
sid.inpe.br/mtc-m21c/2020/03.30.16.14-TDI

OBJECT DETECTION FROM CAPTIVE BALLOON
IMAGERY USING DEEP LEARNING

Victória Maria Gomes Velame

Master’s Dissertation of the
Graduate Course in Remote
Sensing, guided by Drs. José
Claudio Mura, and Leonardo
Sant’Anna Bins, approved in April
02, 2020.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/428J8UE>

INPE
São José dos Campos

2020

http://urlib.net/8JMKD3MGP3W34R/428J8UE

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

sid.inpe.br/mtc-m21c/2020/03.30.16.14-TDI

OBJECT DETECTION FROM CAPTIVE BALLOON
IMAGERY USING DEEP LEARNING

Victória Maria Gomes Velame

Master’s Dissertation of the
Graduate Course in Remote
Sensing, guided by Drs. José
Claudio Mura, and Leonardo
Sant’Anna Bins, approved in April
02, 2020.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/428J8UE>

INPE
São José dos Campos

2020

http://urlib.net/8JMKD3MGP3W34R/428J8UE

Cataloging in Publication Data

Velame, Victória Maria Gomes.
Ve54o Object detection from captive balloon imagery using deep

learning / Victória Maria Gomes Velame. – São José dos Campos :
INPE, 2020.

xxvi + 101 p. ; (sid.inpe.br/mtc-m21c/2020/03.30.16.14-TDI)

Dissertation (Master in Remote Sensing) – Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, 2020.

Guiding : Drs. José Claudio Mura, and Leonardo Sant’Anna
Bins.

1. Object Detection. 2. Deep Learning. 3. Convolutional Neural
Network. 4. Remote Sensing. 5. Captive Balloons. I.Title.

CDU 528.8:004.8

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

Aluno (a): Victória Maria Gomes Velame

Aprovado (a) pela Banca Examinadora
em cumprimento ao requisito exigido para
obtenção do Título de em

Sensoriamento Remoto

Mestre

Dr. Thales Sehn Körting

Presidente / INPE / São José dos Campos - SP

() Participação por Video - Conferência

() Aprovado () Reprovado

Dr. José Claudio Mura

Orientador(a) / INPE / São José dos Campos - SP

() Participação por Video - Conferência

() Aprovado () Reprovado

Dr. Leonardo Sant'Anna Bins

Orientador(a) / INPE / São José dos Campos - SP

() Participação por Video - Conferência

() Aprovado () Reprovado

Dr. Ney Rafael Sêcco

Convidado(a) / ITA / São José dos Campos - SP

() Participação por Video - Conferência

() Aprovado () Reprovado

São José dos Campos, 02 de abril de 2020

Este trabalho foi aprovado por:

() maioria simples

() unanimidade

Thales
x

Thales
x

Thales
x

Thales

Thales
x

Thales

Thales
x

Thales

Thales
x

Thales
x

Thales

Thales
x

Thales
x

Thales
x

Thales

Thales

Usuario
Caixa de texto

Usuario
Caixa de texto
Título: “OBJECT DETECTION FROM CAPTIVE BALLOON IMAGERY USING DEEP LEARNING”

“Intellectual growth should commence at birth and cease only at
death”.

Albert Einstein

v

Dedicated to God, my parents and my husband.

vii

ACKNOWLEDGEMENTS

First of all, I thank God, who gave me the necessary conditions to develop this work.

I thank my advisors, Dr. José Claudio Mura and Dr. Leonardo Sant’Anna Bins, for
the patience, guidance and teachings.

I thank my family for their endless love and support. João, my husband, for his
love, friendship, understanding, encouragement and unconditional support. He al-
ways kept me motivated to face new challenges and helped me through the difficult
moments. My parents and brother, for their incredible faith, backing and inspiration.

I would also like to thank my friend Ronaldo for the encouragement and friendship.

I thank ALTAVE for the images given and all the support. Notably, the Production
Management team for all their friendship, motivation and support. Leonardo and
Guilherme for cheering me up when needed, Michelle and Arthur for teaching me
valuable lessons.

I thank Madalena, my English teacher, for all help and friendship.

I also thank everyone that contributed to this work, either directly or indirectly.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001. I thank CAPES for the
financial support.

ix

ABSTRACT

The combination of remote sensing and computer vision technologies have been
used to monitor large areas. In order to ensure their local security. This monitor-
ing requires high temporal and spatial resolution sensors. Captive balloons with
infrared and visible sensors, like Altave system, can perform a long-term day-night
surveillance with viable cost in comparison with other aerial vehicles. Altave captive
balloon system provides security of large areas by continuously monitoring people
and vehicles, which is exhaustive for humans due to the large amount of data. To
provide a more efficient and less arduous monitoring, this work developed a technol-
ogy based on DL (Deep Learning), more specifically Faster R-CNN (Region-based
Convolutional Neural Network - R-CNN), capable of detecting people and vehicles in
images from captive balloon’s infrared and visible sensors. The advantage of CNN
object detectors is their ability to generalize, which make them more efficient to
deal with some captive balloon image features, such as objects on different points
of view, positions and scales. This work used videos provided by Altave Company
(from their captive balloon system) to manually build two databases containing
about 700 images each, one for the infrared and the other for the visible data. Since
training a large CNN from scratch requires a large database and high computa-
tional power, two networks were fine-tuned from a Faster R-CNN, pre-trained on
RGB (red, green, blue) images. The accuracy, mAP and AR metrics reached on the
test datasets indicates the network high performance. The accuracy was 87.1% for
the infrared network and 86.1% for the visible. These high accuracies demonstrated
that a Faster R-CNN pre-trained only in ordinary RGB images can be fine-tuned
to work satisfactorily on 3-band RGB visible remote sensing images and even on
1-band infrared images, as long as they are properly converted for 3-band images
by repeating the infrared band on the three channels. The networks satisfactorily
detected people and vehicle on images from Altave captive balloon system. They
could detect multiple objects in an image with a variety of angles, positions, types
(for vehicles), scales, and even with some noise and overlap. They also presented
some mistaken detections caused by splitting parts of one object into two objects or
merging two objects from the same class in one large object. These types of mistakes
are not a relevant problem for surveillance because it is much more important to
detect the objects than to locate or count them.

Keywords: Object Detection. Deep Learning. Convolutional Neural Network. Re-
mote Sensing. Captive Balloons.

xi

DETECÇÃO DE OBJETOS EM IMAGENS DE BALÃO CATIVO
UTILIZANDO DEEP LEARNING

RESUMO

A combinação de tecnologias de sensoriamento remoto com visão computacional tem
sido utilizada para monitorar grandes áreas, de modo a garantir a segurança local.
Esse monitoramento requer sensores de alta resolução temporal e espacial. Os ba-
lões cativos com sensores visível e infravermelhos, como os da Altave, são capazes de
realizar vigilância diurna e noturna a longo prazo, com custo viável comparado com
outros veículos aéreos. O sistema de balões cativos da Altave fornece segurança para
grandes áreas por meio do monitorando contínuo de pessoas e veículos, função que é
exaustiva para seres humanos devido à grande quantidade de dados. Com o objetivo
de proporcionar um monitoramento mais eficiente e menos árduo, neste trabalho
foi desenvolvido uma tecnologia baseada em Aprendizado Profundo, mais especi-
ficamente Faster R-CNN (Region-based Convolutional Neural Network - R-CNN),
capaz de detectar pessoas e veículos em imagens de sensores infravermelho e visível
de balões cativos. A vantagem dos detectores de objetos baseados em CNN é sua ca-
pacidade de generalização, tornando-os mais eficientes para algumas características
de imagem de balões cativos, como objetos em diferentes visadas, posições e escalas.
Este trabalho utilizou os vídeos fornecidos pela empresa Altave (do sistema de balão
cativo) para criar, manualmente, dois bancos de dados com cerca de 700 imagens,
um para o infravermelho e a outro para o visível. Como o treinamento de uma CNN
de grande complexidade desde o início requer um banco de dados grande e alto po-
der computacional, duas redes foram ajustadas a partir de uma rede Faster R-CNN
pré-treinada em imagens RGB (vermelha, verde, azul). A acurácia, métricas mAP e
AR alcançadas nos conjuntos de dados de teste comprovam o alto desempenho das
redes treinadas. A acurácia do sistema foi de 87,1% para a rede infravermelha e de
86,1% para a óptica. Essas altas acurácias demonstraram que uma Faster R-CNN
pré-treinada apenas em imagens RGB comuns, pode ser ajustada para funcionar
satisfatoriamente em imagens de sensoriamento remoto visível RGB de 3-bandas e
até mesmo em imagens infravermelhas de 1-banda, desde que sejam adequadamente
convertidas para imagens 3-bandas através da repetição desta banda nos três canais.
As redes construídas foram capazes de detectar satisfatoriamente pessoas e veícu-
los em imagens do sistema de balões cativos da Altave, sendo capaz de detectar
múltiplos objetos em vários ângulos, posições, tipos (no caso de veículos), escalas
e até mesmo com algum ruído e sobreposição. Eles também apresentaram algumas
detecções erradas causadas pela divisão de partes de um objeto em dois objetos ou
pela fusão de dois objetos da mesma classe em um objeto maior. Esse tipo de erro
não é relevante para o monitoramento com vigilância devido ao fato de ser mais
importante detectar objetos do que localizá-los ou contá-los.

Palavras-chave: Detecção de Objetos. Aprendizado Profundo. Rede Neural Convo-
lucional. Sensoriamento Remoto. Balões Cativos.

xiii

LIST OF FIGURES

Page

1.1 Altave Captive balloon monitoring a forest. 2

2.1 Diagram of a single neuron. 8
2.2 Example of a small multi-layer feed-forward ANN with two hidden layers. 9
2.3 Diagram of generic multi-layer feed-forward ANN showing all the layers

parameters, including the zero weights. 16
2.4 The differences between Machine Learning and Deep Learning. 17
2.5 The LeCun et al. (1998) CNN architecture. 19
2.6 Illustration of two convolutional layers. 20
2.7 Faster R-CNN architecture overview. 25
2.8 Example of 6 anchors of a point in a feature map (gray) generated by

the combination of 2 scales (green and blue) and 3 aspect ratios. 27

3.1 Samples of images from Altave’s captive balloons infrared and visible
sensors, respectively. 32

3.2 Schematic that shows the captive balloon (in blue) tethered to the ground
and an example of a FOV captured by the camera sensor (in gray) ar-
ranged in it. The angle α is measured between the nadir and balloon
mooring cable. 33

3.3 Database building process diagram. 35
3.4 Example of a ground truth image. 38
3.5 Examples of TP, FP and FN instances, from left to right. The green rect-

angles are the ground truth object and the blue ones are the predictions,
all boxes sampled belong to vehicle class. 40

3.6 Example of a generic precision × recall curve (blue line) and its interpo-
lation curve (red line). 41

3.7 Schematic showing the main steps of the methodology. 45
3.8 Infrared database aspect ratio frequency for the person and vehicle classes. 48
3.9 Visible database aspect ratio frequency for the person and vehicle classes. 49
3.10 Infrared database scale frequency for the person and vehicle classes. . . . 49
3.11 Visible database scale frequency for the person and vehicle classes. 50

4.1 Infrared network eval and train dataset losses. 54
4.2 Infrared network eval loss in large scale from steps: 8k − 20k. 54
4.3 Infrared network eval dataset mAP behavior during training. 55
4.4 Infrared network eval dataset AR behavior during training. 56

xv

4.5 Correct detection examples of infrared images with person. 60
4.6 Correct detection examples of infrared images with vehicle. 61
4.7 Correct detection examples of infrared images with truck and bus. 62
4.8 Correct detection examples of infrared images with multiple objects. . . . 62
4.9 Correct detection examples of infrared images with very distinct vehicle

scales. 63
4.10 Correct detection examples of infrared images with noise. 64
4.11 Correct detection examples of infrared images with white hot (left) and

black hot modes (right). 64
4.12 Correct detection example of infrared images with a partially hidden

vehicle. 65
4.13 Mistaken detection examples of infrared images with undetected person. 66
4.14 Mistaken detection examples of infrared images with undetected vehicle. 67
4.15 Mistaken detection examples of infrared images with background de-

tected as person. 68
4.16 Mistaken detection examples of infrared images with background de-

tected as vehicle. 69
4.17 Mistaken detection of infrared images with a person object predicted as

a vehicle. 70
4.18 Mistaken detection examples of infrared images with ground truths joined

as one object or split in two objects. 71
4.19 Visible network eval and train dataset losses. 72
4.20 Visible network eval loss in large scale from steps: 10k − 25k. 72
4.21 Visible network eval dataset mAP behavior during training. 73
4.22 Visible network eval dataset AR behavior during training. 74
4.23 Correct detection examples of visible images with person. 79
4.24 Correct detection examples of visible images with vehicle. 80
4.25 Correct detection examples of visible images with vehicles, such as truck

and bus. 81
4.26 Correct detection examples of visible images with multiple objects. . . . 82
4.27 Correct detection examples of visible images with very distinct vehicle

scales. 83
4.28 Correct detection examples of visible images with noisy. 84
4.29 Correct detection example of visible images with partially hidden vehicle. 85
4.30 Mistaken detection examples of visible images with undetected person. . 86
4.31 Mistaken detection examples of visible images with undetected vehicle. . 87
4.32 Mistaken detection examples of visible images with background detected

as person. 88

xvi

4.33 Mistaken detection examples of visible images with background detected
as vehicle. 89

4.34 Mistaken detection of visible images with a person object predicted as a
vehicle. 90

4.35 Mistaken detection examples of visible images with ground truths joined
as one object or split into two objects. 91

4.36 Comparison of the test dataset accuracy between the infrared and visible
networks. 92

xvii

LIST OF TABLES

Page

3.1 Sensors spectral bands and grid size (pixels). 31
3.2 Infrared database summary. 37
3.3 Visible database summary. 37
3.4 Trade-off: speed(ms) versus COCO mAP evaluation for Faster R-CNN

architectures models trained on COCO dataset available on TensorFlow
API. 47

4.1 Infrared database mAP metrics. 57
4.2 Infrared database AR metrics. 57
4.3 Infrared train dataset confusion matrix for background and classes: ve-

hicle and person. 58
4.4 Infrared eval dataset confusion matrix for background and classes: vehicle

and person. 58
4.5 Infrared test dataset confusion matrix for background and classes: vehicle

and person. 58
4.6 Infrared test dataset confusion matrix for background and vehicle class. . 59
4.7 Infrared test dataset confusion matrix for background and person class. . 59
4.8 Visible database mAP metrics. 75
4.9 Visible database AR metrics. 75
4.10 Visible train dataset confusion matrix for background and classes: vehicle

and person. 76
4.11 Visible eval dataset confusion matrix for background and classes: vehicle

and person. 76
4.12 Visible test dataset confusion matrix for background and classes: vehicle

and person. 77
4.13 Visible test dataset confusion matrix for background and vehicle class. . 77
4.14 Visible test dataset confusion matrix for background and person class. . . 77

xix

LIST OF ABBREVIATIONS

ANN – Artificial Neural Network
AP – Average Precision
AR – Average Recall
CNN – Convolutional Neural Network
CS – Confidence Score
DL – Deep Learning
FN – False Negative
FOV – Field of View
FP – False Positive
FVs – Fisher Vectors
GPU – Graphic Processing Unit
ILSVRC – ImageNet Large Scale Visual Recognition Challenge
IoU – Intersection over Union
LTA – Lighter Than Air
mAP – Mean Average Precision
ML – Machine Learning
NMS – Non-Maximum Suppression
PNG – Portable Network Graphics
R-CNN – Region-based CNN
ReLU – Rectified Linear Unit
RGB – Red, green, blue
RoI – Region of Interest
RPN – Region Proposal Network
TN – True Negative
TP – True Positive
SIFT – Scale Invariant Feature Transform
SVM – Support Vector Machine
UAV – Unmanned Aerial Vehicle
XML – Extensible Markup Language

xxi

LIST OF SYMBOLS

α – Learning rate
L – Loss function
Lsn – Loss function of a training sample
θi – Network current parameters of the i-th iteration
σ(x) – Sigmoid function
AT – Transpose of matrix A
b – Neuron bias
b(l) – Bias vector of the l-th network layer
b

(l)
j – Bias value for the j-th neuron of layer l
ci – Network output desired probability for i-th class
c̄i – Network output prediction for i-th class
C – Total number of classes
cosh(x) – Hyperbolic cosine
e – Euler constant
f (l) – Activation functions of layer l
f ′(l) – Activation function derivative of layer l
h(l) – Output vector of layer l
h

(l)
j – Output of j-th neuron of layer l
H(p, q) – Cross-entropy function for a prediction q and expectation p
Kh – Height CNN filter size
Kw – Width CNN filter size
ln(x) – Natural logarithm of x
log(x) – Base 10 logarithm of x
L – Last layer of a network
max(a, b) – Function that returns the maximum value between a and b
pi – Predicted probabilities
p∗i – Ground-truth label
Ph – Height CNN padding
Pw – Width CNN padding
ReLU(x) – Rectified Linear Unit activation function
sn – Training sample
sinh(x) – Hyperbolic sine
Sh – Height CNN stride
Sw – Width CNN stride
tanh(x) – Hyperbolic tangent
ti – Coordinates vector of a predicted bounding box
t∗i – Coordinates vector of a ground-truth box
T – Threshold
TCS – Confidence score threshold
TIoU – Intersection over Union threshold

xxiii

~w – Neuron weights vector
w

(l)
jk – Weight between the j-th neuron of layer l and the k-th neuron of layer l − 1

W (l) – Weight matrix of layer l
~x – Neuron input vector
X – Network input vector
y – Neuron output
z

(l)
j – Network input on the j-th neuron of layer l

(l) – Index of the l-th network layer from left to right
∂ – Partial derivative operator
∇ – Gradient operator
∇θL – Loss function gradient with respect to θ
Lcls – Classification loss
Lreg – Regression loss
L̃ – Loss function with regularization

xxiv

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Motivation . 3
1.2 Objective . 3
1.3 Contributions . 4
1.4 Organization . 4

2 THEORETICAL BACKGROUND 7
2.1 Artificial Neural Network . 7
2.1.1 Network propagation . 7
2.2 Network architecture . 9
2.2.1 Activation function . 10
2.2.2 Training . 11
2.2.3 Loss function . 12
2.2.4 Gradient descent . 13
2.2.5 Back-propagation . 14
2.3 Deep Learning . 17
2.4 Convolutional Neural Network . 18
2.4.1 Convolutional layer . 19
2.4.2 Pooling layer . 21
2.4.3 Fully connected layer . 21
2.5 Regularization . 22
2.5.1 L2 and L1 regularization . 22
2.5.2 Data augmentation . 23
2.5.3 Dropout . 23
2.5.4 Early stopping . 23
2.6 Transfer learning . 23
2.7 Faster R-CNN . 24
2.7.1 Pre-trained base network . 25
2.7.2 Region Proposal Network . 26
2.7.3 Region of interest pooling . 27
2.7.4 Region-based CNN . 27
2.7.4.1 Loss function . 28

xxv

2.7.4.2 Applications . 29

3 MATERIALS AND METHODS 31
3.1 Image sensors . 31
3.2 TensorFlow Object Detection API . 33
3.3 Computer . 34
3.4 Database . 34
3.5 Evaluation metrics . 37
3.5.1 Ground truth . 38
3.5.2 Intersection over Union . 39
3.5.3 True Positive, False Positive and False Negative 39
3.5.4 Precision × recall . 40
3.5.5 Mean Average Precision . 42
3.5.6 Average Recall . 42
3.5.7 Confusion matrix . 43
3.6 Methodology . 44
3.6.1 Methodology process . 44
3.6.2 Fine-tuning . 46
3.6.3 Configuration parameters . 47

4 RESULTS AND DISCUSSIONS 53
4.1 Infrared network . 53
4.1.1 Loss function . 53
4.1.2 Evaluation metrics . 55
4.1.3 Images . 59
4.1.3.1 Correct detections . 60
4.1.3.2 Mistakes . 65
4.2 Visible network . 71
4.2.1 Loss function . 71
4.2.2 Evaluation metrics . 73
4.2.3 Images . 78
4.2.3.1 Correct detections . 78
4.2.3.2 Mistakes . 85
4.3 Comparison . 91

5 CONCLUSIONS . 93
5.1 Future works . 94

REFERENCES . 95

xxvi

1 INTRODUCTION

Remote sensing technologies and techniques combined with computer vision and
image processing algorithms have been used to monitor large areas. In oceans, for
example, these tools have been applied to monitor, through periodic surveillance,
vessels (PAVLAKIS et al., 2001) and oil spills (JHA et al., 2008). To prevent and mitigate
environmental damages.

Orbital sensor images have been used to monitor large areas, such as deforesta-
tion (GUILD et al., 2004), land use and land cover (LU et al., 2005), and spread of
diseases in agricultural crops (BENDINI et al., 2014). Applications such as crop stress
detection require high temporal and spatial resolution images. To obtain this type
of data, a possible solution is the use of remote sensors in Unmanned Aerial Vehicles
(UAVs).

The monitoring of large areas like courtyards, industries, major events, and pipelines
for security purposes requires high temporal and spatial resolution images, since
constant monitoring is required with a great detail of the objects, allowing only short
time between new observations from the same location (HAUSAMANN et al., 2005).
The spatial resolution must be high enough to allow detection of objects such as
people and vehicles. To obtain these resolutions, in general, the monitoring of these
areas is performed by imaging with remote sensors arranged in UAVs (HAUSAMANN

et al., 2005). Such as Lighter Than Air (LTA) platforms, drones, and helicopters.

An aerostat is a LTA aircraft that gains its lift through the use of a buoyant gas.
The main types of aerostat are airships, balloons, tethered balloons and hybrid
airships (SANTOS, 2018; AZEVEDO, 2016). Tethered aerostats (also knows as cap-
tives aerostats), in comparison to other flying solutions have the advantage of lower
operational costs and the ability to stay aloft for larger periods without interrup-
tion (AZEVEDO, 2016). The Brazilian company Altave develops unmanned captive
balloons capable of reaching up to 200 meters in height, resulting in a privileged
viewpoint for monitoring, as shown in Figure 1.1. Nevertheless, there are some pe-
culiarities in the image features, mainly due to the angle on the line of sight and
displacements in all axes (AZEVEDO et al., 2013), specially in roll axis.

1

Figure 1.1 - Altave Captive balloon monitoring a forest.

SOURCE: Altave (2019).

Monitoring people and vehicles in large areas is extremely important to ensure local
security, but the analysis of the large amount of data generated in the process is
exhaustive for a human being. Therefore, it is important to develop algorithms
capable of assisting humans in this task. To make it less arduous and more efficient.
Captive balloons are well suited for this work because of their ability of long-term
operation (several days) carrying high temporal and spacial resolution sensors at
low cost. These features make this aircraft an attractive solution to monitor people
and vehicles in a large area.

The sensors commonly used for people and vehicles monitoring are cameras with
infrared and visible sensors (HAUSAMANN et al., 2005), since they allow detecting and
monitoring the flow of people and vehicles in the presence or absence of sunlight.
The reflective and emissive properties of materials vary greatly along the spectrum,
so features detected by the infrared and visible sensor image may be different and
show the same object in distinct perspectives.

While humans easily detect many objects on real life images, this is still a difficult
task for a machine. The same object can be in many distinct orientations, viewpoints
or even partially occluded, causing further variations in the resulting image (BIE-
DERMAN, 1987).

2

In computer vision, change and object detections are the most used techniques to
perform automatic monitoring. Change detection requires, at least, two chronolog-
ically successive, geometrically registered images to be able to calculate the differ-
ences. Therefore, change detection is only suited in monitoring with static cameras
or already registered images. One advantage of change detection is that the algo-
rithms used do not require training, for most applications. On the other hand, object
detection techniques don’t need successive images, therefore, the geometric registry
isn’t needed either. But they need to be properly trained to recognize the sampled
objects.

For non registered images with constant movement due to the natural movement
of the sensors, as those generated by imaging sensors in captive balloons, object
detection is better suited. The state-of-the-art object detection techniques are based
on Deep Learning (DL), more specifically Convolution Neural Network (CNN), as
pointed by Krizhevsky et al. (2012), because CNN has better generalization capabil-
ities than manually-engineered object detectors. Making them much more selective
about the detected changes on the monitored scene.

1.1 Motivation

Large areas such as courtyards, industries, and major events need a technology to
ensure their security. A surveillance performed by continuous aerial monitoring can
be a feasible solution. Captive balloons with infrared and visible sensors can perform
long-term day-night surveillance with viable cost in comparison with other aerial
vehicles. An Altave balloon was successfully used to monitor people and vehicles
during the 2016 Olympic Games in Rio de Janeiro (AZEVEDO, 2016).

Continuous monitoring is an arduous task for humans, which motivated the devel-
opment of technologies to facilitate this task. Although there already are several
monitoring algorithms, there is none specifically tailored to the particularities of
images sensed by visible and infrared sensors arranged on captive balloons. This
problem motivated the development of a CNN able to detect people and vehicles
(objects of primary interest in this type of surveillance) in this type of image for the
purpose of assisting humans during monitoring tasks.

1.2 Objective

This work aims to develop a system capable of detecting people and vehicles in
images from visible and infrared sensors arranged in captive balloons. This system

3

should be able to help humans on the continuous monitoring of large areas.

The object detection system developed in this work must cope with the following
situations:

• object viewpoint changes;

• radiometric changes; and

• the presence of some fog or dust.

This work is limited to make a proof of concept on the capability of CNN object
detectors to deal with images from visible and infrared sensors arranged in captive
balloons. Although the captive balloons records data in video format, only images
were used in this work. Thus, the frames (images) were captured from the videos.

1.3 Contributions

The main contributions of this work are listed below:

• outline a technique to perform object detection, more specifically people
and vehicles, in captive balloons imagery;

• the usage of state-of-the-art object detectors based on CNN methods on
remote sensing images;

• verify the viability of using an object detector based on CNN pre-trained
for a 3-bands ordinary image on a red, green and blue (RGB) visible and
1-band infrared remote sensing image; and

• verify the viability of using the CNN fine tuning algorithm on a remote
sensing image, even with spectrum band changes.

1.4 Organization

This is organized as follows:

• Chapter 2 - Theoretical Background introduces the concepts of ar-
tificial neural network, DL, CNN and the network used to perform the
object detection, including the process of training and some regularization
metrics;

4

• Chapter 3 - Materials and Methods describes the sensors, computer
and API used in this work, the process of building the database, the evalu-
ation metrics, and, finally, the methodology and parameters used to train
the network;

• Chapter 4 - Results and Discussions presents the results achieved for
the infrared and visible data with some examples, and their discussions;
and

• Chapter 5 - Conclusions presents the conclusions and suggestions for
future work.

5

2 THEORETICAL BACKGROUND

This chapter presents an overview of the fundamental principles relevant to this
master dissertation. As mentioned in Chapter 1, this work is motivated by the
usage of a CNN to perform people and vehicle detection in remote sensing images.
Therefore, this chapter will progress from basic networks to complex neural structure
capable to perform object detection. Furthermore, it will present the basic principles
involved in the training of CNNs and some techniques to improve it.

2.1 Artificial Neural Network

An Artificial Neural Network (ANN) is a branch in the field of artificial intelligence
designed to learn statistical models for pattern recognition tasks (VELTE, 2015). It is
a computer model structure capable to learn and generalize the input data pattern.
It can solve real non-linear tasks which are difficult to model using algorithms based
on static rules (VELTE, 2015). In short, ANNs learn to perform tasks by considering
examples, without being programmed with any specific rule. They were inspired by
biological neural networks that gain knowledge through experience, like the human
brain network which has about 86 billion neurons (AZEVEDO et al., 2009).

The patterns recognized by an ANN are numerical, therefore real world data, such as
images, sounds, texts and time series, must be converted into numbers or numerical
vectors. In classification, an ANN predicts a class based on the pattern learned by
the examples in its training stage. In recent years neural networks have achieved
good results in many image analysis areas, being able to learn features which would
be hard to design by hand (MALMROS, 2018).

In remote sensing, it’s not different, ANNs have obtained good results in many tasks
such as in the prediction of wood volume and tree vegetation biomass (MIGUEL et al.,
2015) and in the classification of pasture degradation levels (CHAGAS et al., 2009).
Despite the good results achieved, there still are some difficulties with training time
and the large number of samples required.

2.1.1 Network propagation

The ANN consists of a large number of simple computational elements denominated
(artificial) neurons or nodes, which are densely interconnected and operating in par-
allel (SECCO; MATTOS, 2017). A neuron is a single element of an ANN. That converts
a group of n inputs into one output. These inputs can derive from external variables
or from other neurons. In a neuron, each input (xi) is multiplied by a corresponding

7

weight (wi), and then summed altogether with a threshold value, called bias (b). The
result of this sum is then applied into a function, named activation function, which
determines the neuron output. Figure 2.1 and Equation 2.1 show the output (y) of
a single neuron when its parameters: inputs, weights, bias and activation function,
respectively, are ~x = (x0, x1, ..., xN)T , ~w = (w0, w1, ..., wN), b and f(x). The bias
value allows the activation function to be shifted left or right to obtain a better
fitting.

y = f(~w · ~x+ b) = f(
N∑
i=0

ωixi + b) (2.1)

Figure 2.1 - Diagram of a single neuron.

SOURCE: Author’s production.

A single neuron can make an ANN, but it will be a very poor one. Many neurons
are connected to scale up and make more complex networks, enabling it to learn
more complex patterns. There are several ANN architectures, the multi-layer feed-
forward ANN is the most commonly used for object detection applications. In this
architecture, the nodes are connected in structures called layers to expand into large
ANNs. A layer consists of a set of several neurons, each one receiving inputs from
the previous layer by weighted connections.

8

Figure 2.2 shows an example of a small generic multi-layer feed-forward ANN with
two hidden layers. The first layer is the input layer, which receives the input data
as numeric attributes; then there are some intermediary layers called hidden layers,
where the main propagation processing happens to extract feature from the inputs;
and the output layer, which gives the network output, such as classes predictions.
The number of hidden layers determine the network depth.

Figure 2.2 - Example of a small multi-layer feed-forward ANN with two hidden layers.

SOURCE: Author’s production.

2.2 Network architecture

An ANN is specified by its topology, also called architecture, which is the structure
composed by its neurons and their connections. The word architecture refers to the
overall structure of the network, how many layers it has, how many neurons each
layer has, and how these units are connected to each other. Most ANN arrange
these layers in a chain structure, called chain-based architectures (GOODFELLOW

et al., 2017). In these networks the main architectural considerations are choosing
the depth (number of layers) of the network and the width (number of neuron)
of each layer. Expanding the network depth or width increases the generalization

9

capabilities of the model.

In a chain-based architecture, the output of a layer is a function of the output of the
layer that preceded it. The first layer is given by Equation 2.2, the second layer by
Equation 2.3 and so on by Equation 2.4. In these equations, X is the input vector,
f (l) the activation functions, h(l) the layer vector output, W (l) the weight matrix,
b(l) the bias vector and the top index (l) represents the l-th layer index from left to
right.

h(1) = f (1)((1)X + b(1)) (2.2)

h(2) = f (2)(W (2)h(1) + b(2)) (2.3)

h(l) = f (l)(W (l)h(l−1) + b(l)) (2.4)

2.2.1 Activation function

Typically, the activation functions used in ANN are non-linear such as: hyperbolic
tangent (Equation 2.5) and sigmoid (Equation 2.6), also named standard logistic
function (ISAKSSON, 2016). Recently, Rectified Linear Unit (ReLU), given by Equa-
tion 2.7, became a popular activation function, since its relatively low computational
load allows the expansion in the number of layers (ISAKSSON, 2016; LECUN et al.,
2015). Thus, in modern neural networks, the default recommendation is to use the
ReLU function (GOODFELLOW et al., 2017). Other commonly used functions are the
identity and the binary step (Equation 2.8) functions.

f(x) = tanh(x) = sinh(x)
cosh(x) = e2x − 1

e2x + 1 (2.5)

f(x) = σ(x) = 1
1 + e−x

(2.6)

f(x) = ReLU(x) = max(0, x) (2.7)

10

f(x) =

0 for x < 0

1 for x ≥ 0
(2.8)

An ANN with at least one internal hidden layer with enough neurons and equipped
with non-linear activation functions has the property of being capable of giving an
uniform approximation of any continuous function. As a consequence, any network
with multiple layers using the identity as activation function is equivalent to a single
layer network with a non-linear activation function (CYBENKO, 1989).

A differentiable activation function is important for gradient-based optimization
methods. The ReLU is not a differentiable function and it implies in some issues
with optimization methods. Activation functions with output contained in the in-
terval [0, 1] are suitable for classification problems where prediction values represent
probabilities.

2.2.2 Training

An important feature on a neural network is the stage of training. During this
process, weights and biases are iteratively adjusted according to the training data
samples with the goal of learning their patterns.

In classification, one of the most popular use of ANNs, the training data is composed
of a set of inputs and their corresponding classes. The training process compares
the output given by the network with the desired class and adjusts the weights and
biases to produce a better prediction on the next iteration.

In short, the processes of training a classification ANN goes through the following
steps:

• the inputs are propagated through the network with the current weights
and biases;

• after finishing the propagation, the outputs can be seen as a vector whose
values are probabilities for each class;

• the predictions are then compared with the training reference class using
a loss function (detailed on section 2.2.3); and

• the weights and biases are modified by an optimization method in a process

11

called back-propagation (detailed on section 2.2.5) aiming to minimize the
loss function.

2.2.3 Loss function

In training process, a classifying neural network learns its parameters (weights and
biases) by using training data and its associated classes. The error between the
output pattern generated by the ANN for the training data (predictions) and the
desired output pattern is used to compute the loss function. The loss function (L) is
used by an optimization method such as gradient descent (detailed on section 2.2.4)
in back-propagation process to minimize the network error. This scalar function
computes the average classification error (also called loss) over the training data
sample. An important aspect of the design of a neural network is the choice of the
loss function. There are many functions that could be used to estimate the error
of a set of weights in a neural network, but the training is more efficient when loss
functions are chosen based on the expected output data of the network.

In classification with multi-classes, it is very common to use the softmax function as
activation function in the last layer, because it normalizes the output vector. They
represent the probability of a network input to belong to each class in a multi-class
problem. The layer with softmax function is called Softmax layer, it must have the
same number of nodes as the output layer, that is the number of classes designed
for the network. Equation 2.9 gives the softmax function, also known as normalized
exponential function, for the i-th neuron, where ~z is the input vector, zi is the i-th
vector element and C is the vector length, which should be the total number of
classes.

softmax(~z)i = ezi∑C
k=1 e

zk
(2.9)

The suitable loss function for outputs with probability distribution is the cross-
entropy (GOODFELLOW et al., 2017). Thus, it is used as a loss function in neural
networks for multi-class classification which uses softmax to output a probability
distribution. The cross-entropy measures the distance between the model predictions
and the desired class. Equation 2.10 is a cross-entropy function of a probability
prediction q(x) for input x, when the expected probability was p(x).

12

H(p, q) = −
∑
x

p(x) ln(q(x)) (2.10)

Equation 2.11 is the cross-entropy of the n-th training sample (sn) on a multi-class
network, where the output prediction for i-th class was c̄i, but the desired probability
for this class was ci, and C is the total number of classes.

Lsn = −
C∑
i=1

ci ln(c̄i) (2.11)

Equation 2.12 is the loss function (L) of a multi-class network, which is computed
by the cross-entropy average (Ltn) of all the N samples of the training data.

L = 1
N

N∑
n=1
Lsn (2.12)

2.2.4 Gradient descent

To improve the network accuracy, an optimization method is used to minimize the
loss function. The most used optimization method in neural networks is the gradient
descent. It attempts to minimize the loss function using the loss function gradient
vector (∇L). Gradient descent adjusts the network parameters towards the opposite
of the gradient direction, in a way to find the nearest local minimum. Equation 2.13
shows how the gradient descent updates the network parameters, where i is the
current iteration, θi are all the network current parameters (all weights and biases),
θi+1 are the updated parameters, ∇θL is the loss function gradient with respect to
the current parameters and α is a scalar representing the learning rate. The loss
function gradient is computed by the back-propagation algorithm.

θi+1 = θi − α∇θi
L (2.13)

The learning rate (α) is a small positive parameter that determines how fast the
optimal parameters for the model are calculated. A small learning rate may lead to
more accurate parameters, but it takes more time to compute it. High learning rates
can generate overshoots and miss the local minimum.

Many networks use large training sets. Because they need to generalize the model.

13

Using the entire set to make a single gradient update (also named a step) would take
much time. Thus, to improve the training process, some optimization algorithms for
machine learning usually use subsets of the training samples, called mini-batches.
This process can improve the training velocity and reduce the computer memory
usage (GOODFELLOW et al., 2017).

Stochastic gradient descent, the most used optimization method in ANNs, uses the
mini-batches approach by randomly taking different training subsets for each step,
expecting that each of them gives a good approximation of the complete set (GOOD-

FELLOW et al., 2017). Momentum is another usual optimization method, designed
to accelerate learning by accumulating the exponential decaying moving average of
the past gradients and continuing to move in their direction (POLYAK, 1964).

2.2.5 Back-propagation

The back-propagation algorithm is a widely known learning process for neural net-
works that determines the loss function gradient with respect to each weight and
bias (RUMELHART et al., 1986). This procedure propagates the loss function gradients
from the last layer to the first one using the calculus chain rule (SECCO, 2014). The
back-propagation provides the network parameter gradients with low computational
cost to be used in an optimization method that minimizes the network error (GOOD-

FELLOW et al., 2017). As a result of the parameters adjustment, the network hidden
layers captures important features of the task domain (RUMELHART et al., 1986).

The loss function gradient with respect to each network parameter for a single
training sample (Equation 2.14) is a vector composed by the partial derivative on
each weight and bias for a single training sample.

∇θLsn =

∂Lsn

∂w
(1)
11

∂Lsn

∂b(1)

...
∂Lsn

∂b(L)

 (2.14)

Equations 2.15 and 2.16 are obtained by applying the chain rule on the weights and
bias partial derivatives for a single training sample, where w(l)

jk is the connection
weight between the j-th neuron of layer l and the k-th neuron of layer l − 1, b(l)

j is
the bias value for the j-th neuron of layer l and h(l)

j is the output of j-th neuron of
layer l, defined by Equation 2.17.

14

∂Lsn

∂w
(l)
jk

= ∂Lsn

∂h
(l)
j

∂h
(l)
j

∂w
(l)
jk

(2.15)

∂Lsn

∂b
(l)
j

= ∂Lsn

∂h
(l)
j

∂h
(l)
j

∂b
(l)
j

(2.16)

h
(l)
j = f (l)(

nl−1∑
k=1

w
(l)
jkh

(l−1)
k + b

(l)
j) (2.17)

The partial derivative of h(l)
j by chain rule is given by Equations 2.18 and 2.19, where

f ′(l) is the activation function derivative and z
(l)
j is the network input on the j-th

neuron of layer l, presented in Equation 2.20.

∂h
(l)
j

∂w
(l)
jk

= h
(l−1)
k f ′(l)(z(l)

j) (2.18)

∂h
(l)
j

∂b
(l)
j

= f ′(l)(z(l)
j) (2.19)

z
(l)
j =

nl−1∑
k=1

w
(l)
jkh

(l−1)
k + b

(l)
j (2.20)

Replacing the partial derivatives above in the loss function derivatives (Equations
2.15 and 2.16) gives Equations 2.21 and 2.22. For l = 1, h(0)

k is equal to the k-th
input (xk).

∂Lsn

∂w
(l)
jk

= h
(l−1)
k f ′(l)(z(l)

j)∂Lsn

∂h
(l)
j

(2.21)

∂Lsn

∂b
(l)
j

= f ′(l)(z(l)
j)∂Lsn

∂h
(l)
j

(2.22)

The loss, for only one training sample, is defined as a function of the last layer output
and of this layer target. But each layer output is a function of all the neurons from
the previous layer, as shown by Figure 2.3. Therefore, the chain rule allows the

15

calculation of the partial derivatives of the loss function with respect to one layer
neuron based on the derivatives of the next layer. Except for the last layer (L), whose
derivatives can be computed directly. These calculi are described on Equation 2.23.

Figure 2.3 - Diagram of generic multi-layer feed-forward ANN showing all the layers pa-
rameters, including the zero weights.

x1

x2

x3

xn

h
(1)
1

h
(1)
2

h
(1)
3

h(1)
n1

h
(2)
1

h
(2)
2

h
(2)
3

h(2)
n2

h
(L)
1

h
(L)
2

h
(L)
3

h(L)
nL

Input Layer Hidden Layers Output Layer

W (1), f (1), b(1) W (2), f (2), b(2) W (3), f (3), b(3) W (L), f (L), b(L)

Layer 0 Layer 1 Layer 2 Layer L

SOURCE: Adapted from Secco (2014).

∂Lsn

∂h
(l)
j

=

∑nl+1
i=1 w

(l+1)
ij f ′(l+1)(z(l+1)

i) ∂Lsn

∂h
(l+1)
i

for 1 ≤ l < L

∂Lsn

∂h
(L)
j

for l = L ≥ 0
(2.23)

In practice, the derivatives from the last layer are computed first, which enables
the flow back through the entire network using the already known derivatives to
compute derivatives of the previously layer. This process computes the derivatives
from each layer at a low computation cost. Back-propagation is computed on every
gradient descent iteration until the network learns the desired task.

16

In summary, the back-propagation calculates the loss function gradient with respect
to each network weight and bias for a single training sample (∇θLsn) using Equa-
tions 2.21, 2.22 and 2.23. The complete loss function gradient, used in optimization
methods, computes the average of all the training samples.

2.3 Deep Learning

Deep Learning (DL) is a Machine Learning (ML) branch that trains the computer
to perform tasks such as the human brain, including speech recognition and image
classification. It generates high-level abstractions of data with a deep network com-
posed of multiple processing layers with linear and nonlinear transformations. One
advantage of DL is that it requires little human interference because even feature
extraction is learned by the machine, as exemplified in Figure 2.4. One of the most
known DL model is the CNN, due to the exceptional results in computer vision,
mainly in image classification.

Figure 2.4 - The differences between Machine Learning and Deep Learning.

SOURCE: Xenonstack (2018).

The AlexNet CNN (KRIZHEVSKY et al., 2012) won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) competition in 2012, where its results significantly
outperformed all previous competitors, obtained an error of 15.3% against 26.2%
from the second-best contest entry, whose approach averages the predictions of sev-
eral classifiers, such as Scale Invariant Feature Transform (SIFT) based on (LOWE,

17

2004), trained on Fisher Vectors (FVs) computed from different types of densely-
sampled features. The AlexNet uses a deep CNN approach with 5 layers, 60 millions
parameters and 650000 neurons. This result changed the direction of object recog-
nition and feature extraction research in the following years. Since then, ILSVRC
contest winners have used the DL and CNN approach with more than 95% accuracy.

The studies of ANN, ML, DL and CNN have achieved outstanding results in several
applications, becoming the state-of-the-art in many areas. In remote sensing, for
example, DL has great results in hyper-spectral image classification (CHEN et al.,
2014).

2.4 Convolutional Neural Network

CNN is a type of ANN inspired by the human visual system and designed to work
with two-dimensional structured data. CNN combines convolution operations with
normal ANNs. The convolutional and pooling (subsampling) layers perform feature
extraction, thus retaining spatial information throughout their layers.

LeCun et al. (1989) designed the first CNN for pattern recognition, more specifically
for images of hand-written numbers, that performed better than the best manual
model at that time. The advances on computer processing power and the availability
of large, organized and free access image databases contribute to the recent growth
of CNN research. The ImageNet imaging database, for example, has over 1.2 million
images for classification (DENG et al., 2009).

Figure 2.5 presents the LeCun et al. (1998) CNN architecture, where the first hidden
layers are a successive sequence of convolutional and pooling (subsampling) layers,
followed by fully connected layers and finally by the Softmax layer. The parameters
of this network are learned through the back propagation mechanism.

18

Figure 2.5 - The LeCun et al. (1998) CNN architecture.

SOURCE: LeCun et al. (1998).

2.4.1 Convolutional layer

A convolutional layer performs discrete convolution operations with a filter and a
two-dimensional structured data (stacked matrices), then add a bias and apply an
activation function. Each convolution filter produces a linear combination of the
neighborhood (called local receptive field) defined by the filter size and applies it on
the entire input, so each output depends only on its local receptive field and shares
its parameters with all the input.

Convolution leverages three important ideas that can help improve a machine learn-
ing system: sparse interactions, parameter sharing and equivalent representations
(GOODFELLOW et al., 2017). This is accomplished by small kernels shared among
all the inputs, what reduces the memory requirements of the model, requires less
computing operations, and improves its statistical efficiency (GOODFELLOW et al.,
2017).

The filters used by the convolution operations are called kernels and constitute the
layer weight. Their outputs are stacked matrices described by three dimensions:
(height, width, depth). Since the network uses the same kernel for each matrix, the
same kind of feature is extracted, so the output of a convolution can see as a feature
extraction operation, often called feature maps. Filters in subsequent layers have
the previous feature maps as inputs, thereby extracting more complex features.

A convolutional layer is defined by the: number of filters, filter size, stride, padding,
and activation function. Stride means the step size used by the filter when mov-

19

ing across the input and the padding is the extra border added to sides of the
input. Equation 2.24 calculates output dimensions (Oh, Ow, Od), for an input ten-
sor (Ih, Iw, Id) passing through a convolutional layer with N filters of size (Kh, Kw),
stride (Sh, Sw) and padding (Ph, Pw), this layer would have a total of (Kh∗Kw+1)∗N
parameters, composed by (Kh ∗Kw) ∗N weights and N bias.

(Oh, Ow, Od) = (Ih −Kh + 2Ph
Sh

+ 1, Iw −Kw + 2Pw
Sw

+ 1, N) (2.24)

It’s usual to use filters with the same height and width and a zero-padding. The
zero-padding, border filled by 0, is commonly used to maintain the height and width
input dimensions in the output. The most usual activation function is the ReLU.
Figure 2.6 shows an example of a set of convolutional layers working in sequence. It
is important to notice that each filter has a distinct bias.

Figure 2.6 - Illustration of two convolutional layers.

The first with 4 filters 5× 5× 3 that gets as input an RGB image of size 64× 64× 3, and
produces a vector of feature maps. A second convolutional layer with 5 filters 3 × 3 × 4
gets as input the vector from the previous layer of size 64 × 64 × 4 and produces a new
64×64×5 vector of feature maps. The circle after each filter denotes an activation function,
e.g. ReLU.

SOURCE: Ponti et al. (2017).

20

2.4.2 Pooling layer

The pooling layer, also called subsampling layer, does downsampling of the features
maps from the previous layer, capturing the main statistical information of small
windows from the input. A pooling layer is defined by the: size, stride and pooling
operation. The pooling operation runs independently on each feature map and keeps
the depth dimension. This layer has no parameters, because it only does a fixed
calculus, so there is no back-propagation on this layer.

A pooling operation makes a summary statistic of the local receptive field for the
outputs. The most known is the max pooling operation, which captures the maxi-
mum value of a local receptive field. Another usual pooling operation is the weighted
average based on the distance from the central point (GOODFELLOW et al., 2017).
For many tasks, pooling is essential for handling inputs of varying size, such as,
when classifying images of variable size, because the classification layer must have
a fixed number of neurons (GOODFELLOW et al., 2017).

Equation 2.25 calculates output dimensions (Oh, Ow, Od), for a input tensor
(Ih, Iw, Id) passing through a pooling layer of size (Kh, Kw) and stride (Sh, Sw),
this layer has no parameters to be adjusted.

(Oh, Ow, Od) = (Ih −Kh

Sh
+ 1, Iw −Kw

Sw
+ 1, Id) (2.25)

2.4.3 Fully connected layer

After all the convolutional and pooling layers it is usual to reorganize the last feature
maps into a vector and feed it into a fully connected layer. The feature map vector
works like neurons in a usual ANN. A fully connected layer is a layer where each
neuron in the layer has a connection to all neurons in the adjacent layers by weighted
connections and each neuron outputs a scalar. These layers are a common multi-layer
ANN with weighted connections, activation functions, and biases in each neuron.
These layers have the lager number of parameters, because each neuron is connected
to all the next layer neurons. These layers are often followed by the Softmax layer
where the classification output happens.

21

2.5 Regularization

An important issue in machine learning is how to make the CNN robust not only to
training data but also to new input data, therefore preventing overfitting. Overfitting
occurs when the network has a very good performance on the training data (low error
rate) and a poor performance in presence of new data. In this sense we can say that
the network became too specialized in the training data (memorizing the samples)
and, at the same time, not being capable of generalization in order to cope with new
data (learning the features of interest).

To avoid this problem, the training data is slit in two sets: the training set (also
called train set), used to learn the network parameters, and the validation set (also
called eval set), used to evaluate the generalization. A good generalization implies a
low rate of error on the validation set. This fact highlights the importance to keep
a third part of the data to actual test the final network. That compose the test set,
which, in turn, can’t be used on the training process.

Many strategies used in machine learning are explicitly designed to reduce the test
error, possibly at the expense of increased training error (GOODFELLOW et al., 2017).
These strategies are known collectively as regularization. Regularization is a set of
techniques which make slight modifications to the learning algorithm in a way that
the model generalizes better. The most used regularization techniques are: L1 and
L2 regularization, data augmentation, dropout, and early stopping.

2.5.1 L2 and L1 regularization

Many regularization approaches are based on limiting the capacity of models by
adding a penalty parameter to the loss function. In neural networks, typically, only
the weights at each layer are penalized by regularization term, the biases usually
are not regularized (GOODFELLOW et al., 2017). The L2 and L1 regularization add
a regularization term (R) on the loss function, in a way to reduce the network
weights values. It assumes that a neural network with smaller weights leads to sim-
pler models, therefore reducing the overfitting. Equation 2.26 shows the expanded
loss function by adding this term, weighted by λ parameter to control the regulariza-
tion influence. The L2 uses the L2-norm of all the network weights (R = 1

2
∑
i | wi |2)

while the L1 used L1-norm (R = ∑
i | wi |) as a regularization term.

L̃ = L+ λR (2.26)

22

2.5.2 Data augmentation

Data augmentation is a technique that creates new data from the original one to
increase the amount of data with relevant features and generalize the model (GOOD-

FELLOW et al., 2017).

Dataset augmentation has been a particularly effective technique for object recog-
nition problems (GOODFELLOW et al., 2017). Images include an enormous range of
factors of variation, many of which can be easily simulated. Operations like trans-
lation, rotation, flips, noise addition and lighting changes are often used to improve
generalization in images datasets.

2.5.3 Dropout

Dropout provides a computationally inexpensive but powerful method of regulariz-
ing a broad family of models (SRIVASTAVA et al., 2014). Dropout modifies the network
during forward pass on the training stage, eliminating a random set of neurons from
the hidden layers to force the network to be redundant, in a way that it must classify
correctly even without some neurons. Dropout provides an inexpensive approxima-
tion to training multiple networks versions on the same data and averaging these
networks.

2.5.4 Early stopping

Usually, the network stops the training after decreasing the training set error to
a fixed value or after a fixed number of epochs. An epoch is one cycle of training
over the entire training dataset. Unfortunately, this approach may not prevent the
overfitting. In order to prevent the overfitting, a technique named Early stopping
is employed. It performs a kind of cross-validation strategy that stops the training
stage when the error on the test dataset consecutively increases for a certain number
of iterations, regardless of the training error behavior (GOODFELLOW et al., 2017).

2.6 Transfer learning

Training a complete CNN starting with random parameters demands a large
database, huge computational resources and many days of training. Many appli-
cations do not have sufficiently large datasets and enough computational resources
available. Therefore, in many applications it is not feasible to train a CNN from
scratch (with randomly initialized weights), and even data augmentation won’t be
sufficient since it only creates versions of the same images.

23

In this context, it is common to use the weights from a model already trained in
a large dataset, such as ImageNet dataset (DENG et al., 2009) (1.2 million images),
using multiple high power Graphics Processing Unit (GPUs) for several days. The
pre-trained model can be used to transfer learning by its features maps. The intuition
behind transfer learning is that if a model was trained on a large and general enough
dataset, this model has effectively learned how to analyze images, providing a generic
model for it.

Transfer learning is a machine learning method that uses a pre-trained model devel-
oped for a task as starting point for a model to solve a similar task. The pre-trained
model can be used to perform feature extraction or fine-tuning. The networks’ ar-
chitecture most used in transfer learning for images tasks are: VGG (SIMONYAN;

ZISSERMAN, 2014), Inception (SZEGEDY et al., 2015), ResNet (HE et al., 2016) and
their versions.

Feature extraction uses features maps from a pre-trained network without changing
them. It is usual to use the last feature map vector as inputs for other classifier
methods, such as Support Vector Machine (SVM). Fine-tuning uses parts of a pre-
trained model in a new model and adjusts some or all of the previously trained
weights in the new model training stage, allowing the weights to be fine-tuned for
the new dataset.

2.7 Faster R-CNN

Faster R-CNN is a network designed to detect and classify objects in near real time,
achieving the state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012
and MS COCO 2014 datasets (LIN et al., 2014; EVERINGHAM et al., 2010; REN et al.,
2015). The Faster R-CNN is the evolution of two other networks: R-CNN (GIRSHICK

et al., 2014) and Fast R-CNN (GIRSHICK, 2015). These three networks were developed
to detect objects in rectangular regions (boxes) and classify them. They obtained top
accuracy in PASCAL VOC 2007 dataset, being their main challenge was to reduce
the processing time to real time. Their base algorithm looks for regions that are
more likely to contain objects and performs the classification only for those regions.
The major difference between these networks was the region selection approach.

Both R-CNN and Fast R-CNN networks use the Selective Search (UIJLINGS et al.,
2013) algorithm to look for regions containing objects. The Selective Search presents
high accuracy, but it is a slow and time-consuming process, which affects the entire
network time performance. The great advantage of Faster R-CNN was the devel-

24

opment of a Region Proposal Network (RPN) that shares convolution layers with
the classifier network. This innovation considerably reduced the computational cost,
making the algorithm much faster.

Figure 2.7 - Faster R-CNN architecture overview.

SOURCE: Tyrolabs (2018).

An overview of Faster R-CNN architecture is shown on Figure 2.7, whose compo-
nents, respectively, are:

• Pre-trained base CNN, that works as a feature map extractor and outputs
a feature map of an image.

• RPN, which receives the features maps from the previous component and
generates proposals bounding boxes.

• Region of Interest (RoI) pooling, which receives the proposals bounding
boxes and generates a fixed-size feature map for each proposal.

• Region-based CNN (R-CNN), that classifies each bounding box from the
RoI pooling as one of the desired classes or as a background and adjusts
its bounds with a logistic regression.

2.7.1 Pre-trained base network

The pre-trained base CNN, first component of the Faster R-CNN, uses convolution
layers of a generic CNN pre-trained for classification task, outputting an intermedi-
ate layer of that CNN. Therefore, this component receives an image and outputs a
feature map of this image. Typically, the pre-trained CNN are: VGG-16 (SIMONYAN;

25

ZISSERMAN, 2014), Inception (SZEGEDY et al., 2015), ResNet (HE et al., 2016) or their
versions.

It is worth to emphasize that since there are no fully connected layers in this com-
ponent, thus the input image can have any spatial dimensions (width and height),
but its depth must be fixed to 3. After all, convolution and pooling operators don’t
require a fixed image size. The feature map spatial dimensions depend on the input
dimensions and the CNN used.

2.7.2 Region Proposal Network

RPN generates a variable quantity of proposals regions (rectangular bounding boxes)
more likely to contain objects. These proposals have distinct spatial sizes. They are
generated based on a set of fixed-size bounding boxes, called anchors. A fixed number
of k anchors are defined on a configuration file, based on the desired scales and aspect
ratios. The anchors definitions ensure the model capability to detect different types
of objects. Ren et al. (2015) uses 9 anchors, defined by the combination of 3 scales
(128, 256 and 512) and 3 aspect ratios (1 : 1, 1 : 2, 2 : 1).

For each point in a feature map, k regions are generated. Initially, these regions
are centered on their respect feature map point and have spatial dimensions (width
and height) determined by the anchors scales and aspect ratios previously defined,
exemplified on Figure 2.8. The RPN had a logistic regression layer to ajust these
regions center (xcenter,ycenter), width and height to better fit the objects. The RPN
also has a classification layer that scores those regions in two classes: background
and foreground, called objectness score.

Usually, an amount of regions overlaps that same object, and the Non-Maximum
Suppression (NMS) is applied to avoid this redundancy. NMS ranks regions by their
objectness score and eliminates the ones that have an Intersection over Union (IoU)
larger than the threshold with a higher score region. After NMS, the top-N regions
sorted by score are outputted as proposals regions, also called RoI. The proposals
bounding boxed are defined by the adjusted center, width and height.

In the RPN training, the IoU, detailed on 3.5.2, between all proposals and ground
truths are used to select two groups of objects for training. The proposals with an
IoU>0.7 are considered foreground and those with IoU<0.3 are background, the pro-
posals that don’t fit in those criteria aren’t used on the RPN training. For the clas-
sification layer a mini batches randomly sample from those proposals are used. This

26

Figure 2.8 - Example of 6 anchors of a point in a feature map (gray) generated by the
combination of 2 scales (green and blue) and 3 aspect ratios.

SOURCE: Author’s production.

mini batch are built in a way to maintain a certain balance between the two classes
(background an foreground). For the logistic regression layer only the foreground
regions are used. The ground truths that have the highest IoU with a foreground
are used to calculate the spatial adjustments.

2.7.3 Region of interest pooling

The RoI pooling converts each proposal (which have arbitrarily size) into a fixed
size feature map. A fixed size is essential for the classifier, because the fully connect
layers on its structure requires fixed-size feature map (512×7×7) as input. First, the
feature map (from the base network) region that belongs to each RoI are cropped
and then resized to a fixed size feature map of 14×14×512 (w×h×d) by applying
a interpolation method (usually bi-linear). After that, a 2× 2 max pooling layer is
used to generate a fixed size feature map of 7× 7× 512 .

2.7.4 Region-based CNN

The R-CNN receives the fixed size feature map of each proposal and classifies each
of them in one of the desired classes or as a background and adjusts its bounding
box coordinates for each class. Two fully-connected layers are used in this part. One
output of this network is N+1 class scores for each bounding box that pass through
a softmax, where N is the total number of classes plus the background class. The

27

other output is 4N regression adjustments (∆xcenter ,∆ycenter ,∆width, ∆height) for each
bounding box. The background is added as a class, because there will be proposals
that don’t contain any desired object.

The NMS is also used in Region-based CNN to avoid the redundancy caused by
proposals with overlaps. The proposal must be grouped by class removing the back-
ground proposals, for then applying the NMS for each group of class. A threshold
for class score and a limit for the number of objects per class can be used.

The R-CNN training is similar to the RPN, but considering different possible classes.
The proposals with an IoU>0.5 with any ground truth are assigned to that ground
truth. Those with 0.1<IoU<0.5 are label as background and the ones that don’t
fit in these rules aren’t used on the training. This training focus on improving the
network to solve more doubtful cases. For the classification layer a mini batch random
sample from those proposals is used. This mini batch has about 25% of foreground
and 75% of background. For the regression is calculated for each class using only
the foregrounds assigned to the ground truth of that respective class.

2.7.4.1 Loss function

The Faster R-CNN have trainable layers on the pre-trained base CNN, RPN and
R-CNN. The training of the pre-trained base network is optional. It can improve the
network results but the training will spend more time. The RPN and R-CNN layers
use a multi-task loss function that joins the classification loss with the bounding-box
regression loss. Both use almost the same loss function, given by Equation 2.27, but
each one with their own numbers of classes. The RPN classes are only: foreground
and background.

L = 1
Ncls

∑
i

Lcls(pi, p∗i) + λ[p∗i ≥ 1] 1
Nreg

∑
i

Lreg(ti, t∗i) (2.27)

In Equation 2.27 the bounding box regions are compared with their respective
ground truth. The bounding box regions are indexed by i, which predicted score
label (for the ground truth class) is pi and the predicted vector representing its 4
bounding box coordinates is ti. The bounding box region respective ground truth
class is labeled as p∗i and is located by t∗i coordinates. Label 0 must be assigned for
class background. The expression [p∗i ≥ 1] gives 1 when the condition is valid and
0 otherwise, this implies that the regression is not computed when the predictions
are assigned as backgrounds. The classification loss Lcls is a cross-entropy over the

28

classes and the regression loss Lreg is the robust smooth L1 (GIRSHICK, 2015). Both
losses are normalized, respectively, by Ncls (batch size) and Nreg (the total number
of regions inputted on layer). These losses are combined by a weighted sum using
the λ parameter, which is capable to prioritize the classification over localization or
vice-versa. Ren et al. (2015) uses λ = 1 to equally weight the losses.

2.7.4.2 Applications

Object detection based on DL has been used to detect vehicles in UAV aerial im-
ages (AMMOUR et al., 2017; PÉREZ et al., 2014). Ammour et al. (2017) CNN-based
system outperforms the state-of-the-art methods on detecting and counting cars in
very high spatial resolution UAV images. This system takes small segments from
the UAV image, extracts features from these segments using an CNN and classify
the segments using a SVM classifier into two classes: car and no-car.

Faster R-CNN has been successfully used to detect vehicles on images of surveillance
cameras in urban areas (ZHANG et al., 2018) and of low-altitude UAV (XU et al., 2017).
Xu et al. (2017) show that Faster R-CNN can achieve promising car detection on
low-altitude UAV imagery under urban environment compared with other methods.
Xu et al. (2017) also show that Faster R-CNN holds great potential for car detection
in parking lots and that Faster R-CNN was robust to illumination changes and cars’
in-plane rotation.

29

3 MATERIALS AND METHODS

As mentioned in Chapter 1, the goal of this dissertation is to develop a system
based on DL capable of detecting people and vehicles on image captured by sensors
arranged in captive balloons. The main part of DL methods is the training step,
in which one of the most important aspects is the construction of an appropriate
database. This chapter starts with the description of the materials used in this work:
the sensors, the DL API and the database. Then, it describes the evaluation metrics
used and, in the end, explains the methodology used.

3.1 Image sensors

The database of images captured by captive balloons was provided by Altave Com-
pany. The aforementioned company uses captives balloons for continuous monitor-
ing of large areas. The current surveillance standard involves a person continuously
watching the video feed continuously to detect possible discrepancies. There is only
one camera arrangement in Altave’s captive balloons. This camera has two sensors:
one infrared and one visible. Table 3.1 describes the spectral bands and grid size
(pixels) of these sensors. The infrared sensor has two possible acquisition modes:
white hot and black hot, changing the hotter to cooler gray scale from white to black
or from black to white, respectively. The infrared acquisition mode is determined by
the operator. Figure 3.1 shows image samples for each sensor from Altave’s captive
balloons.

Table 3.1 - Sensors spectral bands and grid size (pixels).

Sensor Spectral Band Grid size (pixels)
Infrared 3.0 - 5.0 µm 640×480
Visible 0.4 - 0.7 µm 752×576

SOURCE: Adapted from Altave (2019).

31

Figure 3.1 - Samples of images from Altave’s captive balloons infrared and visible sensors,
respectively.

SOURCE: Altave (2019).

Altave image acquisition hardware can only provide videos from one sensor at a
time, which are not orthorectified. Therefore, when the visible sensor is selected,
the system outputs only RGB videos, and when the infrared sensor is selected, it
outputs only gray scale videos. Hence, it is impossible to construct a multi-band
image. This work uses 3-bands 8-bits color (0 to 255) images extracted from these
videos. The visible sensor provides RGB images and the infrared sensor provides
3-bands grayscale images, repeating the same data on the three channels.

Although the captive balloons are tethered in the ground, they have 6 degrees of
freedom. They can execute 3 rotations (roll, pitch and yaw) and 3 translations (x,
y and z). Because of the tether, these movements are limited, but are sufficient to
classify the aerostat as a non-fixed platform. In consequence, the images acquired
by their sensors are non-static.

The camera arranged in the captive balloon is able to pan, tilt and zoom. These
capabilities, combined with the balloon movements, generates a great variety of fields
of view (FOV), depending on the camera and the balloon position, what changes
depending on the wind direction and strength. Figure 3.2 shows an example of a
balloon FOV, normally off nadir because its nadir view only captures scenes close
to its ground base. These angular FOV and camera movements produce images
with objects in different scales and points of view, creating the need of a technology

32

capable to deal with these images particularities.

Figure 3.2 - Schematic that shows the captive balloon (in blue) tethered to the ground
and an example of a FOV captured by the camera sensor (in gray) arranged
in it. The angle α is measured between the nadir and balloon mooring cable.

SOURCE: Author’s production.

3.2 TensorFlow Object Detection API

This work was developed using open source tools, such as TensorFlow (ABADI et

al., 2016) and Python programming language. The main tool used to implement the
CNN object detection model was a TensorFlow Object Detection API (TF, 2019c),
which can create state-of-the-art neural networks for object detection proposals.
This API is an open source framework built on top of TensorFlow that simplifies
the construction, training and evaluation process for object detection models (TF,
2019c).

This framework was created by Huang et al. (2017) to evaluate the speed/accuracy
trade-off among the object detection models. The framework recreates the following
networks meta-architectures: SSD (LIU et al., 2016), Faster R-CNN (REN et al., 2015)
and R-FCN (DAI et al., 2016). The speed/accuracy trade-off on these three meta-
architectures models concludes that, in general, the SSD and R-FCN models are the
faster ones, while Faster R-CNN is the highest accuracy, but is slower (HUANG et al.,

33

2017).

This framework can perform the training, evaluation and testing steps on 3-band
images with any width and height for one of these models. It also allows the visu-
alization of the model loss function on the TensorBoard, during the training. There
are configurations files available for each model, with some parameters to be set.
Although, this framework simplifies the model building, it is limited by the param-
eters available on the configuration file, e.g.: the early stopping technique is not
implemented for Faster R-CNN model.

3.3 Computer

A dedicated computer is essential to run the training of object detectors CNN,
because it can reduce the training time from days to hours. In this work, the free
platform provided by Google Colaboratory (Colab) was used to train and run the
network. Colab provides a free Jupyter Notebook environment for every 12 hours.
The Colab version used in this work was configured with Python 3.6, TensorFlow
1.15 and the following hardware:

• GPU: Tesla K80 12 GB;

• CPU: single core Intel(R) Xeon(R) @ 2.30GHz;

• RAM: 12.5 GB;

• Disk: 310 GB.

3.4 Database

One of the most important tasks in DL training is the building of an appropriate
database. CNNs learn from the samples fed to them, so the samples must be generic
enough to cover all possibilities, but they also have to avoid ambiguity. Another
important feature for CNN training database is the balance among classes.

Two databases were constructed, one for each sensor described on Section 3.1 (visible
and infrared). This strategy was used because the acquisition hardware can’t capture
images from both sensor simultaneously. These databases have only two classes:
vehicle and person. The vehicle class includes cars, vans, trucks and buses. Bicycles
and motorcycles were not included into vehicle class because there were few samples
with these objects, and they are easily confused with the person class. The choice

34

to use a wide class, such as vehicle instead of using classes like car and truck, came
from the fact that car and trucks are very similar from some points of views, what
could cause some ambiguity in the model.

In this document, the term object refers to all objects from these two classes detected
on the images. It is important to notice that, in object detection problems, a unique
image can contain multiple objects from different classes, which may overlap.

Figure 3.3 shows the building process to generate a complete database. This process
was performed for the infrared and visible sensors separately. The inputs provided
by Altave were videos. The first step was to manually select frames from these videos
in a PNG (Portable Network Graphics) format.

Figure 3.3 - Database building process diagram.

SOURCE: Author’s production.

The ground truth information is generated by manually labeling each object on the
database images. The LabelImg (TZUTA LIN, 2019) tool was used to annotate the
bounding boxes on the images. It is a graphical open source image annotation tool,
based on Python and Qt. This tool supports two annotations formats: PASCAL
VOC and YOLO. In this work, the PASCAL VOC format was used to save the
annotations (labeled bounding boxes coordinates) as Extensible Markup Language
(XML) files.

The databases were randomly split into three datasets: Train, Eval and Test, re-
spectively, with 63%, 15% and 22% of images from the complete database. The
train dataset is used to fine-tune the network; the eval set to evaluate the model
during the fine-tune training, and to avoiding making the network too specialized

35

(overfitting); and the test is used for accuracy assessment. The TensorFlow Object
Detection API receives inputs on TFRecord format (DAT TRAN, 2018), which is a
simple record-oriented binary format supported by Tensorflow (TF, 2019a) contain-
ing the ground truth data and the associated images. Each dataset (Train, Eval
and Test) was converted to a TFRecord file. The open source Python scripts made
by Dat Tran (2018) were used to convert the XML annotations into CSV (Comma
Separated Values) files, and finally the CSV files together with the images generated
the TFRecord files.

As previously discussed, the database must cover all possible objects variety without
being ambiguous in a way to avoid overfitting. For this purpose, some criteria were
defined for the frame selection task:

• the objects must have enough details to be recognized by a human being
without considering the video features (such as speed) and context, e.g.:
a rectangular box moving fast in a highway is probably a vehicle, but it
must not be labeled as vehicle;

• the objects must have at least 32 pixels on width and height;

• the overlapped objects must be completely clear, one object can not be
used to find another;

• the repetition of very similar images must be avoided;

• the infrared sensor must have black hot and white hot samples; and

• the database must have objects on a variety of angles, zooms, points of
views, and noise.

A database following the above criteria was built from the videos provided by Altave.
Tables 3.2 and 3.3 contain a summary of the two databases built, one for the infrared
and other for the visible sensor. Each database contain about 700 images but the
visible sensor database is slightly greater because there were more visible sensor
videos.

36

Table 3.2 - Infrared database summary.

Dataset No Images Images No Vehicle No Person Vehicle Person
Train 410 63% 467 343 58% 42%
Eval 98 15% 116 62 65% 35%
Test 141 22% 165 136 55% 45%
Total 649 100% 583 343 63% 37%

SOURCE: Author’s production.

Table 3.3 - Visible database summary.

Dataset No Images Images No Vehicle No Person Vehicle Person
Train 456 63% 675 689 49% 51%
Eval 108 15% 212 81 72% 28%
Test 160 22% 294 146 67% 33%
Total 724 100% 887 689 56% 44%

SOURCE: Author’s production.

In the training process, it is important to keep the number of objects of each class
fed into the network approximately equal (balanced). Hence, the network should
not prioritize any class over the others. The captive balloon was placed close to a
highway. Therefore, the number of vehicle samples is greater than the number of
people samples. The data samples were randomly distributed in the datasets in a
way to ensure a reasonable balance on the training dataset, as seen on Tables 3.2
and 3.3.

3.5 Evaluation metrics

Evaluation metrics are used to measure the quality of the model. Since object de-
tection problems predict locations and classes of multiple objects in a unique image,
and both need to be evaluated, the common accuracy metric used in classification
problems can’t be applied in object detection tasks. Furthermore, object detectors
may take into account the background, which works as a class, but with some par-
ticularities. Even though the ground truth contains the background indirectly (all
the pixel not contained on the bounding boxes are considered as background), it is
impossible to count the number of background bounding boxes.

37

An important trade-off in object detection tasks is the quantity of ground truth
detected versus the quantity of background wrongly detected as an object. A metric
called mean Average Precision (mAP) was created to cover all these particularities
and to take into account this trade-off. There are some variations on mAP imple-
mentation. COCO mAP (LIN et al., 2014), PASCAL VOC mAP (EVERINGHAM et

al., 2010) and the confusion matrix are the main metrics used to evaluate an ob-
ject detector model. The COCO API (COMMON OBJECTS IN CONTEXT - COCO,
2018) provides the visualization of some evaluation metrics during the training. The
following sections describe the definitions used and the specifications of the mAP
metrics.

3.5.1 Ground truth

The foundation of an evaluation metric is the ground truth data that was used to
compare with predictions. The ground truth of a single image on the dataset is
composed by a bunch of objects, each one with two annotations: the class label and
the bounding box location (x, y, width and height). Figure 3.4 shows an example of
a ground truth image, the colors and labels on the image are just for visualization.

On Faster R-CNN networks, each predicted object has bounding box location and
a main class label together with its Confidence Score (CS). CS can be interpreted
as the probability of a class label assigned to the predicted object. A CS threshold
is used in evaluation metrics to eliminate predictions with lower CS. All the ground
truth objects are considered to have a 100% CS.

Figure 3.4 - Example of a ground truth image.

SOURCE: Author’s production.

38

3.5.2 Intersection over Union

A metric commonly used to determine the correctness of object location is given
by the ratio between the intersection and the union of two regions, also known as
IoU (Equation 3.1). IoU is a quality metric to evaluate the common area between
a ground truth bounding box (Bgth) and its corresponding predicted bounding box
(Bpred). IoU score ranges from 0 to 1, the closer the two boxes areas are, the higher
the IoU score.

IoU = area(Bpred ∩Bgth)
area(Bpred ∪Bgth)

= (3.1)

3.5.3 True Positive, False Positive and False Negative

In object detection tasks only the predictions with CS above a certain threshold
(T), CS ≥ TCS, are considered. The location of an object is considered correct if
IoU between the ground truth and its prediction is above a certain threshold (T),
IoU ≥ TIoU . More specifically, three detection results can arise from these thresholds:

• True Positive (TP), the prediction object has same class label and similar
location, in other words, CS ≥ TCS and IoU ≥ TIoU .

• False Positive (FP), the prediction object class is different from the ground
truth class (CS ≥ TCS for a wrong class) and similar location (IoU ≥
TIoU). This implies that the ground truth was miss classified. Another FP
occurs when CS ≥ TCS but IoU < TIoU . This implies that the algorithm
detected a background region on the image that does not belong to any
class.

• False Negative (FN), the ground truth sample is not detected, so it is
considered a background.

• True Negative (TN) refers to background object correctly detect, but since
there is no sample for background, it is not take into account.

39

It is possible to have multiple boxes detected for the same ground truth object. In
this case, the box with the highest IoU is considered a TP, while the remaining are
considered FP.

Figure 3.5 exemplifies TP, FP and FN. Actually, the FP example has one FP and
one FN, because as the blue box has an IoU lower than its threshold (thus being a
FP) and no object detected by the network matches the labeled one so it has a FN
on the ground truth vehicle.

Figure 3.5 - Examples of TP, FP and FN instances, from left to right. The green rectangles
are the ground truth object and the blue ones are the predictions, all boxes
sampled belong to vehicle class.

SOURCE: Author’s production.

3.5.4 Precision × recall

Precision, defined by Equation 3.2, measures the false positive rate, which is the
number of correct detections divided by all boxes detected. Precision represents
the model ability to identify relevant objects. Precision scores indicate the correct
prediction probability, ranging from 0 to 1. Higher scores imply that most detected
objects match the ground truth ones. Therefore, most positive predictions are, in
fact, correct.

Precision = TP

TP + FP
= all correct detections

all boxes detected (3.2)

Recall, defined by Equation 3.3, measures the false negative rate, which is the num-
ber of correct detections divided by all ground truth boxes. Recall represents the
model ability on finding relevant objects. Recall scores indicate the probability of

40

ground truth object being correctly detected, ranging from 0 to 1. Higher scores
imply that most ground truth objects were detected. Therefore most object labeled
were correctly detected.

Recall = TP

TP + FN
= all correct detections

all ground truth boxes (3.3)

There is an important trade-off between precision and recall metrics depending
on the CS and IoU thresholds. High CS and IoU thresholds increase the model
robustness on positive samples, but decreases the number of correct predictions. In
summary, when the FN increases the FP decreases, the recall get worse while the
precision improves.

In order to evaluate the performance of an object detector as the CS threshold
changes, a precision × recall curve is built for each object class. In this curve, the
recall constantly increases when the CS threshold decreases, while precision tends to
decrease. To avoid noise on this curve, the precision values for a certain recall level
(p(r)) are interpolated (pinterp(r)) for the maximum precision found for any recall
level r′ ≥ r, as in Equation 3.4. Figure 3.6 shows an example of a precision × recall
curve and its interpolation curve.

pinterp(r) = max
r′≥r

p(r′) (3.4)

Figure 3.6 - Example of a generic precision × recall curve (blue line) and its interpolation
curve (red line).

SOURCE: Adapted from Manning et al. (2009).

41

3.5.5 Mean Average Precision

Even though the precision × recall curve is useful to evaluate an object detector
model, it is not easy to compare models using a curve. In order to summarize this
curve in a single number, the area under its interpolation curve is estimated, resulting
in a measure called Average Precision (AP). AP is the averaged precision across all
recall values.

Thus, Equation 3.5 calculates the AP, where r1, r2, ..., rk are the recall levels in
ascending order. After calculating the AP, the mAP is simply the AP average over
all N model classes. Equation 3.6 shows the expression for mAP calculation. It is
important to notice that an IoU threshold must be chosen to calculate the regular
AP and, in consequence, the regular mAP.

AP =
k∑
i=1

(ri − ri−1)pinterp(ri) (3.5)

mAP = 1
N

N∑
n=1

APi (3.6)

The PASCAL VOC mAP sets IoU threshold on 0.5 and is named mAP@.50IOU .
COCO average mAP (in short COCO mAP) , in turn, sets different IoU thresholds,
starting at 0.5, going up to 0.95 with a 0.05 step, averaging the computed mAP values
afterwards. It is usually called mAP@[.50 : .05 : .95]IOU . Therefore, COCO mAP
not only averages AP over all classes but also over an set of IoU thresholds. There’s
also a strict mAP, that sets IoU threshold on 0.75 and is named mAP@.75IOU .
As the name suggests, higher IoU means a more demanding metric for assessing
location.

This work only used mAP@.50IOU and mAP@.75IOU to evaluate the model pre-
dictions as, on the final application, because the purposed application uses a fixed
IoU. A complete mAP like mAP@[.50 : .05 : .95]IOU would be a meaningful mea-
sure to evaluate a new object detector model, which is not this work’s goal.

3.5.6 Average Recall

In addition to precision-recall curve, there is the recall × IoU curve, which summa-
rizes the recall distribution across a range of IoU thresholds, usually from 0.5 up
to 1. COCO challenge (LIN et al., 2014) uses this curve to calculate a metric called

42

Average Recall (AR), which is computed by doubling the area under the recall ×
IoU curve, as shown in Equation 3.7. The AR is calculated for each class, then the
average over all classes is computed, but COCO keeps the same name for the av-
erage. AR is useful for evaluating the effectiveness of predicted detections and the
model localization accuracy. COCO uses three variations on AR metric by limiting
the maximum numbers of detections per image on 1, 10 and 100, respectively called
AR@1, AR@10 and AR@100.

AR = 2
∫ 1

0.5
recall(IoU)dIoU (3.7)

3.5.7 Confusion matrix

The traditional confusion matrix is also used in this work to evaluate and visualize
the model performance. A script provided by Santiago Valdarrama (2019) was used
to generate a confusion matrix, where:

• the rows represent the ground truth;

• the columns represent the predictions;

• each class has a row and column;

• the last row and column belongs to the background; and

• the last row and column element is always empty, because the background
ground truth doesn’t exist;

The background row measures the quantity of predicted objects that do not match
any ground truth object, thus not belonging to any ground truth class. The back-
ground column computes the quantity of ground truth objects (on each class), that
weren’t detected.

The confusion matrix eliminates predictions with CS lower than 0.5 and only con-
siders matches with IoU higher than 0.5. The confusion matrix can be computed for
each class separately to facilitate the computation of their corresponding the pre-
cision, recall and accuracy. The accuracy in object detection problems is estimated
by Equation 3.8, because it is not possible to estimate TN in this type of problem.
The confusion matrix and accuracy are the most meaningful evaluation measures

43

for security task, because in the final usage a fixed value of CS must be defined to
filter what actually is or not a threat (person or vehicle).

accuracy = TP

TP + FP + FN
(3.8)

3.6 Methodology

In the last years, neural networks have become the leading method for high quality
object detection (HUANG et al., 2017). Therefore, this work uses a methodology based
on CNNs to perform object detection. CNNs object detectors models are able to
locate multiple objects on an image and label them in one of the model classes. One
advantage of using DL techniques, such as CNN, is their robustness on images with
complex scenes, as long as they are properly trained. Considering the complexity
of scenes captured by sensors arranged in captive balloons, CNNs are the most
appropriate approach to perform object detection on those images. This approach
can learn the variety of angles, zooms, points of view and even noises presented on
the image database built on this work.

This work prioritizes accuracy over speed, because the model will be implemented
in a computer with GPU and high RAM capacity, as described in Section 3.3. For
this reason, the Faster R-CNN (REN et al., 2015) meta-architecture, which tends
to lead to slower but more accurate results (HUANG et al., 2017), was chosen and
implemented to perform object detection in captive balloons images.

3.6.1 Methodology process

The methodology applied to build a Faster R-CNN object detector using TensorFlow
Object Detection API is shown on Figure 3.7. It is based on the transfer learning from
a pre-trained model to a fine-tuning model, optimizing the network to work better
on samples like the ones held on the train dataset. Two networks were built, one for
each sensor, and they were designed to detect only two classes: person and vehicle.
This strategy was adopted because the acquisition hardware does not allow the
simultaneous use of multiple sensors. The same pre-trained model and configuration
file was used for both sensors, for the purpose of further comparison.

44

Figure 3.7 - Schematic showing the main steps of the methodology.

SOURCE: Author’s production.

The first step is the model training and validating process. The training step is the
most critical procedure. It is important to use the correct optimization parameters
and techniques to avoid overfitting, and the eval dataset is used for this task. In this
step, TensorFlow API receives as inputs: the train and eval datasets, the pre-trained
model, the labels file, and the configuration file.

The configuration file defines the model parameters, such as the number of classes,
the model architecture, and the optimization parameters. The model architecture
must be the same as the pre-trained model, and it is composed by the meta-
architecture (Fater R-CNN) and the feature extractor CNN model. The labels file
must enumerate all classes used by the final model, according to the labels defined
in the dataset.

The model starts with the pre-trained model weights and biases, then it is trained
by the train dataset samples. During the training, the eval dataset is used to verify
if the model is overfitting or not. After the training, the last state of the model
and its complete architecture are exported to a graph, process known as freezing
the trained model. The graph is the final model, and it is ready to predict multiple
objects locations and labels in input images. In order to test the model accuracy,
the test dataset is given to the graph and its predictions are compared with the test
dataset ground truth to generate the accuracy confusion matrix and other evaluation

45

metrics.

3.6.2 Fine-tuning

Faster R-CNN is a model with a large number of nodes and layers, what increases the
capacity of learning and leads to a more accurate model. In consequence, it requires
more computational capacity, and training large models from scratch is computa-
tionally expensive, may take many days even on powerful computers. Furthermore,
larger models requires large training datasets. Tiny datasets, like the ones used in
this work, quickly overfit in large models, because their capacity of learning is much
bigger than the dataset content. A dataset to train a model like this from scratch
must contain more than a thousand images.

In order to speed up training and avoid overfitting, pre-trained models were used as
initial state in the start of the training. The TensorFlow API (TF, 2019b) provides
some object detectors models trained on large public datasets, such as COCO (LIN
et al., 2014) and Kitti (GEIGER et al., 2013). All these datasets are composed by
RGB images or videos. A model trained on COCO dataset was used in this work,
because COCO has a large dataset with classes similar to the ones proposed, such as
person, car, truck and bus. Although it has classes like person and car, it can’t achieve
accurate results in the dataset built in this work because of its particularities. Hence,
the model must be fine-tuned to this particular dataset to improve the accuracy on
this type of data.

Table 3.4 contains the trade-off: speed versus quality of the main Faster R-CNN
architectures models available on TensorFlow API that were trained on COCO
dataset (TF, 2019b). The speed is the running time for a 600 × 600 image on a
GPU computer with an Nvidia GeForce GTX TITAN X. The quality is the COCO
mAP measure performed by the model on COCO validation subset. The model high-
lighted in this table (faster_rcnn_resnet101_coco) was chosen for this work because
it has a high accuracy and a fair speed; the next more accurate model has about 6
times more running time.

46

Table 3.4 - Trade-off: speed(ms) versus COCO mAP evaluation for Faster R-CNN archi-
tectures models trained on COCO dataset available on TensorFlow API.

Model Name Speed(ms) COCO mAP
faster_rcnn_inception_v2_coco 58 0.28
faster_rcnn_resnet50_coco 89 0.30
faster_rcnn_resnet101_coco 106 0.32
faster_rcnn_inception_resnet_v2_atrous_coco 620 0.37
faster_rcnn_nas 1833 0.43

SOURCE: Adapted from TF (2019b).

3.6.3 Configuration parameters

TensorFlow Object Detection API has some settings that may vary depending on
the model and are selected by the configuration of the input file on training. The
API adjusts the model nodes and layers based on these configurations - e.g.: by
setting 2 classes, it builds a model prepared to output the results for only two classes,
reducing the number of nodes on the last layer. The configuration parameters chosen
to perform the training on the Fater R-CNN meta-architecture were:

• number classes: 2;

• keep aspect ratio resizer: minimum dimension 400;

• feature extractor type: faster_rcnn_resnet101;

• aspect ratios: 0.5, 1.0 and 2.0;

• scales: 0.3, 0.5, 0.8 and 2.0;

• first stage max proposals: 300;

• use dropout: true;

• data augmentation options: random horizontal flip;

• batch size: 1; and

• learning rate: initial value 3× 10−4, then reduces to 3× 10−5 at step 7000
and finally reduces to 3× 10−6 at step 8000.

47

There are other configurations, but those were kept on default. The same parameters
were used for the infrared and visible training. As explained previously, the model
was built to work with only two classes: vehicle and person, so the parameter number
of classes must be 2.

Since, a pre-trained model (faster_rcnn_resnet101_coco) was used, the feature ex-
tractor type must have the same architecture, the faster_rcnn_resnet101 one, to
maintain consistency. In order to keep the image size and ratio, the minimum keep
aspect ratio resizer dimension was reduced to 400, since the infrared sensor height
is 480 and the visible is 576.

The anchors aspect ratios and scales were chosen based on the distribution of these
features on the databases objects. Ren et al. (2015) recomends the selection of three
or four values for each parameter. The scale parameters on this API are based on the
area of the base anchor (256×256 pixels). Figures 3.8 and 3.9 show the aspect ratio
distributions for all the objects on the infrared and visible datasets. Both aspect
ratio charts have the maximum frequency of about 0.5 and 1.0, and thus, these
values were selected. The aspect ratio 2.0 was selected, because it can better cover
the remaining data.

Figure 3.8 - Infrared database aspect ratio frequency for the person and vehicle classes.

SOURCE: Author’s production.

48

Figure 3.9 - Visible database aspect ratio frequency for the person and vehicle classes.

SOURCE: Author’s production.

Figures 3.10 and 3.11 show the scale distributions for all the objects on the infrared
and visible datasets. A higher scale is better than a small one, because the model
works better when the complete object is inside the anchor, after all, it helps the
detection of the presence of the object, thus the model can adjust its box location.
As both scale charts have peaks between 0.25 and 0.5 scale, the scales 0.3 and 0.5
were selected to cover this range of scale. Furthermore, the 0.8 and 2.0 scales were
also selected because they can better fit the remaining data.

Figure 3.10 - Infrared database scale frequency for the person and vehicle classes.

SOURCE: Author’s production.

49

Figure 3.11 - Visible database scale frequency for the person and vehicle classes.

SOURCE: Author’s production.

Huang et al. (2017) conclude by their experiments on the Faster R-CNN model that
the number of box proposals per image must be from 10 up to 300. Their tests
found that only 10 proposals can quickly lead to high accuracy, but higher values of
proposals lead to even more accurate models, taking more time to train, however.
As this work prioritizes accuracy over speed, the first stage max proposals was set
to 300.

The training of large CNN models with small datasets can easily lead to overfitting
the model. There are some techniques used to avoid it, such as dropout, data aug-
mentation, and early stopping. Although TensorFlow Object Detection API does
not have early stopping technique implemented, the loss, mAP, and AR curves of
the eval dataset were analyzed during training with the TensorBoard platform to
manually stop the training in case the model overfits.

TensorFlow Object Detection API enables the use of dropout and data augmen-
tation, these approaches were applied during the training to improve the model
learning, while avoid overfitting. Only the random horizontal flip option was se-
lected for data augmentation, because the other options modify the image spectral
properties or crop the objects, which could generate inappropriate data by losing
the main object feature.

50

The default configurations for Faster R-CNN uses 0.9 momentum and stochastic
gradient descent with mini-batches of size 1, which are the better configurations for
training this model, thus they were kept. A batch size 1 could seem small, but it is
not because a single image has multiple objects with different sizes. Furthermore,
the existence of multiple objects makes just batch size 1 to use high loads of memory,
being another reason to keep batch size on 1.

Even thought the pre-trained model had objects in distinct points of view from
the visible and infrared datasets, it had classes such as car, truck, and person, that
are very similar to the classes proposed in this work (person and vehicle). Thus, the
model overfits in fewer steps, under 25000. The recommended values of learning rate
were kept (3× 10−4, 3× 10−5 and 3× 10−6), but the steps were changed to make a
better fit. Therefore, the model starts with learning rate on 3×10−4, reduces at step
7000, because the network starts stabilizing, and reduces again at step 8000, because
at this point the network just need small adjustments to optimize the predictions
without overfitting.

51

4 RESULTS AND DISCUSSIONS

This chapter presents the results and discussions for the two trained networks: the
one with the infrared database (infrared network) and the other with the visible
database (visible network). For each network we discuss the loss function behavior
during training, the evaluation metrics during training, and the final results achieved.
Finally, some images are shown in order to view and discuss the results achieved. In
the end, there is a final discussion comparing both networks.

All the curves generated during training were smoothed by a TensorBoard de-
fault smooth function with 0.6 weight parameter. This function is an exponentially
weighted moving average, essential to reduce the oscillatory behavior in a way to
observe the data overall trend, which helps the search for the optimal training step.
Equation 4.1 gives the smooth output vector ([s0, s1, ..., sn]) values for a input vector
[x0, x1, ..., xn] for a w weight parameter.

st =

x0, t = 0

w × st−1 + (1− w)× xt, t > 0
(4.1)

4.1 Infrared network

4.1.1 Loss function

A Faster R-CNN model was trained on TensorFlow Object Detection API according
to the methodology explained on section 3.6.1 using only the infrared database. The
model was trained up to 20k (20× 103) steps, what takes 1h and 35min. Figure 4.1
shows the loss for the eval and train datasets during the training, where the train
loss was taken every 100 steps and the eval loss was taken every 1000 steps. As can
be observed in Figure 4.1, the loss rapidly converges, as the training starts from a
pre-trained model with similar classes. The oscillatory behavior on the training loss
is a consequence of batch size 1.

Figure 4.2 also shows the loss, but only for eval values from step 8k to the end (step
20k) in a large scale. On this scale it is clearly seen, in the smoothed curve, that the
eval loss tends to decrease up to step 16k, so the training on this step was selected
to build the final model.

53

Figure 4.1 - Infrared network eval and train dataset losses.

SOURCE: Author’s production.

Figure 4.2 - Infrared network eval loss in large scale from steps: 8k − 20k.

SOURCE: Author’s production.

54

4.1.2 Evaluation metrics

The infrared network eval dataset mAP (Mean Average Precision) behavior during
training is presented on Figure 4.3. ThemAP@.50IOU curve peaks on step 13k with
mAP of 0.963, then stabilizes at about step 16k around mAP 0.956, so it decreases
0.7% from the peak. The mAP@.75IOU , in turn, presents a small growth until step
20k, where it has mAP 0.781, and on step 16k it has mAP 0.777, so it increases by
0.4%.

Figure 4.3 - Infrared network eval dataset mAP behavior during training.

On the left, mAP@.50IOU ; on the right, mAP@.75IOU .
SOURCE: Author’s production.

The infrared network eval dataset AR (Average Recall) behavior during training is
presented on Figure 4.4. The AR@1 curve stabilizes around step 16k around AR
0.494. The AR@10 curve presents a small growth up to step 20k, where it has AR
0.691, and on step 16k it has AR 0.690, so it increases on 0.1%. The AR@100 curve
also stabilizes at about step 16k around AR 0.706.

55

Figure 4.4 - Infrared network eval dataset AR behavior during training.

On the top left, AR@1; on the top right, AR@10; on the bottom center, AR@100.
SOURCE: Author’s production.

All these curves present the expected behavior, since the AR starts very small and
tends to stabilize during training. Their analysis show that any step after 13k rep-
resents a suitable trained model, and the steps 13k, 16k and 20k show the best per-
formance on for each curve, respectively. Therefore, the choice of the model trained
until step 16k, based on the loss curve and explained on Section 4.1.1, is reinforced
by mAP and AR curves as the optimal number of steps.

As previously explained, the training on step 16k was chosen to build the final
infrared network, which was exported to a graph. The results achieved by this graph
on the infrared datasets are shown on Tables 4.1 through 4.7. As expected, Tables
4.1 and 4.2 show that the infrared train dataset metrics are better than the others, as
the model was fitted on it. Furthermore, the eval dataset performed better than the
test dataset, even though they are close. This is also expected, since the eval dataset

56

is used as reference to choose the best training step. Both mAP metrics reached high
performance, being mAP@.50IOU metric the highest one, as expected, because it
has a lower IoU. It reaches 0.940 mAP, which is very close to the maximum value
(1.0). Therefore, the mAP@.50IOU demonstrates that the model got an excellent
performance on object detection.

Table 4.1 - Infrared database mAP metrics.

mAP@.50IOU mAP@.75IOU
Train dataset 0.994 0.984
Eval dataset 0.956 0.777
Test dataset 0.940 0.718

SOURCE: Author’s production.

The AR metrics reached by the model (Table 4.2) indicate that the model predictions
were accurate on classification and localization. The AR@100 metric was the highest
AR, reaching 0.706 AR.

Table 4.2 - Infrared database AR metrics.

AR@1 AR@10 AR@100
Train dataset 0.561 0.917 0.925
Eval dataset 0.494 0.690 0.706
Test dataset 0.411 0.688 0.696

SOURCE: Author’s production.

Tables 4.3, 4.4 and 4.5 contain the confusion matrix (considering TCS=0.50 and
TIOU=0.50) obtained on the infrared datasets for the background and classes: vehi-
cle and person. The train dataset presented 96.2% of accuracy, which is expected
because the model learning was based on it. The eval and test datasets reach, re-
spectively, 85.3% and 87.1% of accuracy meaning that the model presented a high
performance. Usually, the eval dataset presents a better result than the test one,
but the opposite is also possible.

57

Table 4.3 - Infrared train dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 460 0 7
Person 0 343 0

Background 21 4 —

SOURCE: Author’s production.

Table 4.4 - Infrared eval dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 109 0 7
Person 0 60 2

Background 16 4 —

SOURCE: Author’s production.

The test dataset confusion matrix shows that the model correctly detected most of
the vehicle and person objects, only failing on 9 vehicles and 8 people. Furthermore,
16 objects were incorrectly detected as vehicle and 9 as person. Still, the model was
able to achieve 87.1% accuracy, which proves its high performance.

Table 4.5 - Infrared test dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 156 0 9
Person 1 128 7

Background 16 9 —

SOURCE: Author’s production.

58

Tables 4.6 and 4.7 also contains the test dataset confusion matrix, but for each class
separately. In these matrices, the predictions that were wrong about the class are
considered background. These matrices provide a clearer view of each class perfor-
mance. So, the model achieves accuracy of 86.2% for vehicle and 88.3% for person
class. This result proves that the model present high accuracy on both classes, be-
ing a little better for detecting person than vehicle. This probably happens because
person objects in infrared images contrast with the background due to its higher
temperature. There are also much more types of vehicle objects in a wider range of
angles of view on the database, making it hard for the network to find a pattern.

Table 4.6 - Infrared test dataset confusion matrix for background and vehicle class.

Predicted
Vehicle Background

Ground
truth

Vehicle 156 9
Background 16 —

SOURCE: Author’s production.

Table 4.7 - Infrared test dataset confusion matrix for background and person class.

Predicted
Person Background

Ground
truth

Person 128 8
Background 9 —

SOURCE: Author’s production.

4.1.3 Images

This section presents some examples of images from the infrared test dataset with
their respective predicted objects to provide a visualization of the results achieved
by the trained infrared network. The images showed in this chapter are from the
test dataset, same used on the confusion matrix. Therefore, for all images analysis
TCS=0.50 and TIOU=0.50 were used to define if an object was correctly detected or

59

not. The images are presented in two sections: Section 4.1.3.1 only contains images
in which all objects were correctly detected and Section 4.1.3.2 contains images with
at least one mistake. In all images, yellow and green boxes represent, respectively,
person and vehicle objects predicted by the network. Blue and purple boxes, in turn,
represent, respectively, the ground truth of person and vehicle objects not predicted
by the network. It is worth mentioning that just the ground truth that helps the
visualization were drawn on the images.

4.1.3.1 Correct detections

Figure 4.5 presents some examples of images with person objects in a variety of
angles of view and positions. These correctly predicted objects demonstrate the
high performance achieved by the network on detecting person objects.

Figure 4.5 - Correct detection examples of infrared images with person.

SOURCE: Author’s production.

60

Figure 4.6 presents some examples of images with vehicle objects in a variety of
angles of view and positions. All these objects correctly predicted demonstrates the
high performance achieved by the network on detecting vehicle objects.

Figure 4.6 - Correct detection examples of infrared images with vehicle.

SOURCE: Author’s production.

Figure 4.7 presents some examples of images with objects from vehicle class like
buses and trucks in distinct points of view correctly detected. These objects correctly
predicted demonstrate the high performance achieved by the network in detecting
a variety of types of vehicles, with distinct shapes and points of view.

61

Figure 4.7 - Correct detection examples of infrared images with truck and bus.

Object from vehicle class like bus (left) and trucks (right). Logos were blurred, just for
visualization.

SOURCE: Author’s production.

Figure 4.8 presents some examples of images that contain multiples objects. This
figure demonstrates that the network can detect multiple objects in an image, in-
cluding overlapped object boxes. The network can deal with overlapping bounding
boxes, as long as the objects are not hiding most of the other.

Figure 4.8 - Correct detection examples of infrared images with multiple objects.

SOURCE: Author’s production.

62

Figure 4.9 presents some examples of images that contain vehicles in distinct sizes.
This Figure suggests that, as intended, the network is able to detect objects in a
variety of sizes, from small (left) to medium (right) and even the large (bottom) ones.
The wide range of anchor sizes chosen in the model configuration covers almost all
object sizes, contributing to these positives results.

Figure 4.9 - Correct detection examples of infrared images with very distinct vehicle scales.

Vehicles on a variety of sizes: small (top left), medium (top right) and large (bottom
center).

SOURCE: Author’s production.

Figure 4.10 presents some examples of images with noisy objects. Therefore, this
Figure evidences that, as intended, the network is able to detect objects with some
noise, like the ones caused by the balloon fabric overlap and the camera motion.

63

Figure 4.10 - Correct detection examples of infrared images with noise.

Vehicles with some noise caused by the balloon fabric overlap (left) and the camera motion
(right).

SOURCE: Author’s production.

Figure 4.11 presents some examples of infrared images in white hot and black hot
modes. Thus, this Figure demonstrates that the network is able to detect objects in
both infrared modes, as proposed.

Figure 4.11 - Correct detection examples of infrared images with white hot (left) and black
hot modes (right).

SOURCE: Author’s production.

64

Figure 4.12 demonstrates the network ability to detect partially hidden objects, like
the vehicle on this image, which was partially covered by a tree. Partially hidden
objects can be correctly detected by the network, as long as their main features
can be seen. After all, the network doesn’t maintain any information from previous
images.

Figure 4.12 - Correct detection example of infrared images with a partially hidden vehicle.

SOURCE: Author’s production.

4.1.3.2 Mistakes

Figure 4.13 shows person objects present in the ground truth that the network wasn’t
capable to detect. The person objects in both images had less contrast, making them
less apparent in this context, thus their main features were difficult to see. This
impacts the network detection, affecting these mistakes.

65

Figure 4.13 - Mistaken detection examples of infrared images with undetected person.

On the left, two vehicles correctly detected and person not detected, in blue. On the right,
a car correctly detected and two person objects not detected, in blue.

SOURCE: Author’s production.

Figure 4.14 shows vehicle objects present in the ground truth that the network was
not capable of detecting. The vehicle on Figure 4.14 (left) had a high brightness
on the wheels, what has an effect similar to hiding the wheels. The vehicle on
Figure 4.14 (right) is partially hidden by the people in front of it, and all of its
wheels are covered. The network is not so robust to hidden objects, mainly when
important object features, like the wheels, are hidden. Thus, this limitation leads to
the mistakes.

66

Figure 4.14 - Mistaken detection examples of infrared images with undetected vehicle.

On the left, a person correctly detected and vehicle not detected (in purple). On the right,
two person objects and a vehicle correctly detected and a vehicle, in purple, not detected.
Logos were blurred, just for visualization.

SOURCE: Author’s production.

Figure 4.15 shows some incorrect predictions, on which part of the background was
detected as person objects. The trash can and the traffic sign were wrongly detected
as person objects, as they present some features, probably related to their shape,
that make the network believe they are person objects. Their shape has some features
that resembles head and arms, what could lead to the mistakes. To avoid this type
of mistakes, more images with objects that resemble person objects are essential to
provide the network enough information to learn features that only belong to person.

67

Figure 4.15 - Mistaken detection examples of infrared images with background detected
as person.

On the left, a person correctly detected and a trash can detected as a person. On the right,
a vehicle correctly detected and a traffic sign detected as a person.

SOURCE: Author’s production.

Figure 4.16 shows some incorrect predictions where parts of the background were
detected as vehicles. The trash bag and the two motorcycles, wrongly detected as
vehicles, present some features that make the network believe they are vehicle. The
motorcycle wheels have the same features as the vehicle ones, what could lead to
the mistake. To avoid this, more images with vehicles objects and with objects that
there aren’t vehicles but could resemble them are essential to provide the network
enough information to enable it to learn the features that only belong to vehicle.

68

Figure 4.16 - Mistaken detection examples of infrared images with background detected
as vehicle.

On the left, a person correctly detected and a trash bag detect as a vehicle. On the right,
some vehicles correctly detected and two motorcycles detected as a vehicle.

SOURCE: Author’s production.

Figure 4.17 shows an image where a person was labeled as a vehicle. As seen in the
confusion matrix (Table 4.5), this was the sole example where the network made
the mistake of classifying a person as a vehicle. There aren’t mistakes with a vehicle
detected as person in the test dataset. The person wrongly detected on this image
has its legs close and is carrying something that makes the detection difficult, even
for a human being to identify it as a person (without considering the overall context).

69

Figure 4.17 - Mistaken detection of infrared images with a person object predicted as a
vehicle.

On the left, original image. On the right, some people correctly detected but one person
detected as a vehicle.

SOURCE: Author’s production.

Figure 4.18 (left) shows two person objects detected as a single person object. Figure
4.18 (right) shows a vehicle (truck) detected as two vehicles, the truck front part was
detected as one vehicle and its back part as another one. This type of error is not
a relevant problem for the final application, although they appear in the accuracy
measure, because it is much more important to detect the objects than to locate or
count them.

70

Figure 4.18 - Mistaken detection examples of infrared images with ground truths joined
as one object or split in two objects.

On the left, two person objects joined in just one. On the right, a vehicle (truck) split into
two objects.

SOURCE: Author’s production.

4.2 Visible network

4.2.1 Loss function

A Faster R-CNN model was trained on TensorFlow Object Detection API accord-
ing to the methodology process explained on section 3.6.1 using only the visible
database. The model was trained up to step 25k, which takes 2h and 03min. Fig-
ure 4.19 shows the loss for the eval and train datasets during training, where the
train loss was taken every 100 steps and the eval loss was taken every 1000 steps.
As can be observed in Figure 4.19, the loss rapidly converges as the training starts
from a pre-trained model with similar classes and the same spectral bands (RGB
images). The oscillatory behavior on the training loss is a consequence of batch size
1.

Figure 4.20 also shows the loss, but only for eval values from step 10k up to the end
(step 25k) in a larger scale. On this scale it is clearly seen, in the smoothed curve,
that the eval loss tends to decrease up to step 15k, so the training on this step was
selected to build the final model to prevent overfitting. It should be noted that the
values plotted in solid colors are the smoothed curve, while the transparent colors
represent the original values. The smoothed curve uses TensorBoard default smooth

71

function, which sets the smooth parameter to 0.6 to reduce the oscillatory behavior,
helping the search for the optimal step.

Figure 4.19 - Visible network eval and train dataset losses.

SOURCE: Author’s production.

Figure 4.20 - Visible network eval loss in large scale from steps: 10k − 25k.

SOURCE: Author’s production.

72

4.2.2 Evaluation metrics

The visible network eval dataset mAP behavior during training is presented on
Figure 4.21. The mAP@.50IOU curve stabilizes from step 13k up to the end (25k)
at mAP 0.865. The mAP@.75IOU stabilizes from step 15k up to 19k at mAP 0.606,
and then decreases. ThemAP@.75IOU curve also presents a little peak on step 19k,
which has a mAP of 0.608, so it increases by 0.3%.

Figure 4.21 - Visible network eval dataset mAP behavior during training.

On the left, mAP@.50IOU ; on the right, mAP@.75IOU .
SOURCE: Author’s production.

The visible network eval dataset AR behavior during training is presented on Fig-
ure 4.22. The AR@1 curve stabilizes from step 13k up to 16k around AR 0.310, and
then begins to decrease up to the end (25k). The AR@10 curve presents a similar
behavior, stabilizing from step 13k up to 19k around AR 0.599, and then has a
small reduction up the end (25k). The AR@100 also presents a similar behavior,
stabilizing from step 12k up to 17k around AR 0.618, and then the curve starts to
decrease.

73

Figure 4.22 - Visible network eval dataset AR behavior during training.

Top left, AR@1; top right, AR@10; bottom center, AR@100.
SOURCE: Author’s production.

All these curves present the expected behavior, starting very small, tending to sta-
bilize during training and tend to decrease afterwards. This decrease means that the
overfitting is making the network so specialized on the training data, that it loses
its ability to generalize. Their analysis show that any step between 13k and 19k
represent suitable trained models. Therefore, the choice of the model trained up to
step 15k, based on the loss curve and explained on Section 4.2.1, is in agreement
with the mAP and AR curves.

As previously explained, the train on step 15k was chosen to build the final visi-
ble network, thus it was exported to a graph. The results achieved by this graph
on the visible datasets are shown on Tables 4.8 through 4.14. As expected, Ta-
bles 4.8 and 4.9 show that the visible train dataset metrics are better than the

74

others, as the model was fitted to it. The test dataset performed better than the
eval dataset (by a short margin) what is not common but is possible, given that the
dataset was randomly generated. Both mAP metrics reached high performance, be-
ing mAP@.50IOU metric the highest one, as expected, because it has a lower IoU.
It reaches 0.933 mAP, which is very close to the maximum value (1.0). Therefore,
the mAP@.50IOU demonstrates that the model got an excellent performance on
object detection.

Table 4.8 - Visible database mAP metrics.

mAP@.50IOU mAP@.75IOU

Train dataset 0.990 0.968
Eval dataset 0.865 0.606
Test dataset 0.933 0.692

SOURCE: Author’s production.

The AR metrics reached by the model, Table 4.9, indicate that the model predictions
were accurate on classification and localization. The AR@100 metric was the highest
AR, reaching 0.678 AR.

Table 4.9 - Visible database AR metrics.

AR@1 AR@10 AR@100

Train dataset 0.353 0.855 0.895
Eval dataset 0.310 0.599 0.618
Test dataset 0.317 0.658 0.678

SOURCE: Author’s production.

Tables 4.10, 4.11 and 4.12 contain the confusion matrix (considering TCS=0.50 and
TIOU=0.50) obtained on the visible datasets for the background and classes: vehi-
cle and person. The train dataset presented 95.8% of accuracy, which is expected
because the model learning was based on it. The eval and test datasets reach, re-

75

spectively, 81.6% and 86.1%, of accuracy meaning that the model presented a high
performance. Normally, the eval dataset present a better result than the test one,
but the opposite is also possible.

Table 4.10 - Visible train dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 664 2 9
Person 0 687 2

Background 30 16 —

SOURCE: Author’s production.

Table 4.11 - Visible eval dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 194 2 16
Person 3 68 10

Background 16 12 —

SOURCE: Author’s production.

The test dataset confusion matrix shows that the model correctly detected most of
the vehicle and person objects, only failing on 14 vehicles and 10 people. Furthermore,
21 objects were incorrectly detected as vehicle and 22 as person. Still, the model was
able to achieve 86.1% accuracy, which proves its high performance.

76

Table 4.12 - Visible test dataset confusion matrix for background and classes: vehicle and
person.

Predicted
Vehicle Person Background

Ground
truth

Vehicle 280 0 14
Person 1 136 9

Background 21 22 —

SOURCE: Author’s production.

Tables 4.13 and 4.14 also contain the test dataset confusion matrix, but for each
class separately. In these matrices, the predictions that were wrong about the class
are considered background. These matrices provide a clearer view of each class per-
formance. So, the model achieves accuracy of 88.9% for vehicle and 81.0% for person
class. This result proves that the model present high accuracy on both classes, being
better for detecting vehicle than person. This happens because people seen from a
long distance on RGB images aren’t as clearly defined as vehicles.

Table 4.13 - Visible test dataset confusion matrix for background and vehicle class.

Predicted
Vehicle Background

Ground
truth

Vehicle 280 14
Background 21 —

SOURCE: Author’s production.

Table 4.14 - Visible test dataset confusion matrix for background and person class.

Predicted
Person Background

Ground
truth

Person 136 10
Background 22 —

SOURCE: Author’s production.

77

4.2.3 Images

In order to provide a visualization of the results achieved by the visible network
built, this section presents some examples of images from the visible test dataset
with their respective predicted objects. The images showed in this chapter are from
the test dataset, same used on the confusion matrix. Therefore, for all images analysis
TCS=0.50 and TIOU=0.50 were used to define if an object was correctly detected or
not. The images are presented in two sections: Section 4.2.3.1 only contains images
in which all objects were correctly detected and Section 4.2.3.2 contains images with
at least one mistake. In all images, yellow and green boxes represent, respectively,
person and vehicle objects predicted by the built network. Blue and purple boxes,
in turn, represent the ground truth of person and vehicle objects not predicted by
the network, respectively. It is worth mentioning that just the ground truth that
helped the visualization were drawn on the images.

4.2.3.1 Correct detections

Figure 4.23 presents some examples of images with person objects in a variety of
angles of view and position. All these objects correctly predicted demonstrate the
high performance achieved by the network on detecting person objects.

78

Figure 4.23 - Correct detection examples of visible images with person.

For privacy’s sake, faces were blurred, just for visualization.
SOURCE: Author’s production.

Figure 4.24 presents some examples of images with vehicle objects in a variety of
angles of view and position. All these objects correctly predicted demonstrates the
high performance achieved by the network on detecting vehicle objects.

79

Figure 4.24 - Correct detection examples of visible images with vehicle.

SOURCE: Author’s production.

Figure 4.24 and 4.25 present some examples of images with objects from vehicle like
bus and trucks in distinct points of view correctly detected. This demonstrates the
high performance achieved by the network on detecting a variety of types of vehicles,
with distinct shapes and points of view.

80

Figure 4.25 - Correct detection examples of visible images with vehicles, such as truck and
bus.

Object from vehicle class like bus (top left) and trucks (top right and bottom center).

SOURCE: Author’s production.

Figure 4.26 presents some examples of images that contain multiples objects. This
Figure demonstrates that the network is able to detect multiple objects in an image,
including overlapped on objects boxes. The network can deal with overlapping on
bounding boxes, as long as the objects are not hiding a significant part of the other.

81

Figure 4.26 - Correct detection examples of visible images with multiple objects.

SOURCE: Author’s production.

Figure 4.27 presents some examples of images that contain vehicles in distinct sizes.
This Figure proves that, as intended, the network is able to detect objects in a
variety of sizes, from small (left) to medium (right) and even the larger (bottom)
ones. The wide range of anchor sizes chosen in the model configuration, able to cover
almost all objects sizes, directly impacts on these positives results.

82

Figure 4.27 - Correct detection examples of visible images with very distinct vehicle scales.

Vehicles on a variety of sizes: small (top left), medium (top right) and large (bottom
center).

SOURCE: Author’s production.

Figure 4.28 presents some examples of images with some noisy objects. Therefore,
this Figure evidences that, as intended, the network is able to detect objects with
some noise, like the ones caused by the smooth camera movements, the balloon
fabric overlap and fog on the environment.

83

Figure 4.28 - Correct detection examples of visible images with noisy.

Vehicles with some noise caused by: the smooth camera movements (top left), the balloon
fabric overlap (top right) and fog on the environment (bottom center).

SOURCE: Author’s production.

Figure 4.29 demonstrates the network ability to detect partially hidden objects, like
the vehicle (bus) in this image, which was partially outside of the camera field of
view. Partially hidden objects can be correctly detected by the network, as long as
their main features can still be seen. After all, the network does not maintain any
information from previous images.

84

Figure 4.29 - Correct detection example of visible images with partially hidden vehicle.

SOURCE: Author’s production.

4.2.3.2 Mistakes

Figure 4.30 shows person objects present in the ground truth that the network could
not detect. The person objects in both images were very small and in positions that
should be difficult even for a human to recognize. The person on Figure 4.30 (right)
was walking on a colored ground that did not contrast with its clothes, making it
less apparent in this context. Complex background, like this one, compromises the
quality of network predictions, influencing this type of mistakes.

85

Figure 4.30 - Mistaken detection examples of visible images with undetected person.

A person not detected (in blue) on each image.
SOURCE: Author’s production.

Figure 4.31 shows vehicle objects present in the ground truth that the network
wasn’t capable to detect. The vehicle on Figure 4.31 (left) is a bus seen in a small
scale due to the distance, and there is a small fence and a light pole on in front of
it, characteristics that make the vehicle harder to detect. The vehicle on Figure 4.31
(right) presents a blur noise that the network has difficulties to capture the main
features, leading to a mistake. These images show that, even though the network is
able to detect objects with noise, it has some limitations on dealing with it.

86

Figure 4.31 - Mistaken detection examples of visible images with undetected vehicle.

On the left, a vehicle (bus) not detected (in purple). On the right, three vehicle correctly
detected and a vehicle (truck), in purple, not detected.

SOURCE: Author’s production.

Figure 4.32 shows some incorrect predictions, on which part of the background was
detected as person objects. The person reflection in the glass and the traffic sign
were wrongly detected as person objects. They present some features that make the
network believe they are of the person class. The reflection on the glass, Figure 4.32
(left), is very similar to a real person, thus it is very difficult for the network to
distinguish it from the real one. The traffic sign, in turn, has some features that
resembles head and arms that could lead to the mistake. To avoid this kind of
mistakes, more images with objects like person objects and others that resemble
people are essential to provide the network enough information to enable it to learn
the features that only belong to person.

87

Figure 4.32 - Mistaken detection examples of visible images with background detected as
person.

On the left, four person objects correctly detected and a person reflection in the glass
wrongly detected as a person. On the right, three vehicles correctly detected and a traffic
sign detected as a person. Logos were blurred, just for visualization.

SOURCE: Author’s production.

Figure 4.33 shows some incorrect predictions where parts of the background were
detected as vehicles. The box and bus stop, wrongly detected as vehicles, present
some features that make the network believe they are vehicles. The bus stop on
Figure 4.33 (right) is similar to a semi-trailer and could lead to the mistake. To avoid
this kind of mistakes, more images with vehicles objects and others that resemble
vehicle are essential to provide the network enough information to enable it to learn
the features that only belong to vehicle.

88

Figure 4.33 - Mistaken detection examples of visible images with background detected as
vehicle.

On the left, a person correctly detected and a box detect as a vehicle. On the right, some
vehicles correctly detected, a vehicle not detected and a bus stop detected as a vehicle.

SOURCE: Author’s production.

Figure 4.34 shows the image in which a person was predicted as a vehicle. As shown
in the confusion matrix (Table 4.12), this was the sole example where the network
makes the mistake of detecting a person as a vehicle - there are no mistakes with a
vehicle detected as person in the test dataset. This is a very complex scene, being
difficult even for humans to perfectly locate the objects box boundaries. The back-
ground detected as a person actually had combination of arms, legs and head from
three people. The person predicted as vehicle, in turn, actually comprises of two
chairs with people seated on them. Therefore, although according to the IoU crite-
rion it was considered a person predicted as vehicle, by visual inspection it should
be considered a background detected as vehicle.

89

Figure 4.34 - Mistaken detection of visible images with a person object predicted as a
vehicle.

On the left, original image. On the right, four people correctly detected, one background
deteced as a person and two chairs detected as a vehicle that had IoU> 0.50 with a
person ground truth, therefore they account as a person wrongly detected as a vehicle.
For privacy’s sake, faces were blurred, , just for visualization.

SOURCE: Author’s production.

Figure 4.35 (left) shows two people detected as just one, so they were joined in a
single person object. Figure 4.35 (right) shows a vehicle (truck) detected as two
vehicles, the truck front part was detected as one vehicle and its semi-trailer as
another one. This type of error is not a problem for the final application, although
they appear in the accuracy calculation, because it is much more important to detect
the objects than to locate or count them.

90

Figure 4.35 - Mistaken detection examples of visible images with ground truths joined as
one object or split into two objects.

On the left, two person objects joined in just one and some vehicles correctly detected. On
the right, a vehicle (truck) split into two vehicles and a vehicle(truck) correctly detected.

SOURCE: Author’s production.

4.3 Comparison

The comparison between these networks shows that the infrared one presents a
better performance on person class, while the visible fares better on vehicle class, as
seen in Figure 4.36. The better performance on person objects in infrared happens
because person contrasts with the background on infrared images due to the high
natural temperature of the body, while in visible remote sensing images they may
have low contrast with the background, specially if the background colors match
the clothes colors. The marginally higher performance on vehicle objects in visible
probably occurs because vehicles are, in general, on very distinct surfaces (e.g.:
asphalt, grass or dirty roads), with different colors compared to the car.

The overall (total) accuracy of both networks were similar, being the difference of
only 1.0%. A small difference like that could vary by a simple addition of new images
on the train and test datasets or even by a new random split in the building of the
database. Therefore, the accuracy difference wasn’t big enough to conclude which
network would perform better on the final application.

In general, both the infrared and visible networks achieved high performance on their

91

respective test dataset. The networks take about 0.2 seconds to detected objects on
a new image. Thus, they can run at about 5 frames per second, which is enough for
real-time monitoring of large areas to avoid possible threats.

Figure 4.36 - Comparison of the test dataset accuracy between the infrared and visible
networks.

SOURCE: Author’s production.

92

5 CONCLUSIONS

This work developed a system based on DL capable of detecting people and vehi-
cles (possible threats) with remote sensing images from infrared and visible sensors
arranged in captive balloons. The purpose of this system was to help humans make
site surveillance by continuously monitoring large courtyard areas. This work used
videos provided by Altave Company, which are obtained from their captive balloon
system. The image acquisition hardware can only provide videos from one sensor
each time.

The DL technique used for object detectors was based on CNN, more specifically
Faster R-CNN. The strategy used in this work was to train two networks, one for
each sensor (infrared and visible). Hence, two databases containing about 700 images
each were manually built. The Faster R-CNN meta-architecture, implemented on
TensorFlow API, was used to build the object detector network. Training large
CNN from scratch requires large image databases and, consequently, demands a
large computational load. Due to these reasons, the two networks were fine-tunned
with a pre-trained network, trained over ordinary RGB COCO images.

After proper fine-tuning of the two networks built, they were able to detect people
and vehicles on images from Altave captive balloons in quasi real time. The accu-
racy, mAP, and AR metrics results obtained from the built networks show the high
performance of the model. The total accuracy was 87.1% for the infrared network
and 86.1% for the visible. These accuracies were obtained only by the usage of inde-
pendent frames, thus they could be improved by taking advantage of the sequence
of frames. These high accuracies demonstrated that the Faster R-CNN pre-trained
only in ordinary RGB images can be fine-tuned to work satisfactorily on 3-band
RGB visible remote sensing images and even on 1-band infrared images, as long as
they are properly converted for 3-band grayscale images by repeating the infrared
band throughout the three channels.

The predictions of some test images demonstrated the networks capabilities and
limitations. The networks trained were able to detect multiple person and vehicle
objects in captive balloon images with a variety of angles, positions, types (for
vehicles), and scales. The networks were also able to deal with some noise and
overlap on the objects. The infrared network was also able to detect objects on
both modes, white hot and black hot. Some images presented mistakes generated
by splitting parts of one object into two objects or merging two objects from the
same class in one large object. This type of mistake is not a relevant problem for

93

surveillance because it is much more important to detect the objects than to locate
or count them, however they were taken into account for the evaluation metrics.

5.1 Future works

In future works, the database for both sensors should be increased to at least 2000
images per class. By increasing the database images, the network should provide
a better generalization, after learning the features that only belong to person and
vehicle objects. At this point, the technique developed only works on images, and
a future work should improve the technique developed to run directly on videos.
On videos, the accuracy could be improved by, for instance, analyzing 5 frames and
making a verification of continuity of the detections.

Another future work should be to fine-tune the same pre-trained network using both
databases in order to compare it with the networks fine-tuned on only one of those
databases. This comparison would demonstrate if a single network would have the
capability to work satisfactorily with both, visible and infrared, data.

94

REFERENCES

ABADI, M.; BARHAM, P.; CHEN, J.; CHEN, Z.; DAVIS, A.; DEAN, J.; DEVIN,
M.; GHEMAWAT, S.; IRVING, G.; ISARD, M.; KUDLUR, M.; LEVENBERG, J.;
MONGA, R.; MOORE, S.; MURRAY, D.; STEINER, B.; TUCKER, P.;
VASUDEVAN, V.; WARDEN, P.; WICKE, M.; YU, Y.; ZHENG, X. Tensorflow: a
system for large-scale machine learning. In: USENIX SYMPOSIUM ON
OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, 12., 2016,
Savannah, GA. Proceedings... Savannah, 2016. v. 16, p. 265–283. 33

ALTAVE. Monitoramento and conectividade inteligente: a solução com
melhor custo-benefício para cobertura de grandes áreas. 2019. Available
from: <http://www.altave.com.br/>. Access in: 2 July 2019. 2, 31, 32

AMMOUR, N.; ALHICHRI, H.; BAZI, Y.; BENJDIRA, B.; ALAJLAN, N.;
ZUAIR, M. Deep learning approach for car detection in uav imagery. Remote
Sensing, v. 9, n. 4, p. 312–327, 2017. 29

AZEVEDO, B. A. de. Design, trimming, stabilization and flight testing of
tethered aerostats. 2016. 211 p. Thesis (Doctoral in Aeronautical and
Mechanical Engineering) — Instituto Tecnológico de Aeronáutica (ITA), São José
dos Campos, 2016. 1, 3

AZEVEDO, B. de; CUNHA, M.; MORALES, M.; GOES, L. Stability and active
control of low altitude aerostats. In: AIAA LIGHTER-THAN-AIR SYSTEMS
TECHNOLOGY (LTA) CONFERENCE, 20., 2013. Proceedings... Daytona
Beach, 2013. p. 1299. 1

AZEVEDO, F. A.; CARVALHO, L. R.; GRINBERG, L. T.; FARFEL, J. M.;
FERRETTI, R. E.; LEITE, R. E.; JACOB FILHO, W.; LENT, R.;
HERCULANO-HOUZEL, S. Equal numbers of neuronal and nonneuronal cells
make the human brain an isometrically scaled-up primate brain. Journal of
Comparative Neurology, v. 513, n. 5, p. 532–541, 2009. 7

BENDINI, H. N.; MORAES, W. S.; COSTA, S.; LOPES, E. S. S.; KORTING,
T. S.; FONSECA, L. M. G. Proposta de sistema de monitoramento da
Sigatoka-Negra baseado em variáveis ambientais utilizando o TerraMA2. In:
BRAZILIAN SYMPOSIUM ON GEOINFORMATICS, 15., 2014, Campos do
Jordão, Brazil. Proceedings... São José dos Campos: MCTIC/INPE , 2014. p.
168–173. 1

95

http://www.altave.com.br/

BIEDERMAN, I. Recognition-by-components: a theory of human image
understanding. Psychological Review, v. 94, n. 2, p. 115, 1987. 2

CHAGAS, C. S.; VIEIRA, C. A.; FERNANDES FILHO, E.; CARVALHO
JUNIOR, W. Utilização de redes neurais artificiais na classificação de níveis de
degradação em pastagens. Revista Brasileira de Engenharia Agrícola e
Ambiental, v. 13, n. 3, p. 319–327, 2009. 7

CHEN, Y.; LIN, Z.; ZHAO, X.; WANG, G.; GU, Y. Deep learning-based
classification of hyperspectral data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, v. 7, n. 6, p. 2094–2107,
2014. 18

COMMON OBJECTS IN CONTEXT - COCO. COCO API. 2018. Available
from: <https://github.com/cocodataset/cocoapi>. Access in: 11 Jan. 2020.
38

CYBENKO, G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, v. 2, n. 4, p. 303–314, 1989.
11

DAI, J.; LI, Y.; HE, K.; SUN, J. R-FCN: Object detection via region-based fully
convolutional networks. Advances in Neural Information Processing
Systems, p. 379–387, 2016. 33

DAT TRAN. Raccoon detector dataset. 2018. Available from:
<https://github.com/datitran/raccoon_dataset>. Access in: 05 Dec. 2019.
36

DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. Imagenet: a
large-scale hierarchical image database. In: IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, 9., 2009.
Proceedings... Miami Beach, 2009. 18, 24

EVERINGHAM, M.; GOOL, L. V.; WILLIAMS, C. K.; WINN, J.; ZISSERMAN,
A. The Pascal Visual Object Classes (VOC) challenge. International Journal of
Computer Vision, v. 88, n. 2, p. 303–338, 2010. 24, 38

GEIGER, A.; LENZ, P.; STILLER, C.; URTASUN, R. Vision meets robotics: the
KITTI dataset. International Journal of Robotics Research (IJRR), v. 32,
n. 11, p. 1231–1237, 2013. 46

96

https://github.com/cocodataset/cocoapi
https://github.com/datitran/raccoon_dataset

GIRSHICK, R. Fast R-CNN. In: IEEE INTERNATIONAL CONFERENCE ON
COMPUTER VISION (ICCV), 2015, Santiago, Chile. Proceedings... Santiago,
2015. p. 1440–1448. 24, 29

GIRSHICK, R.; DONAHUE, J.; DARRELL, T.; MALIK, J. Rich feature
hierarchies for accurate object detection and semantic segmentation. In: IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
27., 2014. Proceedings... Columbus, 2014. p. 580–587. 24

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. 2. ed.
Cambridge, MA: MIT Press, 2017. ISBN 9780262035613. 9, 10, 12, 14, 19, 21, 22,
23

GUILD, L. S.; COHEN, W. B.; KAUFFMAN, J. B. Detection of deforestation and
land conversion in Rondonia, Brazil using change detection techniques.
International Journal of Remote Sensing, v. 25, n. 4, p. 731–750, 2004. 1

HAUSAMANN, D.; ZIRNIG, W.; SCHREIER, G.; STROBL, P. Monitoring of gas
pipelines–a civil UAV application. Aircraft Engineering and Aerospace
Technology, v. 77, n. 5, p. 352–360, 2005. 1, 2

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image
recognition. In: CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION (CVPR), 29., 2016, Las Vegas Valley, United States of America.
Proceedings... Las Vegas Valley: IEEE, 2016. p. 770–778. 24, 26

HUANG, J.; RATHOD, V.; SUN, C.; ZHU, M.; KORATTIKARA, A.; FATHI, A.;
FISCHER, I.; WOJNA, Z.; SONG, Y.; GUADARRAMA, S.; MURPHY, K.
Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
2017. Proceedings... Honolulu, 2017. p. 7310–7311. 33, 34, 44, 50

ISAKSSON, J. Recognizing microscopic structures: dense semantic
segmentation of multiple histopathological classes using fully
convolutional neural networks. 2016. 52 p. Thesis (Master in Mathematical
Sciences) — Lund University, Faculty of Engineering, Sweden, 2016. 10

JHA, M.; LEVY, J.; GAO, Y. Advances in remote sensing for oil spill disaster
management: state-of-the-art sensors technology for oil spill surveillance. Sensors,
v. 8, n. 1, p. 236–255, 2008. 1

97

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, p. 1097–1105, 2012. 3, 17

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, p.
436–444, 2015. 10

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.;
HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip
code recognition. Neural Computation, v. 1, n. 4, p. 541–551, 1989. 18

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, v. 86, n. 11, p.
2278–2324, 1998. xv, 18, 19

LIN, T.-Y.; MAIRE, M.; BELONGIE, S.; HAYS, J.; PERONA, P.; RAMANAN,
D.; DOLLÁR, P.; ZITNICK, C. L. Microsoft COCO: common objects in context.
In: EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV), 13., 2014,
Zurich, Switzerland. Proceedings... Zurich, 2014. p. 740–755. 24, 38, 42, 46

LIU, W.; ANGUELOV, D.; ERHAN, D.; SZEGEDY, C.; REED, S.; FU, C.-Y.;
BERG, A. C. SSD: Single Shot Multibox Detector. In: EUROPEAN
CONFERENCE ON COMPUTER VISION, 14., 2016, Amsterdam, Netherlands.
Proceedings... Amsterdam, 2016. p. 21–37. 33

LOWE, D. G. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, v. 60, n. 2, p. 91–110, 2004. 18

LU, D.; MAUSEL, P.; BATISTELLA, M.; MORAN, E. Land-cover binary change
detection methods for use in the moist tropical region of the Amazon: a
comparative study. International Journal of Remote Sensing, v. 26, n. 1, p.
101–114, 2005. 1

MALMROS, L. Insect event extraction in LIDAR images using image
analysis and convolutional neural networks. 2018. 59 p. Thesis (Master in
Mathematical Sciences) — Lund University, Faculty of Engineering, Sweden, 2018.
7

MANNING, C. D.; RAGHAVAN, P.; SCHUTZE, H. An introduction to
information retrieval. Cambridge, England: Cambridge University Press, 2009.
158 p. (ISBN:0521865719). Available from:
<http://www.informationretrieval.org>. Access in: 23 Dec. 2019. 41

98

http://www.informationretrieval.org

MIGUEL, E. P.; REZENDE, A. V.; LEAL, F. A.; MATRICARDI, E. A. T.;
VALE, A. T. do; PEREIRA, R. S. Redes neurais artificiais para a modelagem do
volume de madeira e biomassa do cerradão com dados de satélite. Pesquisa
Agropecuária Brasileira, v. 50, n. 9, p. 829–839, 2015. 7

PAVLAKIS, P.; TARCHI, D.; SIEBER, A. J. On the monitoring of illicit vessel
discharges using spaceborne sar remote sensing-a reconnaissance study in the
mediterranean sea. Annales des télécommunications, v. 56, n. 11-12, p.
700–718, 2001. 1

PÉREZ, A.; CHAMOSO, P.; PARRA, V.; SÁNCHEZ, A. J. Ground vehicle
detection through aerial images taken by a uav. In: INTERNATIONAL
CONFERENCE ON INFORMATION FUSION), 17., 2014, Salamanca, Spain.
Proceedings... Salamanca: IEEE, 2014. p. 1–6. 29

POLYAK, B. T. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
v. 4, n. 5, p. 1–17, 1964. 14

Ponti, M. A.; Ribeiro, L. S. F.; Nazare, T. S.; Bui, T.; Collomosse, J. Everything
you wanted to know about deep learning for computer vision but were afraid to
ask. In: SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND
IMAGES TUTORIALS (SIBGRAPI-T), 30., 2017, Niterói, Brasil. Proceedings...
Niterói: IEEE, 2017. p. 17–41. ISSN 2474-0705. 20

REN, S.; HE, K.; GIRSHICK, R.; SUN, J. Faster R-CNN: Towards real-time
object detection with region proposal networks. Advances in Neural
Information Processing Systems, p. 91–99, 2015. 24, 26, 29, 33, 44, 48

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning
representations by back-propagating errors. Nature, v. 323, n. 9, p. 533–536,
1986. 14

SANTIAGO VALDARRAMA. Confusion matrix in object detection with
TensorFlow. 2019. Available from:
<https://github.com/svpino/tf_object_detection_cm>. Access in: 24 Dec.
2019. 43

SANTOS, J. S. Modeling, identification and control of a tethered airship.
2018. 128 p. Thesis (Doctoral in Aeronautical and Mechanical Engineering) —
Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 2018. 1

99

https://github.com/svpino/tf_object_detection_cm

SECCO, N. R. Training artificial neural network to predict aerodynamic
coefficients of airliner wing-fuselage configurations. 2014. 130 p. Thesis
(Master in Science in Aerodynamics, Propulsion and Energy) — Instituto
Tecnológico de Aeronáutica (ITA), São José dos Campos, 2014. 14, 16

SECCO, N. R.; MATTOS, B. S. de. Artificial neural networks to predict
aerodynamic coefficients of transport airplanes. Aircraft Engineering and
Aerospace Technology, v. 89, n. 2, p. 211–230, 2017. 7

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for
large-scale image recognition. arXiv, v. 1409.1556, 2014. 24, 26

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.;
SALAKHUTDINOV, R. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, v. 15, n. 1, p. 1929–1958,
2014. 23

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.;
ERHAN, D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with
convolutions. In: CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION (CVPR), 28., 2015, Boston, United States of America.
Proceedings... Boston: IEEE, 2015. p. 1–9. 24, 26

TENSORFLOW. TensorFlow. 2019. Available from:
<https://www.tensorflow.org>. Access in: 05 Dec. 2019. 36

. Tensorflow detection model zoo. 2019. Available from:
<https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/detection_model_zoo.md>. Access in: 10 Dec. 2019. 46, 47

. TensorFlow object detection API. 2019. Available from: <https://
github.com/tensorflow/models/tree/master/research/object_detection>.
Access in: 05 Dec. 2019. 33

TYROLABS. Faster R-CNN: down the rabbit hole of modern object
detection. 2018. Available from: <http://tryolabs.com/blog/2018/01/18/
faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/>.
Access in: 13 Feb. 2019. 25

TZUTA LIN. LabelImg. 2019. Available from:
<https://github.com/tzutalin/labelImg>. Access in: 05 Dec. 2019. 35

100

https://www.tensorflow.org
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
http://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
http://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
https://github.com/tzutalin/labelImg

UIJLINGS, J. R.; SANDE, K. E. V. D.; GEVERS, T.; SMEULDERS, A. W.
Selective search for object recognition. International Journal of Computer
Vision, v. 104, n. 2, p. 154–171, 2013. 24

VELTE, M. Semantic image segmentation combining visible and
near-infrared channels with depth information. 2015. 114 p. Thesis (Master
in Computer Science) — Bonn-Rhein-Sieg University of Applied Sciences, Sankt
Augustin, 2015. 7

XENONSTACK. Automatic log analysis using deep learning and AI. 2018.
Available from: <http:
//www.xenonstack.com/blog/log-analytics-deep-machine-learning/>.
Access in: 22 Aug. 2019. 17

XU, Y.; YU, G.; WANG, Y.; WU, X.; MA, Y. Car detection from low-altitude uav
imagery with the faster r-cnn. Journal of Advanced Transportation, v. 2017,
p. 10, 2017. 29

ZHANG, Y.; SONG, B.; DU, X.; GUIZANI, M. Vehicle tracking using surveillance
with multimodal data fusion. IEEE Transactions on Intelligent
Transportation Systems, v. 19, n. 7, p. 2353–2361, 2018. 29

101

http://www.xenonstack.com/blog/log-analytics-deep-machine-learning/
http://www.xenonstack.com/blog/log-analytics-deep-machine-learning/

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Organization

	2 THEORETICAL BACKGROUND
	2.1 Artificial Neural Network
	2.1.1 Network propagation

	2.2 Network architecture
	2.2.1 Activation function
	2.2.2 Training
	2.2.3 Loss function
	2.2.4 Gradient descent
	2.2.5 Back-propagation

	2.3 Deep Learning
	2.4 Convolutional Neural Network
	2.4.1 Convolutional layer
	2.4.2 Pooling layer
	2.4.3 Fully connected layer

	2.5 Regularization
	2.5.1 L2 and L1 regularization
	2.5.2 Data augmentation
	2.5.3 Dropout
	2.5.4 Early stopping

	2.6 Transfer learning
	2.7 Faster R-CNN
	2.7.1 Pre-trained base network
	2.7.2 Region Proposal Network
	2.7.3 Region of interest pooling
	2.7.4 Region-based CNN
	2.7.4.1 Loss function
	2.7.4.2 Applications

	3 MATERIALS AND METHODS
	3.1 Image sensors
	3.2 TensorFlow Object Detection API
	3.3 Computer
	3.4 Database
	3.5 Evaluation metrics
	3.5.1 Ground truth
	3.5.2 Intersection over Union
	3.5.3 True Positive, False Positive and False Negative
	3.5.4 Precision recall
	3.5.5 Mean Average Precision
	3.5.6 Average Recall
	3.5.7 Confusion matrix

	3.6 Methodology
	3.6.1 Methodology process
	3.6.2 Fine-tuning
	3.6.3 Configuration parameters

	4 RESULTS AND DISCUSSIONS
	4.1 Infrared network
	4.1.1 Loss function
	4.1.2 Evaluation metrics
	4.1.3 Images
	4.1.3.1 Correct detections
	4.1.3.2 Mistakes

	4.2 Visible network
	4.2.1 Loss function
	4.2.2 Evaluation metrics
	4.2.3 Images
	4.2.3.1 Correct detections
	4.2.3.2 Mistakes

	4.3 Comparison

	5 CONCLUSIONS
	5.1 Future works

	REFERENCES

