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ABSTRACT 

 

The key tool for dealing with probabilities in AI is the Bayesian Network (BN). A BN 

provides a coherent framework for representing and reasoning under uncertainties, which 

are estimated based on probability theory. However, BNs present some limitations as they 

do not explicitly model spatial and temporal relationships between variables. Some 

extensions of BNs have been used to overcome those BN’s weaknesses, such as the 

Spatial BN that integrates GIS and BN and confers to the BN a spatially explicitly 

strategy, and the Dynamic BN that extends the concept of BNs by relating variables across 

time. BN approaches have already been proposed to predict LULCC such as deforestation 

processes. However, deforestation has been considered as a static process when modeled 

by BNs. In this context, the main goal of this work is to build Spatio-Temporal BN 

(STBN) models to incorporate both spatial and temporal information in the deforestation 

risk prediction. For this, we also implemented a package for the R programming language, 

which enables the development of STBN-based LULCC models for other earth 

observation applications besides the deforestation process. The STBN models proposed 

in this thesis are used as a LULCC model for predicting deforestation risk in three priority 

areas of the Brazilian Legal Amazon: (i) in the southwest of Amazonas State; (ii) in the 

northwesters of Mato Grosso State; and (iii) surrounding the BR-163 highway in the 

southwest of Pará State. Among the variables selected to compose the STBN models, the 

distance from hotspots fires variable stood out as one of the most important for 

deforestation risk prediction, while protected areas variable was important as a 

deforestation risk mitigator. The proposed STBN models presented a strong performance 

with a great agreement between deforestation events and predictions over the years. 

STBN models’ results also showed that there was an increase in uncertainty in predictions 

over time, indicating that more long-term the prediction is, the less accurate it will be. 

With this, we can state that STBN-based LULCC models are recommended for short-

term prediction of deforestation risk. 

 

Keywords: Bayesian Networks; Spatio-Temporal Bayesian Networks; Spatio-Temporal 

Modeling; Land-use and Land-cover Changes; Deforestation. 
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UM MODELO DE REDE BAYESIANA ESPAÇO-TEMPORAL: UM ESTUDO 

DE CASO NA PREDIÇÃO DO DESMATAMENTO DA AMAZÔNIA 

BRASILEIRA 

 

RESUMO 

A principal ferramenta para lidar com probabilidades na IA é a Rede Bayesiana (RB). 

Uma RB fornece uma estrutura coerente para representar e raciocinar sob incertezas, as 

quais são estimadas com base na teoria da probabilidade. No entanto, os RBs apresentam 

algumas limitações uma vez que não modelam explicitamente as relações espaciais e 

temporais entre as variáveis. Algumas variações das RBs têm sido utilizadas para superar 

tais fraqueza, como a RB espacial que integra GIS e RB e confere à RB uma estratégia 

espacialmente explícita, além da RB dinâmica que estende o conceito de RBs, 

relacionando suas variáveis ao longo do tempo. Algumas abordagens de RB já foram 

propostas para prever as mudanças de uso e cobertura da terra (LULCC), como processos 

de desmatamento. No entanto, o desmatamento tem sido considerado como um processo 

estático quando modelado por RBs. Nesse contexto, o principal objetivo deste trabalho é 

construir modelos de RBs espaço-temporais (STBN) para incorporar informações 

espaciais e temporais na previsão de risco de desmatamento. Para isso, também foi 

implementado um pacote para a linguagem de programação R, que permite o 

desenvolvimento de modelos LULCC baseados em STBN para outras aplicações de 

observação da terra além do desmatamento. Os modelos STBN propostos nesta tese são 

utilizados como modelo LULCC para prever o risco de desmatamento em três áreas 

prioritárias da Amazônia Legal Brasileira: (i) no sudoeste do estado do Amazonas; (ii) no 

noroeste do estado de Mato Grosso; e (iii) ao redor da rodovia BR-163, no sudoeste do 

estado do Pará. Entre as variáveis selecionadas para compor os modelos STBN, a variável 

distância dos focos de incêndio se destacou como uma das mais importantes na previsão 

de risco de desmatamento, enquanto a variável áreas protegidas foi importante como 

mitigadora de risco de desmatamento. Os modelos STBN propostos apresentaram um 

ótimo desempenho com uma grande concordância entre eventos e previsões de 

desmatamento ao longo dos anos. Os resultados dos modelos STBN também mostraram 

que houve um aumento na incerteza nas previsões ao longo do tempo, indicando que, 

quanto mais longa for a previsão, menos precisa ela será. Com isso, pode-se afirmar que 

os modelos LULCC baseados no STBN são recomendados para a previsão a curto prazo 

do risco de desmatamento. 

 

Palavras-chave: Redes Bayesianas; Redes Bayesianas Espaço-Temporais; Modelagem 

Espaço-Temporal; Mudanças do Uso e Cobertura da Terra; Desmatamento. 
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1. INTRODUCTION 

 

Artificial Intelligence (AI) systems should be able to reason probabilistically to cope with 

uncertainties that may affect the results of any modeling. The probability theory is a 

suitable foundation for representing the strengths of beliefs and summarize uncertainties 

that may come from various sources. The key tool for dealing with probabilities in AI is 

the Bayesian Network (BN), which is a type of probabilistic graphical model capable of 

representing the dependency relationship among variables with an explicit treatment of 

uncertainty by means of probabilities. This makes the BNs a suitable approach for 

probabilistic reasoning of multiple areas. 

BNs are acknowledged for their unique probabilistic modeling approach and their high 

model transparency (LANDUYT et al., 2013). They provide an intuitive graphical 

representation of the variables conditional dependencies via a directed acyclic graph. 

Since variables’ relationships are graphically represented, the BN’s semantic facilitates 

the understanding and the decision-making process for the users (DE SANTANA et al., 

2007). A BN also provides an inference mechanism, which is possible thanks to 

conditional probability distributions that quantify the causal relationships between the 

network variables. The usefulness of BNs lies in the fact that by using Bayes’ theorem, 

one can proceed not only from causes to consequences but also deduce the probabilities 

of different causes given the consequences (UUSITALO, 2007). 

Additionally, BNs can model complex systems with a large number of variables, besides 

to handle small and incomplete data sets and perform proper predictions. In case of a lack 

of sufficient empirical data, expert and stakeholder knowledge can be incorporated via a 

participatory modeling procedure (AGUILERA et al., 2011; LANDUYT et al., 2013). 

Notwithstanding such advantages, BNs present some limitations. BNs do not explicitly 

model the spatial domain. However, the states of a phenomenon in the field of Earth 

observation, for example, may have some spatial variability. To represent changes in 

space statically, the solution is straightforward so that BN and Geographic Information 

System (GIS) are integrated to overcome BN’s weakness in representing spatially 

distributed variables. This approach, known as Spatial BN (SBN), confers to the BN a 

spatially explicit strategy, but it only permits to reproduce static changes through space 

(SPEROTTO et al., 2017). 
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A BN also does not explicitly model temporal relationships between variables. The 

probabilistic reasoning is carried out at a particular point in time and, therefore, a BN is 

actually a static model. The only way to relate a variable with its past or future is by 

replicating it for each time-step and assigning a time index to it. Consequently, we have 

to work with a given discrete time scale to adapt the BN as a Markovian process. A 

Markov process is any stochastic process that satisfies the Markov property that the 

current state depends on only a finite fixed number of previous states. The simplest one 

is a first-order Markov process, in which the current state depends only on the previous 

state and not on any earlier state (RUSSELL; NORVING, 2010). One way of extending 

Markov models is to allow higher-order interactions between variables. 

 Even with the Markov property, there is a classical problem when working with BNs in 

the temporal domain: do we need to specify a different conditional probability distribution 

for each time-step? To avoid this problem, we assume that changes in the world state are 

caused by a stationary process, i.e., a process of change that is driven by laws that do not 

themselves change over time (DE SANTANA et al., 2007; RUSSELL; NORVING, 

2010). A BN replicated over time that satisfies the Markov property and is stationary is 

know as a Dynamic Bayesian Network (DBN). Hence, DBNs extend the concept of BNs 

by relating variables across time. 

Therefore, the SBN and DBN overcome BN’s weaknesses of not explicitly model spatial 

and temporal relationships between variables, respectively. However, space and time play 

a crucial role in monitoring and managing environmental systems and, thus, should not 

be considered separately. To that end, a Spatio-Temporal Bayesian Network (STBN) 

seems to be an appropriate approach to combine the spatial and temporal variability of a 

spatio-temporal process, such as deforestation, into the BN modeling.  

SBNs have been employed in the land-use and land-cover changes (LULCC) modeling 

(CELIO; KOELLNER; GRÊT-REGAMEY, 2014), as well as to predict deforestation risk 

(DLAMINI, 2016; KRÜGER; LAKES, 2015; MAYFIELD et al., 2017). However, in 

these studies, deforestation has been considered as a static process, in which the temporal 

domain is not taken into account. An attempt to fill this gap was made by Silva et al. 

(2020), in which the authors presented a stepwise application of an SBN approach over 

time, which can be seen as a snapshot model for each moment. In this way, the temporal 

dynamics of deforestation processes was not directly incorporated into the modeling. In 

fact, static SBN modeling was carried out in each step. 
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In this context, the main goal of this work is to build STBN models to predict 

deforestation risk areas. To accomplish that, we assume the hypothesis that STBN-based 

LULCC models are able to represent and capture the variables’ spatio-temporal 

relationships to appropriately predict deforestation risk. The STBN models developed in 

this work ware tested to predict deforestation risk in three deforestation frontiers in the 

Amazon forest: (i) in the southwestern of Amazon state, (ii) in the northwestern of Mato 

Grosso state, and (iii) in the southwestern of Pará state. Within the context of this study, 

we define Amazon deforestation as the total removal of primary forests (clear cut). 

In order to develop the STBN-based LULCC models, we implemented in the context of 

this thesis the package named stbnR (Spatio-Temporal Bayesian Network for R), which 

enables the development of STBN-based LULCC models within the R environment. The 

stbnR package was developed in R because it is a constantly evolving open-source 

programming language. This allows anyone to test and contribute to improvements to the 

stbnR package. Furthermore, R is a powerful language for statistical computing and 

analysis and has available a massive collection of packages to support the development 

of new ones. 

Therefore, this thesis presents mainly three contributions. First, we encompass the 

temporal domain into the LULCC modeling, specifically in the prediction of deforestation 

risk. Second, we implemented the stbnR package, which enables the development of 

STBN-based LULCC models within the R environment for other earth observation 

applications besides the deforestation process. And third, we proposed a new approach 

for predicting deforestation risk areas based on the Spatio-Temporal Bayesian Network 

(STBN).  

This thesis is organized as follows. This first chapter provides the context, contribution, 

hypothesis, and objective of the work. Chapter 2 presents an overview of the Brazilian 

Amazon environmental governance as well as a taxonomy of LULCC models and BN 

approaches. Chapter 3 provides a detailed description of the stbnR package functions, 

while Chapter 4 describes the case studies in addition to the dataset used and pre-

processings carried out. Chapter 5 presents the results of each case study. Finally, Chapter 

6 concludes this thesis with an overview of the work. 
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2. LITERATURE REVIEW 

 

2.1 Amazon forest environmental governance 

Amazon Biome encompasses an area of about 6.7 million km2 shared by nine countries: 

Brazil, Bolivia, Peru, Ecuador, Colombia, Venezuela, Guyana, Suriname, and French 

Guiana, with the majority area inside Brazilian boundaries. The Amazon rainforest covers 

most of the Amazon Biome, being the most extensive continuous remaining tropical 

forest in the globe. Much attention has been given to this region since it provides unique 

environmental services, houses at least one in ten of the world’s known biodiversity, and 

plays a critical role in maintaining climate functions regionally and globally (ALVES et 

al., 2017; NOBRE; BORMA, 2009; WWF, 2019).  

In Brazil, an anthropization process started in the 1960s in response to the government 

policies to integrate the Amazon region with the rest of the country (SHIMABUKURO 

et al., 2012). In 1966, the government instituted the Brazilian Legal Amazon1 (BLA), 

which corresponds to more than 60% of the Brazilian territory, encompassing the states 

of Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Tocantins, and the western 

part of Maranhão state (BRASIL, 2007), hence, including the Brazilian Amazon biome 

and part of the Cerrado and Pantanal Biomes. BLA’s territorial boundaries have a 

sociopolitical rather than geographical bias as it was established as a way to plan and 

promote the social and economic development of the region (IBGE, 2014). 

Such integration process was carried out mainly through the construction of a massive 

highway network, and migration incentive policies such as the National Development 

Plans (SIMMONS, 2002). Consequently, this shifted the agricultural frontier towards the 

Amazon region, creating the so-called arc of deforestation (SHIMABUKURO et al., 

2012). At the time, cattle ranching became a great investment choice, given the plentiful 

and inexpensive lands, besides high world beef prices (SIMMONS, 2002). Afterward, 

development policies in the Amazon region shifted toward mineral extraction, and during 

the Brazilian government transition from a military regime to democracy in the 1980s, 

                                                           

1 The term "Legal Amazon" was only incorporated in recent legislations and is not explicitly stated in the 
laws that defined the Brazilian Amazon area for public policy purposes in previous decades. The use of 
the adjective "legal" is due to the need to differentiate the Amazon basin, Amazon Biome, as well as the 
International Amazon (IBGE, 2014). 
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concerns about forest loss increased as the incentive to economic development also 

presented several environmental damages (ARIMA et al., 2014; SIMMONS, 2002).  

In the late 1980s, indigenous rights got much attention, which resulted in a significant 

number of indigenous reserves along with some conservation units (SIMMONS, 2002). 

Additionally, the National Institute for Space Research (INPE) started to monitor the 

BLA with satellite images, reporting yearly deforestation rates, which the Brazilian 

government has been using as an indicator for proposing environmental public policies 

and for evaluating their effectiveness (INPE, 2019c). The Brazilian Forest Code was a 

significant restriction on deforestation on private lands that established a minimum 

portion of each property (20 to 50%) that should be kept as a forest reserve (NEPSTAD 

et al., 2014). Nevertheless, in 1995, INPE announced the largest deforestation rate in 

history (INPE, 2019a). The president at the time increased forest reserves portion in the 

properties to 80%, making compliance practically unattainable and reducing the law’s 

credibility (NEPSTAD et al., 2014). Although rates declined in the following years, 

Amazon deforestation became far more sensitive to commodity market conditions, and 

technological advances favored the large-scale expansion of mechanizes crops, mainly 

soybean, whose prices spiked in the early 2000s, so did deforestation rates, which 

returned to the high levels in 2004 (ARIMA et al., 2014; NEPSTAD et al., 2014). 

After deforestation rates in the BLA sharply increased in 2004, the Brazilian government 

implemented the Action Plan to Prevent and Control Deforestation in Amazon 

(PPCDAm-I) (BRASIL, 2004). Deforestation rates declined in the following years, but 

this trend reversed in 2008 (INPE, 2019a), and the government instituted the PPCDAm-

II (BRASIL, 2009). Deforestation reduction became the central issue in the government 

climate change agenda, and the implemented environmental public policies produced 

significant externalities such as the restructuring of Brazil’s environmental enforcement 

agency (IBAMA) and the expansion of the protected areas network and indigenous lands 

(ARIMA et al., 2014; MELLO; ARTAXO, 2017). 

Along with these government actions, other factors also influenced deforestation 

reduction. In 2004, law enforcement capacity increased with the release of a real-time 

deforestation detection system (DETER) by INPE (SHIMABUKURO et al., 2012). In 

2005, the profitability of soybean production plummeted (NEPSTAD et al., 2014), as well 

as the cattle ranching (ARIMA et al., 2014). In the next year, the Soy Moratorium was 

established (GIBBS et al., 2015), and the Term of Adjustment of Conduct for 
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meatpacking companies was signed in 2009 (CARVALHO et al., 2019). Both were 

agreements to block the commercialization of soybean and cattle, respectively, from 

deforested areas. As a result of all those factors, deforestation in BLA reached the lowest 

rate in 2012 (INPE, 2019a), as shown in Figure 2.1. Brazil's success in reducing 

deforestation has made it a global leader in climate change mitigation (ARTAXO, 2019).  

 

Figure 2.1 - Deforestation rates in Brazilian Legal Amazon over the years. 

 

Source: INPE (2019a). 

 

However, Brazil's environmental governance had always been a target of the agribusiness 

and mining parliamentary front. In 2012, this coalition took advantage of deforestation 

rates drop to propose controversial revisions to the Forest Code, which drastically reduced 

environmental protections, besides to soften legislation regulating land use and 

management on private property, and grant amnesty for owners of areas illegally 

deforested in the past (SOARES-FILHO et al., 2014). The approval of the new Brazilian 

Forest Code  (BRASIL, 2012) became a turning point in the downward trend of 

deforestation rates that subsequently crept back up (INPE, 2019a). Additionally, the rising 

demand for hydropower and mining resources was pushing harder the protected areas 

network. The same coalition presented legislative proposals to open strictly protected 

areas for mining concessions, besides prohibiting new protected areas in regions of high 

mineral or hydropower potential (FERREIRA et al., 2014).  

INPE has continually monitoring deforestation in the BLA since the 1980s. The Amazon 

Deforestation Satellite Monitoring Project (PRODES) (SHIMABUKURO et al., 2012) is 
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an internationally recognized INPE’s monitoring systems that map the clear-cutting 

deforestation (when there is the complete removal of the forest cover) to compute the 

official yearly deforestation rates. Despite that, PRODES methodology (CÂMARA et al., 

2013) requires time to produce such data, which rule out the rapid intervention from 

government and environmental control agencies to stop illegal deforestation activities.  

To get around this, INPE created the Near Real-Time Deforestation Detection System 

(DETER) to exploit the high temporal resolution of nearly daily coverage of the MODIS 

sensor at 250 𝑚 spatial resolution (SHIMABUKURO et al., 2012). The DETER system 

was designed to be an early warning system to support surveillance and control of 

deforestation, mapping the occurrence of forest degradation and clear-cutting areas 

greater than 25 ha (DINIZ et al., 2015). However, the reduction in the average size of 

deforested areas over the years became a major limitation for MODIS-based 

methodology. Because of that, DETER system started using AWIFIS and WFI sensors 

imageries at 56 𝑚 and 64 𝑚 spatial resolutaion, respectively, both with 5 days temporal 

resolution, to adapt to the changes in deforestation process (DINIZ et al., 2015).  

Additionally, INPE maintains the TerraClass Project, which represents a concerted effort 

to monitor LULCC in the BLA. The database used in this project comprises deforested 

areas mapped under the PRODES Project, as well as LANDSAT5/TM images and 

MODIS time-series. Based on information about deforestation dynamics, remote sensing, 

and geoprocessing techniques, systemic maps of the use and coverage of deforested lands 

in the BLA have been produced (ALMEIDA et al., 2016). INPE also supports the Wildfire 

System that detects vegetation fires from different polar-orbiting and geostationary 

satellites operationally processed in near-real-time (INPE, 2008, 2019b; SETZER et al., 

2012).  

Given the overview in this chapter, one can be seen that the Amazon rainforest has been 

under constant pressure despite numerous efforts to monitor it and mitigate deforestation. 

As stated by Rochedo et al. (2018), “deforestation control is a result of forces arising from 

institutional arrangements such as enforcing the rule of law and sending signals that may 

[…] incentivize economic agents to decide whether or not to deforest illegally.” In 

summary, environmental governance in Brazil can be separated into three majors periods: 

before 2004, a period with weak governance and high deforestation rates; between 2005–

2012, when there were improvements in environmental governance with effective results 
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in reducing deforestation; and the period after 2013 when governance has been gradually 

deteriorating (ROCHEDO et al., 2018).  

2.2 Land use and land cover change models 

Understanding LULCC is essential for effective natural resource management. Usually, 

involved parties employ models to explore LULCC dynamics and driving factors, and to 

support causes and consequences analysis of these changes in order to formulate proper 

environmental policies. In addition to that, analyses of past LULCC provide necessary 

information that may assist in comprehend current changes and can be used as parameters 

to draft alternative scenarios of future LULCC.  

LULCC modeling is a complex domain. As stated by Noszczyk (2018), it requires 

interdisciplinary knowledge, familiarity with statistical and spatial data, and skill in 

analyses and statistical methods. The selection of the appropriate approach depends on 

various factors, such as research aims and problems, spatial and temporal scale, and data 

availability (DANG; KAWASAKI, 2016; NOSZCZYK, 2018). Given the various 

modeling approaches, choosing the appropriate one can be complicated. Hence, the 

arrangement of models into similar conceptual approaches allows for a better 

understanding of their advantages and limitations (CHANG-MARTÍNEZ et al., 2015).  

Indeed, LULCC models can be classified in different ways. For instance, as spatial or 

non-spatial models, which attempt to, respectively, explore the spatial distribution and 

patterns of change (land allocation), or estimate the rates or quantity of change (land 

demand) (DALLA-NORA et al., 2014; MAS et al., 2014). LULCC models can also be 

arranged as static or dynamic. A static model is time-invariant, meaning that it considers 

the modeled system in equilibrium (steady-state). In turn, a dynamic model is time-

dependent, accounting for changes in the system’s state over time (WAGNER et al., 

2019).  

LULCC models can yet be classified as deterministic or stochastic. In deterministic 

models, there is no randomness associated with it. The output is fully determined by 

model parameters values and a given set of initial conditions. Therefore, the same model 

run several times will always produce the same result (possibly repeated over time and 

spatial units). Conversely, stochastic models, also known as probabilistic models, have 

inherent randomness. Inputs are described by probability distributions as a way to 

incorporate uncertainty into the model calculations, and the same parameter values and 
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initial conditions may lead to different outputs (ABIDEN et al., 2013; ROSA; AHMED; 

EWERS, 2014; UUSITALO et al., 2015).  

Several review studies have previously been produced to create LULCC model 

taxonomies (VERBURG et al., 2004; HEISTERMANN; MÜLLER; RONNEBERGER, 

2006; KOOMEN; RIETVELD; DE NIJS, 2008). More recently, Brown et al. (2012) and 

Chang-Martínez et al. (2015) described LULCC models into two categories: according to 

whether the approach is data-driven or theory-driven. The first category includes 

inductive models, which are consistent in reproducing LULCC patterns, but weak in 

explaining correlations (KOOMEN; BEURDEN, 2011). These models are empirically 

fitted (training) from LULCC pattern data over space and time. The variable to be 

predicted represents the LULCC, whereas predictor variables are factors or indicators that 

may be related to the changes, such as accessibility (e.g., distance to roads), terrain 

suitability (e.g., slope), public policies (e.g., protected areas), besides non-spatial data like 

census data. The data-driven model’s output is a map of potential changes, and the 

model’s evaluation is usually centered on the spatial comparison between observed and 

simulation maps (BROWN et al., 2012; CHANG-MARTÍNEZ et al., 2015). 

In turn, the theory-driven approach includes deductive models that are consistent in 

explaining how and why LULCC will happen, but weak in the spatial allocation of the 

change (KOOMEN; BEURDEN, 2011). Usually, theory-driven models rest on expert 

knowledge and information about decision-making that leads to LULCC (process-based). 

These models seek to represent the essential interactions between agents and their 

environment, which means the model’s calibration consists of determining the agent’s 

behavior rules. Simulation is fundamental to the theory-driven models. Having 

prospective LULCC maps as output, theory-driven models can be evaluated by the same 

methods as data-driven models do, but as the primary goal of these models is modeling 

the change processes, their evaluation centers on agent’s rules for decision-making 

(BROWN et al., 2012; CHANG-MARTÍNEZ et al., 2015). 

In addition to those two categories, a hybrid modeling approach could also be defined, 

representing a compromise between data-driven and theory-driven models. Indeed, there 

are overlaps among modeling approaches, which complicates their exact classification 

into one of those two categories. In this context and based on the reviews presented by 

Brown et al. (2014), Dang and Kawasaki (2016), Michetti and Zampieri (2014), and 

Noszczyk (2018), seven types of LULCC modeling approaches could be identified: (i) 
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machine learning; (ii) statistical-based; (iii) Markov chains; (iv) cellular automata; (v) 

economic-based; (vi) agent-based; and (vii) hybrid approach. It is worthy of mentioning 

that these approaches are not the only ones to cover the full range of LULCC modeling 

approaches, but can be considered the key ones. 

2.2.1 Machine learning 

Machine learning (ML) models are powerful techniques for simulating and predicting 

LULCC. They are computer algorithms developed to learn from data on how to carry out 

a particular task automatically (ABURAS; AHAMAD; OMAR, 2019). Hence, ML 

models are useful for situations where patterns data are available, and theory about 

processes is scant (BROWN et al., 2014). In LULCC modeling, the learning is commonly 

supervised and, consequently, both input (change-related variables) and output (change) 

data must be provided to the ML model to build a functional relationship between these 

data, capturing LULCC patterns. Unsupervised ML models are less common in LULCC 

modeling (OMRANI et al., 2015).  

As ML models are data-driven, there is a risk of overfitting. This happens when the model 

fits too well to details of input data (training data) in a way that it fails in generalization 

(BROWN et al., 2014). Even though, ML models are useful for extrapolations of the 

functional relationship among variables under the strong assumption of a stationary 

LULCC process, in which change patterns stay the same as in the precedent time (i.e., 

business-as-usual scenario). In this sense, the stationarity assumption turns to be a 

limitation to ML models. New predictor variables might arise over time, and this cannot 

be accounted for in the predictions. Moreover, calculated transitions rules cannot be 

changed and be uninterpretable to the users as in an Artificial Neural Network (ANN), 

which is known as a “black-box” model (DANG; KAWASAKI, 2016; NOSZCZYK, 

2018). 

ANNs plays a central role in the ML approaches (ABURAS; AHAMAD; OMAR, 2019), 

but several ML techniques, such as Support Vector Machine (SVM), Decision Trees (DT) 

(SAMARDŽIĆ-PETROVIĆ et al., 2017), Randon Forest (RF) (KAMUSOKO; GAMBA, 

2015), ensemble approaches (BRADLEY et al., 2017), and even deep learning 

approaches (CAO; DRAGIĆEVIĆ; LI, 2019; HELBER et al., 2018; ZHANG et al., 2019) 

are also employed for LULCC modeling. ML models are commonly integrated with 

process-based models, such as Cellular Automata (CA), to improve overall simulation 

capabilities (BASSE et al., 2014; MUSTAFA et al., 2018). 
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2.2.2 Statistical-based 

Statistical-based (SB) models are also dependent on data to delineate a relationship 

between LULCC and predictor variables. Such a relationship is generally obtained 

through linear or logistic regression, binomial or multinomial logit methods, among 

others (DANG; KAWASAKI, 2016; NOSZCZYK, 2018). SB models assume a fixed 

mathematical equation whose coefficients are estimated by a statistical process to produce 

an optimal fit. That is, coefficients are estimated in order to a regression curve fits as 

closely as possible to the data. Hence, coefficients indicate the influence of independent 

variables regarding the dependent variable. SB models also provide a confidence degree 

concerning the contribution of independent variables (BROWN et al., 2014; DANG; 

KAWASAKI, 2016) 

Some limitations might compromise the SB model's usefulness (BROWN et al., 2012). 

Like ML models, SB models are built based on historical data, and they also assume a 

stationary LULCC process to extrapolate the mathematical equation to the future. 

However, SB models are limited in the ability to make out-of-sample predictions and are 

not suitable for long-term and divergent scenarios. Also, spatial and temporal dependence 

of data affects SB models (DANG; KAWASAKI, 2016; NOSZCZYK, 2018). SB models 

are generally used to address linear problems (ABURAS; AHAMAD; OMAR, 2019), and 

assumptions such as a log-linear relationship between independent and dependent 

variables are required, which might be a limitation in modeling (BROWN et al., 2012). 

Even though Logistic Regression (LR) is a widely used SB model in LULCC modeling 

(ABURAS; AHAMAD; OMAR, 2019). Other SB models such as Frequency Ratio (FR), 

Weights of Evidence (WoE), Evidential Belief Function (EBF) (AL-SHARIF; 

PRADHAN, 2016; DING; CHEN; HONG, 2016; SOMA; KUBOTA; ADITIAN, 2019), 

and non-linear methods, as Generalized Additive Model (GAM) (FENG; TONG, 2017; 

SUN; ROBINSON, 2018) have also been employed to model LULCC. 

2.2.3 Markov chains 

Markov chain (MC) models provide a straightforward methodology by which a dynamic 

system can be analyzed (KUMAR; RADHAKRISHNAN; MATHEW, 2014). MC 

models are probably the most well-known approach for LULCC models rest on the 

continuation of historical trends (BROWN et al., 2014), which means that these models 

also work under the stationarity assumption. In a Markov process, the future system’s 

state can be simulated purely based on the immediately preceding state. Hence, MC 
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models describe LULCC from one period to another and apply it to predict future changes 

(KUMAR; RADHAKRISHNAN; MATHEW, 2014). To do so, these models employ a 

stochastic transition matrix to represent all possible changes among LULCC classes. For 

instance, three classes of LULCC result in a matrix 𝑀3𝑋3 with nine possible changes. 

Transition matrix defines the probabilities of shifting from one LULCC category to 

another. It can be obtained by comparing two maps of  LULCC classes over time or by 

expert knowledge (DANG; KAWASAKI, 2016; MAS et al., 2014). 

Due to its simplicity, the MC model was a common approach in the early phase of 

LULCC modeling (BROWN et al., 2014). However, a drawback of MC models is the 

disregard of the LULCC spatial aspect, i.e., the assumption of spatial independence 

(NOSZCZYK, 2018). Only cell states are considered, and the influence of neighboring 

cells is not considered (DANG; KAWASAKI, 2016). To overcome this limitation, MC 

models have been combined with GIS systems to spatialize the LULCC probabilities, and 

several hybrid approaches have been proposed by merging MC models with other 

approaches that simulate the spatial pattern of change, such as Cellular Automata 

(KUMAR; RADHAKRISHNAN; MATHEW, 2014; LOSIRI et al., 2016; NASIRI et al., 

2018). 

2.2.4 Cellular automata 

Cellular automata (CA) models rest on a mathematical theory of self-reproduction in 

automata and stochasticity within a two-dimension cellular-grid environment, which is 

discrete in terms of time and space (DANG; KAWASAKI, 2016; NOSZCZYK, 2018). A 

CA model consists of five elements: cell space, cell states, neighborhood, transition rules, 

and time steps. The CA’s basic unit of simulation is the cell, and the set of cells make up 

the cell space. In remote sensing and GIS fields, cells are usually concerned with pixels 

or any other land unit. All the possible states that can be assigned to the cells correspond 

to the cell states. Neighborhood defines which adjacent cells to a given cell will be 

considered during the simulation. In turn, transition rules specify which new state will be 

assigned to a given cell, taking into account neighboring cells states. Lastly, time step 

concerns to a time interval between changes in the course of the simulation. 

Underlying assumptions of CA models are the continuation of historical trends and 

patterns, and allocation based on land suitability and neighborhood interaction (BROWN 

et al., 2014). CA’s core principle is that the state of a given cell at time 𝑡 + 1 can be 



 

13 
 

determined by its state and neighboring cells states at time 𝑡 (NOSZCZYK, 2018). 

Changes in each cell are simulated either rest on transition rules or some algorithm. 

Transition rules can be derived from expert knowledge or statistical analysis. Unlike 

ANNs, transition rules in CA models are clearly defined. In turn, an algorithm can be 

employed to update cell states, representing decision-making. This algorithm is applied 

synchronously to all cell space, and its output stems solely from the cell’s attributes 

(BROWN et al., 2014; NOSZCZYK, 2018).  

As CA are spatial models, they are compatible with most spatial data, easily integrated 

with GIS, and allows to represent straightforward LULCC processes. On the other hand, 

CA models are entirely reliant on the spatial unit, which means modeling results may 

change with the variation of cell size and neighborhood configuration (NOSZCZYK, 

2018). Nevertheless, CA models are widely used for LULCC modeling (ABURAS; 

AHAMAD; OMAR, 2019). They are often combined with other modeling approaches 

(MUSTAFA et al., 2017; RIMAL et al., 2018) besides being part of GIS software (MAS 

et al., 2014; SOARES-FILHO; RODRIGUES; FOLLADOR, 2013). 

2.2.5 Economic-based 

Economic-based (EB) models stem from traditional economic theories and aim at 

explaining changes in land-use patterns with economic-related variables, such as 

production, consumption, prices, access to markets (MICHETTI; ZAMPIERI, 2014). 

Hence, these models rest on the assumption that economics is the primary driver of 

LULCC, and they do not usually take the climate and biophysical drivers into account. 

Moreover, EB models consider that landowners will use the land to maximize the land’s 

usefulness and expected profits (BROWN et al., 2014; NOSZCZYK, 2018). These 

models also assume the equilibrium theory to estimate land changes considering the 

demand-supply relationship (DANG; KAWASAKI, 2016; MICHETTI; ZAMPIERI, 

2014). Some EB models can be distinguished by the scope of the economic system they 

represent. A general equilibrium model represents the global economy, while partial 

equilibrium models consider detailed descriptions of specific sectors, such as agriculture 

or forestry production (BROWN et al., 2014; REN et al., 2019). 

EB models can describe and quantify the influence of LULCC drivers on land demand. 

Besides that, they provide the means for exploring the interactions within the human-

environment system, as well as for accessing the consequences of policies and decisions 
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made regarding land uses and their probable effects (CHANG-MARTÍNEZ et al., 2015; 

MICHETTI; ZAMPIERI, 2014). EB models' parameters are often estimated using 

econometric methods. In other cases, parameters may be guided by either theory taken 

from previous studies or a range of values to explore the model’s sensitivity (BROWN et 

al., 2014). A drawback of EB models is that they do not take into full account the 

geographical location of change (NOSZCZYK, 2018), as these models assume economics 

as the primary driver of LULCC. 

2.2.6 Agent-based 

Agent-based (AB) models, often called as multi-agent systems, describe intelligent 

agents, their environment, and possible interactions. Agents are discrete entities 

characterized by their attributes and their behaviors. They can interact with each other 

and with the environment to collect information or carry out actions that modify their 

context. Regarding the LULCC, agents could be landowners, households, farmers, 

policy-making bodies, or any actors that make decisions or take actions that affect the 

LULCC patterns (BROWN et al., 2014). AB models allow modelers to capture the 

stakeholder's specialized knowledge and perform scenario analysis (DANG; 

KAWASAKI, 2016). Hence, an AB model for LULCC consists of a map of the area of 

interest and a model with agents representing human decision-making in a very flexible 

and context-dependent way (GROENEVELD et al., 2017; NOSZCZYK, 2018).  

As stated by Groeneveld et al. (2017), the majority of human decisions AB models for 

LULCC are not explicitly based on theory, and the flexibility of these models comes along 

with ad hoc assumptions of the decision process. AB models facilitate modeling of 

feedback loops between human and environmental systems. Any interaction in AB 

models is based on prescribed rules whose descriptions can be difficult and controversial. 

For instance, agent preferences may be determined by expert judgment with questionnaire 

surveys. Apart from expert knowledge, AB models facilitate the integration of other data 

sources, such as current trends and existing models (NOSZCZYK, 2018). However, these 

models tend to concentrate on the most readily apparent and quantifiable aspects of 

LULCC and do not account for factors such as outmigration, changes in techniques and 

input use, and the influence of regional and global economic variables (DANG; 

KAWASAKI, 2016). 
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2.2.7 Hybrid approaches 

No single model can take all LULCC characteristics into account owing to the complex 

nature of it. In light of this, a hybrid approach, i.e., a merger of two or more individuals 

models, is employed to represent the various aspect of LULCC patterns and processes 

(BROWN et al., 2014; NOSZCZYK, 2018). Hybrid approaches take advantage of the 

strengths of individual ones in order to reduce some of their inherent limitations, allowing 

better representation of the LULCC (BROWN et al., 2014). As stated by Dang and 

Kawasaki (2016), combining the best aspect of different approaches helps to cover several 

disciplines, mutual relationships, and link social science with spatial data to represent the 

LULCC process. 

Broad diversity of hybrid approaches have evolved over the years. Figure 2.2 tries to 

summarize the development of hybrid approaches for LULCC modeling with a relative 

timing. The arrows indicate the approximate moment when two or more different 

approaches were ensemble and employed in LULCC modeling, according to Dang and 

Kawasaki (2016). Additionally, Figure 2.2 presents a rough arrangement of LULCC 

models in terms of their emphasis on data-driven (blue zone) or theory-driven (green 

zone). 

Some hybrid approach achievements include solving problems of temporal and spatial 

scale and covering multi-discipline and multi-scale approach (DANG; KAWASAKI, 

2016). For example, an SB model like spatial regression can be used to solve spatial 

mismatches between the imposition of regular boundaries on grid cells of a CA model. 

On the other hand, an EB model is used to estimate land demand, while an ML model 

like ANN  is used to explain land allocation (DALLA-NORA et al., 2014; DANG; 

KAWASAKI, 2016).  
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Figure 2.2 - LULCC models classification according to whether the approach is data-driven or 

theory-driven. The development of hybrid approaches over time is presented.  

 

Source: Adapted from Dang and Kawasaki (2016). 

 

However, the combination of different methods/techniques also has some drawbacks. It 

requires a vast knowledge of appropriate tools and leads to an increased modeling 

complexity, which might reduce the interpretation of simulated LULCC. Models 

calibration and validation can be challenging (BROWN et al., 2014). Feedback loops and 

cross-scale interactions is a time-consuming task. A higher level of methodological 

integration requires more data. Besides that, data integration process can be laborious 

when data sources, units of analysis, spatial or time resolutions do not coincide (DANG; 

KAWASAKI, 2016). 

Although the review studies aforementioned do not explicitly bring up Bayesian Network 

(BN) as an example of a LULCC model, it can be defined as a hybrid approach, 

comprising a linkage between data-driven and theory-driven approaches. BN models 

stand out among other approaches because the definition of their structure and parameters 

can rest on different sources of information, such as empirical data, expert knowledge, or 

a combination of both (JOHNSON; LOW-CHOY; MENGERSEN, 2012; LANDUYT et 

al., 2013; POLLINO; HENDERSON, 2010). In this context, a BN model can be defined 

as a supervised ML approach since its parameters can directly be computed from the 

dataset. Besides that, BN models rest on a robust statistical framework for uncertainties 

analysis (PUGA; KRZYWINSKI; ALTMAN, 2015) that allows classifying them also as 

an SB approach. On the other hand, when data learning cannot be applied because of data 

scarcity, experts and stakeholders’ elicitations can be employed (SPEROTTO et al., 

2017), and a BN model turns to be a more theory-driven related model.  
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2.3 Bayesian networks 

Bayesian Networks (BNs), also known as Bayesian Belief Networks, are probabilistic 

graphical models based on qualitative and quantitative components (AGUILERA et al., 

2011; NEAPOLITAN, 2004). The qualitative component 𝑮 = (𝑽, 𝑨) is a direct acyclic 

graph (DAG) that comprises a set of 𝑛 nodes 𝑽 = {𝑉1, 𝑉2, … , 𝑉𝑛}, representing 𝑛 variables 

in the model; and also a set of directed arcs 𝑨 ⊆ 𝑽 × 𝑽, indicating the existence of 

statistical dependence among the variables (AGUILERA et al., 2011). Thereby, an arc 

𝑉𝑖 →  𝑉𝑗 indicates that 𝑉𝑖 (parent node) has an effect on 𝑉𝑗 (child node).  

The quantitative component refers to a set of conditional probability distributions. 

Considering that variables in a BN modeling are discrete or continuously discretized, 

parent and child variable relationships can be computed through discrete conditional 

probability distributions, which is represented by a conditional probability table (CPT) in 

the form 𝑃(𝑉𝑖|𝑝𝑎(𝑉𝑖)), i.e., the probability of the node 𝑉𝑖 takes on a specific state given 

the states of its parents 𝑝𝑎(𝑉𝑖). For parentless node, 𝑃(𝑉𝑖|𝑝𝑎(𝑉𝑖)) simplify to 𝑃(𝑉𝑖) 

(LANDUYT; BROEKX; GOETHALS, 2016). A conditional probability distribution is 

attached to each node, quantitatively describing the dependencies on its parents.  

Figure 2.3 illustrates an example of a BN made up by a set of four nodes 𝑽 = {𝐴, 𝐵, 𝐶, 𝐷}. 

Each node has two mutually exclusive states: 𝑇𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒. In turn, the BN’s arcs are 

defined by 𝑨 = {{𝐴, 𝐶}, {𝐵, 𝐶}, {𝐶, 𝐷}}, which means that 𝐴 and 𝐵 are parent nodes of 𝐶, 

while 𝐶 is the parent of node 𝐷. The CPT attached to each node is presented through the 

bar-plot in Figure 2.3. For instance, for the parentless node 𝐴, the probability of this node 

to take on the state 𝑇𝑟𝑢𝑒 equals to 0.8, i.e., 𝑃(𝐴 = 𝑇𝑟𝑢𝑒) = 0.8, while the probability of 

it to take on the state 𝐹𝑎𝑙𝑠𝑒 must be complementary and, therefore, equals 0.2, i.e., 

𝑃(𝐴 = 𝐹𝑎𝑙𝑠𝑒) = 0.2. These values are represented by the black and gray stacked bars 

for node 𝐴. Regarding node 𝐶 that has two parent nodes, its probability is conditionally 

dependent on 𝐴 and 𝐵. Thus, considering that both nodes 𝐴 and 𝐵 takes on 𝑇𝑟𝑢𝑒 state 

(two black dots above the bars), we have 𝑃(𝐶 = 𝑇𝑟𝑢𝑒 | 𝐴 = 𝑇𝑟𝑢𝑒, 𝐵 = 𝑇𝑟𝑢𝑒) = 0.9 

and 𝑃(𝐶 = 𝐹𝑎𝑙𝑠𝑒 | 𝐴 = 𝑇𝑟𝑢𝑒, 𝐵 = 𝑇𝑟𝑢𝑒) = 0.1. On the other hand, if 𝐴 and 𝐵 takes on 

𝐹𝑎𝑙𝑠𝑒 state (two gray dots above the bars), 𝑃(𝐶 = 𝑇𝑟𝑢𝑒 | 𝐴 = 𝐹𝑎𝑙𝑠𝑒, 𝐵 = 𝐹𝑎𝑙𝑠𝑒) =

0.05 and 𝑃(𝐶 = 𝐹𝑎𝑙𝑠𝑒 | 𝐴 = 𝐹𝑎𝑙𝑠𝑒, 𝐵 = 𝐹𝑎𝑙𝑠𝑒) = 0.95. 
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Figure 2.3 - Example of a BN model with four variables 𝐕 = {A, B, C, D} (on the left). Grey 

colored node indicates an evidence presence by selecting a state (C = true). Values 

in other nodes are the posterior probabilities given such evidence. Bar plot (on the 

right) illustrates the probability distributions attached to each variable. Conditional 

probabilities for variables C and D describe dependencies on their parents. 

 
Source: author’s production. 

 

An important quantity in a BN is the joint probability distribution (Equation 2.1), which 

is obtained by multiplying all conditional probability distributions (NEAPOLITAN, 

2004). It corresponds to the probability of a specific scenario occurring, which means 

each node in the model takes on a state. In the example BN (Figure 2.3), the joint 

probability is calculated by 𝑃(𝐴, 𝐵, 𝐶, 𝐷) = 𝑃(𝐴)𝑃(𝐵)𝑃(𝐶|𝐴, 𝐵)𝑃(𝐷|𝐶). 

𝑃(𝑉1, … , 𝑉𝑛) = ∏ 𝑃(𝑉𝑖 | 𝑝𝑎(𝑉𝑖))

𝑛

𝑖=1

. (2.1) 

The fundamental assignment of the BNs is to compute the probability of an event 

occurring in the light of new evidence. As each node in the BN has a set of mutually 

exclusive states, the evidence is entered into the network by the instantiation (i.e., the 

observation) of a state in one or more nodes (CHEN; POLLINO, 2012). The reasoning to 

update the probabilities of the other variables lies in the Bayes’ theorem (NEAPOLITAN, 

2004): 

𝑃(𝑉𝑖 = 𝑣𝑖  | 𝑒) =
𝑃(𝑒 | 𝑉𝑖 = 𝑣𝑖)𝑃(𝑉𝑖 = 𝑣𝑖)

𝑃(𝑒)
. (2.2) 

The term  𝑃(𝑉𝑖 = 𝑣𝑖 | 𝑒) is the posteriori probability of the event 𝑉𝑖 = 𝑣𝑖 (variable 𝑉𝑖 

takes on the state 𝑣𝑖) conditioned upon some evidence 𝑒; 𝑃(𝑒 | 𝑉𝑖 = 𝑣𝑖) is the likelihood 

of 𝑒 given 𝑉𝑖 = 𝑣𝑖. The term 𝑃(𝑉𝑖 = 𝑣𝑖) is the prior or marginal probability of the event 

𝑉𝑖 = 𝑣𝑖 and 𝑃(𝑒) is a normalizing constant. Through the Bayes’ theorem, it is possible to 

consistently propagate the impact of the evidence throughout the network, updating the 
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priori probabilities of the other variables. For instance, taking into account the BN in 

Figure 2.3, estimations about the variable 𝐴 can be refined by observing the state of the 

variable 𝐶. Thus, the prior knowledge 𝑃(𝐴 = 𝑡𝑟𝑢𝑒) = 80% (illustrated in the bar plot) is 

updated to 𝑃(𝐴 = 𝑡𝑟𝑢𝑒 | 𝐶 = 𝑡𝑟𝑢𝑒) = 95%. Therefore, having information about 𝐶 

increases the beliefs about 𝐴. This ability to compute posterior probabilities given new 

evidence is called inference.  

2.4 Spatial bayesian networks 

BNs have limitations in representing spatial variability. A Spatial BN (SBN) can be a BN 

designed to model the spatial variability through its structure (i.e., DAG). It is assumed 

that the value of a variable in any location depends only on the variables at adjacent 

locations (POLLINO; HENDERSON, 2010). Hence, two SBN approaches can be 

designed: (i) each spatial unit (region, cell or pixel) is represented by one network’s node 

(Figure 2.4-a) that can be linked to neighboring nodes (DAS et al., 2017); and (ii) each 

spatial unit is represented by one instance of the network (Figure 2.4-b), in which output 

nodes are linked to input nodes of adjacent networks (GIRETTI; CARBONARI; 

NATICCHI, 2012). Nonetheless, for modeling in high spatial resolution (i.e., small 

spatial units), or a study area encompassing a large territorial extension, a huge number 

of nodes and causal links would be required to incorporate spatial variability into the 

model, regardless of the employed approach. Besides that, feedback loops cannot occur 

due to the acyclic nature of BN’s structure, unless the model also incorporates temporal 

variability, which will further increase the BN’s structure complexity (GIRETTI; 

CARBONARI; NATICCHI, 2012; POLLINO; HENDERSON, 2010). 

 

Figure 2.4 - Example of SBN approaches. Spatial units represented by network’s nodes (a); spatial 

units represented by instances of the network (b); and network with spatial node (c). 

 

Source: author’s production. 
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As any LULCC has a spatial dimension of interest, it should be considered in the 

modeling. Thus, another approach to overcome BN’s weakness in representing 

geographic information is by using spatial nodes (Figure 2.4-c). This type of node is 

spatially described (JOHNSON; LOW-CHOY; MENGERSEN, 2012), and it summarizes 

the spatial distribution of the variable through the probability distribution. This approach 

confers to the BN a spatially explicit strategy, but it only permits to reproduce static 

changes through space (SPEROTTO et al., 2017), representing the system and variables 

relationships at a particular point in time (CHEN et al., 2019). In general, the LULCC 

analysis relies on the use of static data from two points in time corresponding to the begin 

and end of the time frame (WAGNER et al., 2019) 

For each spatial node in the SBN, a raster layer from a GIS tool must be available. Hence, 

it is useful to consider the integration of BNs with GIS. BN-GIS integration has gained 

considerable interest over the years as the potential way to include spatial information 

into the modeling (CHEN; POLLINO, 2012; LANDUYT et al., 2013). The connection between 

BNs and GIS can be accomplished in different ways (JOHNSON; LOW-CHOY; MENGERSEN, 

2012), but it is predominantly used to map BN’s outputs based on the georeferenced inputs 

(LANDUYT et al., 2013). That means a GIS tool stores the raster data needed to parametrize 

the BN, whose output is then computed for each location (region/cell/pixel as inputted 

from GIS) to represent the outcomes in spatially explicit maps. Therefore, BN-GIS 

integration allows for quantifying and visualizing the uncertainties associated with the 

spatial system (LANDUYT et al., 2015). 

Among the several BN software and packages available (KORB; NICHOLSON, 2010), 

Netica and Hugin are commonly used in BN-GIS integration. The reviews presented by 

Aguilera et al. (2011), Landuyt et al. (2013), and Pérez-Miñana (2016) demonstrate the 

scientific community preference for the software Netica, followed by Hugin. For instance, 

Grêt-Regamey and Straub (2006) embedded a BN from the Hugin software into the 

ArcGIS to accesses the uncertainties involved in the avalanche run-out zones as well as 

estimating the damage potential. Aitkenhead and Aalders (2009) applied an evolutionary 

process to a BN developed from Netica with spatial input data extracted from ArcGIS to 

predict LULCC. Stelzenmüller et al. (2010) used the Netica software to develop a BN-

GIS framework that supports marine spatial planning and evaluate the impact of human 

activities on marine habitats.  
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To enhance the interaction between BN models and spatial data, Landuyt et al. (2015) 

developed a plug-in that couples Netica and QGIS software to model spatial processes 

and associated uncertainties. Balbi et al. (2016) proposed a BN-GIS framework 

combining the software GeNIe and QGIS to assess the benefits of early warning for urban 

flood risk to people. Likewise, Abebe, Kabir, and Tesfamariam (2018) embedded spatial 

information from ArcGIS into the BN constructed from Netica to model the urban areas' 

flood vulnerability. In turn, Sahin et al. (2019) presented an integrated approach 

combining BNs developed on Netica, with input data extracted from ArcGIS spatial layers 

to predict coastal erosion induced by sea-level rise. 

Therefore, SBNs may integrate two tools: one to build the BN and another to deal with 

spatial data. Those commonly used BNs software aforementioned (Netica and Hugin) 

provide efficient Bayesian inference algorithms with a comprehensible user-friendly 

interface. However, they are expensive when compared to open source software 

(LANDUYT et al., 2015). Besides that, there are packages and libraries from specific 

programming languages like R (R CORE TEAM, 2019) capable of dealing with both BNs 

and spatial data in the same programming environment.  

In this context, studies have employed R’s packages to create SBN methods for different 

purposes. For instance, Mello et al. (2013) developed a method able to incorporate 

expert’s knowledge and tested it on a case study for soybean crop mapping. This method 

has been improved by Silva, Fonseca, and Körting, (2017) and applied it as a prediction 

tool for identifying potential areas for sugarcane expansion. Gonzalez-Redin et al. (2016) 

proposed a tool also developed with R’s packages to evaluate trade-offs between forest 

production and conservation measures to preserve biodiversity in forested habitats. In 

turn, Wijesiri et al. (2018) presented a spatial BN method to model urban water quality 

and identify environmental and anthropogenic factors that pose risks to human health. All 

these studies are pixel-based, which means the outputs of the proposed method are raster 

layers, where pixels values correspond to occurrence probabilities of the studied 

phenomenon. 

2.5 Dynamic bayesian networks 

In addition to spatial variability, it is also essential to model how the world changes over 

time. However, BNs also have limitations in representing dynamic systems (POLLINO; 

HENDERSON, 2010; UUSITALO, 2007). Due to the acyclic characteristics of its 

structure (i.e., DAG), a BN is unable to represent feedback loops and systems that change 
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over time (CHEN; POLLINO, 2012; LANDUYT et al., 2013), which means BNs are 

static, modeling a system at a specific moment. Thus, a “dynamic” approach of BNs could 

depict more realistic modeling.  

Dynamic Bayesian Networks2 (DBNs) extend the concept of BNs by relating variables 

across time (MALDONADO et al., 2019). In DBN modeling, the timeline is always 

broken into a finite number of intervals called time-slices (SPEROTTO et al., 2017), and 

a BN is replicated for each time-slice (SHIHAB, 2008). In this context, a DBN can be 

seen as a sequence of snapshots of the system (KHAKZAD, 2019), each one represented 

by one BN at a given time (HU et al., 2015). These BNs are sequentially chained so that 

network nodes from a previous time-slice are linked to network nodes from the next time-

slice (LANDUYT et al., 2013). Figure 2.5 presents an example of a DBN model. Figure 

2.5-a shows an unconventional graphical notation, which is used to represent a collapsed 

DBN model with feedback loops (MALDONADO et al., 2019). The same DBN is 

presented in Figure 2.5-b, but propagated for three time-slices thereby the arcs became 

acyclic.  

 

Figure 2.5 - Example of a Dynamic Bayesian Network (DBN). A collapsed DBN (a); and an 

unrolled DBN in three time-slices (b). Full-filled black arrows indicate non-

temporal arcs, while the red dashed arrows are temporal arcs.  

 

Source: author’s production. 

 

Let’s consider a set of nodes 𝑽 = {𝑉1, 𝑉2, … , 𝑉𝑛} that represents variables of the system to 

be modeled. When constructing a DBN, one node 𝑉𝑖 and for each time-slice 𝑡 must be 

included in the network. Hence, the system at the time 𝑡 is represented by the set of nodes 

                                                           

2 Also called as Dynamic Belief Networks, Probabilistic Temporal Networks or Temporal Bayesian 
Networks (KHAKZAD; KHAN; AMYOTTE, 2013; KORB; NICHOLSON, 2010; MARCOT; PENMAN, 2019).  
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𝑽𝒕 = {𝑉1
𝑡, 𝑉2

𝑡 , … , 𝑉𝑛
𝑡}. As variables can be related to each other at the same time-slice as 

well as at successive time-slice, a DBN can present arcs connecting (i) different nodes at 

the same time-slice, 𝑉𝑖
𝑡 →  𝑉𝑗

𝑡; (ii) the same node over time, 𝑉𝑖
𝑡 →  𝑉𝑖

𝑡+1; and (ii) different 

nodes over time, 𝑉𝑖
𝑡 →  𝑉𝑗

𝑡+1 (KORB; NICHOLSON, 2010).  

Temporal variables that change over time and have effects on other variables in the future 

are represented by temporal nodes in the DBN. These nodes are linked by temporal arcs 

(i.e., arcs linking nodes from different time-slices). In turn, those static variables that do 

not change over time and are related to others only in the current time-slice, are 

represented by static nodes. In Figure 2.5, just 𝐵 is a static node, while 𝐴, 𝐶, and 𝐷 are 

temporal nodes. One can observe that a DBN does not have backward links between 

successive time-slices. Only forward temporal arcs are allowed, reflecting the causal flow 

of time (HU et al., 2015; MURPHY, 2002) 

Normally, it is assumed that the structure of the replicated BN is the same, regardless of 

the time-slice (RUSSELL; NORVING, 2010). Furthermore, the assumption of a steady 

process is taken (GIRETTI; CARBONARI; NATICCHI, 2012) and, therefore, temporal 

arcs are also the same for any transition 𝑡 → 𝑡 + 1. In this context, a DBN is a time-

invariant model (MALDONADO et al., 2019). Note that the term “dynamic” means that 

the system’s development is modeled over time and not that the model structure and its 

parameters change over time (MOLINA et al., 2013; MURPHY, 2002).  

In the case of systems with multiple variables, the number of nodes and arcs in a DBN 

can increase very quickly in a few time-slices, especially if the interval between time-

slices is too short. Moreover, considering that the system's state at time 𝑡 may depend on 

its states at previous 𝑘 time-slices, with 1 ≤ 𝑘 < 𝑡 − 𝑘 (MOLINA et al., 2013), establish 

dependence relationships among nodes can become cumbersome, requiring more time 

and computational power to run the DBN (POLLINO; HENDERSON, 2010). To work 

around this issue, the system is considered to be a first-order Markov process, so that: 

This assumption takes that the system’s state depends only on the immediately preceding 

state (𝑘 = 1) and not on any earlier ones. In other words, the current state provides enough 

information to make the future conditionally independent of the past (MOLINA et al., 

2013; RUSSELL; NORVING, 2010). However, there is no fundamental reason why a 

system cannot be depended on its earlier states, and even though the first-order Markov 

𝑃(𝑽𝒕 | 𝑽𝟎:𝒕−𝟏) =  𝑃(𝑽𝒕 | 𝑽𝒕−𝟏). (2.3) 
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property is quite restrictive, it is assumed to simplify the DBN modeling (MOLINA et 

al., 2013; MURPHY, 2002; POLLINO; HENDERSON, 2010). 

A DBN under the first-order Markov property is often defined as a pair (𝑮𝟏, 𝑮→), in which 

𝑮𝟏 represents the initial BN with the prior distributions 𝑃(𝑽𝟏), and 𝑮→ is a two-slice 

temporal BN (2TBN) that defines the transition distributions 𝑃(𝑽𝒕−𝟏 | 𝑽𝒕) (MOLINA et 

al., 2013; MURPHY, 2002). As with BNs, the relationships among variables are 

quantified by conditional probability distributions represented by conditional probability 

tables (CPTs) associated with each DBN’s node, as follows 𝑃(𝑉𝑖
𝑡 | 𝑝𝑎(𝑉𝑖

𝑡)), in which 𝑉𝑖
𝑡 

is the 𝑖’s node at the time 𝑡, and 𝑝𝑎(𝑉𝑖
𝑡) represents all parent nodes of 𝑉𝑖

𝑡 in the graph 

(MURPHY, 2002; NEAPOLITAN, 2004). Note that 𝑝𝑎(𝑉𝑖
𝑡) may include nodes from the 

previous as well as from the current time-slices. 

Taking into account all the assumptions aforementioned, DBN’s specification must 

include: (i) nodes and their names; (ii) non-temporal arcs; (iii) temporal arcs; (iv) CPTs 

for the BN in the time-slice 𝑡 − 1 (when there are no parent nodes from a previous time); 

and (v) CPTs for the BN in the time-slice 𝑡 (when parent nodes may be from 𝑡 − 1 or 𝑡 

time-slices) (KORB; NICHOLSON, 2010). It is worthy to mention that this specification 

encompasses other models such as Hidden Markov Models (HMMs) and Kalman Filter 

Models (KFMs), which can be generalized by DBNs (BARBER; CEMGIL, 2010; 

MURPHY, 2002). 

According to the survey carried out by Korb and Nicholson (2010), among the various 

BN software and packages available, only a few have support for DBN modelings, such 

as GeNIe, BNT-Matlab, Hugin, and Netica. Carmona, Castillo, and Millán (2008) 

developed DBNs through GeNIe software to model and evaluate students’ learning styles. 

Mcnaught and Zagorecki (2009) used the same software to design a DBN to the 

prognostic modeling of equipment in order to better inform maintenance decision-

making. More recently, Petousis et al. (2016) proposed a set of DBNs also developed 

thought the GeNIe software to identify high-risk lung cancer; the DBNs demonstrated 

high discrimination and predictive power. In turn, Chhabra, Krishna, and Verma (2019) 

used GeNIe to design a DBN that considers driver, vehicle, and environment information 

for driver behavior classification to support an intelligent transportation system.  

Other software and packages have also been used for DBN modeling in diverse areas. For 

instance, Ghanmi, Awal, and Kooli (2017) developed through the BNT-Matlab toolbox a 
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DBN approach to recognize Arabic handwritten words; while Uusitalo et al. (2018) and 

Maldonado et al. (2019) developed a series of DBNs to assess and analyze structural 

changes in a marine ecosystem. Also using the BNT toolbox, Kourou (2020) developed a 

DBN model for cancer classification based on genetic information. Cai, Liu, and Xie 

(2016) developed a DBN through Netica software to model the dynamic degradation 

process of electronic systems for fault diagnosis. In turn, Cuaya et al. (2013) employed 

the Hugin software to develop DBN models to predict the individual’s risk of fall based 

on pathological gait data, whereas Kozlow, Abid, and Yanushkevish (2018) focused on 

utilizing biometrics characteristics to identify abnormalities on individual's gait.  

2.6 Spatio-temporal bayesian networks 

As presented in the previous sections, BNs are limited to dealing with systems that may 

change over space and time. Thus, SBN and DBN are necessary to incorporate spatial 

and temporal domains into the modeling. However, space and time should not be 

considered separately, since both are inherent to an environmental system’s evolution 

and, therefore, play a crucial role in monitoring and managing of spatio-temporal 

processes, such as LULCC. In this context, a Spatio-Temporal Bayesian Network (STBN) 

is appropriate to combine the spatial and temporal variability of a system into the BN 

modeling. 

An STBN may represent the spatial and temporal variability through its structure. 

Similarly to SBN, two approaches can be designed: (i) each spatial unit is represented by 

one network’s node (Figure 2.6-a) that is linked to the neighboring nodes in the current 

and next time-slice (DAS; GHOSH, 2019); and (ii) each spatial unit is represented by one 

instance of the network (Figure 2.6-b), so that, output nodes are linked to input nodes of 

networks in adjacent spatial units and in the next time-slice (GIRETTI; CARBONARI; 

NATICCHI, 2012). Nonetheless, these approaches can quickly become unwieldy and 

impracticable since an enormous number of nodes and causal connections are required to 

represent both spatial and temporal variability in a few time-slices forward. 

STBN modeling has been employed for diverse purposes. For instance, Giretti, 

Carbonari, and Naticchi (2012) presented an STBN model as a decision support system 

for risk management of forest fires. The proposed approach refers to that one presented 

in Figure 2.6-b, in which instances of the same network are used to represent each spatial 

unit. Employing a similar approach, Wilkinson et al. (2013) and Chee et al. (2016) 

presented an STBN model that uses object-oriented techniques and state-and-transition 
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models to manage both woody shrubs unwanted expansions and eucalyptus woodland 

restoration. Also using that approach, Das and Ghosh (2019) proposed an STBN model 

to capture the temporal dynamics of spatial dependency among variables. They carried 

out a case study of predicting Normalized Difference Vegetation Index (NDVI) imagery. 

On the other hand, an STBN can also be designed by incorporating spatial nodes into 

DBNs (Figure 2.6-c). As previously mentioned, this type of node summarizes the spatial 

distribution of the variable through the conditional probability table (CPT) attached to the 

node. This approach requires a GIS-tool integration to confers to the DBN a spatially 

explicit strategy (MARCOT; PENMAN, 2019). A spatial node must be replicated for 

each time-slice of the DBN (i.e., spatio-temporal nodes) if the spatial variable it represents 

changes over time. Figure 2.6-c shows an example in which the spatial variable changes 

between 𝑡 − 1 and 𝑡 time-slices, as can be seen in the raster data. The CPT attached to 

the spatio-temporal node 𝐴𝑡 represents the transitions among the variable’s classes from 

previous to current time-slice. Therefore, for any spatio-temporal variable included in the 

STBN modeling, a raster data time series must be provided as input to compute CPTs that 

indicate changes over time (SILVA et al., 2020). 
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Figure 2.6 - Example of STBN approaches. Spatial units represented by network’s node (a); 

spatial units represented by instances of networks (b); and spatio-temporal node (c). 

 

Source: author’s production. 

 

STBN approaches derived from the use of spatial nodes into DBNs, as in Figure 2.6-c, 

are also widely used. Qu, Zhang and Wang (2012), and Zhang et al. (2012) presented an 

STBN model to improve the estimation of leaf area index (LAI) time series by using 

remotely sensed data, ground meteorological station data, and crop growth information. 

Trifonova et al. (2015, 2017) used STBNs to model the marine species dynamics as well 

as their interactions with external stressors. Hasan and Haddawy (2016), and Haddawy et 

al. (2018) demonstrated the potential of an STBN model as a system to support targeted 

interventions by predicting the weekly occurrence of malaria at local levels. In turn, Silva 

et al. (2020) presented an approach that refers to a stepwise application of an SBN model 

over time, as an alternative to estimate deforestation risk in an expansion frontier with the 

Brazilian Amazon region.  

In general, the aforementioned studies show that modeling the current state or the 

evolution of systems that may change over space and time is a tough task given the 
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various uncertainties involved. As an STBN model can perform probabilistic reasonings 

considering both the spatial and temporal domains, it seems to be an appropriate approach 

to estimate LULCC, particularly deforestation risk. Apply BNs to predict deforestation 

risk is not unprecedented (DLAMINI, 2016; KRÜGER; LAKES, 2015; MAYFIELD et 

al., 2017). However, deforestation has been considered as a static process when modeled 

by BNs, which means no time information has been incorporated into the modeling. In 

this context, the STBN models developed in this thesis can be readily used to predict 

deforestation risk taking into account both space and time information. 
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3. SPATIO-TEMPORAL BAYESIAN NETWORK FOR R (stbnR) 

Including spatio-temporal information into the BN model presents some challenges. 

Several works that employ Spatial BNs (SBNs) or Spatio-Temporal BN (STBNs) use at 

least two different tools to perform the complete analysis: a BN software to build the 

network structure and carry out Bayesian analysis, in addition to GIS that provides 

necessary functions for spatial data collection, management, and storage (STEINIGER; 

HAY, 2009). Although efforts have already been made to BN-GIS integration 

(LANDUYT et al., 2015), the use of two different tools can bring up challenges such as 

the integration, transfer, and conversion of data from one tool to another.  

Therefore, a framework capable of integrating all the steps to perform STBN modeling 

into a single environment seems to be a great demand. In this context, the contribution of 

this thesis is the implementation of a package for R programming language named stbnR 

(Spatio-Temporal Bayesian Network for R), which enables complete STBN modeling 

within the R environment. This package integrates other ones already available for R 

language that specifically deal with either spatial and spatio-temporal data manipulation 

or BN analysis and inference. Hence, the stbnR package enables the development of 

STBN-based models for any phenomenon that has some spatio-temporal variation and/or 

is influenced by some spatio-temporal variable. 

R is free software and programming language (R CORE TEAM, 2019) that provides a 

consistent working environment for statistical computing and analysis. Packages are 

fundamental units of reproducible R code that increase the power of R by improving 

existing base R functionalities or by adding new ones. For instance, the raster package 

(HIJMANS et al., 2019) is for gridded spatial data manipulation and analysis, while the 

gRain package (HØJSGAARD, 2012, 2019) handles with analysis and inference of 

categorical BNs. Both raster and gRain packages were the basis for the stbnR package 

development.  

In addition to those, special attention should be given to the bnspatial package 

(MASANTE, 2019) as it is directly related to the work developed in this thesis. This 

package also integrates functions from both raster and gRain packages to enable the 

development of SBN models, employing the spatial node concept (as represented in 

Figure 2.3-c). Hence, the bnspatial package provides the necessary functions for a 

complete SBN modeling in R. On the other hand, there seem to be no available options 

for STBN modeling.  
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Figure 3.1 shows a general workflow with the stbnR package. In short, input raster data 

of the variables model are required as well as a settings file. Based on this file, the raster 

data are converted to a formatted table, which is used to build and parameterize the STBN. 

An external BN model can optionally be used to build it. With the STBN trained, the next 

step is to compute the occurrence probability of the studied phenomenon in the future for 

the entire region of interest. 

 

Figure 3.1 - General workflow of the stbnR package. Blue boxes represent procedures, while 

yellow boxes represent input/outputs. 

 

Source: author’s production. 

 

Some requirements must be pre-established before starting the modeling with the stbnR 

package, such as (i) the variables to be included in the model; (ii) the relationship among 

these variables; (iii) the thresholds to discretize continuous variables; (iv) the analysis 

period; and (v) the interval ∆𝑡 between time-slices. Variables selection can be carried out 

through feature selection methods (CHANDRASHEKAR; SAHIN, 2014; VERGARA; 

ESTÉVEZ, 2014), along with the support of experts and stakeholders. Their knowledge 

can also be used as a source of information to define the model’s structure and parameters 

(AGUILERA et al., 2011; LANDUYT et al., 2013; PÉREZ-MIÑANA, 2016). As the 

stbnR package deals with only discrete variables, continuous ones are discretized 

according to the thresholds defined by the user. Regarding the modeling period, it 

establishes the amount of data needed to enter into the STBN as observed evidence. The 

interval ∆𝑡 is mainly defined by the frequency at which data are available. For instance, 

if data availability is daily, the interval ∆𝑡 may be one day, so the time-slice 𝑡 − 1 
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represents how the system was yesterday, while the time-slice 𝑡 represents how the system 

is today. The analogy is the same for availability of weekly, monthly, or annual data. 

An example of an STBN-based LULCC model is presented for a better understanding of 

the stbnR package functions. Let us consider that the requirements aforementioned have 

already been established and we obtained the STBN model presented in Figure 3.2. It 

shows the variables that make up the model and how they are related to each other in the 

same time-slice and between time-slices. The example STBN model is composed of four 

variables represented by nodes 𝐴, 𝐵, 𝐶, and 𝐷 in two different time-slices. At least two 

time-slices are mandatory to build an STBN model using the stbnR package. The first one 

corresponding to how the system was in the past, while the second time-slice corresponds 

to the variables changes after a time interval ∆𝑡.  

 

Figure 3.2 - The example STBN model. It is composed of A, B, C, and D nodes in two different 

time-slices. Full-filled black arrows indicate non-temporal arcs, while the red dashed 

arrows are temporal arcs. 

 

Source: author’s production. 

 

3.1 Input raster data 

From the STBN model (Figure 3.2), one can note that 𝐴, 𝐶, and 𝐷 are temporal nodes, as 

they have effects on other variables in the future, and 𝐵 is a static node since it has effects 

on other nodes only within the time-slice. With that in mind, let us assume that all network 

nodes are spatial, i.e., they represent spatially distributed variables. Consequently, 𝐴, 𝐶, 

and 𝐷 are spatio-temporal nodes, while 𝐵 is a static spatial node. Moreover, let us also 

consider that node 𝐵 represents a continuous variable, which will be discretized later, 

while the other nodes represent discrete variables. Taking into account all these 
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assumptions, the raster data of the variables included in the example STBN are presented 

in Figure 3.3.  

The stbnR package integrates the raster package (HIJMANS et al., 2019) to deal with 

raster data. All input raster data must be provided in the GeoTiff format (OGC, 2019), 

which is a widely accepted format and supported by the raster package. This package 

also defines the RasterLayer and RasterStack classes. A RasterLayer class object is a 

single raster layer, while a RasterStack class object constitutes a collection of RasterLayer 

objects with the same extent, spatial resolution, and coordinate reference system 

(HIJMANS et al., 2019). A RasterStack object can be useful when dealing with multiple 

layers, as in the case of spatio-temporal variables in the STBN modeling. 

 

Figure 3.3 - Raster data of the variables included in the example STBN model. On the left – A, C, 

and D are discrete spatio-temporal variables. The first column shows how these 

variables were spatially distributed at time-slice t − 1. The second column shows 

how these variables were spatially distributed in the next time-slice t. On the right – 

B is a continuous static spatial variable. The mask defines the region of interest (ROI). 

 

Source: author’s production. 

 

The stbnR package loads spatio-temporal variables as RasterStack objects. Each 

RasterStack layer is assumed to represent the same variable but in different time-slices. 

Each layer is associated with the node in its respective time-slice. Therefore, all spatio-

temporal variables must be compatible in terms of the number of layers. (Figure 3.3). 

Concerning to static spatial variables, stbnR package loads them as RasterLayer objects. 

Hence, each static spatial variable must have only one raster layer, which will be 
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replicated to all time-slices. It is important to mention that the stbnR package 

distinguishes the variables between temporal or static according to the number of layers. 

Therefore, spatio-temporal variables must have two or more raster layers, while static 

spatial variables must have only one. 

As not all pixels in the entire geographic area may be of interest, the user can provide a 

mask as an input raster layer to specify the region of interest (ROI), as presented in Figure 

3.3. Only pixels within the ROI will be considered in the analysis, and results will be 

calculated only for these pixels. This can bring a significant gain in processing time. 

Additionally, the coordinates of the pixels within the ROI will be used as a reference to 

observe/collect the values from the other input raster data. Because of this, input raster 

data with different spatial resolutions are allowed, saving some data pre-processing time. 

The proposal of using a mask to define the ROI is based on the bnspatial package 

(MASANTE, 2019). In Figure 3.3, the gray region in the mask represents the ROI, while 

the black region represents the area of no interest.  

If a mask is provided, its bounding box and spatial resolution will be inherited by the 

output raster data. However, if the user does not provide a mask, output raster data inherit 

the finest resolution of the input raster data and the maximum extent that encloses all of 

them. Besides that, results are calculated for all pixels within the outlined bounding box. 

Therefore, it is strongly recommended to provide a mask, otherwise, huge output raster 

data can be created, once the stbnR package allows input raster data to have different 

extents and spatial resolutions. The only requirement is all of them have the same 

coordinate reference system.  

3.2 Settings file 

Once defined the variables to be included in the model, the user must prepare the settings 

file, which is used to format a table according to the Raster*3 objects. The settings file is 

a text file (.txt) and must contain some specifications for those nodes that will be 

associated with a Raster* objects. The text has to be formatted as follows: (i) the first line 

specifies the node name, (ii) the second line lists the node states, and (iii) the third line 

enumerates the values from the Raster* object to be associated to the node states; such 

values will be integers for discrete data or thresholds of each interval to discretize 

                                                           

3 Raster* refers to RasterLayer or RasterStack. 
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continuous data. Specifications of the next node start in the subsequent line following the 

same pattern. Since all nodes from the example STBN will be associated with a Raster* 

object, the setting file contents would be as shown in Figure 3.4. 

 

Figure 3.4 - Settings file. Specifications for each node in the example STBN model. 

 

Source: author’s production. 

 

Node 𝐴 specifications (i.e., the first three lines in the setting file) show that this node will 

have two states named 𝑇𝑅𝑈𝐸 and 𝐹𝐴𝐿𝑆𝐸, and values 1 and 0 from the RasterStack object 

will be related to these states respectively. Since 𝐴 is a spatio-temporal node that will be 

associated with a RasterStack object, its specifications are equally applied for all time-

slices and/or RasterStack layers. The process is similar for nodes 𝐶 and 𝐷 taking into 

account their specifications.  

Node 𝐵 specifications show that this node will also have two states named 𝑇𝑅𝑈𝐸 and 

𝐹𝐴𝐿𝑆𝐸. However, unlike previous nodes whose states will be related to integer values, 

node 𝐵 states will be related to intervals of values. The RasterLayer object, to which the 

node will be associated with, has continuous values that will be discretized according to 

the thresholds provided in the setting file. Consequently, values from the interval 

(−𝐼𝑛𝑓, 0.3) will be related to the 𝑇𝑅𝑈𝐸 state, while values from the interval [0.3, 𝐼𝑛𝑓) 

will be related to the 𝐹𝐴𝐿𝑆𝐸 state. Values −𝐼𝑛𝑓 and 𝐼𝑛𝑓 guarantee the entire range of 

values from the RasterLayer object will be included in the discretization process. 

3.3 Formatted data 

With both input raster data and settings file properly prepared, the user can proceed to the 

next step, which is building the formatted data frame. To perform this step, the stbnR 
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package provides the BuildDataFrame function. The purpose of this function is to build 

a data frame of discrete observations from the input raster data and according to the 

specifications described in the settings file. The function header and description of its 

arguments are presented in Table 3.1. 

The BuildDataFrame function result is a formatted data frame. A data frame is a two-

dimensional data structure in R commonly used to store data as tables. Actually, it is a 

special case of vectors list with the same number of observations, i.e., equal length. Each 

vector corresponds to one column, while each observation corresponds to one row of the 

data frame (R CORE TEAM, 2019). Considering the input raster data of the example 

STBN (Figure 3.3), and the setting file with their specifications (Figure 3.4), 

BuildDataFrame function result would be as shown in Table 3.2.  

 

Table 3.1 - BuildDataFrame function. 

BuildDataFrame(setting, spatialData, mask = NULL, sampling = TRUE, 
size = 0.7, debug = TRUE) 

Arguments Description 

setting Character. The path to the formatted text file. 

spatialData 

Either vector or list. A vector of characters with the paths to the GeoTiff files or a 

list of Raster* objects. If paths to the GeoTiff files are provided, these files are then 

loaded as Raster* objects. All Raster* object must be in the same Coordinate 

Reference System. 

mask 

Either character or RasterLayer object. The path to the GeoTiff file or the mask 

RasterLayer object. The raster layer passed to mask is used as a reference to define 

the ROI. Pixels with 𝑁𝐴 values are ignored, i.e., they are considered outside the 

ROI. The default is mask = NULL. In this case, the ROI is defined by the union of 

the Raster* objects passed to the spatialData argument. 

sampling 
Logical. If 𝑇𝑅𝑈𝐸, pixels from the ROI are randomly sampled to build the data 

frame. If 𝐹𝐴𝐿𝑆𝐸, all pixels within the ROI are considered The default is sampling 
= TRUE.  

size 

Numeric. A number greater than 0 and less than 1, corresponding to the percentage 

of pixels to be randomly sampled. This argument is used only if sampling = 
TRUE. The default is size = 0.7. In this case, 70% of the pixels from the ROI 

are selected. 

debug 
Logical. If 𝑇𝑅𝑈𝐸, some debugging is printed. Otherwise, the function is silent. The 

default is debug = TRUE. 
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Table 3.2 - BuildDataFrame function result for the example data. 

A.1 A.2 B C.1 C.2 D.1 D.2 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 

… … … … … … … 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 

𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 

 

The user must pay attention to the order in which both Raster* objects and settings file 

specifications are provided. The BuildDataFrame function assigns the first specification 

from the settings file (i.e., the first three lines of the file) to the first Raster* object. The 

second specification to the second Raster* object and so on. 

As shown in Table 3.2, spatio-temporal variables (𝐴, 𝐶, and 𝐷) will appear more than 

once in the data frame followed by an index. This is a time index to reference which 

STBN time-slice the column will be associated with. Hence, column 𝐴. 1 will be 

associated with the node 𝐴 at time-slice 𝑡 − 1, while column 𝐴. 2 will be associated with 

the same node but at time-slice 𝑡. Static spatial variables like 𝐵 will appear only once. 

The total number of columns in the data frame is given by (𝑇 ∗ 𝑆𝑇𝑉) + 𝑆𝑆𝑉, where 𝑇 is 

the number of time-slices, 𝑆𝑇𝑉 is the number of spatio-temporal variables, and 𝑆𝑆𝑉 is the 

number of static spatial variables. 

The number of rows in the formatted data frame is equal to the number of pixels within 

the ROI as defined by the mask (Figure 3.3). In this case, the sampling argument has 

been set to 𝐹𝐴𝐿𝑆𝐸 and, consequently, the size argument is ignored. Raster* object 

values are read from right to left and from top to bottom. Therefore, each line of the table 

corresponds to the observed values in each Raster* object for the same pixel. These 

observed values are converted to classes according to the setting file specifications. 

3.4 STBN model training 

The stbnR package provides the BuildSTBN function to design the STBN model network. 

This function provides a graphical interface through which the user can easily insert 

his/her knowledge in defining all nodes’ relationships. Thereafter, the function will 
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compute the conditional probability table (CPT) of each model node based on the defined 

relationships and observed values from the formatted data frame. STBN building and 

parameterizing refer to its training. The function header and description of its arguments 

are presented in Table 3.3. 

 

Table 3.3 - BuildSTBN function. 

BuildSTBN(markov = 1, net = NULL, data, debug = TRUE) 

Arguments Description 

markov 
Integer. The Markov order. The default is markov = 1, which means the first-

order Markov property. 

net 
StandardBN object. The Bayesian Network that will be replicated to create the 

STBN. The default is net = NULL. In this case, the STBN is created from the data 

frame passed to the data argument. 

data 
Data Frame. A formatted data frame as returned by the BuildDataFrame 

function. This data frame is used to create STBN.  

debug 
Logical. If 𝑇𝑅𝑈𝐸, some debugging is printed. Otherwise, the function is silent. The 

default is debug = TRUE. 

 

3.4.1 STBN graphical model definition 

Once the BuildSTBN function is run, graphical point-and-click interfaces (Figure 3.5) are 

made available, where the user can easily add and/or remove arcs between a pair of nodes. 

Two interfaces may pop up on the user’s screen. The first one for the BN definition 

(Figure 3.5-a), and the second one for the STBN definition (Figure 3.5-b). These graphical 

interfaces are very intuitive. With the Add option enabled, the user must first click on the 

origin node and then click on the destination node. Thus, an arc will be created between 

these nodes. When all the nodes’ relationships are defined, the user must click on the Stop 

option. 
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Figure 3.5 - Graphical point-and-click interfaces for the user interact with to define nodes’ 

relationships. The example STBN model as illustrated in Figure 3.2 is designed. 

The graphical interface to define non-temporal arcs (a), and the graphical interface 

to define temporal arcs (b). In (b) time-slices are differentiated by colors. 

 

Source: stbnR package. 

 

STBN models developed from the stbnR package are considered to be Markov processes, 

whose order is defined by the markov argument. With the default markov = 1, the 

STBN is assumed to represent a first-order Markov process, in which the current system 

state depends only on its immediately previous state and not on any earlier ones. In this 

case, the STBN will have two time-slices representing the system at time 𝑡 − 1 and 𝑡. 

Since there is no fundamental reason why a system cannot be depended on its earlier 

states (MOLINA et al., 2013; MURPHY, 2002), higher Markov orders are allowed.  

The user can provide an external BN model for the BuildSTBN function through the net 

argument. The user can load a BN model that has been built beforehand either in R with 

the gRain (HØJSGAARD, 2012, 2019) and bnlearn (SCUTARI, 2009, 2019) packages 

or via external software such as Hugin (HUGINEXPERT, 2019) or GeNIe 

(BAYESFUSION, 2019). An external BN model makes it possible to employ nodes that 

are not related to spatial variables but represent, for example, socio-economic and 

political variables, among others.  

Therefore, if an external BN model is provided, there is no needs to make the first 

interface available to the user, since the BN model has been already defined. Thus, this 

external BN model is replicated for each time-slice as defined by the markov argument. 

In sequence, the second interface (Figure 3.5-b) appears for the user to define the STBN 

temporal arcs. 
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The user also has the option to build the STBN model from scratch from the formatted 

data frame provided through the data argument. The BuildSTBN function will identify 

the unique nodes from the data frame columns. Thereafter, the first interface (Figure 3.5-

a) will pop up on the screen, and the user has to define the directed acyclic graph (DAG) 

of the BN model. This first interface helps the user not to make mistakes like creating a 

cycle in the graph. Whenever an arc closes a cycle, it is promptly ignored.  

After finishing the DAG editing, the second interface automatically appears (Figure 3.5-

b), and the user has to define the STBN temporal arcs. Only forward arcs between pairs 

of temporal nodes are allowed. This second interface does not allow the user to create 

backward temporal arcs, temporal arcs between static nodes, or to edit non-temporal arcs. 

Figure 3.5 shows the graphical interfaces to create the example STBN. 

3.4.2 Conditional probability tables computation 

Once the STNB graphical model is defined, the BuildSTBN function will automatically 

compute the CPTs of all network nodes using the observed values in the formatted data 

frame. A CPT is calculated from the frequency table, which contains the number of 

occurrences of specific observations within a dataset. Probabilities are then calculated 

from the ratio between each frequency table entry by the total number of observations.  

Let us consider the observed values for the node 𝐷𝑡−1 (i.e., node 𝐷 in the time-slice 𝑡 − 1 

of the example STBN model). Figure 3.6-a shows that among all observations of this 

node, approximately 42% belong to the 𝑇𝑅𝑈𝐸 state and, therefore, 58% belong to the 

𝐹𝐴𝐿𝑆𝐸 state. These values represent what would be the prior probability of the node 

𝐷𝑡−1, that is 𝑃(𝐷𝑡−1 = 𝑇𝑅𝑈𝐸) = 0.42 and 𝑃(𝐷𝑡−1 = 𝐹𝐴𝐿𝑆𝐸) = 0.58. 
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Figure 3.6 - Prior probability distribution of node Dt−1 (a), and the conditional probability of 

node. Dt−1 given the node Ct−1(b). 

 

Source: author’s production. 

 

However, node 𝐷𝑡−1 is statistically dependent on the node 𝐶𝑡−1, as shown in the STBN 

graphical model (Figures 3.2 and 3.5). This means that selecting any state of 𝐷𝑡−1 

depends on the states of  𝐶𝑡−1. Figure 3.6-b shows that the probability of randomly 

selecting the 𝑇𝑅𝑈𝐸 state for 𝐷𝑡−1 is higher when considering only those observations 

that are also 𝐹𝐴𝐿𝑆𝐸 for 𝐶𝑡−1. In other words, knowing that 𝐶𝑡−1 is 𝐹𝐴𝐿𝑆𝐸 increases the 

beliefs about 𝐷𝑡−1 be equals to 𝑇𝑅𝑈𝐸, – 𝑃(𝐷𝑡 = 𝑇𝑅𝑈𝐸|𝐶𝑡 = 𝐹𝐴𝐿𝑆𝐸) = 0.90. On the 

other hand, these beliefs sharply reduce when if we previously know that 𝐶𝑡−1 is 𝑇𝑅𝑈𝐸 

– 𝑃(𝐷𝑡 = 𝑇𝑅𝑈𝐸|𝐶𝑡 = 𝑇𝑅𝑈𝐸) = 0.15. Thus, Figure 3.6-b graphically illustrates how the 

CPT of node 𝐷𝑡−1 would be. 

Therefore, whenever a node is a descendent (child node) of other nodes (parent nodes), 

the child node CPT is dependent not only on its states but also on its parent nodes’ states. 

This implies that the greater the number of parent nodes and/or the number of nodes 

states, the bigger the child node CPT. Figure 3.7 shows the CPT attached to each node in 

the example STBN model. One can note that the biggest CPT belongs to the node 𝐶𝑡, 

which is the node with the highest number of parent nodes.  

The BuildSTBN function automatically computes the CPT of each node given its 

relationship with other network nodes and the observed values from the formatted data 

frame. However, in case the user does not agree with the calculated probability values, 

for instance, as they diverge from the expert’s knowledge or do not represent reality 

properly, these probability values can be manually changed.  
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Figure 3.7 - Conditional probability tables attached to nodes of the example STBN model. 

 

Source: author’s production. 

 

3.5  STBN query 

After defining both the STBN structure and parameters, the next step is to calculate the 

occurrence probability of the studied phenomenon. This means calculating the posterior 

probabilities given the observed evidence. For this, the stbnR package provides the 

QuerySTBN function. The function header and description of its arguments are presented 

in Table 3.4. 

Evidence is the observed value for a node. As each node from the STBN model has a set 

of mutually exclusive states, evidences are entered into the network by instantiating a 

specific state for one or more nodes. The evidence is always assigned to the nodes from 

the first time-slice 𝑡 − 1. By setting this evidence, the CPTs of all non-evidenced nodes, 

including those nodes from the next time-slice 𝑡, are updated using Bayes’ theorem. With 

the updated probabilities, it is possible to query the STBN to answer the following 

question: “what is the probability of target occurrence in the future given this observed 

evidence at the present?” The stbnR package queries are supported by the gRain package 

(HØJSGAARD, 2012, 2019). 

For instance, assuming node 𝐴 as the target, the evidence will be given by observations 

for the nodes 𝐵, 𝐶𝑡−1, and 𝐷𝑡−1. Once the evidence 𝑬𝒕−𝟏 is set into the STBN model, the 

CPTs are updated and the posterior probability 𝑃(𝐴𝑡|𝑬𝒕−𝟏) can be calculated. That means 
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to calculate the target occurrence probability in the next time-slice, given the evidence 

from the previous time-slice. 

 

Table 3.4 - QuerySTBN function. 

QuerySTBN(stbn, target, evidence, nodes = NULL, nodesStates = NULL, 
toSave = FALSE, toContinue = FALSE, inParallel = FALSE,  
debug = TRUE) 

Arguments Description 

stbn SpTmpBN object. The STBN as returned by the BuildSTBN function. 

target Character. The node’s name, which represents the studied phenomenon. 

evidence Data Frame. A formatted data frame as returned by the BuildDataFrame function. 

nodes 
Vector. A character vector with the names of non-spatial nodes to which specific 

evidence will be assigned to. The default is nodes = NULL. 

nodesStates 
Vector. A character vector with evidence (i.e. observed values) of non-spatial nodes 

provided in nodes argument. The default is nodesStates = NULL. 

toSave 
Logical. If 𝑇𝑅𝑈𝐸, the updated STBN is saved into a STBNinfo.RData file for future 

queries. The default is toSave = FALSE. 

toContinue 
Logical. If 𝑇𝑅𝑈𝐸, the STBN saved in the STBNinfo.RData file is loaded. 

Otherwise, new modeling is started. The default is toContinue = FALSE. 

inParallel 
Either integer or logical. The number of cores to be used in parallel processing. If 

𝑇𝑅𝑈𝐸, the maximum number of available cores minus one is set. The default is 

inParallel = FALSE. 

debug 
Logical. If 𝑇𝑅𝑈𝐸, some debugging is printed. Otherwise, the function is silent. The 

default is debug = TRUE. 

 

The formatted data frame rows represent scenarios, in which each spatial node at time-

slice 𝑡 − 1 takes on a specific state (SILVA et al., 2020). Normally, the same scenario 

occurs several times, that is, the same values can be observed in different positions (data 

frame rows). In these cases, it would be redundant to query the STBN model repeatedly, 

since the same result would always be obtained. Therefore, queries are scenario-based in 

the stbnR package. That means the STBN model is queried only once for a specific 

scenario, and the computed probability is assigned to all positions in which this scenario 

occurs. 
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However, each scenario will produce a different update for the CPT of non-evidenced 

nodes. Because of that, a copy of the original STBN is made for each scenario. Thus, each 

STBN can be rolled up individually. The rolling up process (KORB; NICHOLSON, 

2010; POPESCU et al., 2015) is based on the first-order Markov property, in which the 

current system state depends only on its immediately previous state and not on any earlier 

ones. In this context, the information from the past (time-slice 𝑡 − 1)  is stored in the 

present through the update of nodes’ CPTs in time-slice 𝑡 after the evidence set in the 

nodes from the time-slice 𝑡 − 1. Thus, time-slice 𝑡 − 1 can be dropped and a new time-

slice 𝑡 + 1 added in front of the STBN. As the STBN is assumed to be steady, the nodes’ 

relationship in time-slice 𝑡 + 1 is the same as in other time-slices. Moreover, its nodes’ 

CPTs are equal as in time-slice 𝑡 before the updating. The rolling up process as described 

is applied simultaneously to all STBNs. Figure 3.8 illustrates the rolling up process of an 

STBN for two time-slices forward. 

 

Figure 3.8 - The rolling up process for an STBN. For each iteration, a new time-slice is added in 

front of the STBN, while the last one is removed (gray time-slices). 

 

Source: author’s production. 

 

The above procedures described so far detail what would be one iteration of the 

QuerySTBN function. In the next iteration, new evidence 𝑬𝒕 is set into the updated STBNs 
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to calculate the 𝑃(𝐴𝑡+1|𝑬𝒕). The QuerySTBN function will return a list of matrices. The 

length of this list is given by the number of iterations of the model (i.e., one matrix for 

each time-slice forward). These matrices stores the occurrence probability values of the 

target node in one time-slice. Each matrix will have a (𝑛, 𝑚)-dimension, where 𝑛 is the 

number of rows corresponding to the number of pixels within the ROI, and 𝑚 is the 

number of columns, which correspond to the number of target node states. Thus, each 

position (𝑖, 𝑗) stores the occurrence probability of the state 𝑗 in the pixel 𝑖 within the ROI.  

If the user sets toSave = TRUE, the set of updated STBNs is saved into a file named 

STBNinfo.RData at the end of the rolling up process. As new raster data for the model 

variables may become available in the future, the saved STBNs can be queried in the light 

of these new observed values, i.e., evidence. For that, the saved STBNs has to be loaded 

by setting toContinue = TRUE. Hence, the modeling can continue exactly where it left 

off, without the need to train an original STBN again. Besides that, with the nodes and 

nodesStates arguments, the QuerySTBN function allows the user to assign evidence to 

non-spatial nodes, i.e., nodes that represent, for example, socio-economic, political 

variables. Moreover, STBNs queries and updating can be performed in parallel by setting 

inParallel = TRUE. 

3.6 STBN model outputs 

After calculating the probabilities, the final step is to generate the STBN model outputs 

raster data. For this, the stbnR package provides the TargetMapping function, which 

creates a time series of probability images, each one corresponding to the target 

probability occurrence in each predicted time-slice. TargetMapping function is supported 

by the bnspatial package (MASANTE, 2019). The function header and description of its 

arguments are presented in Table 3.5. 
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Table 3.5 - TargetMapping function. 

TargetMapping(target, probs, what = “probability”, mask,  
toExport = FALSE, path, debug = TRUE) 

Arguments Description 

target Character. The node’s name, which represents the studied phenomenon. 

probs List. A list of matrixes as returned by the QuerySTBN function. 

what 
Vector. A character vector specifying the required output. The options are (i) class, 

which returns the most likely state; (ii) entropy, which returns the Shannon entropy; 

and (iii) probability. The default is what = “probability”. 

mask 

Either character or RasterLayer object. The path to the GeoTiff file or the mask 

RasterLayer object. The raster layer passed to mask is used as a reference to define 

the ROI. Pixels with 𝑁𝐴 values are ignored, i.e., they are considered outside the 

ROI. 

toExport 
Logical. If 𝑇𝑅𝑈𝐸 output raster data are saved as GeoTiff files. The default is 

toExport = FALSE. 

debug 
Logical. If 𝑇𝑅𝑈𝐸, some debugging is printed. Otherwise, the function is silent. The 

default is debug = TRUE. 

 

The TargetMapping function will return a raster layer for each time-slice rolled up 

forward. The results of this function can be changed according to what argument. For 

instance, if what = class, the value of each pixel within the ROI will refer to the most 

likely target state to occur. With what = entropy, pixel values will refer to the 

calculation of Shannon’s entropy, which evaluates the uncertainties of each prediction 

(HAMMER et al., 2000). In turn, if what = probability, pixels values will be the 

probability values. In this case, a probability image will be generated for each target node 

state. 

The target node must be the same as the one defined for the QuerySTBN function. The 

mask to be provided for the TargetMapping function must be the same as that provided 

for the BuildDataFrame function. As mentioned previously, this mask is used as a 

reference, its extension and spatial resolution will be inherent by the output raster data. 

Finally, the user can save all output raster data as GeoTiff files if toExport = TRUE. 
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4 STBN MODELS FOR DEFORESTATION RISK PREDICTION  

This chapter aims to present the application of the STBN models proposed in this work 

to predict deforestation risk in some regions of the Brazilian Legal Amazon (BLA). 

Although employing BNs as an approach to predict deforestation risk had been proposed 

before (DLAMINI, 2016; KRÜGER; LAKES, 2015; MAYFIELD et al., 2017), the 

temporal domain has not been considered until then. Therefore deforestation has been 

considered as a static process when modeled by BN approaches. In this context, the STBN 

models developed from the stbnR package aim to meet this demand, since they enable 

incorporating spatial and temporal information into the modeling. Furthermore, with the 

case studies presented in this work, we can evaluate the potential of the STBN as a 

LULCC model.  

4.1 Case study regions 

To evaluate the STBN model to predict deforestation risk, three regions of interest (ROIs) 

were selected (Figure 4.1) with expert support to encompass different deforestation 

frontiers within the BLA. The selected regions are located in the Amazonas, Mato Grosso, 

and Pará states. These last two states accumulate more than 60% (480728 𝑘𝑚2) of the 

entire deforested area in the BLA (788352.9 𝑘𝑚2) until 2018  (INPE, 2019a). Hence, 

Pará and Mato Grosso are respectively the first and second states with the largest 

deforested areas. Although Amazonas state occupies the fifth position in this rank, there 

is a great concern due to the emergence of a new deforestation expansion frontier. Figure 

4.1 also shows deforested areas until 2018 (red-colored) as well as forest areas (green-

colored) within each region (INPE, 2019a). Following, we describe each of these regions. 
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Figure 4.1 - Regions of interest located in the Brazilian Legal Amazon. Amazonas state (a); Mato 

Grosso state (b); and Pará state (c). Red-colored regions correspond to deforested 

areas until 2018. Green-colored regions are forest areas. Yellow-colored regions 

represent non-forest areas. 

 

Source: author’s production. 

 

4.1.1 Amazonas case study 

The Amazonas study case region is presented in Figure 4.1-a and has approximately 

90341 𝑘𝑚2. It is located in the Amazonas state southwestern, encompassing the Boca do 

Acre municipality on the west and Lábrea municipalities on the east. Deforested areas are 

mainly concentrated in the central region, where are the municipalities’ boundaries, as 

well as in the southern neighboring Acre and Rondônia states. This region has become a 

new front line against illegal deforestation. The huge amount of hotspot fires in the last 

years caused by cattle-ranching expansion has boosted deforestation rates 

(VASCONCELOS et al., 2013a, 2013b). Lábrea was the municipality of the Amazonas 

state with the largest deforested area until 2018, with approximately 4785 𝑘𝑚2, while 

Boca do Acre occupied the third position with 2619 𝑘𝑚2 (INPE, 2019a) 

4.1.2 Mato Grosso case study 

The Mato Grosso study case region is presented in Figure 4.1-b. With approximately 

68541 𝑘𝑚2, it is located in the Mato Grosso state northwestern and encompasses 

Colniza, Aripuanã, and Rondolândia municipalities on the north, west, and east of the 

region, respectively. Illegal logging and cattle-ranching are the predominant activities in 

the region (DAVENPORT et al., 2016; SOUSA, 2016) and, therefore, the main 
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deforestation drivers. Deforested areas can be found throughout the case study region, but 

mainly concentrated in the eastern portion. Colniza, Aripuanã, and Rondolândia 

municipalities showed the largest deforestation increases in the Mato Grosso state 

between 2017-2018. Until this year, deforested areas in Colniza, Aripuanã, and 

Rondolândia was 4970 𝑘𝑚2, 4319 𝑘𝑚2, and 2031 𝑘𝑚2, respectively (INPE, 2019a).  

4.1.3 Pará case study 

The Pará study case region corresponds to a buffer around the BR-163 highway and has 

approximately 117138 𝑘𝑚2. The construction of this highway and more recent 

improvements in transportation infrastructure have intensified deforestation along its 

route over the years (FEARNSIDE, 2007; PINHEIRO et al., 2016), which has created an 

expansion deforestation corridor (SILVA et al., 2020), as can be seen in Figure 3.9-c. 

Extensive and traditional cattle farming is the main land use in this region (MÜLLER et 

al., 2016). The case study region encompasses the Novo Progresso municipality as well 

as the southern part of the Altamira and Itaituba municipalities. Until 2018, these 

municipalities were among those with the largest extension of deforested areas in the 

entire BLA. Novo Progresso municipality, which is completely within the case study 

region, had approximately 6289 𝑘𝑚2 of deforested area (INPE, 2019a). 

4.2 Dataset and pre-processings 

The variables chosen to compose the modeling as well as their pre-processing are detailed 

below. All procedures were carried out through the R software (R CORE TEAM, 2019). 

The same set of variables was used in three case studies. Therefore, all the procedures 

described here were equally applied in all case studies. 

The target variable named deforestation represents yearly deforested areas, therefore, it 

is a temporal variable, meaning that it changes over time. We use as reference the yearly 

deforestation data from 2013 to 2018 from the PRODES project (INPE, 2019a). The 

original dataset was processed to a time series of raster data, in which pixels with a value 

equal to 1 represent deforestation in the current year, while 2 represents forested pixels. 

As the focus of the study is to identify deforestation risk, deforested areas before 2013 

were removed from the ROI, as well as non-forested areas. Hereafter, each raster layer at 

30 𝑚 spatial resolution was resampled to 100 𝑚 using the nearest neighbor method, 

which is more appropriate for categorical data.  
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Thus, the deforestation variable is formed by a raster time series with raster layers 

referring to yearly deforested areas (from 2013 to 2018). Each raster layer contains pixels 

representing: (i) target presence – deforested areas, and (ii) target absence – forested 

areas. However, classes (i) and (ii) are completely unbalanced, in general, class (i) 

represents less than 1% of all pixels within an ROI. Because of that, an undersampling 

process was carried out for the majority class. In each raster layer, twice the number of 

pixels of the minority class (deforested areas) was randomly selected for the majority 

class (forested areas). The value equal to 0 was then assigned to the remaining pixels 

from class (ii), representing hidden observations. Therefore, each raster layer from 

deforestation variable ends up having pixels from (i) deforested areas, (ii) forested areas, 

and (iii) hidden observations. From this raster time series, two datasets were created for 

both model training and evaluation. Approximately two-thirds of the pixels from classes 

(i) and (ii) were randomly selected to model training, while the remaining one-third of 

each class was then used to accuracy assessment. 

The masks used to define the ROIs are shown in Figure 4.2. The gray-colored areas 

represent the ROI in each case study, while the black-colored areas represent regions of 

no interest. All masks have a spatial resolution of 100x100𝑚 and SIRGAS2000 

coordinate reference system. 
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Figure 4.2 - Masks used to define case study regions. Amazon case study mask (a); Mato Grosso 

case study mask (b); and Pará case study mask (c). Black-colored areas correspond 

to regions of no interest.  

 

Source: author’s production. 

 

The other variables chosen to compose the modeling are from now called context 

variables, which are somehow related to the target variable. Their selection was supported 

by an expert and based on the potential relationship with the deforestation process. Table 

4.1 list all selected variables.  
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Table 4.1 - Target and context variables with their original format and source. 

Variable Short Variable type Source 

Deforestation Df Temporal PRODES Project a 

Proportion of deforested neighbors Ngb Temporal PRODES Project a 

Distance from degraded areas DDa Temporal DEGRAD b, DETER Projects c 

Distance from hotspots fires DHf Temporal Wildfire Project d 

Distance from pasture areas DPa Temporal TerraClass Project e 

Distance from roads DRd Static IBGE f 

Settlement areas SAr Static INCRA g 

Distance from rivers DRv Static IBGE f 

Protected areas PAr Static ICMBio h, FUNAI i, MMA j 

a Brazilian Amazon Forest Monitoring by Satellite (http://terrabrasilis.dpi.inpe.br/). 
b Brazilian Amazon Forest Degradation Mapping (http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/degrad). 
c Real-time Deforestation Detection System in Amazon Forest (http://terrabrasilis.dpi.inpe.br/). 
d Sattelite Fire Monitoring Program (http://www.inpe.br/queimadas) 
e TerraClass Project (https://www.terraclass.gov.br/) 
f Brazilian Institute of Geography and Statistics (http://www.ibge.gov.br/). 
g National Institute of Colonization and Agrarian Reform (http://acervofundiario.incra.gov.br/acervo/acv.php). 
h Chico Mendes Institute of Conservation and Biodiversity (http://www.icmbio.gov.br/). 
i Brazilian Indian Foundation (http://www.funai.gov.br/). 
j Brazilian Environment Ministry (http://www.mma.gov.br/governanca-ambiental). 

 

The protected areas variable refers to areas under environmental protection laws, which 

has a significant mitigating effect on deforestation (BARBER et al., 2014). The case 

studies ROIs are surrounded by many types of protected units, such as Environmental 

Preservation Areas, National Forests, and Indigenous Lands. Some of them are more 

restrictive and allow for reducing deforestation such as Indigenous Land. On the other 

hand, there are protected units that allow sustainable activities and do not have the same 

impact (AMIN et al., 2019). Hence, the original data (polygons) were rasterized to obtain 

one raster layer indicating unprotected, protected, and restricted areas.  

Logging activities have been the most important driver of forest degradation and 

deforestation around the ROIs (DAVENPORT et al., 2016; PINHEIRO et al., 2016; 

VASCONCELOS et al., 2013a). Pinheiro et al. (2016) pointed out forest degradation as 

a predecessor to deforestation since degraded areas tend to be entirely cleared in 

subsequent years. Therefore, the distance from degraded areas variable is a potential 

indicator of deforestation. From yearly data of degraded areas (polygons), the distance 

http://terrabrasilis.dpi.inpe.br/
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/degrad
http://www.inpe.br/queimadas
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(in meters) to the nearest edge of degraded area for each pixel was calculated. The result 

is a raster time series with raster layers referring to the distance to yearly degraded areas.  

Besides turning closed forests into degraded areas, logging activities also turn forest 

highly vulnerable to droughts and fires (VASCONCELOS et al., 2013a). Indeed, fires 

occurrence is one of the leading causes of forest degradation and deforestation (SETZER 

et al., 2012; TASKER; ARIMA, 2016). Thus, the distance from hotspots fires variable is 

another potential indicator of deforestation. From the hotspots fires data (points) clustered 

annually, the distance (in meters) to the nearest hotspot fire for each pixel was calculated. 

The result is a raster time series, in which each layer refers to the distance to yearly 

hotspots fires. 

Cattle-ranching expansion is also a significant driver of deforestation (BARONA et al., 

2010; SOLER; VERBURG; ALVES, 2014). As presented by Almeida et al. (2016) 

pasture areas occupy most of the deforested areas in the BLA, as in the case study ROIs. 

Thus, the distance from pasture areas was selected as an indicator of deforestation. 

LULCC annual maps from the TerraClass project (ALMEIDA et al., 2016) were 

processed to a raster time series with each layer representing yearly pasture and non-

pasture areas. For each raster layer, the distance to the nearest pasture area for each pixel 

was calculated.  

The construction of new roads allows access to previously inaccessible forests. 

Subsequently, it leads to forest fragmentation, new colonizations, and increases fire risk, 

as stated by Barber et al. (2014). The authors also verified more than 90% of all 

deforestation in the BLA occurred within 5.5 𝑘𝑚 of roads. Consequently, the distance 

from roads variable should be considered as a deforestation indicator. From the road 

network data (lines) with the principal roads only, one raster layer was generated with the 

distance (in meters) to the nearest road for each pixel.  

Major roads stimulate deforestation by facilitating the construction of smaller side roads 

as well as human settlements in remote areas (FEARNSIDE, 2015). Indeed, studies have 

shown that settlements with human activities (e.g., agriculture and logging) play a major 

role in deforestation (CHEN et al., 2015; TRITSCH; LE TOURNEAU, 2016) and fires 

occurrences (ALENCAR et al., 2015). Therefore, the settlement area variable can be 

considered as a deforestation indicator. The original data (polygons) were rasterized to 

obtain one raster layer indicating undersigned and settlement areas.  
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Despite roads make way for previously inaccessible areas, several locations in the BLA 

do not offer road accesses. The only access to roadless municipality and villages is via 

navigable rivers (JUSYS, 2016). According to Barber et al. (2014), navigable rivers 

provide another potential mode of access to untouchable forest regions and further 

promote logging and deforestation. The authors also show that most deforested areas in 

the BLA are located near to roads or navigable rivers. Consequently, the distance from 

rivers variable also should be considered as a deforestation indicator. From the river 

network data (lines), one raster layer was generated with the distance (in meters) to the 

nearest river for each pixel.  

Ongoing forest fragmentation increases the changes of forest destruction in general since 

fragmented forests are far more susceptible to droughts, fires, logging, and any 

anthropogenic impact (ALENCAR et al., 2015; LAURANCE et al., 2018). Forest 

fragmentation creates forest areas susceptible to edge effects and, for accessibility 

reasons, deforestation tends to occur near to already deforested areas (BROADBEND et 

al., 2008). Therefore, the proportion of deforested neighbors variable was also selected 

as a deforestation indicator. To compute this variable, the original data (polygons) were 

processed to a raster time series with each layer containing the cumulative deforested and 

forested areas. The proportion of deforested neighbors for each pixel was calculated from 

a 5 x 5 moving window.  

All the raster data collected and described above can be separated into two categories: 

static and temporal variables. Static variables are those features that are assumed to stay 

constant over time either because it is an inherent characteristic or due to the lack of 

information to update them (ROSA et al., 2015). Among the selected variables, protected 

areas, distance from roads, settlements areas, and distance from rivers are static 

variables. By contrast, temporal variables are those features that change over time, which 

were calculated for each time interval within the analysis period (ROSA et al., 2015). 

Hence, deforestation, distance from degraded areas, distance from hotspots fires, 

distance from pasture areas, and proportion of deforested neighbors are temporal 

variables. Since the data pre-processing was carried out using R software, all variables 

raster data are already as Raster* objects, i.e., RasterLayer for static variables or 

RasterStack for temporal variables, as required by the stbnR package. Moreover, all raster 

data are in the SIRGAS2000 coordinate reference system. 
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4.3 Building the STBN models 

Before building the STBN, the settings file is required in addition to the variables raster 

data. Both the settings file and Raster* objects are inputs to the BuildDataFrame function 

to generate the formatted data frame. This data frame, in turn, is used as input to the 

BuildSTBN function to define STBN structure and calculate its parameters. Figure 4.3 

shows the settings file formatted as required: (i) the first line is the node name, which is 

presented in abbreviation, (ii) second line is node states, and (ii) third line is the values 

from raster data to be associated to the node states. The subsequent lines follow the same 

pattern.  

As the settings file will be employed in all case studies, variables will be equally 

discretized and will have the same classes. Consequently, nodes from the STBN models 

will also have the same name and states but different CPTs, as they are computed from 

the data of each case study. The interval limits chosen to discretize the continuous 

variables were defined from empirical and exploratory data analysis with expert support. 

The settings file specifications are also presented in Table 4.2 for a better understanding.  

 

Figure 4.3 - Settings file employed in all case studies. 

 

Source: author’s production. 
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Table 4.2 -  Settings file specifications.  

Df PAr DDa DHf DPa 

States Values States Values States Values States Values States Values 

𝑑𝑒𝑓𝑜𝑟𝑒𝑠𝑡 1 𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 0 500𝑀 (−𝐼𝑛𝑓, 500] 500𝑀 (−𝐼𝑛𝑓, 500] 1𝐾𝑀 (−𝐼𝑛𝑓, 1000] 

𝑓𝑜𝑟𝑒𝑠𝑡 2 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 1 1𝐾𝑀 (500, 1000] 1𝐾𝑀 (500, 1000] 2.5𝐾𝑀 (1000, 2500] 

- - 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 2 𝑀𝐴𝑋 (1000, 𝐼𝑛𝑓) 𝑀𝐴𝑋 (1000, 𝐼𝑛𝑓) 𝑀𝐴𝑋 (2500, 𝐼𝑛𝑓) 

 

DRd SAr DRv Ngb 

States Values States Values States Values States Values 

1𝐾𝑀 (−𝐼𝑛𝑓, 1000] 𝑢𝑛𝑑𝑒𝑟𝑠𝑖𝑔𝑛𝑒𝑑 0 500𝑀 (−𝐼𝑛𝑓, 500] 20% (−𝐼𝑛𝑓, 0.2] 

5𝐾𝑀 (1000,5000] 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 1 1.5𝐾𝑀 (500, 1500] 40% (0.2, 0.4] 

𝑀𝐴𝑋 (5000, 𝐼𝑛𝑓) - - 𝑀𝐴𝑋 (1500, 𝐼𝑛𝑓) 60% (0.4, 0.6] 

- - - - - - 80% (0.6 0.8] 

- - - - - - 100% (0.8, 𝐼𝑛𝑓) 

 
Df – Deforestation 

PAr – Protected areas 

DDa – Distance from degraded areas 

DHf – Distance from hotspots fires 

DPa – Distance from pasture areas 

DRd – Distance from roads 

SAr – Settlements areas 

DRv – Distance from rivers 

Ngb – Proportion of deforested neighbors 
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Two STBN approaches were applied to each case study. The first one is a first-order 

Markov STBN, which assumes that an STBN slice depends only on the immediately 

preceding slice and not on any earlier ones. The second one refers to a second-order 

Markov STBN, which in turn assumes that an STBN slice depends on the immediately 

preceding slice as well as the slice before this one. Figures 4.4 and 4.5 show the first-

order Markov STBN and the second-order Markov STBN, respectively. This STBN was 

employed to test whether spatio-temporal variables have some effect on deforestation 

beyond the one-time interval. By the way, the interval ∆𝑡 between STBN time-slices is 

given by the raster data availability, which is one year. 

 

Figure 4.4 - First-order Markov STBN. Blue-colored nodes represent temporal nodes, while 

yellow-colored nodes represent static nodes. Black fulfilled lines represent non-

temporal arcs, while red dotted lines represent temporal arcs. 

 

Source: author’s production. 
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Figure 4.5 - First-order Markov STBN. Blue-colored nodes represent temporal nodes, while 

yellow-colored nodes represent static nodes. Black fulfilled lines represent non-

temporal arcs. In turn, red dotted lines represent temporal arcs between a one-time 

interval, while blue dashed lines represent temporal arcs between a two-time interval. 

 

Source: author’s production. 

 

The first-order Markov STBN training, that is, the calculation of nodes’ CPTs, was 

carried out with the training raster data from the years 2013 and 2014. While the second-

order Markov STBN training was carried out with the training raster data from 2013, 

2014, and 2015. This is because the second-order Markov STBN is made up of three time-

slices and, therefore, three-year data is needed to compute CPTs. It is important to keep 

in mind that only those pixels with values other than 0 in the training raster data of the 

target variable (i.e., class (iii) hidden observations) are indeed observed in the raster data 

of other variables for parametrization of both STBN models. This means that CPTs are 

calculated from the observations of those sampled pixels and not from observations of all 

pixels within the ROIs. The values of all pixels from the ROIs are only considered when 

querying the STBNs. Before carrying out any query, observed values are set as evidence 

into the nodes.  

Therefore, querying the STBN models aims to answer the following question: “what is 

the deforestation risk in the next year given the observed evidence in the current year?” 

The probability that answers that question is calculated for each pixel within the ROI. 

The STBN model results are probability images, one for each iteration, corresponding to 

deforestation risk for each year from 2014 to 2019 in the case of the first-order Markov 

STBN, and from 2015 to 2019 in the case of the second-order Markov STBN. 
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4.4 STBN models assessment 

The STBN models from each case study were evaluated by comparing their predictions 

(i.e., the probability images) with the data selected for accuracy assessment, as detailed 

in section 4.2. Following, we detailed the metrics used to evaluate the models as well as 

variables importance. 

From the confusion matrix presented below (Table 4.3), let us consider 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 as 

deforestation occurrence while 𝐴𝑏𝑠𝑒𝑛𝑐𝑒 corresponds to forest areas. Hence, 𝑇𝑃 is true 

positives (i.e., deforested pixels correctly classified as deforestation),  𝐹𝑃 is false 

positives (i.e., deforested areas incorrectly labeled as forest areas), 𝐹𝑁 is false negatives 

(i.e., forest pixels incorrectly labeled as deforestation), 𝑇𝑁 is the true negatives (i.e., forest 

pixels correctly classified as forest area), and 𝑁 = 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁. The metrics 

used to evaluate the STBN models are derived from the confusion matrix, as shown in 

Table 4.4. 

 

Table 4.3 - A confusion matrix used to evaluate presence-absence models. 

  𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

  𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝐴𝑏𝑠𝑒𝑛𝑐𝑒 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 
𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑇𝑃 𝐹𝑃 

𝐴𝑏𝑠𝑒𝑛𝑐𝑒 𝐹𝑁 𝑇𝑁 

 

Table 4.4 - Assessment metrics calculated from the confusion matrix. 

Metric Formula 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Kappa 
(

𝑇𝑃 + 𝑇𝑁
𝑁

) −  
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

𝑁2

1 −
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

𝑁2
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Two complementary indices are commonly used in binary classifications: sensitivity and 

specificity, which indicate, respectively, the true positive rate (i.e., pixels the model 

defined as deforestation that were truly deforestation) and the true negative rate (i.e., 

pixels the model defined as forests that were truly forest areas)  (SWETS, 1988).  

A useful graph to represent accuracy assessment in terms of these two indices is the 

Receiver Operating Characteristic (ROC) curve (FAWCETT, 2006). The ROC curve is 

constructed by using all possible thresholds (i.e., from 0 to 1) to classify the probability 

values into confusion matrices. Pixels with values higher then the threshold are classified 

as deforested areas, while pixels with values below the defined threshold are classified as 

forested areas. From each matrix, sensitivity and specificity are obtained. When plotting 

all sensitivity values against the corresponding proportion of false positives (i.e., equal to 

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦), we obtain the ROC curve (ALLOUCHE; TSOAR; KADMON, 2006).  

We also evaluate the STBN models by the area under the ROC curve (AUC-ROC). It is 

an assessment measure of the model performance, which generally takes values ranging 

from 50% to 100%. Values close to 100% indicate optimal prediction. These metrics are 

widely used to assess the performance of probabilistic systems like BN models 

(DLAMINI, 2016; KRÜGER; LAKES, 2015; SEMAKULA et al., 2016).  

The selected threshold is the one that produces the highest AUC-ROC. From the 

confusion matrix obtained with the selected threshold, the precision and Kappa statistic 

were also calculated. Precision is a metric that indicates how precise/accurate the model 

is, i.e., it reflects the percentage of model correctness concerning what it classified as 

deforestation. Kappa statistic is a more robust metric since it corrects the model’s overall 

accuracy by the accuracy expected to occur by chance. (ALLOUCHE; TSOAR; 

KADMON, 2006; CONGALTON; GREEN, 2009).  

STBN models’ performance was also evaluated in terms of execution time. The STBN 

models of three case studies were run on an octa-core server machine with 64GB of RAM. 

The STBN querying and updating step is the bottleneck of all STBN modeling. Therefore, 

we measure the total execution time of the whole modeling as well as the time spent only 

on this bottleneck step. 
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To quantify the influence of the predictor variables on the target variable, we used Mutual 

Information (MI), which is defined within the information theory. MI measures how 

much knowing one variable reduces the uncertainty about the other. In other words, it is 

a measure of the amount of information that one random variable has about another 

variable. In this sense, MI is zero when both variables are statistically independent 

(VERGARA; ESTÉVEZ, 2014). The MI of two variables 𝑋 and 𝑌 is given by the 

following equation: 

Here, 𝑃(𝑋 = 𝑥) and 𝑃(𝑌 = 𝑌) are marginal probabilities and 𝑃(𝑋 = 𝑥, 𝑌 = 𝑌) is the 

joint probability distribution. 

 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) ∗ log
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦)

𝑛

𝑦

𝑛

𝑥

 (4.1) 
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5 RESULTS AND DISCUSSION 

This chapter presents the deforestation risk predictions obtained with STBN models. The 

analyses and evaluation of results are presented by case studies. First, the Amazon case 

study is presented, followed by Mato Grosso case study, and last the Para case study. 

Two STBNs approaches were applied in each case study. The first-order Markov STBN 

was trained with raster data from 2013 and 2014. Thus, predictions were made for the 

year 2014 onwards. As raster data were observed until 2018, the last prediction was made 

for 2019, so the result of the first-order Markov STBN is a six-layer raster time series, 

one for each year from 2014 to 2019. On the other hand, the second-order Markov STBN 

was trained with raster data from 2013, 2014, and 2015, as it is made up of three time-

slices. Thus, predictions were made for the year 2015 until 2019, and, therefore, the result 

of this STNB approach is a five-layer raster time series.  

Each raster layer (from both STBN models) corresponds to a probability image, in which 

every pixel value within the ROI represents the probability that location be deforested 

given observation on the context variables. From the visual analysis, it is not possible to 

notice significant differences among the probability images resulting from both STBN 

models. Regions with the highest deforestation risk are indicated by red-colored pixels in 

the Figures, while dark green-colored pixels indicate the contrary. White pixels within 

the ROIs refer to previously deforested areas (i.e., before the prediction year). These areas 

were removed from the probability images since there is no interest in prediction 

assessment in areas already deforested.  

The probability images with deforestation risk over the year can be considered the main 

result of the STBN models developed from the stbnR package. The analyzes carried out 

from now onwards no longer concern the package implemented in this thesis. Thus, we 

evaluated the probability image time series in each case study by comparing them with 

those datasets previously selected to perform model accuracy assessment. We analyze the 

distribution of the probability values for the target presence and absence classes (i.e., 

deforested and forested areas, respectively).  In general, predictions were consistent, so 

that the highest probability values were assigned to the majority of deforested pixels, 

while the lowest probability values were assigned to the majority of forest pixels.  
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5.1 Amazonas case study 

Figure 5.1 presents the probability images time series resulting from the first-order 

Markov STBN, while Figure 5.2 presents the probability images time series resulting 

from the second-order Markov STBN. Areas with high deforestation risk can be observed 

around the boundaries of Boca do Acre (on the west) and Lábrea (on the east) 

municipalities. In this central region, there is deforestation expansion tendency towards 

the east, and the most vulnerable areas are predominantly neighboring already deforested 

areas. This central region is also under the influence of the BR-317 highway (RORIZ; 

YANAI; FEARNSIDE, 2017). 

 

Figure 5.1 - Probability images time series resulting from the first-order Markov STBN in the 

Amazon case study. 

 

Source: author’s production. 
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Figure 5.2 - Probability images time series resulting from the second-order Markov STBN in the 

Amazon case study. 

 

Source: author’s production. 

 

Deforestation risk areas in the ROI’s southern are located at the boundaries of the Acre 

(on the west) and Rondônia (on the east) states. The zoomed area in Figures 5.1 and 5.2 

clearly shows deforestation progress from the south towards the north over the years. One 

can observe that regions indicated with high deforestation risk (red-colored) were indeed 

deforested in the following years (previously deforested areas are shown in white in 

Figures 5.1 and 5.2). These regions in the south are under the influence of the BR-364 

highway that connects the municipalities of Porto Velho in Rondônia state and Rio 

Branco in Acre state. As stated by Fearnside (2015), major roads stimulate deforestation 

by facilitating the construction of smaller ones.  

Mutual Information (MI) was used to evaluate the importance of the context variables. 

Figure 5.3 shows the MI values distribution for the context variables in all scenarios. The 

variable distance from hotspots fires stands out among the others as the most important 

context variable. Indeed, Lábrea municipality has historically presented the highest 

numbers of hotspots fires in the entire Amazonas state (WHITE, 2018). The variable 

distance from degraded areas was also relevant, followed by settlement areas. 

Deforestation, forest degradation, and fires are intimately connected activities. In general, 

deforestation occurred in areas that presented some degradation evidence in the previous 

year, and the role of fires is mostly related to the conversion of forest and degraded forest 

into clear cut areas. Besides that, forest fires were concentrated in areas along the BR-317 
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and BR-364 highways and settlements on the southern and southwestern edges of Boca 

do Acre and Lábrea municipalities (VASCONCELOS et al., 2013a) 

 

Figure 5.3 - Variables importance according to the MI for the first-order Markov STBN in the 

Amazonas case study. 

 

Source: author’s production. 

 

Figure 5.4 shows the distribution of the predicted probability values for deforested pixels 

(red boxplots) and forested pixels (green boxplots). The predicted probability values for 

deforestation risk decreased over the years, which can be presumed from the more sparse 

distributions of the red boxplots. This indicates an increase in STBNs uncertainty for 

long-term predictions of deforestation risk. For the first-order Markov STBN, this 

uncertainty gradually increases after rolling up two time-slices forward, that is, from the 

2016 deforestation risk prediction (Figure 5.4 on the left). On the other hand, the second-

order Markov STBN has a more pronounced increase in uncertainty right in the next time-

slice forward (Figure 5.4 on the right).  
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Figure 5.4 - Distribution of the predicted probability values for deforestation and forest pixels 

selected for accuracy assessment in the Amazonas case study. On the left, for the 

first-order Markov STBN, and second-order Markov STBN on the right. 

 

Source: author’s production. 

 

The increasing uncertainty in deforestation risk prediction can also be observed from the 

assessment metrics of the STBN models (see Appendix A). Figure 5.5 shows graphically 

the AUC-ROC, Precision, and Kappa values over the year. In general, metrics values 

decrease over time for both STBN approaches. This may indicate that the more long-term 

is the prediction, the less accurate it will be. From 2016 onwards, Precision and Kappa 

values were similar for both STBN models. On the other hand, the AUC-ROC metric had 

an opposite behavior with higher values for the first-order Markov STBN. However, the 

difference between the assessment metrics when compared between models is not 

statistically significant (see Appendix B).  

Therefore, taking into account both slightly better performance (in terms of AUC-ROC 

values) and the distribution of the predicted probability values by the first-order Markov 

STBN (Figure 5.4 on the left), this approach may be the appropriate one to predict the 

risk of deforestation in the Amazonas case study. 
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Figure 5.5 - Assessment metrics of the STBNs predictions in the Amazon case study. Fulfilled 

lines represent assessment metrics of the First-order Markov STBN model 

predictions, while dashed lines represent assessment metrics of the Second-order 

Markov STBN model predictions. Red lines refer to AUC-ROC values, while green 

and blue lines refer to Kappa and Precision values, respectively. 

 

Source: author’s production. 

 

5.2 Mato Grosso case study 

Figure 5.6 presents the probability images time series resulting from the first-order 

Markov STBN, while Figure 5.7 presents the probability images time series resulting 

from the second-order Markov STBN. Areas with the highest deforestation risk are 

mainly concentrated in the Colniza (on the north) and Aripuanã (on the southeast) 

municipalities. These two municipalities have had indeed the highest deforestation rates 

in the Mato Grosso state (INPE, 2019a). In general, areas with the highest risk are 

neighboring areas already deforested.  

The zoomed area in Figures 5.6 and 5.7 highlights the deforestation expansion process 

over the years. One can observe that even though there is already a deforestation 

expansion tendency from the east towards the west, most of the zoomed area presented a 

low deforestation risk. In the following years, the STBN models’ predictions indicated 

that new areas became vulnerable, presenting high-risk (red-colores regions). 

Subsequently, these high-risk areas were indeed deforested (white areas in the last year). 
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Figure 5.6 - Probability images time series resulting from the first-order Markov STBN in the 

Mato Grosso case study. 

 

Source: author’s production. 
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Figure 5.7 - Probability images time series resulting from the second-order Markov STBN in the 

Mato Grosso case study. 

 

Source: author’s production. 

 

Figure 5.8 shows the distribution of the Mutual Information (MI) values for the context 

variables in the Mato Grosso case study. The settlement areas variable stands out as the 

most important variable. Specifically in the Mato Grosso case study, this variable is 

actually inversely proportional to deforestation risk. This is because the region has only 

a few settlements located in the northeastern, which have probably not had such an 

influence on deforestation. Furthermore, a large part of areas with high deforestation risk 

is located outside the settlement areas.  

In sequence, the variables protected areas, distance from degraded areas, distance from 

hotspots fires, and distance from pasture areas showed similar importance. Extensive 

conservation units and indigenous lands located in the ROI’s south-central and northern 

played an important role in mitigating deforestation risk. These areas presented the lowest 

risk. On the other hand, a huge concentration of fires has been observed clustered in the 

case study region over the last years (INPE, 2019b). This may be caused by the ongoing 

cattle-ranching expansion process, which is a deforestation driver in the region. Those 

already deforested areas have been predominantly converted to pasture (ALMEIDA et 
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al., 2016). Besides that, many forest areas are degraded because of the intense illegal 

logging activity in this region (SOUSA, 2016). 

 

Figure 5.8 - Variables importance according to the MI for the first-order Markov STBN in the 

Mato Grosso case study. 

 

Source: author’s production. 

 

Figure 5.9 shows the distribution of the predicted probability values for deforested (red 

boxplots) and forested (green boxplots) pixels selected for accuracy assessment in each 

year. In the Mato Grosso case study, both STBN models also tend to become more 

uncertain over time, as one can observe from the more sparse distributions of the red 

boxplots for each forward prediction. The boxplots median shows that the predicted 

probability values decrease over the years, which can be seen as an increase in 

uncertainty. Here, the first-order Markov STBN uncertainty also presented a gradual 

increase (Figure 5.9 on the left), while the second-order Markov STBN presented a more 

pronounced increase in uncertainty right in the next time-slice forward (Figure 5.9 on the 

right).  
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Figure 5.9 - Distribution of the predicted probability values for deforestation and forest pixels 

selected for accuracy assessment in the Mato Grosso case study. On the left, for the 

first-order Markov STBN, and second-order Markov STBN on the right. 

 

Source: author’s production. 

 

The assessment metrics of the STBN models (see Appendix A) also denote an increase 

in uncertainty. One can note from Figure 5.10, that AUC-ROC, Precision, and Kappa 

values gradually decrease over the years indicating the uncertainty increasing in 

deforestation risk prediction of both STBN models. Such metrics’ behavior suggests that 

short-term predictions are more accurate. Even though the difference between the 

assessment metrics when compared between models is not statistically significant (see 

Appendix B), AUC-ROC, Precision, and Kappa metrics from the second-order Markov 

STBN presented slightly higher values to the metrics from the first-order Markov STBN. 

These results suggest that spatio-temporal variables influence deforestation risk 

prediction beyond the one-time interval and, therefore, the second-order Markov STBN 

may be the appropriate approach to predict the risk of deforestation in the Mato Grosso 

case study. 
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Figure 5.10 - Assessment metrics of the STBNs predictions in the Mato Grosso case study. 

Fulfilled lines represent assessment metrics of the First-order Markov STBN 

model predictions, while dashed lines represent assessment metrics of the Second-

order Markov STBN model predictions. Red lines refer to AUC-ROC values, 

while green and blue lines refer to Kappa and Precision values, respectively. 

 

Source: author’s production. 

 

5.3 Pará case study 

Figure 5.11 presents the probability images time series resulting from the first-order 

Markov STBN, while Figure 5.12 presents the probability images time series resulting 

from the second-order Markov STBN. Likewise the two previous case studies, no 

significant differences could be observed between the results from both STBN 

approaches. Regions with the highest deforestation risk are indicated by red-colored 

pixels, while dark green-colored pixels indicate the contrary. White pixels within the 

ROIs refer to previously deforested areas. These areas were removed from the probability 

images since there is no interest in prediction assessment in areas already deforested. 

The BR-163 highway crosses the ROI from north to south. Several small roads have been 

branched off from the BR-163, influencing deforestation in adjacent areas. One can 

observe that areas with the highest deforestation risk are subject to the influence of this 

highway, forming a wide corridor for deforestation expansion. High-risk areas also can 

be seen in a second corridor, however narrower in the north of ROI. This is an area under 

the influence of the Transgarimpeira highway, which connects the BR-163 highway to 

mining areas in the west (SILVA et al., 2020).  
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Areas under environmental protection provided a significant mitigation effect on 

deforestation risk. One can observe that the Indigenous Land as well as the Military  

Reserve located in the ROI’s eastern and southwestern, respectively, presented the lowest 

deforestation risk. These conservation units have more restrictive environmental laws 

prohibiting any exploration activities (AMIN et al., 2019). The zoomed area in Figures 

5.5 and 5.6 shows that Indigenous Land in the eastern is a strong barrier against 

deforestation expansion.  

 

Figure 5.11 - Probability images time series resulting from the first-order Markov STBN in the 

Pará case study. 

 

Source: author’s production. 
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Figure 5.12 - Probability images time series resulting from the second-order Markov STBN in the 

Pará case study. 

 

Source: author’s production. 

 

Attention should be drawn to the Jamanxim National Forest located in the ROI’s midwest. 

The probability images show a deforestation expansion tendency from the BR-163 

highway towards to west, therefore, within the Jamanxin National Forest boundaries. 

High deforestation risk areas in this region are mainly driven by the high frequency of 

hotspots fires and degraded areas (PINHEIRO et al., 2016; SILVA et al., 2020). The 

Jamanxim National Forest is the conservation unit with the highest deforestation rates 

from the BLA. 



 

74 
 

Mutual Information (MI) was used to evaluate the importance of the context variables, as 

shown in Figure 5.13. The variables distance from hotspots fires and settlement areas 

stood out as an important variable. Indeed, a huge concentration of hotspots fires has 

annually been observed around the BR-163 highway (INPE, 2019b). Settlements along 

the BR-163 highway seem to increase deforestation risk, probably due to the human 

activities carried out in their areas (PINHEIRO et al., 2016). In turn, the variable protected 

areas also presented great importance, due to the significative effect of deforestation risk 

mitigation. 

 

Figure 5.13 - Variables importance according to the MI for the first-order Markov STBN in the 

Pará case study. 

 

Source: author’s production. 

 

Figure 5.14 shows the distribution of the predicted probability values for deforested (red 

boxplots) and forested (green boxplots) pixels selected for accuracy assessment in each 

year. Contrary to what was observed in previous case studies, first-order Markov STBN 

presented a significant increase in uncertainty over time. The predicted probability values 

decreased drastically after forwarding prediction, as can be seen in Figure 5.14 on the left. 

In the 2016 prediction, probability values were more distributed in the [0, 1] range. On 

the other hand, second-order Markov STBN seemed to have a lower level of uncertainty 

since the predicted probability values were concentrated in values above 0.5 (Figure 5.14 

on the right). 

In general, STBN models in the Pará case study were less accurate in predicting 

deforestation risk, when comparing the assessment metrics from the previous case studies 
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(see Appendix A). Even so, the metrics also showed the expected decreasing behavior 

over time, indicating short-term predictions as the best option. Furthermore, the higher 

assessment metrics of second-order Markov STBN (Figure 5.15) along with the lower 

level of uncertainty in this approach predictions suggest that spatio-temporal variables 

influence deforestation risk prediction beyond the one-time interval, being the second-

order Markov STBN a more appropriate approach to predict the risk of deforestation in 

the Pará case study. 

 

Figure 5.14 - Distribution of the predicted probability values for deforestation and forest pixels 

selected for accuracy assessment in the Pará case study. On the left, for the first-

order Markov STBN, and second-order Markov STBN on the right. 

 

Source: author’s production. 

 

Figure 5.15 - Assessment metrics of the STBNs predictions in the Pará case study. Fulfilled lines 

represent assessment metrics of the First-order Markov STBN model predictions, 

while dashed lines represent assessment metrics of the Second-order Markov STBN 

model predictions. Red lines refer to AUC-ROC values, while green and blue lines 

refer to Kappa and Precision values, respectively. 

 

Source: author’s production. 
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5.4 Processing time analysis 

In the Amazonas case study, the first-order Markov STBN seemed to be the appropriate 

approach for deforestation risk prediction. On the other hand, the second-order Markov 

STBN showed slightly better results for both Mato Grosso and Pará case studies. 

However, it is up to the user to decide whether it is worth employing this approach for a 

better result since it requires more processing time.  

The total processing time as well as the bottleneck time of both STBN models in the three 

case studies are shown in Table 5.1 and Figure 5.16. The bottleneck step refers to the 

STBN queries and updating. One can note that the bigger the network structure (second-

order Markov STBN), the longer the bottleneck time (orange bars in Figure 5.16). On the 

contrary, the remaining steps of the entire modeling (green bars in Figure 5.16) spend 

relatively the same processing time for both approaches in the same case study. 

It also can be noted that, in the Amazonas and Mato Grosso case studies, the total 

processing time of the second-order Markov STBN was approximately four times greater 

than the time spent by the first-order Markov STBN. In turn, the total processing time of 

the second-order Markov STBN in the Pará case study was approximately eight times 

greater than the time spent by the first-order Markov STBN. This difference can be 

explained by the fact that the region of interest (ROI) in the Pará case study is the largest 

one among all the case studies.  
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Table 5.1 - Processing time of the STBN approaches. 

Amazonas case study 

 First-order Markov STBN Second-order Markov STBN 

Bottleneck 116 minutes 663 minutes 

Others 63 minutes 58 minutes 

Total 179 minutes 721 minutes 

 

Mato Grosso case study 

 First-order Markov STBN Second-order Markov STBN 

Bottleneck 129 minutes 593 minutes 

Others 30 minutes 28 minutes 

Total 159 minutes 621 minutes 

 

Pará case study 

 First-order Markov STBN Second-order Markov STBN 

Bottleneck 216 minutes 2527 minutes 

Others 85 minutes 96 minutes 

Total 301 minutes 2623 minutes 

 

 

Figure 5.16 - Processing time of the STBN approaches in each case study. Orange bars refer to 

the bottleneck step processing time, while the green bars refer to the remaining steps 

of the entire modeling. 

 

Source: author’s production. 
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6 CONCLUSION 

 

The main goal of this doctoral thesis was to build a Spatio-Temporal Bayesian Network 

(STBN) model to predict deforestation risk. To accomplish the objective of this work, we 

implemented an R package called stbnR (Spatio-Temporal Bayesian Network for R), 

which allows the development of STBN-based LULCC models within a single integrated 

environment, thus avoiding challenges such as data conversion and transfer from different 

software tools. The stbnR package was developed in R because this is an open-source 

programing language, which allows the proposed package to be thoroughly tested in 

several applications. The stbnR package documentation is being finalized and will soon 

be available on the GitHub website https://github.com/alexsandrocandido/stbnR and 

maybe in the CRAN repository (Comprehensive R Archive Network).  

We presented in the main functions of the stbnR package and how to use them to carry 

out a complete workflow of LULCC modeling based on an STBN. Although employing 

BNs to predict deforestation risk has been proposed before (DLAMINI, 2016; KRÜGER; 

LAKES, 2015; MAYFIELD et al., 2017), the temporal domain has not been taken into 

account, and deforestation has been considered as a static process when modeled by BN 

approaches. Therefore, the STBN models developed in this work aimed to meet such 

demand, by incorporating both spatial and temporal information into the modeling.  

Three deforestation frontier regions in the Amazon Forest were selected to apply the 

STBN models to evaluate them and demonstrate their potential in predicting deforestation 

risk over time. For each case study region, two STBN approaches were applied: a first-

order Markov STBN and a second-order Markov STBN. Through the application of both 

models, we were able to confirm the work’s hypothesis that STBN-based LULCC models 

are able to capture and represent the variables’ spatio-temporal relationships to 

appropriately predict deforestation risk. 

The probability images time series are the main STBN models outputs. In each probability 

image, each pixel value represents the probability of that location being deforested given 

the values observed in the context variables. According to the accuracy assessment 

indexes, the STBN models presented a strong performance with a great agreement 

between deforestation events and predictions. Furthermore, the second-order Markov 

STBN overperformed the first-order Markov STBN in two case study regions. This 

https://github.com/alexsandrocandido/stbnR
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indicates that deforestation risk prediction is influenced not only by variables in the 

previous time-slice but also by variables from earlier time-slices.  

However, we could note that there was an increase in uncertainty for both STBN models 

in deforestation risk prediction over time, indicating that the more long-term is the 

prediction, the less accurate it will be. Thus, we can state that STNB-based LULCC 

models are suitable for short-term predictions. Besides the uncertainty increasing, the 

second-order Markov STBN application can bring another concern about the execution 

time. In the three case study regions, this model spent much more time than the first-order 

Markov STBN. Therefore, even though computer systems currently offer sufficient 

resources to perform robust tasks, the user may consider weighting between a better result 

or a faster result. 

Among the variables selected to compose the STBN models, the distance from hotspots 

fires stood out as one of the most important variables for predicting deforestation risk. 

This variable is directly related to human activities such as illegal logging and cattle-

ranching expansion, which are the main deforestation drivers in the Amazon forest. In 

addition to that, the protected areas variable was also extremely important but not as a 

driver but as a mitigator of deforestation risk. Indeed, the lowest values of risk were found 

in conservation units such as indigenous land.  

The probability images obtained from the STBN models can be used as indicators of the 

areas most vulnerable to deforestation and support for decision-makers to implement 

directed preventive action plans, for instance, focused on priority areas. As future work, 

we suggest testing the application of STBN models with higher-order Markov for 

predicting deforestation risk. These models may obtain more accurate results. 

Furthermore, a thorough sensitivity analysis should be conducted to measure the impact 

in the STBN models’ predictions from changes in the discretization thresholds of the 

context variables as well as in the variables’ relationship. It is also important to test the 

robustness of the stbnR package with available benchmarking to ensure its quality. In 

addition to that, we also suggest the development of STBN-based LULCC models from 

the stbnR package for other Earth observation applications besides the deforestation 

process.  
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APPENDIX A: ASSESSMENT METRICS OF THE STBN MODELS 

PREDICTIONS. 

 

Table A.1 - Assessment metrics of the STBNs predictions in the Amazon case study. 

 First-order Markov STBN Second-order Markov STBN 

 2014 2015 2016 2017 2018 2015 2016 2017 2018 

Threshold 0.32 0.44 0.44 0.25 0.18 0.35 0.30 0.16 0.27 

Sensitivity 0.96 0.95 0.94 0.91 0.94 0.97 0.94 0.90 0.93 

Specificity 0.95 0.94 0.93 0.92 0.91 0.95 0.93 0.91 0.90 

AUC-ROC 0.98 0.97 0.96 0.95 0.95 0.98 0.95 0.94 0.93 

Precision 0.86 0.85 0.82 0.79 0.77 0.88 0.82 0.79 0.79 

Kappa 0.87 0.86 0.84 0.79 0.79 0.90 0.84 0.79 0.79 

 

Table A.2 - Assessment metrics of the STBNs predictions in the Mato Grosso case study. 

 First-order Markov STBN Second-order Markov STBN 

 2014 2015 2016 2017 2018 2015 2016 2017 2018 

Threshold 0.32 0.25 0.33 0.23 0.23 0.36 0.32 0.33 0.31 

Sensitivity 0.97 0.93 0.91 0.92 0.86 0.97 0.92 0.94 0.88 

Specificity 0.94 0.92 0.92 0.89 0.90 0.94 0.92 0.90 0.91 

AUC-ROC 0.98 0.94 0.93 0.93 0.89 0.98 0.94 0.94 0.90 

Precision 0.82 0.79 0.78 0.73 0.74 0.83 0.79 0.76 0.76 

Kappa 0.84 0.80 0.78 0.74 0.73 0.86 0.80 0.78 0.75 

 

Table A.3 - Assessment metrics of the STBNs predictions in the Pará case study. 

 First-order Markov STBN Second-order Markov STBN 

 2014 2015 2016 2017 2018 2015 2016 2017 2018 

Threshold 0.22 0.16 0.09 0.16 0.16 0.21 0.19 0.21 0.20 

Sensitivity 0.90 0.88 0.79 0.81 0.81 0.89 0.81 0.81 0.81 

Specificity 0.89 0.88 0.86 0.86 0.90 0.88 0.86 0.86 0.90 

AUC-ROC 0.95 0.89 0.85 0.86 0.85 0.90 0.86 0.86 0.87 

Precision 0.70 0.67 0.65 0.65 0.72 0.71 0.66 0.69 0.75 

Kappa 0.67 0.67 0.60 0.62 0.69 0.70 0.65 0.69 0.70 
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APPENDIX B: HYPOTHESIS TESTING FOR THE ASSESSMENT METRICS. 

 

AUC-ROC, Precision, and Kappa metrics values for the first-order Markov STBN were 

compared with the values of the same metrics for the second-order Markov STBN. To 

test the hypothesis that there is a significant difference between the metrics of both 

models, an independent t-test was performed for each one of those three metrics in each 

case study. Considering 𝜇1 as the mean of the first-order Markov STBN assessment 

metric, and 𝜇2 as the mean of the same assessment metric but for the second-order 

Markov STBN, all independent t-tests performed had the null and alternative hypotheses 

as follows: 

𝐻0: 𝜇1 − 𝜇2 = 0, i.e., the difference between the means equals to zero, 

𝐻𝑎: 𝜇1 − 𝜇2 ≠ 0, i.e., the difference between the means differs from zero. 

Table B.1 shows the mean and standard deviation of each metric for both models as well 

as the p-value obtained from the independent t-test with a significance level of 5%. One 

can note that the p-value is greater than 0.05 in all t-tests performed, this states that the 

difference found between the means is not statistically significant.  
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Table B.1 - AUC-ROC, Precision, and Kappa metrics mean and standard deviation for 

the STBN models. The p-value obtained from the independent t-test is also 

shown. 

Amazon case study 
 First-order Markov STBN Second-order Markov STBN  

 Mean Std. Deviation Mean Std. Deviation p-value 

AUC-ROC 0.962 0.013 0.95 0.0216 0.3758 

Precision 0.818 0.0383 0.82 0.0424 0.9439 

Kappa 0.83 0.038 0.83 0.0523 0.9999 

 

Mato Grosso case study 
 First-order Markov STBN Second-order Markov STBN  

 Mean Std. Deviation Mean Std. Deviation p-value 

AUC-ROC 0.934 0.0321 0.94 0.0326 0.7911 

Precision 0.772 0.037 0.785 0.0332 0.5966 

Kappa 0.7975 0.045 0.7975 0.0464 0.9999 

 

Pará case study 
 First-order Markov STBN Second-order Markov STBN  

 Mean Std. Deviation Mean Std. Deviation p-value 

AUC-ROC 0.88 0.0424 0.8725 0.0189 0.7361 

Precision 0.678 0.0311 0.7025 0.0377 0.9439 

Kappa 0.685 0.038 0.685 0.0238 0.9999 

 

The values from Table B.1 are graphically presented in Figure B.1. The mean value of 

each metric is plotted along with the standard deviation error bar. Assessment metrics are 

shown by rows while study cases are shown by columns. One can note that, for the three 

metrics in all case studies, there is an overlap between the error bars when comparing 

them between models. This overlap is another indication that the difference between 

metrics by models is not statistically significant. 
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Figure B.1 - Mean of the AUCROC, Precision, and Kappa metrics by STBN models and by case 

studies with standard deviation error bars. 

 

Source: author’s production. 
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