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ABSTRACT

The recurrence analysis of dynamic systems has been studied since Poincaré’s seminal work. Since then, several approaches have been devel-
oped to study recurrence properties in nonlinear dynamical systems. In this work, we study the recently developed entropy of recurrence
microstates. We propose a new quantifier, the maximum entropy (Smax). The new concept uses the diversity of microstates of the recurrence
plot and is able to set automatically the optimum recurrence neighborhood (ε—vicinity), turning the analysis free of the vicinity parameter. In
addition, ε turns out to be a novel quantifier of dynamical properties itself. We apply Smax and the optimum ε to deterministic and stochastic
systems. The Smax quantifier has a higher correlation with the Lyapunov exponent and, since it is a parameter-free measure, a more useful
recurrence quantifier of time series.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125921

The entropy of recurrence microstates evaluates the underly-
ing complex features of dynamical trajectories. A relevant issue
to achieve adequate results in recurrence analysis is the vicin-
ity threshold choice, in general, a free parameter in recurrence
analyses. In this work, we propose that the maximum entropy
principle allows us to set a unique entropy and also an opti-
mum vicinity threshold value. This uniqueness turns the vicinity
threshold parameter into a new recurrence quantifier. Further-
more, the maximum entropy principle turns recurrence analysis
a parameter-free tool. This approach is applied to chaotic and
stochastic data, and the results improve substantially compared
with the previous recurrence analysis making use of other vicinity
threshold choices.

I. INTRODUCTION

The maximum entropy principle has a long history in science
where it is used in several frameworks such as statistical physics,1,2

ecology,3 neuroscience,4 and thermodynamics.5 Moreover, the Shan-
non information theory explores the maximization of entropy to
construct the modern science of computation.6 On the other hand,

the likelihood concept on statistics7 is an alternative view of the

entropy optimization. The entropy function itself is widely used

as a complexity index or an index to characterize the diversity
of elements in a system. The use of entropy as an index is com-
mon in biodiversity and ecology,8 acoustic environments,9 linguistic
elements in a text,10 and time series.11
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The theory of the recurrence analysis connects to the Poincaré
concept,12 where dynamical trajectories return to a small region of
the phase space defined by a vicinity of size ε. The Recurrence Plot
(RP) method can be used to obtain visual insights about the under-
lying dynamics, while a more quantitative view can be obtained
through recurrence quantification analyses (RQAs),13,14 which quan-
tify structures and properties of the RP. We call attention to the use
of entropy in the recurrence analysis in dynamical systems15 and
the maximum entropy concept in symbolic recurrence analysis.16

Recently, a recurrence quantifier named recurrence entropy has
been developed.17 This new recurrence quantifier constructs an
entropy over the diversity of microstates of the Recurrence Plot
(RP).

The RP and the corresponding RQAs are highly sensitive to the
choice of ε and exhibit poor performance for non-optimal choices.
The vicinity ε is the major free parameter of the RP methodology.
Previous works have suggested different approaches to choose a suit-
able ε,14,18–20 although an optimum choice remains an open research
topic.

In the present work, we connect the recurrence entropy devel-
oped in Ref. 17 with the maximum entropy principle.1 We propose
a novel approach to quantify RPs, which is constructed using maxi-
mization of the recurrence entropy (Smax) by adjusting the vicinity ε.
The main advantage of the method is that the definition of Smax does
not depend on free parameters. Additionally, in this new context,
the vicinity ε becomes a new RQA. The use of the entropy based on
recurrence microstates was presented as an appropriate approach in
Ref. 17. Here, we show that the maximum of the recurrence entropy
provides better recurrence analysis results and automatically sets an
optimal vicinity parameter for a recurrence quantification analysis.

The paper is organized as follows: Sec. II presents the tradi-
tional recurrence plot, the recurrence quantification analysis meth-
ods, the recently developed entropy of recurrence microstates, and
the maximum recurrence entropy. Section III contains the results
of the maximum entropy principle applied to chaotic and stochastic
data, while in Sec. IV, we outline our conclusions.

II. METHODOLOGY

This section is divided into three parts. First, we introduce the
recurrence plot technique. Then, we discuss the recently introduced
entropy based on the recurrence microstates, and after that, we apply
the maximum entropy principle to the recurrence plot structure.
This approach reduces the number of free parameters by introduc-
ing a single concept while increases the reliability and capacity of
analysis of the methodology.

A. Recurrence plots and recurrence quantification

analysis

The concept of recurrence dates back to Henri Poincaré,12 who
considered it a fundamental feature of dynamical systems. A modern
visualization method known as a recurrence plot (RP) introduced in
Ref. 21 is based on the recurrence matrix Rij defined as

Rij(ε) = 2(ε − |xi − xj|), xi ∈ R, i, j = 1, 2, . . . , K, (1)

where xi and xj represent dynamical states at time i and j, 2 is
the Heaviside function, K is the length of the analyzed time series
interval, and ε is the threshold or vicinity parameter. The param-
eter ε consists of the maximum distance between two points in a
trajectory in the phase space, such that both points can be con-
sidered recurrent to each other. We note that Rij(ε) is an explicit
function of the threshold distance ε. Moreover, the RP is a sym-
metric matrix of “ones” and “zeros” where a one (zero) intends for
recurrent (non-recurrent) points in the phase space.

In this way, the recurrence plot is a graphical binary represen-
tation of the recurrence patterns extracted from the time series21 or
spatial profiles.22,23 It was developed by Eckmann et al.21 and further
explored by several authors. A good compilation in the literature
on this issue is found in Marwan et al.14 Important characteris-
tics of recurrence plots are the presence of finite length diagonal
lines, indicating periodic signals or recurrence segments and iso-
lated points, suggesting stochastic and/or chaotic signals. Moreover,
specific features of a time series can be obtained by using a set of
tools developed by Zbilut and Webber, Jr.,13,24 who measure the sig-
nal complexity based on the recurrence matrix. This process and
the extracted features are called recurrence quantification analysis
(RQA) or recurrence quantifiers.

The RQA identifies different aspects of the recurrence plot
from the density of recurrent points to the statistics of vertical
(horizontal) or diagonal lines.14 To avoid problems with very large
recurrence plots, when analyzing long time series, it is convenient
to divide the original time series into smaller sub-series (or win-
dows) of length K such that K � M, where M is the length of the
entire trajectory. For each window, we construct a recurrence matrix
that is used to compute the recurrence quantifiers. The simplest
RQA is the recurrence rate (RR) defined as the density of recurrent
points in Rij. Others, such as laminarity or trapping time, evalu-
ate vertical line distributions, which are connected with dynamical
intermittency. Diagonal lines represent recurrence segments of tra-
jectories, for which there are several quantifiers that evaluate the
diagonal line structure, such as determinism or divergence. Two
pieces of a trajectory following a diagonal line undergo a simi-
lar evolution, once they have visited the same region of the phase
space at different times. This is the key idea behind recurrence and
thus a clear-cut signature of a deterministic behavior in the time
series.

B. The entropy of recurrence microstates

To properly define entropy, we use the concept of microstates
for a RP, an idea that is associated with features of the time series
dynamics. These microstates are evaluated using small matrices of
dimension N × N that are sampled from the RP. The matrices can
assume several configurations as can be seen in Fig. 1 for the partic-
ular situation N = 2. The total number of microstates for a given N

is N∗ = 2N2
.

To associate probabilities to the microstates, we sample N̄ ran-
dom matrices N × N from the RP. We call ni the number of observed
matrices in a particular microstate i in a sample of N̄ elements; by

definition, we have N̄ =
∑N∗

i=1 ni. In this way, the quantity Pi = ni/N̄
is the probability of microstate i. We define the entropy of the RP
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associated with the probabilities of the set of microstates as

S = −

i=N∗∑

i=1

Pi ln Pi, (2)

this methodology was developed by Corso et al.17 The parameters N
and Nbar are not properly free parameters, since in Marwan et al.,14

the authors present a guide for a constant ε, which also applies for a
maximum entropy choice.

In Fig. 1, we depict all possible microstates for N = 2. They
were split into groups according to the number of recurrences in
each microstate. In this figure, we also show a binary representation
of the N∗ microstates using four bits. This symbolic sequence is used
in the algorithm that samples, identifies, and counts microstates
from the RP.

Figure 2 presents how microstates are computed from a
schematic data series. The figure illustrates diagonal and verti-
cal/horizontal structures associated with microstates. Similar exam-
ples can be developed for each distinct microstate and larger values
of N.

The recurrence matrix is the line of identity (LOI) symmet-
ric. Each microstate is extracted from one or the other side of the
triangular recurrence matrix to avoid the overestimation of some
microstates. Figure 3 presents some microstate structures that can

FIG. 1. Representation of microstates. This figure shows the actual microstates
for a sample matrix of size N = 2, along with the correspondent binary code or
symbolic representation. In this current configuration, there are 16 different com-
binations of microstates that can be grouped according to the number of recurrent
points. In this example, we identify six classes of microstates that correspond to
the number of recurrent elements using the matrix [2×2].

FIG. 2. Dynamical microstate interpretation of the time series. Here, we show
N = 2 examples of microstates for the schematic time series shown. Differently
from Fig. 1, we depict dynamical possible temporal (or spatial) patterns to the
case of N = 2 for vertical (a) and (b), horizontal (c) and (d), and diagonal (e) and
(f) microstates.

change from extraction from one or the other side of the LOI.
These microstates that contain the same dynamical information but
different microstate structures are called degenerate microstates.

C. The maximum entropy of recurrence microstates

The recurrence plot technique and corresponding recurrence
quantification methods depend directly on the choice of ε. This is a
known feature of recurrence analysis and can bias the results. The

FIG. 3. Detail from overestimation of distinct microstates. A schematic recur-
rence matrix presenting two dynamical segment recurrences and the associated
microstate from both sides of LOI. Some microstates depict degenerescence
when evaluated for both sides of LOI.
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FIG. 4. Entropy as a function of the vicinity threshold. The curve of the entropy vs
the vicinity epsilon (ε) typically shows amaximum value, which corresponds to the
maximum entropy. In this particular example, we take the white noise time series
(panel inset) and vary ε to find the maximum entropy (Smax). In this simulation,
we choose N = 2 (see Fig. 2).

entropy of recurrence microstates (S) also suffers from this issue.17

Here, we propose a method to select an optimal choice of ε, which
leads to a new quantifier.

Several approaches to select the threshold parameter ε have
been proposed in the literature, some of them involve the stan-
dard deviation as proposed by Thiel et al.,18 while others propose
some percentage of a maximum phase space diameter,25 typically
not exceeding 10%.24 We advocate the concept of maximization
of the microstate entropy, even if data are periodic, stochastic,
experimental, or simulated.

Consider the representation of S in Fig. 4 as a function of ε.
In this case, we observe that S(ε) has a well-defined extreme. The
point of the maximum will change according to the analyzed sys-
tem. For the white noise, which has a uniform distribution of values
in the domain, it is possible to deduce the threshold by geometri-
cal arguments, and the RR quantifier is ε ≈ 0.293; see Ref. 17. The
maximum value of entropy is computationally estimated for each
system and depends on its dynamical characteristics. We have used
the divide-and-conquer algorithm to find the maximum microstate
entropy.

The choice on the maximum Shannon entropy takes into
account the important feature of no possibility exclusion.1 Con-
sidering the Shannon entropy in recurrences, the most important
feature in favor to set the system maximal entropy is that this choice
eliminates the dependencies of recurrence plot techniques on free
parameters.20

III. EXPLORING THE METHODOLOGY ON DYNAMICAL

MODELS

In this section, we present the maximum entropy concept
applied to chaotic and stochastic systems. This section is divided as
follows: (A) the analysis of the logistic map, a paradigmatic chaotic
map, and (B) the analysis of stochastic maps: the white and Gaussian
noises.

A. Study of the logistic map

The logistic map is a well known complex dynamical map26

with a periodic regime, a transition to chaos and regions of periodic
windows entangled with chaotic behavior. The iterative equation of
the logistic map is

xn+1 = xnr(1 − xn), 0 ≤ xn ≤ 1, (3)

where the chaotic region with windows of periodicity is achieved by
varying the parameter r in the interval 3.6 < r < 4.0.

The complexity involving the recurrence entropy S, the vicinity
ε, and the Lyapunov exponent λ in the logistic map are illustrated in
Fig. 5. In panel (a), we show S with the help of a coding color; in the
horizontal axis, we plot ε and in the vertical axis, the parameter r of
the logistic map. Correspondingly, panel (b) displays λ for the same
r interval. We notice in Figs. 5(a) and 5(b) the presence of periodic
windows of the logistic map (λ < 0) with a clear decrease in S. In
panel (a), we also indicate, with black dots, the maximal value of
entropy Smax relative to optimal ε. In Fig. 6, we explore in more detail
the correspondence between Smax and the Lyapunov exponent λ.

In Fig. 6(a), we present the behavior of the recurrence entropy
vs r for the logistic map. As shown in Ref. 17, the increase in S follows
chaotic (periodic) regions, as presented in Fig. 6. Although both S
curves follow the increase on r, in periodic windows, the dynamical
bifurcations are more clearly evaluated using Smax, as observed in the
inset of Fig. 6(a). For comparison, Fig. 6(b) displays the Lyapunov
exponent λ against the nonlinear parameter r. We observe a strong
correlation between λ and Smax. In fact, in Fig. 7, we explore in more
detail this relation.

In order to test the recurrence entropy as an index of complex-
ity, we compare S and Smax against the Lyapunov exponent using
data from the logistic map. For the test, we employ 3.6 < r < 4.0
to guarantee the logistic map inside a region with chaotic regimes
entangled with periodic window regimes. Figure 7 shows the Lya-
punov coefficient vs the entropy: for (a) S(ε = 0.1), (b) S(ε = 0.2),
and (c) ε free to attain the maximal entropy (Smax). Panel (d)
presents the Pearson correlation coefficient between λ and S(ε), and
the correlation coefficient is plotted as a function of ε. The dashed
line in the plot corresponds to the reference line with the correla-
tion between the Lyapunov exponent and the maximum recurrence
entropy. The Pearson correlation coefficient curve vs ε reveals a
large ε interval with a high correlation with the Lyapunov expo-
nent; however, Fig. 7(d) makes clear that the correlation of Smax is
always higher than any correlation of entropy with fixed ε. For addi-
tional comparison, consider Table I in which we show the Pearson
correlation coefficient between the Lyapunov exponent and usual
recurrence quantifiers.

The simulations were performed with a time window of size
K = 1 × 103, after an appropriate transient time, and (l, v)min = 2
(minimum diagonal/vertical lines). For further reading on recur-
rence quantification methods, see Refs. 14 and 27. We note that Smax

shows a higher (anti)correlation when compared to DIV (Diver-
gence) and DET (Determinism), both quantifiers connected to diag-
onal recurrent structures; LAM (Laminarity—vertical/horizontal
recurrent structures); ENTR (Entropy of recurrent diagonal lines);
and Srt (Recurrence time entropy) for several different ε choice
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FIG. 5. Recurrence entropy and the Lyapunov exponent for the logistic map. Panel (a) presents the recurrence entropy using code colors; the vertical axis is the logistic
parameter r and in the horizontal axis, we show the vicinity ε. The dots mark the maximum entropy values. In (b), we show the Lyapunov exponent for the same r interval.

approaches. Particularly, DIV and Srt show a good correlation with
the highest Lyapunov exponent, but the correlation is indeed lower
than for Smax. Furthermore, the changes on ε due to the S maximiza-
tion turn ε into another important recurrence quantifier, which may
be further explored in stochastic data.

FIG. 6. Logistic map: entropy and the Lyapunov exponent. (a) displays two
curves, Smax (solid line) and S(ε = 0.1) (dashed line), while (b) presents the
Lyapunov exponent. The curves analyze the logistic map for 3.6 ≤ r ≤ 4.0. Com-
paring (a) and (b), we observe that both entropy curves approximately follow λ,
although the correlation in periodic windows and the increase rate is better rep-
resented by Smax. In the computation of the S curves, we used 10 samples (error

bars suppressed due to a small deviation), N = 4, N̄ = 105, and K = 1000.

B. Stochasticity and maximum recurrence entropy

1. White noise

We start our analysis of stochastic signals with the white noise.
We construct the white noise, yW(t), with random data from a

FIG. 7. Correlation between recurrence entropy and the Lyapunov exponent λ.
The logistic map for 3.6 ≤ r ≤ 4.0 was considered in (a)–(d). Figures (a)–(c)
show the Lyapunov exponent against S. A fixed ε = 0.1 was used in (a) and
ε = 0.2 in (b) and in (c) a variable ε that produces the maximal entropy. In (d), we
present the curve of S for fixed ε (solid line) and the reference line of Smax (dashed
line) for variable ε. All curves and the reference line were done with 10 samples

(error bars have been suppressed due to a small deviation), N = 4, N̄ = 105,
and K = 1000.
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TABLE I. Mean Pearson correlation coefficient between the Lyapunov exponent and

the recurrence quantifiers: DIV, DET, LAM, ENTR, and Srt for different ε choices

[ε(RR) is for fixed RR—Recurrence Rate—quantifier]. The employed dataset is a time

series from the logistic map. The Pearson coefficient relative to the maximal entropy

S(N= 4)max is approximately 0.94. The standard deviation of table coefficients is lower

than 10−2.

S(N = 4)max ≈ 0.94

DIV DET LAM ENTR Srt

ε = 0.1 0.86 −0.69 0.35 −0.76 0.87
ε(RR = 0.1) 0.87 −0.68 0.27 −0.65 0.89
ε(RR = 0.2) 0.87 −0.28 0.38 −0.64 0.86
ε(RR = 0.5) 0.86 0.49 0.07 −0.48 0.70

uniform distribution; for simplicity, we employ a random genera-
tor with values between 0 and 1. We construct a large time series
yW(t) with 0 < t < 105. To compute Smax and ε, we use moving win-
dows of size K = 1000; in addition, we use N̄ = 2 × 104 for N = 2, 3
and N̄ = 105 for N = 4. Higher values for N typically demand higher
sampling to have a good resolution. The simulation estimated val-
ues of the maximal entropy for the white noise are SW

max(N = 2)
= 2.692 ± 0.001, SW

max(N = 3) = 5.737 ± 0.004, and SW
max(N = 4)

= 9.357 ± 0.007; the corresponding vicinity sizes to attain the max-
imal entropy are ε(N = 2) = 0.281 ± 0.001, ε(N = 3) = 0.266 ±

0.001, and ε(N = 4) = 0.249 ± 0.002.
The theoretical value of Smax is computed assuming the

equiprobability of all microstates. As the number of microstates is

calculated by N∗ = 2N2
, the maximal entropy is

Stheory
max = ln(N∗) = N2ln(2). (4)

Using this equation, we compute S
theory
max (N = 2) = 2.772,

S
theory
max (N = 3) = 6.238, and S

theory
max (N = 4) = 11.09. The predicted

theoretical estimations are quite close to the computational values

for the cases N = 2, 3, and 4; S
theory
max ∼ SW

max. Indeed, the values of

S
theory
max are slightly higher than SW

max because the theory is an upper
bond estimation based on a hypothetical equiprobability among the
microstates.

In the work,17 a model is developed based on the assumption
of maximal entropy for RR = 0.5 and a theoretical value for the

vicinity size ε
theory
max ≈ 0.293 is derived. This value is close to the com-

putational value estimated for N = 2, 3, and 4; ε
theory
max ∼ εW

max, with
increased distinction for higher values of N.

2. Gaussian noise

The Gaussian noise is constructed using a set of η similar white
noise series with different seeds in the pseudo-random generator.
For a white noise yW(t) with 1 ≤ t ≤ K, we define the following
series:

y
η

G(t) =
1

η

η∑

i=1

yW(t). (5)

In the limit of small η, the series y
η

G(t) behaves like the usual white
noise, and true Gaussian noise is formed in the limit of large η. In

FIG. 8. Maximum entropy analysis of Gaussian noise. Each panel con-
tains three curves corresponding to microstate sizes N = 2, 3, and 4,
in black (dashed-squared), blue (dashed-triangle), and red (dashed-circle)
colors. Panel (a) presents the maximum entropy as a function of η

(η = the number of white noise time series added up). Note that the maximum
entropy values are similar to the white noise results. In panel (b), we observe
the changes in ε respective to the maximum entropy.

Fig. 8, we illustrate the analysis of the recurrence entropy of the
Gaussian noise for several η; for the construction of these figures,
20 simulations were performed. In addition, for each figure, we used
K = 1000 and N̄ = 2 × 104 for N = 2, 3 but N̄ = 105 for N = 4.

An analysis of Fig. 8(a) reveals that estimated values of the
maximal entropy are SG

max(N = 2) = 2.707 ± 0.001, SG
max(N = 3)

= 5.841 ± 0.003, and SG
max(N = 4) = 9.616 ± 0.005. As expected,

the entropy shows the similar values of the white noise and fit with
the theoretical predictions (4). The values of Smax are independent
of η, but this is not true for ε [Fig. 8(b)]. For small η, the time
series behaves like the white noise and assumes the same ε ≈ 0.293,
but for large η, the computed ε decreases to an asymptotic value
of ε ≈ 0.125. Both are approximately the standard deviation of the
respective analyzed data.

The parameter η controls the transition from white noise to
Gaussian noise. The white noise show a uniform distribution. The
Gaussian noise in comparison has a centralized distribution, which
reduces the necessity of larger ε for a large amount of recurrent
states. The reduction of ε for the transition from white to Gaussian
noise is presented clearly in Fig. 8(b).

IV. CONCLUSION

In this paper, we present a new approach based on the max-
imum entropy principle for the recurrence microstates. We tested
the method for both stochastic and chaotic data. The most evi-
dent advantages of our approach are (i) the automatic ε choice
defined by entropy maximization, (ii) the possibility of this opti-
mal choice of ε be used in recurrence quantification analyses,14 and

Chaos 30, 043123 (2020); doi: 10.1063/1.5125921 30, 043123-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

(iii) a good agreement for Smax between theoretical and simulated
results. In addition, the maximum entropy method introduces the
optimum vicinity parameter (ε), itself as a new recurrence quanti-
fier that may be useful in the characterization of non-stationarity
in time series. Although N ≤ 4 was sufficient for all tested systems,
a possible drawback is expected for systems requiring N > 4 since
the number of microstates grows substantially, which scales up the
computational time.

We explore the maximum recurrence entropy Smax using the
logistic map. In Ref. 17, the recurrence entropy (fixed ε) is com-
pared with the Lyapunov exponent. Here, we correlate Smax with the
Lyapunov exponent and find even a better correlation than the pre-
viously obtained result with fixed ε.17 Moreover, we have shown that
Smax displays a more detailed structure of the bifurcation diagram of
the logistic map than any fixed ε recurrence entropy. Because of the
detailed structure of the Smax and the better correlation between Smax

and the Lyapunov exponent, we call Smax an optimal quantifier when
compared with a fixed epsilon S. Reference 17 compares the recur-
rence microstate entropy with several other methodologies based on
the recurrence plot showing similar or even better results. Here, we
show that the maximum entropy concept improves considerably the
fixed ε approach of Ref. 17.

To conclude, we use entropy maximization to construct a
proper index for the recurrence plot, and by consequence, to cre-
ate an index that summarizes the information of the diversity of
dynamical patterns represented in the recurrence plot. We remark
that we are not adapting the function entropy as an index to char-
acterize the diversity of a set of elements. In this work, we construct
for the first time an entropy that attains a maximal value by adjust-
ing automatically the vicinity parameter, and this quantity is used
as a new index to measure the diversity of recurrence dynamical
patterns. In addition, we have presented a new analysis of dynamic
patterns that can be applied in future works to experimental signals,
such as polysomnography,27,28 physiological signals,29–31 phase tran-
sition effect,32–34 turbulence process,35,36 and economic and geologic
data.37,38
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