Þ

� �
: (3)

This equation can be written in the following form:

dL
du
� @

@t
@L
@ _u

� �
¼ 0; (4)

where

dL
du
¼ @L
@u
� $ � @L

@ $uð Þ

� �
(5)

denotes the variational or functional derivative. The momentum den-
sity conjugate to u is defined by

p r; tð Þ ¼
@L
@ _u

; (6)

so that the Euler–Lagrange equation implies

dL
du
¼ _p: (7)

The Hamiltonian density is defined by

H ua; pa;$ua; tð Þ ¼
X

a

pa _ua � L ua; _ua;$ua; tð Þ; (8)

with a sum over field coordinates. Using this definition ofH, the varia-
tion of the total Hamiltonian becomes

dH ¼
X

a

ð
_uadpa þ pad _ua �

@L
@ua

dua

�

� @L
@�ua

d _ua �
@L

@ $uað Þ � d $uað Þ
�
d3r: (9)

Substituting the definition of pa and the expression of the
Euler–Lagrange equation for the field coordinate ua gives

dH ¼
X

a

ð
_uadpa �

@

@t
@L
@ _ua

� �
dua�$ � @L

@ $uað Þ dua

� �" #
d3r:

(10)

Hence,

dH ¼
X

a

ð
_uadpa � _paduað Þd3r �

X
a

þ
@L

@ $uað Þ dua

� �
� d2r;

(11)

where the surface integral vanishes for a system with vanishing du at
the end points (closed system). In this derivation, it was assumed that
H andL do not depend explicitly on the time. In the Hamiltonian for-
mulation,H is a function of pa, ua; $ua so that

dH ¼
X

a

d
ð
H pa;ua;$uað Þd3r

¼
X

a

ð
@H
@pa

dpa þ
@H
@ua

duaþ
@H

@ $uað Þ � d $uað Þ
� �

d3r

¼
X

a

ð
@H
@pa

dpa þ
@H
@ua

dua�$ � @H
@ $uað Þ

� �
dua

� �
d3r

þ
X

a

þ
@H

@ $uað Þ
dua

� �
� d2r: (12)

Comparing the two expressions of dH leads to the Hamiltonian form
of the field dynamic equations
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_ua ¼
@H
@pa
¼ dH

dpa
;

_pa ¼ �
@H
@ua
þ $ � @H

@ $uað Þ

� �
¼ � dH

dua
:

8>>><
>>>: (13)

Here, the functional derivative notation indicates the variation of H
for small differences dua in the path followed by the field variable ua,

dH
dua
¼ @H
@ua
� $ � @H

@ $uað Þ

� �
: (14)

If F is the volume integral of a density function
Fðpa;ua;$ua; tÞ, its time derivative is given by

dF
dt
¼ d

dt

ð
F d3r

@F
@t
þ
X

a

ð
dF
dua

_ua þ
dF
dpa

_pa

� �
d3r

¼ @F
@t
þ
X

a

ð
dF
dua

dH
dpa
� dF

dpa

dH
dua

� �
d3r: (15)

Hence,

dF
dt
¼ @F
@t
þ
X

a

ð
F ;Hf gd3r; (16)

where F ;Hf g is the classical Poisson bracket for F andH. This rela-
tion constitutes the noncanonical Hamiltonian representation of a sys-
tem. In particular, takingF ¼ H leads to the energy integral

dH
dt
¼ d

dt

ð
H d3r ¼ 0: (17)

B. Eulerian variational principle

The Lagrangian density for a multi-species relativistic perfect
plasma is taken in the following form:

L ¼
X
q

�U � q/þ j � Að Þ þ 1
2

�0E
2 � B2

l0

 !
; (18)

where the summation extends over all the particle species designated
by the charge q. For simplicity, no indices will be used to distinguish
the field variables of the various species. Each species evolves indepen-
dently with a flow velocity v (collision-free plasma) except for the
Vlasov mean–field interactions. Nevertheless, a small level of random-
izing must be assumed validating the hydrodynamics concepts and
leading to a scalar pressure. The plasma energy density U is given by
the sum of the mass and thermal energy densities,

U ¼ nmc2

c
þ p

cA � 1
: (19)

The Lorentz factor is

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ; (20)

the fluid pressure for a perfect gas is p ¼ nkBT , and the “adiabatic”
coefficient cA for a relativistic plasma is a function of the temperature
T (cf. Appendix A). The interaction energy density between the

charged particles and the electromagnetic field is �q/þ j � A, where
q ¼ nq is the charge density of the plasma species q and j ¼ qv is the
current density. The electromagnetic field variables E and B are related
to the potentials/ and A by

E ¼ �$/� @A
@t
;

B ¼ $� A:
(21)

These relations lead to Faraday’s law

$� E ¼ � @B
@t
; (22)

and to the magnetic Gauss’s law

$ � B ¼ 0: (23)

The free-field Lagrangian can be written in terms of the first elec-
tromagnetic field invariant K,

1
2

�0E
2 � B2

l0

 !
¼ � K

4l0
: (24)

The second electromagnetic field invariant is

M ¼ � 4 E � Bð Þ
c

: (25)

This second invariant is used in the strong magnetic field assumption,
which requires that the electric and magnetic fields are approximately
perpendicular, i.e.,M ffi 0, leading to a non-scalar pressure tensor and
to the double adiabatic CGL equations of state for the plasma.26,27

Since anisotropic plasma states are not considered in the present
paper, constraints involving M are not imposed on the plasma fluid
dynamics.

The hydroelectromagnetic equations of motion are obtained
from the expression of the Lagrangian density by the variational proce-
dure described in Subsection IIA The field coordinates are

/;A � electromagnetic field potentials;
v � fluid velocity;
n � fluid number density;
s � proper entropy of a fluid element;
r0 � Lagrangian coordinate of a particle:

(26)

The vector field r0ðr; tÞ establishes the initial position of the fluid ele-
ment (particle) that occupies the position r at time t. The above field
variables are not completely independent; they must satisfy the follow-
ing constraints:

_n þ $ � nvð Þ ¼ 0 � continuity;
ds=dt ¼ 0 � isentropic flow;
dr0=dt ¼ 0 � identity of particles:

(27)

Here, _n ¼ @n=@t indicates the partial time derivative. It gives the rate
of change of the density n at a stationary point r. The total or convec-
tive time derivative d=dt � @=@t þ v � $ gives the rate of change of a
quantity moving instantaneously with the velocity v. It describes the
advection by fluid motion. As for the fluid constraints: (1) Fluid conti-
nuity is a kinematic condition of fluid motion (cf. Appendix B). This
condition corresponds to the conservation of the number of particles.
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(2) The specific entropy s is constant in time at any point that moves
along with the perfect fluid without irreversible processes taking place
(cf. Appendix A). (3) The last condition above implies that there is a
one-to-one correspondence between Lagrangian and Eulerian coordi-
nates (cf. Appendix B). This constraint was introduced by Lin so that
the total set of constraints gives rise to a Herivel–Lin flow.2 The mean-
ing of the Lagrangian multiplier in Lin’s constraint is clarified in Sec.
III. Hence, Hamilton’s principle can be put in the following form:

d
Ð
d3r dt L þ a _n þ $ � nvð Þð Þ þ bn

ds
dt
þnc � dr0

dt

� �� �
¼ 0; (28)

where a, b, and c constitute a set of Lagrangian multipliers.
Now, /, A, v, n, s, and r0 are independent functions of r and t

that can be varied. In carrying out the variation, the volume of integra-
tion is kept fixed, in the Eulerian sense. Furthermore, the thermody-
namic potentials satisfy the fundamental law (cf. Appendix A),

1
kB

ds ¼ 1
kBT

d
kBT

cA � 1

� �
þ cA

cA � 1
dc
c
� dn

n
: (29)

An equation of state, which is a subsidiary condition to the fluid flow,
must also be given. For a perfect fluid, this is simply the perfect gas law
p ¼ nkBT . Hence, an Euler–Lagrange equation for each field coordi-
nate u can be derived from the modified Lagrangian function L0 given
by

L0 ¼
X
q

� nmc2

c
� nkBT

cA � 1
� nq/þ nqv � A

"

þa _n þ v � $nþ n$ � vð Þ þ bn _s þ v � $sð Þ

þnc � _r0 þ v � $r0ð Þ
#
þ 1
2

�0E
2 � B2

l0

 !
: (30)

The Euler–Lagrange equations are obtained by straightforward differ-
entiation and listed in the following:

ið Þ d/ $ � E ¼ 1
�0

X
q

q;

iið Þ dA $� B ¼ l0

X
q

jþ 1
c2
@E
@t
;

iiið Þ dv cmv� c3
@

@c
kBT

cA � 1

� �
n;s

v

c2
þ qA� $a

þ b$sþ $r0ð Þ � c ¼ 0;

ivð Þ dn da
dt
¼ �mc2

c
� kBT

cA � 1
� n

@

@n
kBT

cA � 1

� �
c;s

� q/þ qv � A;

vð Þ ds
db
dt
¼ � @

@s
kBT

cA � 1

� �
n;c

;

við Þ dr0
dc
dt
¼ 0: (31)

Equations (i) and (ii) are the laws of Gauss and Ampère, respectively.
Equation (iii) gives the fluid velocity v in terms of the vector potential
A, the scalar potentials a and s, and the deformations (strains and

rotations) in the initial fluid positions r0. Defining a relativistic inertia
factor a by

a ¼ c 1� c2

mc2
@

@c
kBT

cA � 1

� �
n;s

" #
; (32)

the Euler–Lagrange equation (iii) can be written in the compact form,

mavþ qA ¼ $a� b$s� c � $r0ð ÞT ; (33)

where the superscript T denotes the transposed dyadic. Note that this
equation has the form of a Clebsch representation for the canonical
momentum mavþ qA of a fluid element. The Euler–Lagrange equa-
tions (iv), (v), and (vi) are equations of motion for the Lagrange multi-
pliers a, b, and c. These equations can be used to eliminate the
Lagrange multipliers from equation (iii). This can be accomplished by
means of the following relations, which can be obtained using vector
and dyadic relations, the constraints ds=dt ¼ dr0=dt ¼ 0, the
Euler–Lagrange equation dc=dt ¼ 0, and the identity $� r0 ¼ 0:

d
dt

$að Þ ¼ $
da
dt
� $v � $að Þ;

d
dt

b$sð Þ ¼ $sð Þ db
dt
� $v � b$sð Þ;

d
dt

$r0ð Þ � c½ � ¼ � $vð Þ � $r0ð Þ � c:

(34)

The total time derivative of Euler–Lagrange’s equation (iii) in the form
(33) gives

d
dt

mavþ qAð Þ ¼
d
dt

$a� b$s� $r0ð Þ � c½ �

¼ $
da
dt
� $v � $að Þ � $sð Þ db

dt
þ$v � b$sð Þþ $vð Þ � $r0ð Þ � c; (35)

and the scalar pre-multiplication by $v gives

$v � mavþ qAð Þ ¼ $v � $a� b$s� $r0ð Þ � c½ �: (36)

The addition of these two equations yields

d
dt

mavþ qAð Þ þ $v � mavþ qAð Þ ¼ $
da
dt
� $sð Þ db

dt
: (37)

Finally, using equations (iv) and (v), the remaining Lagrange multipliers
a and b are eliminated from the equation of momentum conservation,

d
dt

mavþ qAð Þ þ $v � mavþ qAð Þ

¼ �q$/þ q$ v � Að Þ � c2$c�1 � $
kBT=m
cA � 1

� �

�$ n
@

@n
kBT=m
cA � 1

� �
c;s

" #
þ $sð Þ @

@s
kBT=m
cA � 1

� �
n;c

: (38)

Maxwell’s differential relations can be determined from the fun-
damental law of thermodynamics,

1
kB

ds ¼ 1
kBT

d
kBT

cA � 1

� �
þ cA

cA � 1
dc
c
� dn

n
: (39)
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Thus,

@

@n
kBT

cA � 1

� �
c;s

¼ kBT
n
;

@

@c
kBT

cA � 1

� �
n;s

¼ � cA
cA � 1

kBT
c
;

@

@s
kBT

cA � 1

� �
n;c

¼ T:

8>>>>>>>>><
>>>>>>>>>:

(40)

These relations reduce the equation of momentum conservation to the
following form:

d
dt

mavþ qAð Þ þ $v � mavþ qAð Þ

¼ �q$/þ q$ v � Að Þ �mc2$c�1

�$ kBTð Þ þ kBT
cA

cA � 1
$c
c
� $n

n

� �
; (41)

where

a ¼ c 1þ cA
cA � 1

ckBT
mc2

� �
: (42)

Note that the thermal motion increases the fluid inertia. These relativ-
istic effects may strongly affect the reconnection process in astrophysi-
cal and inertially confined plasmas.14,28 Next, using

$c�1 ¼ �c
$v2

2c2
and $c ¼ c3

$v2

2c2
; (43)

the momentum conservation equation becomes

d
dt

mavð Þ ¼ �$ nkBTð Þ
n

� q$/� q
@A
@t

�qv � $A� q $vð Þ � Aþ q$ v � Að Þ: (44)

Now, the vector and dyadic relations,

v � $ð ÞA ¼ $Að Þ � v� v� $� Að Þ;
$ v � Að Þ ¼ $vð Þ � Aþ $Að Þ � v;

(45)

give

d
dt

mavð Þ ¼ �$ nkBTð Þ
n

� q $/þ @A
@t

� �
þ qv� $� Að Þ: (46)

Introducing the electromagnetic field components E ¼ �$/� @A=@t
and B ¼ $� A, the equation of momentum conservation becomes

d
dt

mavð Þ ¼ �$p
n
þ q E þ v� Bð Þ; (47)

which has the form of a Lorentz force acting on the fluid element.
Multiplying by n and applying the continuity condition

@n=@t ¼ �$ � ðnvÞ, the equation of momentum conservation yields

@

@t
nmavð Þ þmav$ � nvð Þ þ nmv � $ avð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

$� nmavvð Þ

¼ �$pþ nq E þ v� Bð Þ: (48)

Therefore, the full equation of momentum conservation for each spe-
cies in a relativistic perfect plasma fluid submitted to the action of an
(self-consistent or external) electromagnetic field can be written as

@

@t
c 1þ cA

cA � 1
cp

nmc2

� �
nmv

� �
þ$ � c 1þ cA

cA � 1
cp

nmc2

� �
nmvvþ p��I

� �
¼ qE þ j� B; (49)

where ��I is the unit dyadic.
The entropy conservation law ds¼ 0 leads to the differential

equations of state (cf. Appendix A),

dp
p
¼ 1

ckBT
d

cA
cA � 1

ckBT
� �

¼ c2A
cA � 1

c
n
d

cA � 1
cA

n
c

� �
: (50)

Thus,

$p
nm
¼ 1

c
$

cA
cA � 1

ckBT
m

� �
(51)

can be used to express the fluid pressure in terms of the temperature,

d
dt

c 1þ cA
cA � 1

ckBT
mc2

� �
v

� �

¼ � 1
c
$

cA
cA � 1

ckBT
m

� �
þ q
m

E þ v� Bð Þ: (52)

The acceleration in this equation can be written in a compact form in
terms of the function a,

d
dt

avð Þ ¼ � c2

c
$

a
c

� �
þ q
m

E þ v� Bð Þ: (53)

Scalar multiplication by v gives

v � d
dt

avð Þ ¼ � c2

c
v � $ a

c

� �
þ j � E

nm
: (54)

Thus,

a
2
dv2

dt
þ v2

da
dt
¼ � c2

c
d
dt

a
c

� �
þ c2

c
@

@t
a
c

� �
þ j � E

nm
: (55)

In terms of the Lorentz factor c,

v2

c2
¼ 1� 1

c2
;

dv2

c2
¼ 2

c3
dc; (56)

and

d
dt

ac2ð Þ ¼ 1
c
@

@t
ac2

c

� �
þ j � E

nm
: (57)

Multiplication by the mass density nm gives

d
dt

nmc2að Þ �mc2a
dn
dt
¼ nmc2

c
@

@t
a
c

� �
þ j � E: (58)

Using the continuity condition,
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1
n
dn
dt
¼ �$ � v; (59)

it follows that

@

@t
nmc2að Þ þ $ � nmc2avð Þ ¼ nmc2

c
@

@t
a
c

� �
þ j � E: (60)

Since

d
a
c

� �
¼ d

cA
cA � 1

ckBT
mc2

� �
¼ cdp

nmc2
; (61)

the energy conservation equation becomes

@

@t
nmc2að Þ þ $ � nmc2avð Þ ¼ @p

@t
þ j � E: (62)

With some rearrangement, the energy conservation equation can be
written as

@

@t
cnmc2 þ 1

cA � 1
þ b2

� �
c2p

� �
þ$ � cnmc2 þ cA

cA � 1
c2p

� �
v

� �
¼ j � E: (63)

Summary: The variational procedure shows that the momentum
conservation equation,

d
dt

c 1þ cA
cA � 1

ckBT
mc2

� �
mv

� �
¼ �$p

n
þ q E þ v� Bð Þ ; (64)

describes the plasma fluid flow together with the equation of
continuity,

@n
@t
þ $ � nvð Þ ¼ 0; (65)

and Maxwell’s equations,

$ � E ¼ 1
�0

X
q

q Gauss’s law;

$� B ¼ l0

X
q

jþ 1
c2
@E
@t

Ampere’s law;
(66)

where q and j are the charge and current densities corresponding to
species q

q ¼ nq; j ¼ nqv: (67)

The electromagnetic field variables are related to the potentials by

E ¼ �$/� @A
@t
;

B ¼ $� A;
(68)

which leads to the consistency relations

$� E ¼ � @B
@t

Faraday’s law;

$ � B ¼ 0 magnetic Gauss’s law:
(69)

The pressure p is related to the temperature T according to the isentro-
pic flow condition ds=dt ¼ 0. This is equivalent to the energy

conservation equation. The equation of state for a perfect fluid is
p ¼ nkBT , which can be used to relate the density n to the tempera-
ture T .

Introducing the weakly relativistic approximation,

c � 1þ v2

2c2
; (70)

the energy conservation equation reduces to

@

@t
nmc2|ffl{zffl}
dominant

þnm v2

2
þ p

cA � 1

 !

þ$ � nmc2v|fflfflffl{zfflfflffl}
dominant

þnm v2

2
vþ cA

cA � 1
pv

 !
ffi j � E; (71)

where the dominant terms (in the expansion in powers of 1=c) cancel
due to fluid continuity. Similarly, the equation of momentum conser-
vation for charged species reduces to

@

@t
nmvð Þ þ $ � nmvvþ p��I

� 	
ffi qE þ j� B; (72)

or, in the equivalent Lorentz force form,

m
dv
dt
ffi �$

cAkBT
cA � 1

� �
þ q E þ v� Bð Þ: (73)

Consequently, Hamilton’s principle applied to the Lagrangian
density L leads to the required conservation of momentum equation
and Maxwell’s equations for each species of a collision-free relativistic
plasma under the action of a self-consistent electromagnetic field. In
Subsection C, the variation of L will be carried out in Lagrangian
coordinates.

C. Lagrangian variational principle

In this subsection, the equations of fluid motion are considered
within the Lagrangian approach. The variation is applied to the posi-
tions of the fluid elements. Changing from Eulerian ðr; tÞ to
Lagrangian ðr0; sÞ coordinates, Hamilton’s principle becomes

d
ð
d3r0ds J

X
q

� nmc2

c
� nkBT

cA � 1
� nq/þ nqA � @n

@s

 !2
4

þ 1
2

�0E
2 � B2

l0

 !35 ¼ 0; (74)

��J is the Jacobian dyadic,

��J ¼ $0r ¼ $0 r0 þ nð Þ ¼ ��I þ $0n; (75)

and J ¼ j��J j its determinant. In this variational principle, the integra-
tion extends over the fixed initial positions, and the field variables are
considered as functions of r0 and s (these coordinates may be consid-
ered as fixed on the fluid element). The velocity of a fluid element
is given in terms of the Lagrangian displacement n ¼ r � r0 by
v ¼ @n=@s (the velocity is defined at the position of the fluid element,
which may be considered as a particle), and the Lagrangian form of
the equation of continuity is
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nJ ¼ n0 r0; s ¼ 0ð Þ: (76)

The equation of conservation of entropy becomes

@s
@s
¼ 0: (77)

Introducing the Lagrange multipliers aL and bL (for each species), one
has

d
ð
d3r0ds J

X
q

� nmc2

c
� nkBT

cA � 1
� nq/þ nqA � @n

@s

 !2
4

8<
:

þ 1
2

�0E
2 � B2

l0

 !#
þ
X
q

aL nJ � n0ð Þ þ bL
@s
@s

� �)
¼ 0: (78)

The Euler–Lagrange equations are

ið Þ d/ $0 � E ¼
1
�0

X
q

q0;

iið Þ dA $0 � B ¼ l0

X
q

j0 þ
1
c2
@E
@s
;

iiið Þ dn Jnq � @/
@n
þ @A

@n

� �
� @n
@s

� �

¼ @

@s
J ncmc2 � nc3

@

@c
kBT

cA � 1

� �
n;s

" #
1
c2
@n
@s
þJnqA

( )

þ $0 �
@J

@ $0rð Þ �
nmc2

c
� nkBT

cA � 1
�nq/

 "

þ nqA � @n
@s
þ naL

!#
;

ivð Þ dn aL ¼
mc2

c
þ kBT

cA � 1
þ n

@

@n
kBT

cA � 1

� �
c;s

þ q/� qA � @n
@s
;

vð Þ ds
@bL
@s
¼ �Jn @

@s
kBT

cA � 1

� �
n;c

: (79)

Note that the variation of the electromagnetic field components with
respect to the fluid displacements n must be considered separately for
each species and that Jmust be different from zero so that the transfor-
mation r0 ! r is one-to-one.

Now, the expression (iv) for aL can be substituted in the
Euler–Lagrange equation (iii) for n;

@

@s
J ncmc2 � nc3

@

@c
kBT

cA � 1

� �
n;s

" #
1
c2
@n

@s
þJnqA

( )

þ $0 �
@J

@ $0rð Þ n
2 @

@n
kBT

cA � 1

� �
c;s

" #

¼ Jnq � @/
@n
þ @A

@n

� �
� @n
@s

� �
: (80)

The expressions for the Jacobian given in Appendix B give

@J
@ $0rð Þ ¼

@

@ $0rð Þ j$0rj ¼ ��C ¼ J $0rð Þ�1

 �T

; (81)

where J ¼ j$0rj is the determinant of $0r and ��C is the dyadic of the
cofactors of the elements of $0r. Moreover, the formulas of transfor-
mation from Eulerian to Lagrangian coordinates, also derived in
Appendix B, give

$r0 � ��I þ $0n
� 
�1 � $0r0 ¼ ��I þ $0n

� 
�1
¼ ��I þ $0n
� 


� rr

 ��1 ¼ $0rð Þ�1: (82)

Thus,

@J
@ $0rð Þ ¼ J $r0ð ÞT : (83)

It follows that

$0 � J $r0ð ÞTn2 @
@n

kBT
cA � 1

� �
c;s

" #

¼ $0 � J $r0ð ÞT
h i

n2
@

@n
kBT

cA � 1

� �
c;s

þJ $r0ð Þ � $0 n2
@

@n
kBT

cA � 1

� �
c;s

" #
: (84)

But the first term on the right-hand side vanishes, since

$0 � J $r0ð ÞT
h i

¼ $0 � ��C ¼ 0; (85)

and the second term can be written as

J $r0ð Þ � $0 n2
@

@n
kBT

cA � 1

� �
c;s

" #
¼ J$ n2

@

@n
kBT

cA � 1

� �
c;s

" #
; (86)

so that the Euler–Lagrange equation for n becomes

@

@s
J ncmc2 � nc3

@

@c
kBT

cA � 1

� �
n;s

" #
1
c2
@n

@s
þ JnqA

( )

þ J$ n2
@

@n
kBT

cA � 1

� �
c;s

" #
¼ Jnq �$/þ rAð Þ � @n

@s

� �
: (87)

The quantity nJ ¼ n0 is independent of s; therefore,

@

@s
cm

@n

@s
� c3

c2
@

@c
kBT

cA � 1

� �
n;s

@n

@s
þ qA

" #

¼ � 1
n

$ n2
@

@n
kBT

cA � 1

� �
c;s

" #
� q$/þ q $Að Þ � @n

@s
: (88)

Using the thermodynamic relations,

@

@n
kBT

cA � 1

� �
c;s

¼ kBT
n
;

@

@c
kBT

cA � 1

� �
n;s

¼ � cA
cA � 1

kBT
c
;

(89)

one obtains
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@

@s
cm 1þ cA

cA � 1
ckBT
mc2

� �
@n

@s
þ qA

� �

¼ � 1
n

$ nkBTð Þ � q$/þ q rAð Þ � @n
@s
; (90)

where the left-hand side corresponds to the time rate of change of the
canonical momentum of the plasma fluid element. The transformation
back to Eulerian coordinates is carried out by means of the following
relations:

@

@s
� @

@t
þ v � $; @n

@s
¼ v; (91)

so that

@

@t
þ v � $

� �
c 1þ cA

cA � 1
ckBT
mc2

� �
mv

� �
¼ � 1

n
$ nkBTð Þ � q$/� q _A � qv � $Aþ q $Að Þ � v: (92)

Multiplying by n and using the equation of continuity, this equation
becomes

@

@t
c 1þ cA

cA � 1
ckBT
mc2

� �
nmv

� �

þ$ � c 1þ cA
cA � 1

ckBT
mc2

� �
nmvvþ nkBT��I

� �
¼ �nq$/� nq _A þ nqv� $� Að Þ; (93)

which recovers the equation of motion in the Eulerian form. This can
be easily verified using the definitions q ¼ nq; j ¼ nqv, E ¼ �$/
�@A=@t, and B ¼ $� A, and the equation of state p ¼ nkBT , which
gives back Eq. (49).

III. CLEBSCH REPRESENTATION

Recall the Euler–Lagrange equation (iii) for dv in the Clebsch
form

mavþ qA ¼ $a� b$s� rr0ð Þ � c: (94)

The Jacobian dyadic of the transformation r ¼ rðr0; tÞ from the initial
position r0 to the present position r is ��J ¼ @r=@r0 ¼ $0r, so that

rr0 ¼ ��J
�1

produces the inverse transformation r0 ¼ r0ðr; tÞ from
the present to the initial position. In this way, ðrr0Þ � c ¼ c0 corre-
sponds to the initial value of the Lagrange multiplier c, which satisfies
the equation of motion dc=dt ¼ 0. Defining a reference value
P0 ¼ �c0, the canonical momentum of species q is given by

P ¼ mavþ qA ¼ P0 þ $a� b$s: (95)

Since the vector potential can be modified by a gauge transformation,
this reference value is somewhat arbitrary. In particular, if $a ¼ b$s
at some point, the reference value P0 corresponds to the initial value
of the canonical momentum at this point. Hence, P0 can be considered
as the initial value of P within a convenient gauge transformation. A
canonical vorticity vector X can be defined by

X ¼ $� P ¼ $� P0 � $� b$sð Þ ¼ X0 þ $s� $b; (96)

where X0 ¼ r� P0 is the reference vorticity associated with the Lin
multiplier c0 ¼ �P0. Note that the canonical vorticity is not affected

by the longitudinal Euler potential. The canonical momentum can
also be written as

P ¼ mavþ qA ¼ P0 þ $ a� sbð Þ þ s$b

¼ P0 þ $kþ s$b; (97)

where k ¼ a� sb denotes a new longitudinal Clebsch potential, with-
out changing the canonical vorticity,

X ¼ X0 þ $s� $b: (98)

The canonical vorticity includes flow vorticity and magnetic field val-
ues. The parameters s and b are the Euler potentials in the Clebsch
representation

X� X0ð Þ � $s ¼ 0;

X� X0ð Þ � $b ¼ 0;

(
(99)

with $ � X ¼ 0 and $ � X0 ¼ 0. The canonical vorticity increment
X� X0 lies in the intersection of the two surfaces defined by s ¼ con-
stant and b ¼ constant, and ðX� X0Þ � $k gives the triple product,

X� X0ð Þ � $k ¼ $a � $b� $s: (100)

The evolution of the potentials s and b is governed by the equations of
motion,

ds
dt
¼ 0;

db
dt
¼ � @

@s
kBT

cA � 1

� �
n;c

¼ �T:

8>>><
>>>: (101)

The advection of the thermal potential b depends on the variation
with s of the thermal energy density for constant n and c, which is sim-
ply proportional to the temperature T of the perfect fluid. Note that
the motion of the longitudinal potential k is governed by the following
equation:

dk
dt
¼ da

dt
þ Ts: (102)

The Euler potentials are not unique since an arbitrary function of s
can be added to b, or vice versa (but not simultaneously). Indeed, add-
ing f ðsÞ to b gives

$s� $ bþ f sð Þð Þ ¼ $s� $bþ $s� @f
@s

$s

� �
¼ $s� $b: (103)

The specific helicity associated with P is given by

P � X ¼ P0 þ $a� b$sð Þ � X0 þ $s� $bð Þ
¼ P0 � 2X� X0ð Þ1$ � aX1b$s� P0ð Þ; (104)

and the total helicity is given by the volume integral

K ¼
ð
V
P � Xð Þd3r ¼

ð
V
P0 � 2X� X0ð Þd3r

þ
þ
S
aXþ b$s� P0ð Þ � d2r: (105)

The first term in the right-hand side corresponds to the evolution of
the total helicity inside the volume V. The second term gives the flux
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of both the canonical vorticity X, weighted by the longitudinal
Lagrangian coefficient a, and $s� P0, weighted by the Lagrangian
coefficient b, passing through the surface bounding the volume V. The
longitudinal coefficient a of the canonical momentum is associated
with the conservation of fluid elements (particles), and the thermal
coefficient b is associated with the conservation of energy. The surface
term vanishes if a and b are continuous and both the canonical vortic-
ity X and $s� P0 are tangent to the surface S. The Clebsch coeffi-
cients a and b may present singularities inside the volume V or on the
surface S. Since helicity measures the linkage or knottedness of the vor-
tex lines in a flow,17 the internal singularities may be associated with
small regions of increased diffusivity and X-points (knots) of the X
field. The surface singularities are usually associated with external
sources of X flux. For example, helicity can be injected in a plasma by
discontinuities in the potentials (voltage drops on electrodes inserted
in the plasma). Another classic example is given by Woltjer’s theorem
that uses the invariance of the magnetic helicity in an ideal plasma.19,23

These effects show the importance of surface terms in the Clebsch rep-
resentation. Note that the magnetic field B ¼ $� A, modified by the
(large) charge to mass ratio q/m, has the same role as the fluid vorticity
x ¼ $� ðavÞ, modified by the relativistic inertia factor a. In terms of
the longitudinal potential k, the specific helicity becomes

P � X ¼ P0 � 2X� X0ð Þ þ $ � kX� s$b� P0ð Þ: (106)

Using the transport theorem (cf. Appendix B), the time variation
of the total helicity is given by

dK
dt
¼ @

@t

ð
V
P � Xð Þd3r þ

þ
S
P � Xð Þv � d2r: (107)

This shows that, in steady state (@=@t � 0), the total helicity K is invari-
ant if v is tangent to the surface S, generalizingWoltjer’s theorem.19

If S is an open surface bounded by the contour C formed by the
line elements d‘, the X flux through S is given according to Stokes the-
orem by

W ¼
ð
S
X � d2r ¼

ð
S

$� Pð Þ � d2r

¼
þ
C
P � d‘ ¼

þ
C
P0 þ $a� b$sð Þ � d‘

¼ a C2ð Þ � a C1ð Þ þ
þ
C
P0 � b$sð Þ � d‘: (108)

The integral of the conservative vector field $a depends only on the
values of a on the endpoints of the path C. This gives a vanishing
contribution if a does not have a singularity along the closed con-
tour C. Returning to the previous example, a voltage drop across
close isolated electrodes inserted into a magnetized plasma (ideal-
ized divertors) can produce a finite vorticity flux. The line integral
of the reference value P0 of the canonical momentum corresponds
to the circulation,

C0 ¼
þ
C
P0 � d‘: (109)

Thus,

W ¼ C0 þ a C2ð Þ � a C1ð Þ �
þ
C
b$s � d‘: (110)

The circulation C0 may include the effect of non-conservative sources,
such as the electromotive force of transformer action. This electromo-
tive force is responsible, for example, for the inductive helicity injection
in a tokamak. In general, the increment aðC2Þ � aðC1Þ can be included
in C0, although they denote different vorticity sources. Assuming con-
tinuous values of a, the flux through a surface Ss bounded by the closed
contour Cs, which is defined on the Euler surface s, becomes

Ws ¼ C0 �
þ
Cs

b$s � d‘ sð Þ: (111)

The flux calculation simplifies for a X field configuration in which s is
an ignorable quantity, that is, the system is homogeneous with respect
to s. In this case, the Euler potential b is independent of the symmetry
quantity s, and the flux Ws becomes

Ws ¼ C0 � b
þ
Cs

ds: (112)

Defining a normalized flux ws ¼ ðWs � C0Þ=
Þ
ds, the Euler potential

b is given by b ¼ �ws so that the corresponding canonical momen-
tum P and canonical vorticity X components are given by

Ps ¼ P0 þ $aþ ws$s;

Xs ¼ $� Ps ¼ X0 þ $ws � $s:

(
(113)

If one component of the field X lies in a symmetry direction, the total
field can be written as a sum in terms of the reference value and of the
flux associated with the symmetry component. These simplified expres-
sions are restricted to the case in which the system is homogeneous with
respect to s, but gives some idea about the meaning of the Euler poten-
tial b, at least over a surface of nearly homogeneous specific entropy.

Given the canonical momentum in the following form (here
repeated for convenience):

P ¼ mavþ qA ¼ P0 þ $a� b$s; (114)

recall that the Lagrangian coefficient a satisfies the equation of motion
(Euler–Lagrange equation (iv) for dn in the Eulerian formulation),

da
dt
¼ �mc2

c
� kBT

cA � 1
� n

@

@n
kBT

cA � 1

� �
c;s

� q/þ qv � A: (115)

Using Maxwell’s differential relation,

@

@n
kBT

cA � 1

� �
c;s

¼ kBT
n
; (116)

one can write a set of equations of motion for the Euler coefficients of
the Clebsch representation for P,

1
kB

ds
dt
¼ 1

T
d
dt

T
cA � 1

� �
þ cA

cA � 1
1
c
dc
dt
� 1
n
dn
dt
¼ 0;

da
dt
¼ �mc2

c
� cAkBT

cA � 1
� q/þ qv � A;

db
dt
¼ �T;

dc
dt
¼ 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(117)
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where

c ¼ ��J � c0 ¼ ���J � P0; (118)

and ��J ¼ @r=@r0 ¼ $0r ¼ ��I þ $0n is the Jacobian dyadic (n is the
Lagrangian displacement and v ¼ dn=dt). Hence, the present value of
the canonical momentum P depends not only of the evolution of the
mean fluid variables but also of the reference (initial) distribution P0,
that is, of the trajectory of each fluid element. In this way, the Clebsch
representation is equivalent to the Lagrangian approach (cf.
Subsection IIC), which describes the motion of each fluid element. In
the Eulerian formulation, the substitution of the equations of motion
for the Euler coefficients in the expression of the canonical momentum
leads to an equation for dP=dt which depends only on the mean fluid
variables (cf. Subsection II B). As stated in the Introduction, the two
formulations are equivalent.9

IV. A HYDROMAGNETIC CAUCHY INVARIANT

Making use of the vector relation,

A � $ð ÞA ¼ $� Að Þ � Aþ 1
2
$ A � Að Þ; (119)

applied to the vector av, the acceleration can be written in the follow-
ing form:

d
dt

avð Þ ¼ @

@t
avð Þ þ v � $ avð Þ

¼ @

@t
avð Þ þ $� avð Þ � vþ $ avð Þ2

2a
; (120)

and the curl gives, using the continuity equation,

$� d
dt

avð Þ
� �

¼ @

@t
$� avð Þ½ �þ$� $�avð Þ�v½ �þ $v2

2

� �
�$a

¼ d
dt

$� avð Þ½ �� $�avð Þ
n

dn
dt

� $�avð Þ �$½ �vþ $v2

2

� �
�$a: (121)

Thus,

d
dt

$� avð Þ
n

� �
¼ $� avð Þ

n
� $

� �
v

þ 1
n

$� d
dt

avð Þ
� �

� $v2ð Þ � $a
2n

: (122)

Using the second Maxwell differential relation in (40), the relativistic
inertia factor defined in Eq. (32) becomes

a ¼ c 1þ cA
cA � 1

ckBT
mc2

� �
: (123)

Hence,

$a ¼ @a
@v

$vþ @a
@T

$T; (124)

where

@a
@v
¼ 1þ cA

cA � 1
2ckBT
mc2

� �
dc
dv
;

@a
@T
¼ cA

cA � 1
c2kBT
mc2

1
T
� dcA=dT

cA cA � 1ð Þ

 !
:

8>>>><
>>>>:

(125)

Taking into account the transformation of the absolute temperature
T ¼ T

	
=c from the frame moving with the fluid velocity v to the rest

frame temperature T
	
(cf. Appendix A), this expression becomes

$a ¼ @a
@v
� @a
@T

c2vT
c2

� �
$v) $v� $a ¼ 0: (126)

This leads to a diffusion equation for the vorticity,

d
dt

$� avð Þ
n

� �
¼ $� avð Þ

n
� $

� �
vþ 1

n
$� d

dt
avð Þ

� �
: (127)

Now, the equation of momentum conservation,

d
dt

mavð Þ ¼ �$p
n
þ q E þ v� Bð Þ; (128)

gives

$� d
dt

mavð Þ
� �

¼ �$p� $n
n2

þ q$� E

þ q �B $ � vð Þ þ B � $ð Þv� v � $ð ÞB½ �: (129)

With the help of the continuity equation and Faraday’s law,

$� d
dt

mavð Þ
� �

¼ �$p� $n
n2

� q
dB
dt
þ q

B
n
dn
dt
þ q B � $ð Þv:

(130)

Substituting the vorticity diffusion equation,

d
dt

$� mavð Þ þ qB
n

� �
¼ $� mavð Þ þ qB

n
� $

� �
v� $p� $n

n3
:

(131)

The perfect fluid flow is barotropic (in which the pressure p and the
density n are directly related), so that the last term in the right-hand
side vanishes. The canonical vorticityX defined in Sec. III reads

X ¼ r� P ¼ $� mavð Þ þ qB; (132)

so that the diffusion equation for X becomes

d
dt

X
n

� �
¼ X

n
� $

� �
v: (133)

Introducing a change in the dependent variables such that2

X
n
¼ C � $0r; (134)

the canonical vorticity equation becomes

d
dt

C � $0rð Þ ¼ C � $0rð Þ � $½ �v: (135)

Here, $0r ¼ @r=@r0 ¼ ��J is the Jacobian dyadic of the transformation
r ¼ rðr0; tÞ from the Lagrangian r0 to the Eulerian r coordinates
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(j��J j 6¼ 0 and $0 � ��J � $). The transformation r ¼ rðr0; tÞ specifies
the trajectory of a material particle (or fluid element, cf. Appendix B).
For fixed t, it determines the transformation of the particle from the
initial position r0 to the position r at time t. Since

d
dt

C � $0rð Þ ¼ dC
dt
� $0r þ C � $0v

¼ dC
dt
� $0r þ C � ��J � $v

¼ dC
dt
� $0r þ C � $0rð Þ � $v; (136)

the canonical vorticity equation reduces to

dC
dt
� $0r ¼ 0) dC

dt
¼ 0

) C ¼ C r0ð Þ:
(137)

Thus,

X
n
¼ C r0ð Þ � $0r: (138)

Setting t¼ 0,

X
n
¼ X0

n0
� $0r: (139)

This result was obtained, for an incompressible fluid and without the
magnetic field, by Cauchy in 1815.16,18 Cauchy demonstrated that a
fluid element that is in irrotational motion initially remains in this con-
dition throughout the flow. However, the hydromagnetic Cauchy
invariant shows that the magnetic field may introduce flow vorticity in
an otherwise irrotational motion. This has important implications in
the rotation curve of galaxies and in the mass accretion of astrophysical
systems, where the gravitomagnetic field replaces the magnetic field.

V. HAMILTONIAN DENSITY AND THE ENERGY
INTEGRAL

The momentum densities that canonically conjugate to the
Lagrangian field coordinates /, A, n, n, and s are

p/ ¼ 0;

pA ¼ ��0E;

pn ¼ n0cm 1þ cA
cA � 1

ckBT
mc2

� �
@n

@s
þ n0qA;

pn ¼ 0;

ps ¼ b:

8>>>>>>>><
>>>>>>>>:

(140)

Using the Lagrangian density,

L0 ¼
X
q

� n0mc2

c
� n0kBT

cA � 1
� n0q/þ n0qA �

@n
@s

 !

þ 1
2

�0E
2 � B2

l0

 !
; (141)

the Hamiltonian density in Lagrangian coordinates can be easily
calculated

H0 ¼
X

a

pa
@ua

@s
� L0 ¼ ��0E �

@A
@s

þ
X
q

n0cm 1þ cA
cA � 1

ckBT
mc2

� �
@n
@s

� �2

þ n0qA �
@n
@s

" #

�
X
q

� n0mc2

c
� n0kBT

cA � 1
� n0q/þ n0qA �

@n
@s

 !2
4

þ 1
2

�0E
2 � B2

l0

 !#

¼
X
q

n0cmc2 þ n0kBT
cA � 1

1þ cAb2

1� b2

 !
þ n0q/

" #

� �0E �
@A
@s
� 1
2

�0E
2 � B2

l0

 !
: (142)

Recalling that n0 ¼ nJ , the Hamiltonian density can be defined in the
Eulerian sense by

H ¼
X
q

ncmc2 þ nkBT
cA � 1

1þ cAb2

1� b2

 !
þ nq/

" #

��0E �
@A
@s
� 1
2

�0E
2 � B2

l0

 !
; (143)

so that

H ¼
ð
d3r0 JH0 ¼

ð
d3rH: (144)

Note that, although the same graphical symbol was used, the electro-
magnetic field variables in Eulerian and Lagrangian coordinates corre-
spond to energy densities related by the ratio n=n0. The electromagnetic
field Hamiltonian density can also be written in the following form:

Hem ¼ ��0E �
@A
@s
� 1
2

�0E
2 � B2

l0

 !

¼ �0E � $/þ 1
2

�0E
2 þ B2

l0

 !
: (145)

Hence, using Gauss’s law,

H ¼
X
q

ncmc2 þ nkBT
cA � 1

1þ cAb2

1� b2

 !" #

þ�0$ � /Eð Þ þ 1
2

�0E
2 þ B2

l0

 !
: (146)

According to Sec. IIA, the energy integral is given by

dH
dt
¼ d

dt

ð X
q

ncmc2 þ nkBT
cA � 1

1þ cAb2

1� b2

 !" #8<
:

þ 1
2

�0E
2 þ B2

l0

 !9=
;d3r þ d

dt

þ
�0/E � d2r ¼ 0: (147)
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The stability of the fluid plasma can be investigated introducing a
Lagrangian perturbation n in the energy integral.22

VI. CONSERVATION EQUATIONS

The conservation equations can be written in a compact form
introducing the energy and momentum densities, and the stress tensor
for each species of the plasma fluid

Uf ¼ cnmc2 þ 1
cA � 1

þ b2
� �

c2p fluid energy density;

Gf ¼ cnmþ cA
cA � 1

c2p
c2

 !
v fluidmomentumdensity;

��T f ¼ cnmvvþ ��I þ cA
cA � 1

c2
vv

c2

� �
p material stress tensor:

(148)

Hence, the momentum and energy conservation equations become

X
q

@Gf

@t
þ $ � ��T f

� �
¼
X
q

qE þ j� Bð Þ (149)

and X
q

@Uf

@t
þ c2$ � Gf

� �
¼
X
q

j � Eð Þ: (150)

Note the following relations:

��T f : ��I ¼ cnmv2 þ 3þ cA
cA � 1

c2b2
� �

p;

��T f :
vv

v2
¼ cnmv2 þ 1þ cA

cA � 1
c2b2

� �
p ¼ b2Uf þ 1þ b2

� 

p;

2p ¼ ��T f : ��I � vv
v2

� �
;

b2Uf ¼ ��T f :
vv

v2
� 1þ b2

2

� �
��T f : ��I � vv

v2

� �
: (151)

Using Gauss’s, Ampère’s, and Faraday’s laws, the momentum
and energy conservation equations can be written as

@

@t

X
q

Gf þ Gem

� �
þ $ �

X
q

��T f þ ��T em

� �
¼ 0;

@

@t

X
q

Uf þ Uem

� �
þ c2$ �

X
q

Gf þ Gem

� �
¼ 0;

(152)

where the electromagnetic field quantities are defined by29–31

Uem ¼
1
2

�0E
2 þ B2

l0

 !
¼ ��T em : ��I field energy density;

Gem ¼ �0 E � Bð Þ fieldmomentumdensity;

��T em ¼ �0
E2

2
��I � EE

� �
þ 1

l0

B2

2
��I � BB

� �
field stress tensor:

(153)

The system of plasma fluid equations is given in the conservation
form by

@q
@t
¼ �$ � j charge density ; (154)

@

@t

X
q

Gf þGem

� �
¼�$ �

X
q

��T f þ ��T em

� �
momentumdensity;

(155)

@

@t

X
q

Uf þ Uem

� �
¼ �c2$ �

X
q

Gf þ Gem

� �
energy density:

(156)

Integration over a volume V gives the integral form of the conserva-
tion equations ð

V
_qd3r ¼ �

þ
S
j � d2r charge ; (157)

ð
V

X
q

_Gf þ _Gem

� �
d3r ¼ �

þ
S

X
q

��T f þ ��T em

� �
� d2r

momentum; (158)ð
V

X
q

_Uf þ _Uem

� �
d3r ¼ �c2

þ
S

X
q

Gf þ Gem

� �
� d2r energy:

(159)

Now, the laws of Ampère and Faraday give

E � $� B ¼ l0

X
q

j � E þ 1
c2
E � _E;

B � $� E ¼ �B � _B:

(160)

The subtraction of these two equations gives

$ � E � B
l0

� �
¼ �

X
q

j � E � 1
2

�0 _E2 þ
_B2

l0

 !
; (161)

hence,

$ � Sem ¼ �
X
q

j � E � _Uem; (162)

where

Sem ¼
E � B

l0
¼ c2Gem (163)

is the vector of Poynting. Integration over V yields the theorem of
Poynting, ð

V

_Uem þ
X
q

j � E
� �

d3r ¼ �
þ
S
Sem � d2r: (164)

In general, the angular momentum density is defined by L ¼ r � G. It
can be shown that, due to both the conservation of momentum density
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and the symmetry of ��T , the angular momentum density is also
conserved.

Finally, consider the quantity

$ � r �
X
q

��T f þ ��T em

� �� �

¼ $r :
X
q

��T f þ ��T em

� �
þ r � $ �

X
q

��T f þ ��T em

� �T

¼ ��I :
X
q

��T f þ ��T em

� �
þ r � $ �

X
q

��T f þ ��T em

� �
¼ ��I :

X
q

��T f þ ��T em

� �
� r �

X
q

_Gf þ _Gem

� �
: (165)

Integration over V yieldsþ
S
r �

X
q

��T f þ �T em

� �� �
� d2r

¼
ð
V

��I :
X
q

��T f þ ��T em

� �
d3r

�
ð
V
r �

X
q

_Gf þ �Gem

� �
d3r: (166)

Assuming that all quantities are bounded, one takes the time average
over a long period of time according to the definition

h _f i ¼ 1
t

ðt
0

_f dt ¼ f tð Þ � f 0ð Þ
t

!
t!1

0: (167)

Hence,

ð
V

��I :
X
q

��T f þ ��T em

� �* +
d3r ¼

þ
S

r �
X
q

��T f þ ��T em

� �* +
� d2r:

(168)

This is a general form of the virial theorem.32 Substituting the expres-
sions for the stress dyadics

ð
V

X
q

cnmv2 þ 3þ cA
cA � 1

c2b2
� �

p
� �

þ Uem

* +
d3r

¼
þ
S

r �
X
q

cnmvvþ ��I þ cA
cA � 1

c2
vv

c2

� �
p

� �* +
� d2r

�
þ
S

r � �0EE þ
BB
l0

� �
þ rUem

� �
� d2r: (169)

Since, at the edge of the plasma configuration, the mass density nm
and the pressure p vanish for all species (mass discontinuities are
ignored), the virial theorem shows that the configuration is contained
by the field surface terms. The field energy density existing beyond the
plasma surface represents a back pressure acting on the plasma fluid.
This shows that a plasma fluid cannot be self-contained, since all terms
in the volume integral are positive.

VII. BOUNDARY CONDITIONS AND ENERGY DENSITY
DISTRIBUTION

The plasma fluid and electromagnetic field variables must satisfy
several boundary conditions at the fluid–vacuum interface, as follows.
Let n̂ denotes the unit vector normal to the fluid–vacuum interface
and hhXii the increment of any quantity X across the boundary in the
direction n̂. For the interface between two fluids,

n̂ � hhvii ¼ 0: (170)

For the fluid–vacuum interface,

n̂ � v ¼ 0: (171)

Gauss’s law in the fluid–vacuum interface gives

$ � E ¼ 1
�0

X
q

q) n̂ � hhEii ¼ 1
�0

X
q

r

$ � B ¼ 0) n̂ � hhBii ¼ 0; (172)

where r designates the surface charge density associated with species
q. Also, the laws of Faraday and Ampère give

$� E ¼ � @B
@t
) n̂ � hhEii ¼ 0

$� B ¼ l0

X
q

qvþ 1
c2
@E
@t
) n̂ � hhBii ¼ l0

X
q

K ;
(173)

where K designates the surface current density.
The equation of momentum conservation for species q is given by

nm
d
dt

c 1þ cA
cA � 1

cp
nmc2

� �
v

� �
¼ �$pþ nq E þ v� Bð Þ: (174)

Thus, using the laws of Gauss, Ampère, and Faraday,

nm
d
dt

c 1þ cA
cA � 1

cp
nmc2

� �
v

� �
¼ �$pþ �0 $ � EEð Þ � E � $ð ÞE


 �
��0

@

@t
E � Bð Þ� �0E � $� Eð Þ þ 1

l0
B� $� Bð Þ

� �
: (175)

Using the following relations,

$ � Eð ÞE ¼ $ � EEð Þ � E � $ð ÞE
¼ $Eð Þ � E � E � $ð Þ � E;

$ � Bð ÞB ¼ $ � BBð Þ � B � $ð ÞB ¼ 0;

E � $� Eð Þ ¼ $Eð Þ � E � E � $ð ÞE ¼ $E2

2
� E � $ð ÞE;

B� $� Bð Þ ¼ $Bð Þ � B� B � $ð ÞB ¼ $B2

2
� B � $ð ÞB;

(176)

the equation of momentum conservation becomes

nm
d
dt

c 1þ cA
cA � 1

cp
nmc2

� �
v

� �

¼��0
@

@t
E�Bð Þ�$ � p��I þ 1

2
�0E

2 þ B2

l0

 !
��I � �0EEþ

BB
l0

� �" #
:

(177)
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Furthermore,

nm
d
dt

c 1þ cA
cA � 1

cp
nmc2

� �
v

� �
¼ nm

@

@t
c 1þ cA

cA � 1
cp

nmc2

� �
v

� �
þnmc 1þ cA

cA � 1
cp

nmc2

� �
v � rv

þnmv2$ c 1þ cA
cA � 1

cp
nmc2

� �� �
(178)

and

$ � �0EE þ
1
l0

BB
� �

¼ �0 E � $ð ÞE þ 1
l0

B � $ð ÞBþ
X
q

q
� �

E

¼ �0 E � $ð ÞE þ 1
l0

B � $ð ÞB

�
X
q

q $/þ @A
@t

� �
: (179)

Denoting an infinitesimal displacement either inside the fluid or from
one side of the fluid boundary to the other by dr, the equation of
momentum conservation gives

nm
@

@t
c 1þ cA

cA � 1
cp

nmc2

� �
v � dr

� �

þnmc 1þ cA
cA � 1

cp
nmc2

� �
v � $vð Þ � dr

þnmv2d c 1þ cA
cA � 1

cp
nmc2

� �� �

¼ ��0dr �
@

@t
E � Bð Þ � d pþ 1

2
�0E

2 þ B2

l0

 !" #

þ �0 E � $ð ÞE þ 1
l0

B � $ð ÞB
� �

� dr

�
X
q

qd/�
X
q

qdr � @A
@t
: (180)

Taking the limit dr ! 0,

nmv2d c 1þ cA
cA � 1

cp
nmc2

� �� �

þd pþ 1
2

�0E
2 þ B2

l0

 ! !
þ
X
q

qd/ ¼ 0: (181)

Hence,

nmc 1þ cA
cA � 1

cp
nmc2

� �
v2 þ pþ

X
q

q/þ Uem

* +* +
¼ 0:

(182)

This indicates that the sum of the kinetic energy density, of the pres-
sure of each plasma species, and of the total electrostatic forces is bal-
anced across each interface by changes in the field energy density. For

a quasi-neutral plasma with negligible kinetic energy, this simply cor-
responds to magnetic confinement,

pþ B2

2l0

� �� �
¼ 0: (183)

VIII. COMMENTS AND CONCLUSIONS

A consistent set of hydrodynamic and Maxwell equations was
obtained applying Hamilton’s principle to a perfect fully relativistic
plasma fluid. This derivation of plasma dynamics from general princi-
ples shows the strength and validity of fluid descriptions. The connec-
tion between the Eulerian and Lagrangian formulations for the
variational principle was demonstrated by means of the Clebsch repre-
sentation for the canonical momentum of each fluid element, which is
implicit in the Eulerian formulation. The Euler potentials (also known
as Clebsch or Monge potentials) in the Clebsch representation are asso-
ciated with constraints in the variational principle. It was shown that
each Euler potential or Lagrangianmultiplier is governed by an equation
of motion which defines the evolution of the canonical momentum
from its initial distribution. In this sense, the Clebsch representation is
equivalent to the Lagrangian picture. However, it is possible to eliminate
the Lagrangian multipliers in such a way that the final equation of
motion for the canonical momentum depends only on the mean field
values, corresponding exactly to the Eulerian formulation of fluid flow.

It was shown that the Lin coefficient for fluid flow corresponds to
the reference (initial) distribution of canonical momentum for each
charged fluid element. Furthermore, the Lagrangian multiplier associ-
ated with the continuity constraint for fluid flow corresponds to the
longitudinal Euler potential in the Clebsch representation. A general
discussion about helicity injection in the plasma system was carried
out. In particular, a generalized form of Woltjer’s theorem for the total
helicity was obtained by a simple application of the transport theorem.
The helicity changes are definitively associated with current injection
in tokamaks and with the relaxation of toroidal plasmas toward an
equilibrium state, and one may envisage a link with the excitation of
turbulence in small (layer or pointlike) regions in the fluid. In this
case, the equation of motion for the longitudinal potential must lead
to a discontinuous solution, such as a shock wave. But this poses a
challenge for further studies.

A canonical vorticity vector was defined in terms of the curl of the
canonical momentum. It was shown that the fully relativistic canonical
vorticity density is a Cauchy invariant, partially integrating the equa-
tions of motion of the plasma fluid. This also shows that a magnetic
field can introduce flow vorticity in an inviscid fluid, with important
implications in mass accretion and magnetic dynamo-effects.

It was shown that the Lagrangian formulation leads directly to an
energy integral including the plasma fluid and the electromagnetic
fields. Following standard procedures, the conservation equations
including plasma fluid and electromagnetic field interactions were
written in an integral form. In particular, a general form of the virial
theorem was obtained. A general expression for the balance between
plasma fluid and electromagnetic field forces was also obtained by the
introduction of an infinitesimal displacement either inside the fluid or
across one side of the fluid boundary to the other.

Finally, it must be pointed out that all the results presented in
this paper can be applied to an extended version of the gravitoelectro-
magnetic theory. Gravitoelectromagnetic field equations give a result
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similar to the electromagnetic field theory with the following
analogies:

E ! Eg ; B! Bg ;

/! /g ; A! Ag ;

�0 ! �
1

4pG
; l0 ! �

4pG
c2

; (184)

where Eg and Bg are the gravitoelectromagnetic fields, /g and Ag are
the corresponding potentials (/g , in particular, is the Newtonian
potential), G is the gravitational constant, and the charge q is replaced
by the massm in a single species fluid. Using this simple analogies, the
dynamic equations which describe the evolution of a continuous mass
distribution are readily obtained, according to the same variational for-
mulation. These equations constitute an extended version of the gravi-
tomagnetic theory originally proposed by Thirring in 1918.33–36 The
first application of this weak-field approach to Einstein’s general rela-
tivity theory resulted in the astronomical calculations performed by
Lense and Thirring37 and reviewed by Pfister38 of the forces on a test
mass due to the rotation of a large central mass. This so-called
Lense–Thirring relativistic effect has attracted great interest in recent
years as it became barely possible to detect the effect using terrestrial
spacecrafts.39 Actually, the effect was recently confirmed at an accu-
racy of 19% by measurements taken by the Gravity Probe B space
experiment.40 The extended version of gravitoelectromagnetism can
be used to describe, for example, the dynamics of a galactic system
formed by a very large number of stars plus the surrounding gas. This
application is the subject of work currently in progress.
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APPENDIX A: COVARIANT FORMULATION

1. Preliminary remarks

The contravariant coordinates’ four-vector is

xl ¼ ct; rð Þ; (A1)

with the corresponding covariant form

xl ¼ gl�x
� ¼ �ct; rð Þ; (A2)

where

gl� ¼
�1 0
0 ��I

� �
¼ gl� (A3)

is the Minkowsky (flat-space metric) tensor. Note that

glqg�q ¼
1 0
0 ��I

� �
¼ dl

� (A4)

is the Kronecker mixed tensor. Also,

gl�gl� ¼ 4: (A5)

The covariant gradient four-vector is

@l �
@

@xl
� 1

c
@

@t
;$

� �
; (A6)

with the corresponding contravariant form

@l � gl�@� � � 1
c
@

@t
;$

� �
: (A7)

In general, the invariant scalar product of two four-vectors is

alb
l ¼ a0b

0 þ a � b ¼ �a0b0 þ a � b: (A8)

In particular,

x2 ¼ xlx
l ¼ �c2t2 þ r2: (A9)

The scalar product of @l with itself gives the d’Alembertian
operator,

w2 � @l@
l � gl� @

@xl

@

@x�
� � 1

c2
@2

@t2
þ $2; (A10)

which is also invariant. The proper time interval ds is defined by

c2ds2 ¼ �gl�dx
ldx� ¼ c2dt2 � dr2 ¼ c2 1� v2

c2

� 	
dt2; (A11)

where

v ¼ dr
dt

(A12)

is the fluid velocity. The contravariant form of the fluid four-
velocity is

vl ¼ dxl

ds
¼ c c; vð Þ; (A13)

where

c ¼ dt
ds
¼ 1� v

2

c2

� ��1=2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p (A14)

is the Lorentz factor. The scalar product gives

vlv
l ¼ c �c;vð Þ � c c; vð Þ ¼ c2 �c2 þ v2ð Þ ¼ �c2: (A15)

2. Covariant equations of motion

The Lagrangian can be written in a manifestly covariant form
as follows:

L ¼
X
q

�U
�

þjlAl
� 	

� K
4l0

; (A16)

where the proper energy density U
�

, sum of the rest mass and ther-
mal energy densities, is given by

U
�

¼ n
�

mc2 þ p
cA � 1

: (A17)

The number density in the rest frame, which is denoted by the
upper circle label, is related to the number density in the moving
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frame by the Lorentz factor n
� ¼ n=c. The pressure p is an invariant

under a proper Lorentz transformation, and cA is a function of the
rest frame temperature T

�

¼ cT . The term jlAl corresponds to the
interaction energy between the fluid and the electromagnetic field,

jlA
l ¼ �qc; jð Þ �

/
c
;A

� �
¼ �q/þ j � A: (A18)

The electromagnetic field tensor is given by10

Fl� ¼
0 E=c

�E=c ���� � B

 !
(A19)

and

Fl� ¼ glqF
qrgr� ¼

0 �E=c
E=c ���� � B

 !
; (A20)

where ���� is the totally antisymmetric Levi-Civita tensor in three
dimensions and gl� is the Minkowsky tensor. The first electromag-
netic field invariant K is given in terms of Fl� by

K ¼ Fl�F
l� ¼

0 �E=c
E=c ���� � B

 !
:

0 E=c

�E=c ���� � B

 !T

¼ � 2 E2 � c2B2ð Þ
c2:

(A21)

The anti-symmetric electromagnetic field tensor can be derived
from the four-vector potential as follows:

Fl� ¼ @lA� � @�Al; (A22)

that is,

0 E=c

�E=c ���� �B

 !
¼
�1
c
@

@t

$

0
B@

1
CA /

c
A

� �
�

�1
c
@

@t

$

0
B@

1
CA /

c
A

� �2
64

3
75
T

¼
0 �1

c
@A
@t
� 1
c
$/

1
c
$/þ 1

c
@A
@t

rA� rAð ÞT

0
BBB@

1
CCCA: (A23)

Hence,

E ¼ �$/� @A
@t
;

B ¼ $� A:
(A24)

The relation Fl� ¼ @lA� � @�Al is a consequence of gauge
invariance of the second kind. The quantities AlðxÞ and AlðxÞ
�@lf ðxÞ are physically indistinguishable, so that Al can be required
to satisfy Lorenz’s condition

@lAl ¼ 0 ) 1
c2
@/
@t
þr � A ¼ 0: (A25)

The inhomogeneous field equations can be written in terms of the
four-potential as

w2Al ¼ �l0

X
q

jl
w2/ ¼ � 1

�0

X
q

q

w2A ¼ �l0

X
q

j:

8>>><
>>>: (A26)

In the covariant form, the total energy–momentum tensor Tl�

is given by the sum of the plasma fluid Tl�
f and electromagnetic

field Tl�
em tensors defined in Sec. VI

Tl�
f ¼

Uf cGf

cGf
��T f

 !
;

Tl�
em ¼

Uem cGem

cGem
��T em

 !
:

(A27)

Hence, the total momentum and energy conservation equations can
be written in the covariant form as follows:

@�T
l� ¼ 1

c
@

@t
;$

� �
:X

q

Uf þ Uem

X
q

cGf þ cGemX
q

cGf þ cGem

X
q

��T f þ ��T em

0
BBB@

1
CCCA ¼ 0:

(A28)

This equation describes the exchange of energy between the plasma
fluid species and the electromagnetic field. The energy-momentum
tensor of the perfect fluid is given in the covariant form by

Tl�
f ¼ pgl� þ U

�

þp
� 	

vlv�

c2

¼ p
�1 0

0 ��I

 !
þ U

�

þp
� 	

c2
1 v=c

v=c vv=c2

 !
: (A29)

In terms of the electromagnetic field tensor Fl� , the fluid energy–
momentum equation for each species q can be written as

@�T
l�
f ¼ j�F

l�: (A30)

Thus,

1
c
@

@t
;r

� �
�

c2 U
�

þpb2
� 	

U
�

þp
� 	

c2v=c

U
�

þp
� 	

c2v=c p��I þ U
�

þp
� 	

c2vv=c2

0
B@

1
CA

¼ �qc; jð Þ �
0 E=c

�E=c ���� � B

 !T

: (A31)

The energy and momentum conservation equations are given,
respectively, by the temporal component [cf. Eq. (63)]

1
c
@

@t
c2 U

�

þpb2
� 	h i

þr � U
�

þp
� 	

c2
v

c

� �
¼ j � E

c
; (A32)

and by the spatial components [cf. Eq. (49)] of the previous
equation
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1
c
@

@t
U

�

þp
� 	

c2
v

c

� �
þr � U

�

þp
� 	

c2
vv

c2
þ p��I

� �
¼ qE þ j� B: (A33)

The full set of equations which describes the dynamics of the
plasma in the covariant form includes the equations of continuity,
momentum and energy conservation, and Maxwell source equa-
tions, which can be written, respectively, as

@lj
l ¼ 0; continuity;

@�T
l�
f ¼ j�F

l� momentum-energy;

@�F
l� ¼ l0

X
q

jl Gauss-Ampere;
(A34)

where

Fl� ¼ @lA� � @�Al; @lAl ¼ 0: (A35)

The above set corresponds to a total of 5qþ 4 equations (here, q
indicates the number of species) in the 6qþ 4 variables:
jl ¼ qnðc;vÞ; Al ¼ ð/=c;AÞ, p, and T. The set is closed by the q
equations of state p ¼ nkBT . The condition of entropy conservation
is satisfied by the above covariant set of equations constrained by
the second law of thermodynamics as will be presently demon-
strated. Multiplication of the energy–momentum conservation
equation by the four-velocity yields

vl@�T
l�
f ¼ vlj�F

l� ¼ n
�

qvlv�F
l�

¼ n
�

qc2 �c;vð Þ �
0 E=c

�E=c ���� � B

 !
� �c;vð Þ

¼ n
�

qc2 �c;vð Þ �
v � E=c

E þ v� B

 !
¼ 0:

(A36)

Hence, replacing Tl�
f by its covariant form,

vl@�T
l�
f ¼ vl@� pgl� þ U

�

þp
� 	

vlv�

c2

� �

¼ vl@
lp� @� U

�

þp
� 	

v�
h i

þ 1
2

U
�

þp
� 	

v� @�
vlvl

c2

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

¼ 0: (A37)

Using the equation of continuity,

@l n
�

vl
� 


¼ 0; (A38)

the previous equation becomes

n
�

vl p@l
1

n
�

� �
þ @l

U
�

n
�

 !" #
¼ 0: (A39)

The second law of thermodynamics (cf. Appendix A 3) gives

T
�

ds ¼ d
U

�

n
�

 !
þ pd

1

n
�

� �
: (A40)

Thus,

n
�

T
�

vl@ls ¼ pvl@ls ¼ 0; (A41)

where s is the invariant specific entropy of the species q in the per-
fect fluid.

3. Relativistic equation of state for a perfect fluid

The fundamental thermodynamic relation (second law) in the
rest frame, for either reversible or irreversible processes, reads

T
�

d
r
�

n
�

 !
¼ d

U
�

n
�

 !
þ pd

1

n
�

� �
; (A42)

where r
�

is the entropy density in the local rest frame. The number
density transforms from the rest frame to the frame moving with
the fluid velocity v as n ¼ cn

�

. The absolute temperature and the
entropy density transform as T ¼ T

�

=c and r
� ¼ r=c, respectively.

The specific entropy (proper entropy of a fluid element) is defined
by

s ¼ r
�

= n
� ¼ r=n; (A43)

and like p is an invariant under a proper Lorentz transformation.
In general, the plasma fluid is characterized by the macro-

scopic variables ðn; v;U ; s; p;TÞ, which evolve according to the con-
tinuity, momentum, and energy conservation equations making a
total of five equations for eight variables. The temperature can be
considered as defined by means of the fundamental relation. This
relation shows that two of the thermodynamic scalar variables must
be independent. Accordingly, three equations of state for the inten-
sive variables s, p, and T can be written in terms of the number and
energy densities as independent variables in the rest frame

s n
�

;U
�

� 	
; p n

�

;U
�

� 	
; T

�

n
�

;U
�

� 	
: (A44)

The fundamental relation can be written as

T
�

ds ¼ 1

n
�
d U

�

� U
�

þp
n
� 2

 !
d n

�

: (A45)

Hence,

@s

@U
�
¼ 1

n
�

T
�
;

@s

@n
�
¼ �U

�

þp
n
� 2

T
�

; (A46)

and the integrability condition,

@2s

@n
�

@U
�
¼ @2s

@U
�

@n
�

; (A47)

gives

T
� @p

@U
�
¼ n

� @ T
�

@n
�
þ U

�

þp
� 	

@T
�

@U
�
: (A48)

If the equation of state T
�

¼ T
�

ðn� ;U
�

Þ is given, the integrability con-

dition can be used to obtain p ¼ pðn� ;U
�

Þ and the fundamental rela-

tion to obtain s ¼ sðn� ;U
�

Þ. If any one of the three equations of state
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is given, the other two equations of state can be obtained.
Therefore, taking into account the fundamental equation, only one
scalar equation of state is needed to close the system of fluid
equations.

Using the definition of the plasma energy density in the rest
frame,

U
�

¼ n
�

mc2 þ p
cA � 1

; (A49)

the fundamental relation becomes

T
�

ds ¼ d
cA

cA � 1
p

n
�

� �
� dp

n
�
: (A50)

Assuming isentropic flow with ds¼ 0, the fundamental relation
gives either

dp
p
¼ n

�

p
d

cA
cA � 1

p

n
�

� �
(A51)

or the equivalent differential relation

dp
p
¼ c2A

cA � 1
1

n
�
d

cA � 1
cA

n
�

� �
: (A52)

As previously discussed, one equation of state relating p, n
�

,
and T

�

is needed to close the system. This equation, as well as the
dependence of the coefficient cA on the thermodynamic variables,
comes from experimental results, phenomenological arguments,
or kinetic theory. Assuming the ideal gas law in the rest frame
p ¼ n

�

kB T
�

as the given equation of state, the pressure is related to
the temperature by

dp
p
¼ 1

T
�
d

cA
cA � 1

T
�

� �
: (A53)

Now, the “adiabatic” coefficient (or “polytropic index”) of a relativ-
istic perfect gas is27

cA ¼
1

1� kB T
�

mc2
K3 mc2=kBT

�

� 	
K2 mc2=kBT

�

� 	� 1

2
64

3
75
�1 ; (A54)

where K� are the modified Bessel functions of the second kind and
order �. Hence,

dp
p
¼ mc2

kBT
�
d

K3 mc2=kBT
�

� 	
K2 mc2=kBT

�

� 	
0
B@

1
CA

¼ d
mc2

kBT
�

K3 mc2=kBT
�

� 	
K2 mc2=kBT

�

� 	
0
B@

1
CA

þ
dK2 mc2=kB T

�

� 	
K2 mc2=kBT

�

� 	 � 2
d mc2=kBT

�

� 	
mc2=kBT

�
; (A55)

and the equation of state becomes27,41–43

p /
K2 mc2=kBT

�

� 	
mc2=kBT

�

� 	2 exp
mc2

kBT
�

K3 mc2=kBT
�

� 	
K2 mc2=kBT

�

� 	
0
B@

1
CA: (A56)

In the non-relativistic limit, the above equation of state reduces
to the usual form of the adiabatic law for a monatomic gas,

p / kBT
�

� 	5=2
for kBT

�


 mc2; (A57)

and in the extreme relativistic limit to [the threshold for pair
production is kBT

�

¼ 2mc2, with cA ffi 1:3832 and cA=ðcA � 1Þ
ffi 3:6097]

p / kBT
�

� 	4
for kBT

�

� mc2: (A58)

If the relatively weak dependence of cA on the temperature is
neglected, the polytropic equation of state is obtained,

p / kBT
�

mc2

 !cA= cA�1ð Þ

� n
� cA
: (A59)

Figures 1 and 2 show the variation with the temperature of the coef-
ficient cA and of the normalized pressure for a relativistic electron
gas, respectively.

Note that the fundamental relation in a moving frame is

cTds ¼ d
p

cA � 1
c
n

� �
þ pd

c
n

� �
: (A60)

Introducing the ideal gas law p ¼ nkBT ,

1
kB

ds ¼ 1
kBT

d
kBT

cA � 1

� �
þ cA

cA � 1
dc
c
� dn

n
: (A61)

FIG. 1. Coefficient cA for a relativistic electron gas.
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APPENDIX B: KINEMATICAL CONCEPTS OF FLUID
MOTION2

1. Kinematics of continuous systems

Fluid flow is a continuous transformation of configuration
space into itself (the Lagrangian map), parameterized by time t,

r0
Initial position of a

fluid element or point P

!
r

Position

at time t:

(B1)

For fixed r0 and changing t, the transformation r ¼ rðr0; tÞ specifies
the trajectory of P. For fixed t, it determines the transformation of P
from the initial position to the position at time t. The inverse trans-
formation is denoted by r0 ¼ r0ðr; tÞ.

Eulerian or spatial variables ðr; tÞ describe the evolution of a
field function f ¼ f ðr; tÞ, which corresponds to the value of f expe-
rienced by a particle instantaneously at the position r. Lagrangian
or material variables ðr0; tÞ single out individual points, so that
f ¼ f ðr0; tÞ is the value of f experienced at time t by the particle ini-
tially at r0. The convective derivative of f is df =dt ¼ @f ðr0; tÞ=@t
which gives the rate of change of f following P, while @f =@t
¼ @f ðr; tÞ=@t gives the rate of change of f at a position r.

Now, the velocity of a point P is defined as a function of the
material variables by

v ¼ dr r0; tð Þ
dt

; (B2)

the functions vðr; tÞ and vðr0; tÞ being related by the change of var-
iables r ¼ rðr0; tÞ and r0 ¼ r0ðr; tÞ. Acceleration of the moving
point is defined by

a ¼ dv r; tð Þ
dt

¼ @v
@t
þ v � $v: (B3)

The relation between convective and spatial derivatives is

df
dt
¼ @f
@t
þ v � $f ; (B4)

which gives the rate of change of a quantity moving instantaneously
with the velocity v.

The Jacobian of the transformation r ¼ rðr0; tÞ is

J ¼
���� @r@r0

���� ¼ j$0rj (B5)

representing the dilatation of an infinitesimal volume as it follows
the motion

d3r ¼ Jd3r0: (B6)

The transformation r0 ! r is one-to-one, provided J satisfies

0 < J <1: (B7)

The Jacobian determinant can be written in the following form:

J ¼ 1
3

��C
T

: $0r; (B8)

where ��C is the dyadic of the cofactors of the elements of $0r.
The inverse of $0r is

dJ
dt
¼ ��C

T � $0r
� 	

: $v

¼ j$0rj��I : rv ¼ J$ � v: (B9)

This expression is the statement of Euler’s theorem, namely,

dJ
dt
¼ J$ � v: (B10)

For an incompressible fluid, $ � v ¼ 0 and dJ=dt ¼ 0.

2. The transport theorem

Consider the integral ð
V
f r; tð Þd3r (B11)

performed over a piece of fluid occupying a volume V ¼ Vðr; tÞ at
time t and a volume V0 ¼ Vð0Þ when t¼ 0. The volume V is at all
times composed of the same particles. Therefore, by changing coor-
dinates r ! r0, the moving region VðtÞ in the r� variables is
replaced by the fixed region V0 ¼ Vð0Þ,ð

V
f r; tð Þd3r ¼

ð
V0

f r0; tð ÞJ d3r0: (B12)

Hence,

d
dt

ð
V
fd3r ¼

ð
V0

J
df
dt
þ f

dJ
dt

� �
d3r0

¼
ð
V0

df
dt
þ f$ � v

� �
J d3r0

¼
ð
V

df
dt
þ f$ � v

� �
d3r: (B13)

But

FIG. 2. Equation of state for a relativistic electron gas. The thin lines correspond to

the asymptotic limits p / ðkB T
	
Þ5=2 and p / ðkB T

	
Þ4.
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df
dt
¼ @f
@t
þ v � $f : (B14)

Therefore,

d
dt

ð
V
fd3r ¼

ð
V

@f
@t
þ $ � fvð Þ

� �
d3r (B15)

and

d
dt

ð
V
fd3r ¼ @

@t

ð
V
fd3r þ

þ
S
f v � d2r; (B16)

where S is the bounding material surface. The differentiation in the first
term of the right-hand side is taken with V fixed so that, in particular,

dV
dt
¼
þ
S
v � d2r ¼

ð
V
$ � v d3r; (B17)

gives the change in the volume of the piece of fluid as a result of the
movement of its surface. In general, the transport theorem states
that the rate of change of the integral of f over a material volume V
equals the rate of change of f integrated over the volume fixed in
space that instantaneously coincides with V plus the flux of f out of
the bounding surface.

3. The equation of continuity

The number of particles occupying a region V is given byð
V
n r; tð Þd3r: (B18)

The principle of conservation of the number of particles can be
expressed by

d
dt

ð
V
n r; tð Þd3r ¼ 0 (B19)

and states that the number of particles in a material volume V does
not change as V moves with the fluid. Using the transport theorem,
this reduces to ð

V

@n
@t
þ $ � nvð Þ

� �
d3r ¼ 0: (B20)

The volume V being arbitrary, it follows that

@n
@t
þ $ � nvð Þ ¼ 0; (B21)

which is the spatial (Eulerian) form of the equation of continuity.
An alternative form is

dn
dt
þ n$ � v ¼ 0: (B22)

Multiplying this equation by J and using Euler’s formula for the
Jacobian, the material (Lagrangian) form of the equation of conti-
nuity is obtained,

d
dt

nJð Þ ¼ 0 ) nJ ¼ n0 ; (B23)

with the initial density distribution n0 ¼ n0ðr0Þ. Combining the
transport theorem and the equation of continuity, one obtains

d
dt

ð
V
nfd3r ¼

ð
V
n
df
dt

d3r: (B24)

4. Transformation from Eulerian to Lagrangian
coordinates

Consider the transformation

r; t ! r0; s; (B25)

where r0 is the initial position of a fluid element (Lagrangian
coordinate). The Eulerian variables r and t are related to r0 and s
by

r ¼ r0 þ n r0; sð Þ; t ¼ s; (B26)

where n is the Lagrangian displacement. It follows that

$0 � $0rð Þ � $þ $0tð Þ|ffl{zffl}
0

@=@t � ��I þ $0n
� 


� $: (B27)

Hence,

$ � ��I þ $0n
� 
�1 � $0 � ��J

�1 � $0 (B28)

and

$0 � ��I � $0n
� 
�1 � $ � ��J � $: (B29)

Also,

@

@s
� @r
@s
� $þ @t

@s
@

@t
� @n
@s
� $þ @

@t
(B30)

and

@

@t
� @

@s
� @n
@s
� ��I þ $0n
� 
�1 � $0: (B31)

Using the definition of velocity, v ¼ @n=@s,

r ¼ r0 þ n r0; sð Þ ¼ r0 þ
ðs

0
v r0; s

0ð Þds0: (B32)

The convective derivative, when expressed in Lagrangian coordi-
nates, reduces to @=@s,

@

@t
þ v � $ � @

@s
: (B33)
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